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ABSTRACT

Recent works in versatile style transfer have achieved impressive results in both
content preservation and style fidelity. However, optimizing models solely with
content and style losses often fails to match the real image distribution, leading to
suboptimal stylization quality. In this paper, we propose a novel self-supervised
framework, VST-SD, which disentangles content and style representations to en-
hance stylization performance. Specifically, we separate content and style from
the input and train the model to reconstruct the original image. To facilitate ef-
fective disentanglement, we leverage feature statistics: a content encoder is de-
signed with perturbation and compression to remove style-related statistics, while
a style encoder employs magnitude preservation to capture style-specific informa-
tion. A cascade of diffusion models are introduced to integrate content and style
into new images. To support multi-modal capabilities in versatile style transfer, we
construct a paired text-style dataset and design a pipeline enabling flexible, text-
guided stylization. Experimental results across artistic, photorealistic, and text-
guided stylization demonstrate the effectiveness and versatility of our approach.

1 INTRODUCTION

(a) Artistic Stylization (b) Photorealistic Stylization (c) Text-guided Stylization

Lush green meadows. Vibrant blue to orange 

twilight sky. Winding gravel road. Tall dark 

green trees. Rustic red-roofed cottages.

Content Style Result Content Style Result Content Result

Figure 1: We introduce a self-supervised framework for (a) artistic style transfer and (b) photoreal-
istic style transfer. We further extend it to (c) text-guided style transfer in a unified model.

Style transfer has been widely studied for decades as it provides a convenient way to create artworks
and professional photos. It aims to preserve the content of a source image while adopting the style
of a reference. In general, content refers to the global structure and semantics, whereas style en-
compasses visual elements such as texture, color, and high-level appearance attributes (Gatys et al.,
2016; Zhang et al., 2023). Recently, versatile style transfer has received a lot of attention (Wen et al.,
2023; Huang et al., 2023; He et al., 2025). It extends the traditional style transfer to performs both
artistic and photorealistic stylization without retraining or handcrafting separate architecture.

Most existing approaches to versatile style transfer (Li et al., 2019; Hong et al., 2021; Wu et al.,
2022; Wen et al., 2023) follow a similar paradigm: they define metrics to quantify content and
style similarity (Gatys et al., 2016; Huang & Belongie, 2017), then optimize a model to balance
these metrics by preserving content from one image while transferring style from another. While
they achieve good balance to produce high similarity results, neither of content and style losses
encourage the model to output images that match the real image distributions. As a result, the
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stylized images may appear poor in details, inconsistent in texture and color, or overly conservative
to avoid visual artifacts. This raises a challenge how to learn real image distributions while achieving
high content-style similarity without using predefined similarity losses.

In this paper, we propose VST-SD, a self-supervised framework that bypasses traditional content and
style losses. Our approach assumes that if we can successfully disentangle and extract content and
style representations from an image, we can train a generator conditioned on these representations
to reconstruct the original image. This formulation eliminates the need for handcrafted similar-
ity metrics but introduces the more challenging problem of learning disentangled representations
of content and style. While recent diffusion-based disentanglement methods (Wang et al., 2023c;
Frenkel et al., 2024; Xing et al., 2024) have shown promise in artistic style transfer, they overfit
the style and struggle to preserve image content for versatile style transfer. Previous statistics-based
stylization methods (Huang & Belongie, 2017; Risser et al., 2017; Li et al., 2017) report that style
can be transferred by minimizing the distance of some channel-wise feature statistics (e.g., mean-std,
covariance matrix, and histogram) between the stylized image and reference image. This inspires
us to conjecture that channel-wise statistics of original content representation are related to image
style. Thus, we leverage feature statistics for disentanglement.

To obtain content representation, we develop a content encoder that suppresses statistical style in-
formation. This is achieved by randomly perturbing the statistics of intermediate features and com-
pressing the feature maps along the channel dimension using a lightweight network. For style rep-
resentation, we design a style encoder that captures feature statistics as style tokens. To mitigate
issues related to token magnitude drift, we introduce magnitude preservation to stabilize training.

We train a diffusion model conditioned on the representations to reconstruct the input image. The
reconstruction loss encourages the encoders to learn informative representations, while guiding dif-
fusion to learn real image distribution, thus improving both content-style similarity and image qual-
ity. To address the problem of losing fine-grained details, we introduce an additional refinement
diffusion model, conditioned on the initial stylized output and the style representation.

