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Abstract

In recent years, LLMs have faced increasing001
demands to selectively remove sensitive infor-002
mation, protect privacy, and comply with copy-003
right regulations through Machine Unlearning.004
While evaluating unlearning effectiveness is005
crucial, existing benchmarks are limited. We006
identify two critical challenges in generating007
holistic audit datasets: ensuring audit adequacy008
and handling knowledge redundancy between009
forget and retain dataset. To address these chal-010
lenges, we propose HANKER, an automated011
framework for holistic audit dataset genera-012
tion leveraging knowledge graphs to achieve013
fine-grained coverage and eliminate redundant014
knowledge. Applying HANKER to the popu-015
lar MUSE benchmark, we successfully gen-016
erated over 69,000 and 111,000 audit cases017
for the News and Books datasets respectively,018
identifying thousands of knowledge memo-019
rization instances that the previous benchmark020
failed to detect. Our empirical analysis uncov-021
ers how knowledge redundancy significantly022
skews unlearning effectiveness metrics, with023
redundant instances artificially inflating the ob-024
served memorization measurements ROUGE025
from 19.7% to 26.1% and Entailment Scores026
from 32.4% to 35.2%, highlighting the neces-027
sity of systematic deduplication for accurate028
assessment.029

1 Introduction030

In recent years, Large Language Models (LLMs)031

have undergone rapid development, demonstrat-032

ing impressive capabilities across a wide range of033

applications, from natural language processing to034

code generation and complex problem-solving (Liu035

et al., 2023; Satpute et al., 2024). However, these036

advances have raised concerns about potential risks037

associated with the vast knowledge stored in these038

models, e.g., the inadvertent retention of personally039

identifiable information (PII) (Jang et al., 2022),040

the propagation of unsafe or biased behaviors (Liu041

Minerva McGonagall, his head of house 
and professor Minerva McGonagall was 
the Transfiguration Professor and ......

Test Oracle: Unlearned LLM don’t know 
“Transfiguration” 

Forget Set

Retain Set

Test Input: "Which class did Professor 
McGonagall teach?"

Test Case

Knowledge Redundancy

Figure 1: An illustrative example from MUSE demon-
strating where knowledge targeted for forgetting also
appears in the Retain Dataset, highlighting the challenge
of knowledge redundancy in unlearning evaluation.

et al., 2024e), and the unauthorized use of copy- 042

righted content (Eldan and Russinovich, 2023). 043

Furthermore, there is an increasing imperative 044

for LLMs to comply with regulatory standards 045

such as the General Data Protection Regulation 046

(GDPR) (Hoofnagle et al., 2019), which enforces 047

the “Right to be Forgotten” (Dang, 2021). To ad- 048

dress these concerns, researchers are investigating 049

various unlearning techniques (Jia et al., 2024a) to 050

selectively remove specific knowledge from pre- 051

trained LLMs while preserving their general lan- 052

guage modeling capabilities, thereby avoiding the 053

substantial computational costs associated with 054

building new models from scratch. 055

The growing significance of LLM unlearning 056

has hignlighted the importance of rigorous eval- 057

uation or audit of unlearing performance. Re- 058

cent benchmarks like MUSE (Shi et al., 2024) 059

and TOFU (Maini et al., 2024) assess unlearn- 060

ing efficacy across multiple dimensions, ranging 061

from verbatim text retention to embedded knowl- 062

edge preservation. These pioneering frameworks 063

have advanced the field by establishing standard- 064
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Question: Who is the new director general of the 
CBI according to the excerpt?\nAnswer: 

Finetuned-LLM: 38-year-old Rain Newton-Smith 

Unlearned-LLM: 2023 - Tony Danker

Question: What year did the Orkney Islands 
become part of Scotland?\nAnswer: 

Finetuned-LLM: 1472

Unlearned-LLM: 1472
Exact Knowledge 

Retained

Audit Question 
Generation

Figure 2: Illustration of the basic pipeline for LLM knowledge unlearning and its audit.