Moreover, unlike previous methods that rely solely on reference images for style input, our VST-
SD supports text-guided stylization (Kwon & Ye, 2022). To address the challenge of data scarcity,
we explore vision-language model (Hong et al., 2024) to construct a paired text-style dataset, where
each data pair consists of the style tokens extracted from our style encoder and a corresponding style
description. A dedicated text-to-style diffusion transformer is trained to generate style tokens from
captions. We demonstrate that this text-to-style module can be combined with the content encoder
and diffusion, thus achieving a unified framework for both image and text-guided style transfer.

We evaluated VST-SD on a diverse set of images, comparing its image stylization results against
versatility methods and disentanglement methods. We also evaluated text-guided stylization through
qualitative and quantitative analysis. We demonstrate the benefits of self-supervised framework and
the feasibility of achieving image and text-guided stylization in a unified architecture.

Our main contributions are summarized as follows:

• We introduce VST-SD, a self-supervised framework for versatile style transfer based on
statistical disentanglement of content and style, supported by a cascade of diffusion models.

• We develop a content encoder that removes style statistics using perturbation and channel-
wise compression.

• We design a style encoder with magnitude preservation to robustly capture and stabilize
style representations.

• We build a paired text-style dataset and a text-to-style diffusion pipeline, enabling flexible
and unified support for both image and text-guided style transfer.

2 RELATED WORK

2.1 IMAGE STYLE TRANSFER

Artistic style transfer aims to generate image with texture, color from an artwork. Gatys et al. (2016)
first explore the generic feature representations of neural networks and introduce neural algorithm
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for artistic style transfer. To address the time consuming problem, universal style transfer meth-
ods (Huang & Belongie, 2017; Li et al., 2017; Chen & Schmidt, 2016; Sheng et al., 2018; Li et al.,
2019) propose efficient feature-space transforms. Subsequent works explore diverse architectures to
improve content preservation and style similarity, including transformers (Deng et al., 2022; Tang
et al., 2023; Zheng et al., 2024), reversible networks (An et al., 2021; Wen et al., 2023; Liu et al.,
2024), and diffusion (Zhang et al., 2023; Deng et al., 2024; Chung et al., 2024; Zhou et al., 2025;
Wang et al., 2025).

Photorealistic style transfer has higher demands for content preservation, and stylized images should
not be distorted. Luan et al. (2017) first introduce a locally affine transformation with regularization
term to enhance photorealism. Following works mainly focus on designing skip connection modules
to suppress distortion, or building lightweight networks to improve efficiency. (Li et al., 2018; Yoo
et al., 2019; An et al., 2020; Chiu & Gurari, 2022).

Building on these advances, versatile style transfer aims to unify artistic and photorealistic styl-
ization within a single framework. Li et al. (2019) propose a linear transform and post-processing
network for artistic and photorealistic stylization, respectively. Hong et al. (2021) introduce domain-
aware indicator to adaptively generate artwork or photo. Wu et al. (2022) leverage contrastive learn-
ing to improve local coherence. Wen et al. (2023) introduce reversible network with channel refine-
ment module to preserve content affinity.

A fundamental problem in style transfer is to find image representations that independently model
the separated content and style. Data-based methods (Zhang et al., 2018; Kotovenko et al., 2019;
Wang et al., 2023a) collect images in a pre-defined domains such as characters in different font
styles. Recently, disentanglement has been explored in diffusion-based approaches. StyleDiffusion
(Wang et al., 2023c) removes style details and fine-tunes a diffusion model (Stability-AI, 2022) to
implicitly learn the reference style. B-Lora (Frenkel et al., 2024) finds that the two blocks in SDXL
(Podell et al., 2023) individually affect the content and style, and employ LoRA (Hu et al., 2021)
to implicitly learn the content and style of an image. CSGO (Xing et al., 2024) improves efficiency
by collecting triplet images for training. Unlike these works, which focus primarily on artistic
stylization, we achieve disentanglement for versatile style transfer by leveraging feature statistics.