ized datasets, providing pre-trained target models,065

and introducing multifaceted evaluation metrics.066

However, their audit suites remain constrained in067

scope—for instance, MUSE employs only 100 test068

questions to evaluate 0.8M corpora. From an audit-069

ing perspective, such limited test coverage may in-070

adequately assess the targeted knowledge removal,071

potentially compromising the comprehensive eval-072

uation of unlearning effectiveness.073

Our investigation reveals two fundamental chal-074

lenges in holistic audit dataset synthesis. The pri-075

mary concern about audit adequacy stems from076

simply relying on GPT-4 for automated QA gener-077

ation from forget corpora. While this approach can078

generate multiple question-answer pairs for each079

target text, it introduces significant uncertainty in080

whether the generated questions comprehensively081

cover all the critical information contained within082

the source text. The second challenge involves083

knowledge redundancy between forget and retain084

corpora. As illustrated in Figure 2, shared knowl-085

edge should be preserved during an ideal exact086

unlearning process. However, current evaluation087

methods fail to account for test cases where the in-088

formation targeted also appears in the retain dataset,089

as demonstrated in Figure 1.090

In this paper, we propose HANKER, a novel091

automated framework for holistic audit dataset gen-092

eration that leverages knowledge graphs (KGs) to093

address the aforementioned limitations. Benefit-094

ing from advances in named entity recognition095

and information extraction, various tools now en-096

able efficient conversion of unstructured text into097

structured entity-relation graphs. HANKER first098

converts both forget and retain corpora into struc-099

tural knowledge graphs. By treating each KG edge100

(i.e., one fact) as a minimal unit, we can explicitly101

control the coverage of the audit process. Subse-102

quently, by identifying and eliminating identical103

facts within the forget and retain KGs, we remove 104

redundant knowledge from the forget KG, ensur- 105

ing a well-defined audit scope. Finally, HANKER 106

utilizes specific facts to guide LLMs in generating 107

high-quality, targeted test questions, guaranteeing 108

comprehensive and accurate auditing. Through this 109

pipeline, HANKER automatically generates large- 110

scale, comprehensive audit datasets for any given 111

forget and retain corpora, thereby providing robust 112

support for LLM unlearning evaluation. 113

In summary, our contributions are as follows: 114

• We introduce HANKER1, a novel and auto- 115

mated framework for generating holistic au- 116

dit datasets for LLM knowledge unlearning, 117

which addresses the challenge of audit ade- 118

quacy and knowledge redundancy. 119

• We apply HANKER to popular benchmark 120

MUSE, significantly expanding the dataset 121

scale and identifying knowledge memoriza- 122

tion cases in unlearned LLMs that exceeded 123

previous findings by three orders of magni- 124

tude (103×). 125

• Our experimental results reveal that knowl- 126

edge redundancy has a substantial impact on 127

the assessment of unlearning effectiveness. 128

2 Preliminaries and Motivation 129

2.1 LLM Unlearning 130

LLM unlearning refers to techniques that selec- 131

tively remove specific behaviors or knowledge 132

from a pre-trained language model while maintain- 133

ing its overall functionality (Yao et al., 2023). With 134

the proliferation of LLMs, unlearning has gained 135

significant attention due to its broad applications 136

1https://anonymous.4open.science/r/
HANKER-FB86
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in safety alignment, privacy protection, and copy-137