2.2 TEXT-GUIDED STYLE TRANSFER

Text-guided style transfer extends stylization to natural language prompts. CLIPStyler (Kwon &
Ye, 2022) first introduces CLIP matching loss to transfer style from text condition. LDAST (Fu
et al., 2022) utilizes annotated artwork datasets to model image-text correlations. ZeCon (Yang
et al., 2023) incorporates diffusion models with patch-wise contrastive loss to optimize noise image.
Diffstyler (Huang et al., 2024) introduces dual diffusion architecture and learnable noise to control
output content. TRTST (Chen et al., 2025) leverages transformer to project text and image into a
joint embedding space. In this paper, we leverage vision-language model to learn the correlation
between style and text, enabling both image and text-guided stylization in a unified model.

3 METHOD

3.1 FRAMEWORK

Existing versatile style transfer methods typically use a content loss and a style loss (Gatys et al.,
2016; Huang & Belongie, 2017) to preserve the content of one image, but the style of another.
However, these losses do not encourage the model to approximate the real image distribution, often
leading to low-quality or weak stylization. In this paper, we discard the use of content and style loss,
but instead propose VST-SD, a self-supervised framework based on content-style disentanglement.
Our VST-SD consists of a content encoder Ec, a style encoder Es and a latent diffusion D condi-
tioned on representations from the two encoders. The key to the success of our method is to produce
disentangled content and style encoders, with which we can obtain content and style representations
from two separate images and then employ the diffusion to interpret them into a new image. To this
end, our idea is to extract content representation from a pre-trained network that has some trainable
lightweight modules added to help remove the style information in them. For style representation,
we build a style encoder and use its feature statistics to construct a set of style tokens. These dis-
entangled representations are then fed into a latent diffusion, which reconstructs the input image by
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Figure 2: Illustration of VST-SD. (left) Image and text-guided style transfer pipelines. (middle)
Compression and perturbation-based content encoder. (right) Magnitude preservation style encoder.

minimizing the following diffusion loss:

Eσ,ϕ(I),n[λ(σ)||D(ϕ(I) + n;σ,Ec(I), Es(I))− ϕ(I)||22], (1)

where σ is the noise level, λ(·) is a loss weight, and ϕ is the variational autoencoder, n is a random
noise n ∼ N (0, σ2I). To further enhance image details, a refinement diffusion model is further
introduced at the end of previous diffusion model.

Finally, to support text-guided stylization, we replace the image-based style encoder branch with a
text-to-style diffusion branch while sharing the same content encoder and cascaded diffusion models.
Figure 2 illustrates the framework of our method.

3.2 STATISTICS-REMOVAL CONTENT ENCODER

Features from pre-trained networks such as VGG or CLIP are rich of high level information and
can be used as content representations. However, we find that these features still contain substan-
tial style information. Previous statistics-based methods transfer style by minimizing the distance of
some channel-wise statistics between the stylized and reference image’s representations (e.g., mean-
std in Huang & Belongie (2017), covariance matrix in Li et al. (2017), and histogram in Risser et al.
(2017)). This motivates us to explicitly remove channel-wise statistics from pre-trained features to
obtain disentangled content representation. In this paper, We employ a CLIP ResNet-101 encoder as
the backbone, with five intermediate layers defined at the bottleneck blocks. By visualizing the fea-
tures at different layers, we observe that the feature from layer 4 captures more global structure and
thus use its output as the original content representation. Then, we introduce a trainable lightweight
compression module and a perturbation strategy to remove its channel-wise statistics information.

Channel compression. Since the statistics relevant to image style is channel-wise, reducing chan-
nel dimensionality naturally reduces style information. For example, compressing channels linearly
reduces the number of covariance terms quadratically. We thus introduce a lightweight compression
module to compress the original content representation along the channel dimension. Here we use
consecutive trainable 3 × 3 convolution layers to progressively compress the feature maps along
the channel dimension. We empirically set the compression ratio to 0.4%, which balances style
suppression with content preservation. The spatial dimensions are retained to preserve structure.

Statistics perturbation. Distillation method (Chiu & Gurari, 2022) shows that the amount of
statistics information can be represented by eigenvectors, and even a single eigenvector can capture
more than 12% of original mean-std statistics. Thus, compression alone cannot fully remove them.
To further remove statistics information of representation from layer 4, which are the original con-
tent representation, we propose to perturb the statistics of output from every layer before it. This
perturbation can be realized by using mini-batch statistics and we implement it by reactivating the
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batch normalization layers for efficiency. With perturbation, the statistics values of content rep-
resentation are changed to random values and cannot be recovered. Thus, the diffusion generator
is forced to synthesize image using statistics information from the style representation. Together,
compression and perturbation significantly improve disentanglement between content and style.