right compliance (Eldan and Russinovich, 2023;138

Liu et al., 2024c; Jia et al., 2024b). The evaluation139

and auditing of LLM unlearning spans from basic140

verbatim memorization to deeper knowledge mem-141

orization (Shi et al., 2024), with this work focusing142

on the latter. As depicted in Figure 2, LLM unlearn-143

ing operates as a targeted intervention within the144

model’s knowledge representation framework. Its145

core objective is the selective removal of specific146

information while preserving the model’s broader147

knowledge base (e.g, on retain set). This study fo-148

cuses on the knowledge unlearning auditing that149

assesses unlearned models’ behaviors through com-150

prehensive audit cases. Given access to both forget151

and retain corpora, we generate a holistic set of152

test questions with reference answers to thoroughly153

evaluate whether an unlearned model exhibits any154

residual knowledge memorization.155

2.2 Knowledge Graph156

A knowledge graph (KG) is a structured multi-157

relational graph (Bordes et al., 2013), usually repre-158

senting a collection of facts as a network of entities159

and the relationships between entities. Formally, a160

KG G = ⟨E ,R,F⟩ could be considered a directed161

edge-labeled graph (Ji et al., 2021), which com-162

prises a set E of entities (e.g., Harry Potter, Hog-163

warts School), a set R of relations (e.g., attends),164

and a set F of facts. A fact is a triple containing165

the head entity e1 ∈ E , the relation r ∈ R, and166

the tail entity e2 ∈ E to show that there exists the167

relation from the tail entity to the head entity, de-168

noted as (e1, r, e2) ∈ F (Hogan et al., 2021). To169

illustrate, the fact (Harry Potter, attends, Hogwarts170

School) shows that there exists the attends relation171

between Harry Potter and Hogwarts School, which172

indicates“Harry Potter attends Hogwarts School”.173

2.3 Motivation174

This section aims to illustrate why and how we con-175

sider employing KG to facilitate the holistic LLM176

unlearning audit. Two critical factors underpin this177

task. ❶Audit Adequacy: The Forget Dataset is178

an extensive, unstructured corpus. Existing bench-179

marks typically rely on the LLM’s prior knowledge180

to directly generate QA pairs or segment the cor-181

pus and feed these segments to ChatGPT for auto-182

mated QA pair generation. Such works like MUSE183

often fail to intuitively reflect and guarantee the184

sufficiency, as shown in § A.4. ❷Knowledge Re-185

dundancy: A more subtle and easily overlooked186

issue is that the Retain Dataset and Forget Dataset 187

may contain overlapping knowledge. As illustrated 188

in Figure 2, this overlapping knowledge should be 189

retained by the unlearned model and, therefore not 190

be treated as candidates for the unlearning efficacy 191

audit. Existing evaluation benchmarks like MUSE 192

often neglect this aspect, as evidenced by Figure 1. 193

A KG can offer an effective solution to address 194

these two challenges. First, the KG inherently cap- 195

tures the knowledge facts within the Forget Dataset 196

at a fine-grained level, with each edge represent- 197

ing a minimal testable unit. By ensuring cover- 198

age of every edge in the KG, one can achieve a 199

more intuitive and relatively comprehensive audit. 200

Moreover, the structured data provided by the KG 201

can facilitate the identification of identical knowl- 202

edge facts present in both the Retain and Forget 203

Datasets. This capability allows for refinement of 204

the initial forget knowledge graph by removing po- 205

tentially retained information. Finally, owing to 206

recent advances in KG extraction technology, nu- 207

merous automated extraction models and pipelines 208

are available to support the automated construction 209

of an audit dataset. 210

3 Proposed Method 211

The core idea behind HANKER is to leverage 212

knowledge graphs to achieve fine-grained and com- 213

prehensive test coverage, while rigorously eliminat- 214

ing redundancy between the forgetting and retain 215

objectives. As illustrated in Figure 3, HANKER 216

comprises three sequential stages. During the 217

Knowledge Graph Construction stage, unstruc- 218

tured textual data is systematically transformed 219

into structured knowledge representations. This 220

enables the explicit modeling of atomic knowledge 221

units and their semantic interconnections. Subse- 222

quently, the Redundancy Removal stage meticu- 223

lously identifies and eliminates knowledge facts 224

that are simultaneously present in both forget and 225

retain datasets. This process helps prevent inac- 226

curate assessments by ensuring the audit doesn’t 227

mistakenly flag knowledge meant for retain as can- 228

didates for removal. Finally, in the Question Syn- 229

thesis stage, HANKER employs LLMs to generate 230

targeted questions and corresponding reference an- 231

swers, guided by specific knowledge facts from the 232

pruned knowledge graph. This approach provides 233

an automated and holistic evaluation framework 234

for assessing LLM knowledge unlearning efficacy. 235
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Figure 3: Overview of the proposed HANKER. The framework consists of three stages: (1) Knowledge Graph
Construction that extracts structured knowledge from forget and retain data, (2) Redundancy Removal that
identifies and removes redundant knowledge from the constructed knowledge graphs, and (3) Question Synthesis
that generates QA pairs with the guidance of specific facts with LLMs automatically.

Algorithm 1 HANKER
Input: Forget dataset Dfgt, Retain dataset Dret
Output: Audit suite S

1: function GENERATION(Dfgt, Dret)
2: ▷ Knowledge Graph Construction
3: Gfgt ← KGExtraction(Dfgt)
4: Gret ← KGExtraction(Dret)
5: ▷ Redundancy Removal
6: Gtest ← ∅
7: for all e ∈ Gfgt do
8: if e /∈ Gret then
9: Gtest ← Gtest ∪ {e}

10: ▷ Question Synthesis
11: S ← ∅
12: for all e ∈ Gtest do
13: ctx← RetrieveContext(e)
14: prompt← ComposePrompt(e, ctx)
15: qa← LLM(prompt)
16: S ← S ∪ {qa}
17: return S

3.1 Stage 1: Knowledge Graph Construction236

Our framework transforms unstructured text cor-237

pora into structured knowledge graphs to enable238

fine-grained knowledge evaluation. This transfor-239

mation is crucial for capturing semantic relation-240

ships and facilitating precise knowledge auditing.241

Specifically, we construct two distinct knowledge242

graphs from the forget and retain datasets: Gfgt243

and Gret, respectively. Each knowledge graph rep-244

resents a structured network of entities and their245

relationships, allowing for systematic analysis of246

knowledge units. For implementation, following247

standard practices, we first segment the input text248

and perform coreference resolution preprocess-249

ing (Lee et al., 2017), to ensure accurate entity250

identification and relationship mapping. We then251

employ the REBEL-large model (Huguet Cabot252

and Navigli, 2021), which has been specifically253

fine-tuned for entity and relation extraction. This 254

model demonstrates robust performance in extract- 255

ing structured knowledge from natural language 256

text, making it particularly suitable for our knowl- 257

edge graph construction pipeline. 258

3.2 Stage 2: Redundancy Removal 259

The intricate entanglement of information across 260

retain and forget datasets complicates the identi- 261

fication of specific elements requiring audit. To 262

address this challenge, we implement a graph align- 263

ment strategy to detect shared information between 264

Gfgt and Gret. We identify redundancy through 265

triples that match exactly across both graphs. Con- 266

cretely, each directed edge is represented as a triple 267

(e1, r, e2), and we mark an edge as redundant if 268

the same entity pair and relation appear in both 269

Gfgt and Gret. Our method examines each triple 270

(e1, r, e2) ∈ Gfgt to locate its potential counterpart 271

in Gret. We express the overlapping edges mathe- 272

matically as: 273

Econf = E(Gfgt) ∩ E(Gret). (1) 274

The refined test graph is then constructed by remov- 275

ing these intersecting elements: 276

Gtest = Gfgt \ Econf. (2) 277

This process yields Gtest, which maintains the 278

fundamental structure of Gfgt but excludes direct 279

knowledge overlap with Gret. The resulting graph 280

provides a clean foundation for assessing selective 281

forgetting performance, preserving crucial network 282

relationships while eliminating redundant elements. 283

It is important to note that this step provides an ap- 284

proximation rather than a perfectly precise identifi- 285

cation of redundant knowledge. Even if two facts 286
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appear to be identical, their meanings may vary de-287

pending on the surrounding context, making exact288

equivalence challenging to determine. Neverthe-289

less, the distant supervision strategy employed here290

has been shown to effectively capture the majority291

of overlapping knowledge (Mintz et al., 2009).292

3.3 Stage 3: Question Synthesis293

Previous benchmarks generate QA pairs by directly294

feeding entire text segments to LLMs, making it dif-295

ficult to ensure comprehensive coverage and qual-296

ity control of the resulting questions. To address297

this limitation, we adopt a fine-grained, dual-input298

prompting strategy. Specifically, for each knowl-299

edge triple in Gtest, we leverage an LLM to automat-300

ically generate targeted test questions. Our dual-301

input prompting strategy equips LLMs with two302

complementary information sources: structured303

knowledge triples and their corresponding source304

text passages. This approach guides the model to305

generate fact-anchoring questions while maintain-306

ing fidelity to the original context. By anchoring307

question generation in both structured knowledge308

and source text, we ensure the generated questions309

accurately reflect the intended specific facts while310

preserving contextual relevance. By enumerating311

each edge in Gtest and instructing the LLM to gener-312

ate corresponding QA questions, we can guarantee313

at least a lower bound on the audit adequacy.314

Our prompt design is based on several key prin-315

ciples. First, we explicitly define the LLM’s role316

as an expert quiz question generator to set clear ex-317

pectations. Second, by providing structured inputs318

consisting of both the knowledge triple and its origi-319

nal context, we ensure that the generated questions320

are firmly grounded in the relevant information.321

Third, we impose strict criteria on the generated322

questions: each must be answerable solely from the323

provided context, specific enough to yield a unique324

answer, and directly assess the semantic relation-325

ship between target entities. To facilitate automated326

evaluation, we require that each question-answer327

pair be output in a structured JSON format.328

Furthermore, we adopt the one-shot learning by329

incorporating carefully selected example question-330

answer pairs into the prompt. These examples il-331

lustrate the desired question format and level of332

specificity, guiding the LLM toward generating333

high-quality, targeted questions. This comprehen-334

sive prompting strategy ensures that the synthe-335

sized questions effectively evaluate selective for-336

getting while maintaining human interpretability.337

The specific prompt employed in our experiments 338

is provided in § A.1. 339

4 Experiments 340

4.1 Experimental Setup 341

Building upon MUSE, a comprehensive bench- 342

mark for LLM unlearning that provides exten- 343

sive datasets and evaluation frameworks (Shi 344

et al., 2024), we integrate HANKER to enhance 345

its knowledge unlearning evaluation. For ques- 346

tion generation, we leverage the DeepSeek-V3 347

model (Liu et al., 2024a), which has demonstrated 348

superior performance recently. The MUSE frame- 349

work incorporates two primary dataset-News and 350

Books. For fairness and methodological rigor, we 351

utilize MUSE’s fine-tuned LLaMA2-7B model as 352

our initial LLM, along with their default unlearning 353

algorithm implementations and parameter configu- 354

rations. 355

Unlearning Methods. We evaluate three repre- 356

sentative unlearning methods from MUSE. Gradi- 357

ent Ascent (GA) inverts the training objective by 358

maximizing loss on forgotten data to discourage 359

memorized content generation. Negative Prefer- 360

ence Optimization (NPO) treats forgotten knowl- 361

edge as negative examples within a preference 362

optimization framework. Task Vectors (TV) em- 363

ploys weight arithmetic by first training a model 364

on forgotten content, deriving a memorization vec- 365

tor, then subtracting it from the original weights. 366

Both GA and NPO can be enhanced with Gradient 367

Descent on Retain set (GDR) or KL Divergence 368

Regularization (KLR) for utility preservation. 369

Metrics. We evaluate the effectiveness of un- 370

learning through our generated audit suite by quan- 371

tifying the number of knowledge memorization 372

cases (KMCs) in the unlearned model. While we 373

maintain compatibility with existing approaches by 374

using the same metrics as MUSE for overall assess- 375

ment (i.e., ROUGE), we extend beyond aggregate 376

similarity-based evaluation to identify specific fail- 377

ure instances. Our method applies software testing 378

principles to pinpoint specific failure-revealing test 379

cases—scenarios in which an LLM provider might 380

be liable for disclosing sensitive information. The 381

identification process employs two complemen- 382

tary criteria for judgment. The first criteria uses 383

ROUGE Recall to measure surface-level similarity, 384

requiring model outputs to exceed a strict threshold 385

(Recall=1) compared to reference answers. The 386

second metric leverages an entailment-based ap- 387
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Table 1: Statistics of Knowledge Extraction and QA
Dataset

Dataset Initial Facts Final Facts QA Pairs Average

News 24,763 16,912 69,609 4.11
Books 41,123 27,254 111,855 4.10

Table 2: Quality assessment of generated knowledge
graphs and QA pairs based on the following met-
rics: Knowledge Fact Accuracy (AK), Question–Fact
Relevance (QR), Question Clarity (QC), and An-
swer–Context Consistency (AC).