3.3 MAGNITUDE-PRESERVATION STYLE ENCODER

While the content encoder preserves global structure, the style encoder must capture low-level in-
formation. Our style encoder is designed with magnitude preservation layers to stabilize training.
It consists of multiple resolution levels, with deeper blocks at lower resolutions. The self-attention
layer is inserted at low resolution to obtain large receptive field. We extract the features at different
resolution, where the last one has the same downsampling ratio as the content representation.

Statistics extraction. At each resolution, we flatten intermediate feature and compute Gram ma-
trix (Gatys et al., 2016). Then, we flatten the lower triangular elements into vector. This yields a
set of multi-scale tokens as style representation. Although capturing different scale statistics, our
experiment finds that the result is still of low style similarity. We consider that the capacity of style
information is limited. Thus we improve it by splitting each feature into N groups along the channel,
and process each group with a mapping network. This produces multi-head style tokens S:

S = {sli|i ∈ {1, 2, ..., N}, l ∈ {1, 2, ..., L}}, (2)

where sli is the ith style token in layer l. To keep the capacity balance between style encoder and
diffusion, we set N = 4 by default.

Magnitude preservation. During training, the magnitude of style tokens can grow excessively
(over 1010 times). Since style is related to statistics, we avoid feature normalization layers. Instead,
we propose to preserve the output magnitude of each layer. For trainable layers, Karras et al. (2020;
2024) show that normalizing layer weights has the same effect as normalizing features in terms of
constraining magnitude. We thus apply normalization on the weights of each trainable layer. For
non-parametric layers, we compute the ratios between the channel-wise mean of the output and the
input from a set of samples before training, and then use the corresponding ratio to rescale the output
of each layer. These strategies effectively stabilize training without degrading style information.

3.4 CONTENT-STYLE CONDITIONED CASCADE OF DIFFUSION

Magnitude preservation diffusion. For diffusion model, we adopt the UNet architecture. To
unify the learning rate, the diffusion is designed with magnitude preservation layers as style encoder.
To integrate content representation, we concatenate it with the noise along the channel dimension.
To inject style information, we add cross-attention layers to transform the channel correlations of
each feature element. Each residual block is followed by a self-attention layer and a cross-attention
layer, except at the highest and lowest resolutions. To reduce computation, images are compressed
into latent space using a pretrained VAE (Rombach et al., 2022). The intermediate content feature
is resized via nearest interpolation before compression.

Refinement diffusion. The images generated by the first stage diffusion may lack fine details,
especially in photorealistic stylization. To address the problem, we introduce a second stage refine-
ment diffusion conditioned on noise image and style. We initialize it from SDXL refiner weights
(Stability-AI, 2022) and add additional learnable cross-attention layers to enable conditioning on
style tokens. During inference, we first sample a stylized latent from the first stage diffusion, then
refine it over first 100 noise scales of second stage diffusion. Figure 3 shows that the refinement
diffusion improves the image quality.

3.5 TEXT-TO-STYLE DIFFUSION

Existing versatile style transfer requires preparing style image in advance, which are may inacces-
sible in practical situations. To enable flexible stylization, we introduce a text-to-style diffusion
pipeline. Due to lack of training data, we started by constructing a dataset of text-style pairs. Since
vision-language model (VLM) shows remarkable capabilities in image understanding (Hong et al.,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

w/o Refinement w/ Refinement

Figure 3: Ablation results of
refinement diffusion.

Prompt: List the styles, colors and
objects in this image. 
Here is an example of good description:
1. **Orange-red bridge**  
2. **Gradient blue to golden sky** 
3. **Gray rocks and boulders**

VLM

1. **Lush green grasses**
2. **Bright blue sky**
3. **White clouds**
4. **Wooden boardwalk**
5. **Distant trees**
6. **Golden-brown shrubs**

Image

Style Encoder
Style Tokens

Paried

User

Figure 4: The pipeline for paired text-style data generation. We
utilize VLM and style encoder to construct text-style pairs.