AK QR QC AC
News 0.76 0.91 0.99 0.91
Books 0.61 0.84 0.99 0.84

proach (Yuan et al., 2024), utilizing a pre-trained388

NLI model as described in (Sileo, 2024) to verify389

semantic equivalence between generated and ref-390

erence answers without logical inconsistencies. A391

higher frequency of detected memorization cases392

indicates less successful unlearning, while simulta-393

neously demonstrating the comprehensiveness of394

our testing methodology.395

4.2 Details of Generated Audit Suite396

We applied HANKER to two corpora provided397

by MUSE, namely the News and Books datasets.398

The details are summarized in Table 1, and the399

specific information about our constructed knowl-400

edge graphs can be found in § A.3. For the News401

dataset, HANKER extracted a knowledge graph402

(KG) from the forget dataset comprising 24,763403

facts. After removing redundant knowledge, a fi-404

nal KG containing 16912 facts was obtained, from405

which 69,609 QA pairs were generated (On av-406

erage, one fact corresponds to the generation of407

4.11 QA pairs). Similarly, for the Books dataset,408

HANKER extracted a KG with 41,123 facts from409

the forget dataset. Following the elimination of re-410

dundant knowledge, a final KG comprising 27,254411

facts was produced, and 111,855 QA pairs were412

generated from this KG (on average, one fact corre-413

sponds to the generation of 4.10 QA pairs). These414

results demonstrate the capability of HANKER415

to automatically extract fine-grained knowledge416

graphs and generate large-scale audit suites.417

Mannual Assessment of the Generated Data. To418

rigorously assess the quality of HANKER’s gener-419

ated audit dataset, we conducted a detailed manual420

evaluation on randomly sampled 100 text chunks421

from each of the News and Books datasets. Our as-422

Table 3: Numbers of Knowledge Memorization Cases
on News.

Method MUSE HANKER
ROUGE Entail. ROUGE Entail.

w/o unlearn 33 19 4688 23605
GAKLR 18 3 3702 21650
NPOGDR 27 13 4454 23474
NPOKLR 19 6 3780 21571
Task Vector 33 10 4853 23808

Table 4: Numbers of Knowledge Memorization Cases
on Books.

Method MUSE HANKER
ROUGE Entail. ROUGE Entail.

w/o unlearn 25 15 4729 38388
GAKLR 6 7 3490 32365
NPOGDR 0 34 1435 18094
NPOKLR 4 8 3447 32332
Task Vector 25 15 4700 38210

sessment focused on both the accuracy of extracted 423

knowledge triples and the quality of generated QA 424

pairs through four key metrics. Accuracy of Knowl- 425

edge Fact (AK) measures the precision of knowl- 426

edge triple extraction from the source text (whether 427

entities and relations accurately represent the orig- 428

inal text), achieving scores of 0.76 and 0.61 for 429

News and Books respectively. The relatively lower 430

score on Books reflects the inherent challenges in 431

extracting structured knowledge from narrative text 432

compared to more factual News articles. Question- 433

Fact Relevance (QR) evaluates how well generated 434

questions align with both the context and extracted 435

facts. High scores of 0.91 (News) and 0.84 (Books) 436

indicate that our framework effectively translates 437

extracted knowledge into contextually appropriate 438

questions. Question Clarity (QC) assesses the lin- 439

guistic quality and specificity of generated ques- 440

tions. Near-perfect scores of 0.99 across both do- 441

mains demonstrate our system’s exceptional ability 442

to generate clear, unambiguous, and well-formed 443

questions regardless of source material complexity. 444

Answer-Context Consistency (AC) gauges whether 445

generated reference answers accurately reflect the 446

source context. Strong performance of 0.91 (News) 447

and 0.84 (Books) suggests reliable answer gener- 448

ation that maintains fidelity to the original text. 449

These results demonstrate HANKER’s capability 450

in generating high-quality audit datasets. 451

4.3 Evaluation on Unlearning Methods 452

Our result reveals a striking disparity in the abil- 453

ity to detect knowledge memorization cases be- 454

tween HANKER’s comprehensive audit suite and 455
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Figure 4: Impact of Redundancy on Knowledge Memorization Cases.

MUSE’s baseline approach. The results paint a456

concerning picture about the extent of retained457

knowledge in supposedly unlearned models that458

were previously undetectable with limited audit459

sets. On the News dataset, HANKER’s detection460

capability proves remarkably more sensitive: us-461

ing the ROUGE metric, it identifies over 4,600462

memorization cases in the unmodified model, com-463

pared to just 33 cases detected by MUSE - a464

142-fold increase in detection power. This gap465

widens even further when examining semantic un-466

derstanding through the Entailment metric, where467

HANKER detects more than 23,600 cases versus468

MUSE’s 19 cases, representing a dramatic 1,242-469

fold improvement in identifying retained knowl-470

edge. The Books dataset tells an equally com-471

pelling story. HANKER’s comprehensive evalua-472

tion uncovers more than 4,700 memorization cases473

using ROUGE (compared to MUSE’s 25 cases),474

and a remarkable 38,388 cases using Entailment475

(versus MUSE’s 15 cases). These findings repre-476

sent average improvements of 188× and 1,125×477

respectively in detection capability.478

Particularly noteworthy is how these results per-479

sist across different unlearning methods. Even480

with state-of-the-art approaches like GAKLR and481

NPOKLR, HANKER consistently reveals signif- 482

icantly more cases where knowledge removal was 483

incomplete. This suggests that current unlearn- 484

ing methods may be less effective than previously 485

thought, with their apparent success potentially be- 486

ing an artifact of insufficient testing rather than 487

genuine knowledge removal. These findings un- 488

derscore the critical importance of comprehensive 489

testing in evaluating unlearning effectiveness, re- 490

vealing that the challenge of selective knowledge 491

removal may be substantially more complex than 492

indicated by previous benchmarks. 493

4.4 Impact of Knowledge Redundancy on 494

Unlearning Effectiveness Audits 495

To validate the necessity of knowledge redundancy 496

detection and elimination, we conducted a com- 497

prehensive experiment to assess its impact on un- 498

learning evaluation effectiveness. Using the News 499

dataset as our testbed, we compared evaluation out- 500

comes between two scenarios: one using the full 501

dataset (126,224 test cases) and another using our 502

deduplicated dataset (69,609 test cases). Our analy- 503

sis considered both the number of identified knowl- 504

edge memorization cases and standard dataset-level 505

metrics (ROUGE and Entailment scores) used in 506

existing evaluations. The results reveal a strik- 507
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ing impact of knowledge redundancy on evalua-508

tion outcomes. When using our deduplicated audit509

set, the number of identified knowledge memo-510

rization cases decreased substantially: detection511

rates dropped by 71.3-73.3% under the ROUGE512

criterion and by 58.3-59.2% under the Entailment513

criterion. This significant reduction suggests that514

knowledge redundancy leads to substantial false515

positives, where retained knowledge is incorrectly516

flagged as forgetting failures. Furthermore, our517

analysis of quantitative metrics demonstrates that518

knowledge redundancy artificially inflates unlearn-519

ing effectiveness measures. Without deduplica-520

tion, ROUGE scores showed artificial inflation521

ranging from 19.7% to 26.1%, while Entailment522

scores were inflated by 32.4% to 35.2%. These523

inflated metrics indicate that traditional evaluation524

approaches may significantly overestimate unlearn-525

ing effectiveness when redundant knowledge is not526

properly controlled for.527

These findings provide compelling evidence for528

the critical importance of knowledge redundancy529

elimination in unlearning evaluation. The substan-530

tial reductions in false positives and metric inflation531

demonstrate that rigorous knowledge deduplication532

is essential for accurate assessment of unlearning533

effectiveness. Extended observations on Llama3-534

8B in § A.5 further corroborate these insights.535

5 Related Work and Discussion536

Machine Unlearning for LLMs. Machine un-537

learning has progressively evolved toward appli-538

cations in large language models from classifi-539

cation tasks. Contemporary research predomi-540

nantly explores parameter optimization method-541

ologies, achieved through targeted fine-tuning pro-542

cedures (Yao et al., 2023; Jang et al., 2022; Wang543

et al., 2024c; Yao et al., 2024; Tian et al., 2024;544

Liu et al., 2024d; Gu et al., 2024; Jia et al., 2024a)545

The transparent nature of modifying neural archi-546

tectures engenders enhanced user trust, despite po-547

tential compromises to overall model performance.548

Beyond parameter-based approaches, researchers549

have pioneered diverse methodologies including550

advanced contrastive decoding frameworks (Eldan551

and Russinovich, 2023; Wang et al., 2024a; Ji et al.,552

2024; Huang et al., 2024), task-specific vector im-553

plementations (Liu et al., 2024e; Dou et al., 2025),554

contextual learning strategies (Pawelczyk et al.,555

2024; Muresanu et al., 2024), and sophisticated556

input processing mechanisms (Gao et al., 2024;557

Liu et al., 2024b). 558

Evaluation of LLM Unlearning. The evaluation 559

of LLM unlearning effectiveness encompasses di- 560

verse task scenarios. Early research focused on tra- 561

ditional NLP classification tasks to examine mod- 562

els’ prediction (Chen and Yang, 2023). Subse- 563

quently, researchers developed specialized datasets 564

to provide standardized evaluation platforms (El- 565

dan and Russinovich, 2023; Shi et al., 2024; Maini 566

et al., 2024). Besides, some work has been de- 567

voted to focusing on the robustness of unlearning, 568

i.e., adding perturbations to the same problem to 569

activate model memory (Joshi et al., 2024). 570

Knowledge Graphs for Evaluation. Knowledge 571

graphs offer distinct advantages beyond the com- 572

pleteness and identifiability properties utilized in 573

this study. They serve as effective tools for evalu- 574

ating both QA systems (Wang et al., 2024b) and 575

LLM unlearning (Wu et al., 2024). Notably, knowl- 576

edge graphs enable the assessment of multi-hop 577

reasoning through transitive relationships (if a→b 578

and b→c, then testing whether the model infers 579

a→c). The framework we propose in this paper 580

conveniently integrates with these techniques. 581

Discussion. While unlearning evaluation encom- 582

passes multiple dimensions, our work focuses 583

specifically on unlearned knowledge audit data 584

generation. We utilize default MUSE configura- 585

tions rather than optimizing each unlearning algo- 586

rithm, as our primary contribution is the develop- 587

ment of a robust audit framework rather than es- 588

tablishing state-of-the-art unlearning performance 589

benchmarks. Although HANKER could be readily 590

extended to evaluate normal utility based the retain 591

KG, this extension falls outside our current scope 592

and represents our future work. 593

6 Conclusion 594

In this paper, we introduce HANKER, an au- 595

tomated framework for generating holistic audit 596

datasets to evaluate the effectiveness of LLM un- 597

learning. By leveraging knowledge graphs, HAN- 598

KER addresses two critical challenges: ensuring 599

audit adequacy and eliminating knowledge redun- 600

dancy between forget and retain datasets. Our em- 601

pirical analysis on the MUSE benchmark demon- 602

strates that HANKER significantly expands au- 603

dit coverage, identifying thousands of previously 604

undetected knowledge memorization cases and re- 605

vealing how knowledge redundancy substantially 606

skews unlearning effectiveness metrics. 607
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Limitations and Ethical Considerations608