2024), we propose to employ VLM to generate image captions in term of styles, colors, and objects.
To address the issue of caption redundancy, we force the VLM to generate captions in a specific
format by giving an example, which is also convenient for user to input at test time. Meanwhile,
we also use the style encoder to extract style tokens for the images. Figure 4 shows the data gen-
eration process. We finally train a text-to-style diffusion transformer (Peebles & Xie, 2023) on the
generated dataset where each data sample consists of a style description and a sets of style tokens.
At inference, the generated tokens from text-to-style diffusion are fed into the cascaded diffusion
pipeline, replacing the style tokens output from the image-based style encoder. This enables flexible
and unified support for both image and text-guided stylization.

4 EXPERIMENTS

4.1 IMPLEMENT DETAILS

For image style transfer, we train on images from the LAION-Aesthetics dataset (LAION-AI, 2022),
filtering approximately 10 million images with aesthetics scores above 6. All images are resized and
randomly cropped to 256×256. For text-guided style transfer, we construct 100k paired text–style
samples from the same dataset. We adopt exponential moving averaging (Karras et al., 2023) and
train the model on NVIDIA A100 GPUs with a batch size of 96. Mixed precision training with
bf16 is employed, and we use Adam with a learning rate of 2e-3. For diffusion sampling, we use
deterministic sampling with 32 steps. In terms of guidance, we dropout the content-style representa-
tions and text for unconditional image and text-to-style generation, respectively. The classifier-free
guidance weight is set to 1.6 by default.

4.2 IMAGE STYLE TRANSFER

We compare our method against versatile style transfer models (Hong et al., 2021; Wu et al., 2022;
Wen et al., 2023), which are trained with content and style losses, and disentanglement-based meth-
ods (Ahn et al., 2024; Frenkel et al., 2024; Xing et al., 2024) that build upon pretrained Stable
Diffusion (Stability-AI, 2022). For photorealistic style transfer, we randomly select 100 photo im-
ages for both content and style. For artistic style transfer, we additionally select 100 artistic images
as style. These generate 20,000 stylized images for evaluation.

Qualitative results. Figure 5 shows the results generated by different methods. Versatility meth-
ods (Hong et al., 2021; Wu et al., 2022; Wen et al., 2023) are able to generate high style similarity.
However, they typically generate images with poor details since optimizing content and style losses
cannot guarantee image quality. Disentanglement methods (Ahn et al., 2024; Frenkel et al., 2024;
Xing et al., 2024) generate clean and smooth images. However, DreamStyler and B-LoRA fail to
preserve image structure and semantics, while CSGO compromises on style similarity. Compared
with above methods, our VST-SD not only generates high quality stylized images, but also preserve
content structure and semantics.
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Content Style DSTN CCPL CAP-VST DreamStyler B-LoRA CSGO Ours

Figure 5: Qualitative comparison of versatile style transfer. The first four rows shows artistic style
transfer, while the last four rows show photorealistic style transfer.

Table 1: Quantitative comparison of versatile style transfer. The two values represent results for
artistic style transfer and photorealistic style transfer, respectively. Execution time is reported for a
resolution of 512×512.

Metrics LGram ↓ SCLIP ↑ DStyle ↓ CLIP-IQA↑ Time (s)↓

Versatility
Methods

DSTN (Hong et al., 2021) 2.75/1.12 0.73/0.72 0.75/0.32 0.46/0.83 0.54
CCPL (Wu et al., 2022) 1.04/0.92 0.69/0.68 0.32/0.30 0.57/0.69 0.12
CAP-VST (Wen et al., 2023) 1.20/0.36 0.67/0.71 0.39/0.10 0.50/0.91 0.10

Disentangle-
ment Methods

DreamStyler (Ahn et al., 2024) 7.92/4.31 0.78/0.79 1.71/0.91 0.54/0.92 959.80
B-LoRA (Frenkel et al., 2024) 2.89/2.31 0.80/0.80 0.58/0.45 0.57/0.90 1138.78
CSGO (Xing et al., 2024) 6.02/4.52 0.74/0.73 1.54/1.22 0.64/0.90 21.95

Ours 0.94/0.28 0.75/0.76 0.24/0.07 0.63/0.93 4.80

Quantitative results. we evaluate the style similarity and the image quality. For the metrics of
style similarity, the Gram loss (LGram) (Gatys et al., 2016) measures the low-level style (e.g., texture
and color), and CLIP similarity (SCLIP ) measures the high-level style (e.g., semantic elements and
object shape). To assess overall similarity, we report the style distance Dstyle = LGram(1−SCLIP ).
For the metrics of image quality, we adopt the CLIP Image Quality Assessment (CLIP-IQA) (Wang
et al., 2023b). Table 1 shows the quantitative results. Versatility methods (Hong et al., 2021; Wu
et al., 2022; Wen et al., 2023) train the models with style loss, thus achieving high style similarity.
However, the stylized image is of low quality as content and style losses cannot match real image