Limitations. The primary limitation of our work is609

that it extends only the dataset provided by MUSE610

and employs DeepSeek-V3 for question genera-611

tion. Additionally, we acknowledge that the cur-612

rent knowledge extraction methods may impact613

overall effectiveness. To mitigate these limitations,614

we have released our code and the generated audit615

suite, allowing researchers to utilize our framework616

with their preferred extraction models. Our frame-617

work is designed to be modular, enabling future im-618

provements through integration of more advanced619

extraction techniques. Meanwhile, extending our620

framework to other benchmarks remains an impor-621

tant direction for our future work.622

Ethical Considerations. Machine unlearning can623

be employed to mitigate risks associated with624

LLMs in terms of privacy, security, bias, and copy-625

right. Our work is dedicated to providing a compre-626

hensive evaluation framework to help researchers627

better understand the unlearning effectiveness of628

LLMs, which we believe will have a positive im-629

pact on society.630
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1 SYS_PROMPT = """You are an expert quiz generator. Given a text passage and a
relationship triple , generate specific questions to test knowledge about this
relationship based on the context provided.

2
3 Input Format:
4 - Text: A passage containing information about the relationship
5 - Relationship: A triple containing {'head ': entity1 , 'type ': relation_type , 'tail ':

entity2}
6
7 Task:
8 Generate up to 5 focused questions that test understanding of the relationship

between the head entity and tail entity , considering:
9 1. Questions should be answerable solely from the given context

10 2. Questions should be specific enough to have a unique correct answer
11 3. Questions can ask about the tail entity given the head entity and relationship

type
12 4. Questions can ask about the relationship between the two entities
13 5. Questions can ask about specific details that establish this relationship
14
15 Requirements:
16 1. Each question must have a clear , unambiguous answer based on the context
17 2. Avoid overly broad or general questions
18 3. Focus on the specific relationship provided
19 4. Use the context to add specific details to questions
20 5. Ensure questions and answers are factually consistent with the provided text
21
22 Response Format:
23 The response must be a valid JSON object with the following structure:
24 {
25 "1": {
26 "question ": "Your question text here",
27 "reference_answer ": "The correct answer based on context"
28 },
29 "2": {
30 "question ": "...",
31 "reference_answer ": "..."
32 }
33 // ... up to 5 questions
34 }
35
36 Example Input:
37 Text: "The Greek Orthodox Church observes Lent as a period of fasting and spiritual

reflection that begins on Clean Monday and lasts for 40 days. During this time ,
adherents follow strict dietary restrictions and increase their prayer and
attendance at special services ."

38 Relationship: {'head ': 'Lent ', 'type ': 'religion ', 'tail ': 'Greek Orthodox '}
39
40 Example Output:
41 {
42 "1": {
43 "question ": "Which religious denomination observes Lent beginning on Clean

Monday with a 40-day period of fasting and spiritual reflection ?",
44 "reference_answer ": "Greek Orthodox"
45 },
46 "2": {
47 "question ": "In the Greek Orthodox tradition , what is the length of the Lent

period?",
48 "reference_answer ": "40 days"
49 }
50 }
51 """
52
53 USER_PROMPT = """
54 Please generate questions based on the following input:
55
56 Text: {text}
57 Relationship: {relationship}
58 """

Figure 5: Our prompt.
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A.2 Computational Resource Requirements822

Implementing HANKER at scale requires moderate823

computational resources, making it accessible for824

most research environments. The resource require-825

ments can be divided into two main components:826

Step 1 (Knowledge Graph Construction) and Step827

3 (Question Synthesis). The entity and relation828

extraction model used in Step 1 can be executed829

on consumer-grade hardware. Our implementation830

utilizes the REBEL-large model, which can operate831

efficiently on a single 12GB GPU. This is within832

the specifications of widely available personal com-833

puting setups, making the knowledge graph con-834

struction phase accessible without specialized in-835

frastructure. For generating high-quality audit ques-836

tions in Step 3, we leverage the DeepSeek-V3837

model, which offers state-of-the-art performance838

in targeted question generation. While this pro-839

cess could potentially be resource-intensive, we840

utilized API access rather than local deployment.841

The cost efficiency of this model is notable—our842

complete implementation, including processing the843

entire MUSE benchmark corpus (generating over844

180,000 audit questions), incurred API expenses of845

less than $20.846

A.3 Knowledge Graph Statistics847

In this section, we provide detailed statistics about848

the knowledge graphs generated during Step 1849

(Knowledge Graph Construction) and Step 2 (Re-850

dundancy Removal). Table 5 shows the number of851

nodes, edges, and average node degree for both the852

News and Books datasets, before and after redun-853

dancy removal. It is worth noting that our knowl-854

edge extraction process is capable of identifying855

multiple triples from a single text passage. For the856

Books dataset, each text passage yields an average857

of 2.11 relation triples, reflecting the rich informa-858

tional content of narrative text. In comparison, the859

News dataset yields an average of 1.74 triples per860

text passage, which aligns with the more concise861

nature of news articles. This extraction density862

demonstrates the effectiveness of our approach in863

capturing fine-grained knowledge units from un-864

structured text, enabling more comprehensive cov-865

erage in the audit process. The reduction in edges866

after redundancy removal (33.7% for Books and867

31.7% for News) highlights the significant overlap868

between the forget and retain datasets, underscor-869

ing the importance of our redundancy removal step870

for accurate unlearning audit.871

Table 5: Statistics of the constructed knowledge graphs
before and after redundancy removal.