7
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distribution. Disentanglement methods (Ahn et al., 2024; Frenkel et al., 2024; Xing et al., 2024)
successfully capture high-level style and achieve better CLIP similarity, but this comes at the cost
of content preservation. Besides, they are unable to capture low-level style. These problems can
be attributed to text-to-image models capturing only high-level semantics. In contrast, our VST-SD
achieves good performance in both style similarity and image quality. Even without training on style
loss, VST-SD achieves a lower style distance than the versatility method, which demonstrates the
effectiveness of the proposed disentanglement.

For inference speed, versatility methods are an order of magnitude faster than diffusion-based dis-
entanglement methods. VST-SD outperforms other disentanglement methods as it directly performs
diffusion sampling.

4.3 TEXT-GUIDED STYLE TRANSFER

We present comparison of VST-SD against open-source models, including CLIPstyler (Kwon & Ye,
2022), ZeCon (Yang et al., 2023), and Diffstyler (Huang et al., 2024). For evaluation, we use 786
photo images from (Xia et al., 2020) as content. To obtain style text, we first use VLM to generate
a textual description (Figure 4), then we ask VLM to produce a variation of the text containing the
same object but different style and color.

Luminous white sandy 

shores. Mystical 

purple and silver 

foliage. Sunset orange 

and twilight blue skies.

Vibrant magenta 

twilight sky. Darkened 

mountain. Starry night. 

Sunset hues. Neon 

cityscape.

Dusk purple clouds. 

Sunlit amber sand. 

Lime green grass.

Image CLIPStyler ZeCon OursText

Luminous yellow and 

green gradient sky. Jade 

green forested hills 

with silhouettes of 

towering trees. Sunlit 

sandy dunes.

Diffstyler

Figure 6: Qualitative comparison of text-guided style transfer.

Table 2: Quantitative comparison of text-guided style transfer.
Text Alignment↑ Image Quality↑ Time (s)↓

CLIPstyler 0.33 0.87 78.01
ZeCon 0.30 0.92 52.92
Diffstyler 0.30 0.79 24.10
Ours 0.28 0.93 7.67

Qualitative results. Figure 6
shows the comparison of text-guided
style transfer results. CLIPstyler
(Kwon & Ye, 2022) optimizes image
with CLIP loss, which produces
noticeable artifacts and results in
outputs that do not resemble a real
image. ZeCon (Yang et al., 2023)
optimizes noise from diffusion with
CLIP loss. However, it often adds
new elements and cannot preserve
image content. Diffstyler (Huang
et al., 2024) only preserves the out-
line and cannot preserve semantics.
Compared with above methods, our
VST-SD generates faithful stylization
which align with the text and match
the distribution of real images.

Quantitative results. we use CLIP similarity to asses the text alignment, and CLIP-IQA (Wang
et al., 2023b) to measure the image quality. Table 2 shows the quantitative results. CLIPstyler
(Kwon & Ye, 2022), ZeCon (Yang et al., 2023), and Diffstyler (Huang et al., 2024) achieve high text
alignment as they directly optimizes with CLIP loss. However, they produces poor image quality.
In contrast, our VST-SD aligns text without altering the image content, and achieves high image
quality. Additionally, VST-SD is faster at inference since it directly performs image sampling.

4.4 ANALYSIS

4.4.1 CONTENT AND STYLE REPRESENTATIONS

To investigate what is encoded in the learned content and style representations, we invert them back
to image space with our first stage diffusion. Specially, we feed the content representation into
diffusion model along with a random noise as style representation, which generates inverted content
Ic. For style representation, we feed it into diffusion model along with a zero tensor eliminating
structure and semantics as content representation, which generates inverted style Is. Figure 7 shows
the visualization examples. The inverted content Ic maintains the global structure while removing
other information related to style. On the contrary, the inverted style Is presents similar texture and
color while being agnostic to structure. Interestingly, Ic and Is are semantically entangled. It can be
explained by content representation as the superconcept and style representation as the subconcept.
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Image Inverted Content 𝐼c Inverted Style 𝐼𝑠 Image Inverted Content 𝐼c Inverted Style 𝐼𝑠 Image Inverted Content 𝐼c Inverted Style 𝐼𝑠

Figure 7: Visualization of the learned content and style representations. The inverted content Ic
preserves the global structure of original image, while the inverted style Is presents similar texture
and color.