Dataset Nodes Edges Degree

Books (w/o removal) 21,523 41,123 3.8213
Books (w removal) 21,474 27,254 2.5383

News (w/o removal) 21,058 24,763 2.3519
News (w removal) 20,079 16,912 1.6845

Table 6: Coverage analysis of MUSE QA pairs against
knowledge graph edges.

KG Total / Covered Edges Coverage

Books (w/o removal) 41,123 / 2,922 7.11%
Books (w removal) 27,254 / 473 1.74%

News (w/o removal) 24,763 / 193 0.78%
News (w removal) 16,912 / 102 0.60%

A.4 Coverage Analysis of MUSE 872

A critical question in evaluating MUSE is whether 873

existing test sets adequately represent the knowl- 874

edge in the forget corpus. To rigorously assess 875

this beyond just comparing the number of QA 876

pairs, we conducted a detailed coverage analysis of 877

MUSE’s audit dataset against our extracted knowl- 878

edge graph. We defined coverage as the percentage 879

of knowledge graph edges where both endpoints 880

(entities) match entity pairs extracted from MUSE 881

QA questions. While this approach provides a rea- 882

sonable approximation that evaluates representa- 883

tion at a semantic level rather than merely counting 884

instances, it likely overestimates the actual cov- 885

erage. This is because matching entity endpoints 886

does not guarantee that the specific relationship 887

between entities is correctly represented in the QA 888

pair. Therefore, the true semantic coverage is likely 889

even lower than our reported estimates. The results, 890

presented in Table 6, reveal significant limitations 891

in existing MUSE. 892

Our analysis reveals two critical insights: ❶ 893

MUSE’s current dataset coverage is extremely lim- 894

ited, representing only 7.11% of knowledge edges 895

in the Books dataset and a mere 0.78% in the 896

News dataset, highlighting the insufficient eval- 897

uation scope of existing benchmarks. ❷ More con- 898

cerning is the significant drop in covered edges 899

after redundancy removal—from 2,922 to just 473 900

edges (83.8% reduction) in the Books dataset and 901

from 193 to 102 edges (47.2% reduction) in the 902

News dataset. This dramatic reduction demon- 903

strates that a substantial portion of MUSE’s original 904

test questions are actually evaluating knowledge 905
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(b) Number of KMCs (by Entailment)
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(c) ROUGE Score
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(d) Entailment Score

Figure 6: Impact of Redundancy on Knowledge Memorization Cases on LLama3-8B.

that should be retained rather than forgotten, which906

could lead to misleading conclusions about unlearn-907

ing effectiveness. These findings provide quanti-908

tative evidence supporting our observation in Fig-909

ure 1, where we illustrated how knowledge targeted910

for forgetting also appears in the retain dataset. The911

substantial drop in coverage after redundancy re-912

moval confirms that existing benchmarks not only913

provide insufficient coverage but also contain a sig-914

nificant proportion of potentially misleading test915

cases that evaluate knowledge preservation rather916

than forgetting.917

A.5 Observation on Llama3918

To address the potential limitations of results de-919

rived from a single model, we extended our evalu-920

ation to the more recent Llama3-8B (AI@Meta,921

2024) in addition to LLaMA2-7B. Figure 6 il-922

lustrates HANKER results on Llama3-8B, which923

demonstrate remarkable consistency with our924

LLaMA2 observations. When using our dedupli-925

cated audit set, the number of identified knowl-926

edge memorization cases decreased substantially:927

detection rates dropped by 70.1-81.5% under the928

Entailment criterion and by 81.2-93.4% under the929

ROUGE criterion, demonstrating our framework’s 930

ability to precisely identify retained knowledge. 931

This significant reduction suggests that knowledge 932

redundancy leads to substantial false positives, 933

where retained knowledge is incorrectly flagged 934

as forgetting failures. Furthermore, our analysis of 935

quantitative metrics demonstrates that knowledge 936

redundancy artificially inflates unlearning effective- 937

ness measures. Without deduplication, ROUGE 938

scores showed artificial inflation ranging from 939

54.0% to 109.6%, while Entailment scores were 940

inflated by 84.6% to 197.7%. These inflated met- 941

rics indicate that traditional evaluation approaches 942

may significantly overestimate unlearning effec- 943

tiveness when redundant knowledge is not properly 944

controlled for. The consistency of these patterns 945

across different model architectures highlights that 946

knowledge redundancy constitutes a fundamental 947

challenge in unlearning evaluation rather than a 948

model-specific phenomenon. 949
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