Table 3: Ablation results for the content encoder (left) and style encoder (right).

Channel
compression

Statistics
perturbation LGram ↓ SCLIP ↑ DStyle ↓

– – 2.04/0.66 0.69/0.73 0.64/0.18
✓ – 1.31/0.29 0.73/0.74 0.36/0.07
– ✓ 1.40/0.39 0.71/0.74 0.40/0.10
✓ ✓ 0.97/0.23 0.75/0.75 0.24/0.06

Statistics
extraction

Magnitude
preservation LGram ↓ SCLIP ↑ DStyle ↓

– – 2.21/0.42 0.72/0.72 0.61/0.12
✓ – 1.65/0.27 0.74/0.71 0.43/0.08
– ✓ 1.21/0.34 0.74/0.74 0.32/0.09
✓ ✓ 0.97/0.23 0.75/0.75 0.24/0.06

From photorealistic style transfer (Luan et al., 2017), semantical entanglement helps model to render
style to semantically related regions and generate consistent stylization of the same semantic region.

4.4.2 ABLATION

We conduct ablation study to evaluate the proposed components in content encoder and style en-
coder with first stage diffusion. Table 3 show the ablation results. Both channel compression and
statistics perturbation helps to remove style information from content representation, thus achieving
high style similarity. Replacing statistics extraction with the Gram matrix in (Gatys et al., 2016),
the information of style representation is limited. With magnitude preservation layers, the model
learns more meaningful style representation. When all components are used, the model achieves the
highest style similarity.

4.4.3 MODEL SCALE

To investigate the impact of model scale, we train first stage diffusion of varying training images
and parameters. Quantitative evaluation is shown in Table 4. We can see that using larger dataset
Laion-Aesthetics leads to improvement in style similarity, and increasing model parameters improve
the image quality. We find the scaling trend shows no signs of saturation, which makes us optimistic
about continuing to improve model performance with more parameters and training images.

Table 4: Quantitative analysis of model scale.

Dataset Trainable param. LGram ↓ SCLIP ↑ DStyle ↓ CLIP-IQA↑
MS-COCO & WikiArt 178M 1.13/0.24 0.75/0.74 0.28/0.06 0.60/0.89

Laion-Aesthetics 178M 0.97/0.23 0.75/0.75 0.24/0.06 0.57/0.92
Laion-Aesthetics 667M 0.67/0.21 0.76/0.76 0.16/0.05 0.59/0.92

5 CONCLUSION

In this paper, we presented VST-SD, a self-supervised framework for versatile style transfer based on
feature statistics disentanglement. We demonstrated that channel-wise statistics largely encode style
information and proposed compression and perturbation strategies to remove them from the content
representation. To complement this, we designed a magnitude-preserving style encoder that effec-
tively captures style statistics without instability. These disentangled representations are integrated
within a scalable diffusion model, whose performance consistently improves with larger model ca-
pacity and training data. Furthermore, we extended the framework to text-guided style transfer by
leveraging vision–language models and the style encoder to establish explicit correlations between
text and style tokens, enabling more flexible and practical applications. Extensive experiments con-
firm that VST-SD achieves superior results both qualitatively and quantitatively compared to state-
of-the-art approaches. In future work, we aim to extend our framework to video style transfer, which
presents additional challenges in temporal consistency and computational efficiency.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Namhyuk Ahn, Junsoo Lee, Chunggi Lee, Kunhee Kim, Daesik Kim, Seung-Hun Nam, and Kibeom
Hong. Dreamstyler: Paint by style inversion with text-to-image diffusion models. In Proceedings
of the AAAI Conference on Artificial Intelligence, pp. 674–681, 2024.

Jie An, Haoyi Xiong, Jun Huan, and Jiebo Luo. Ultrafast photorealistic style transfer via neural
architecture search. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 10443–
10450, 2020.

Jie An, Siyu Huang, Yibing Song, Dejing Dou, Wei Liu, and Jiebo Luo. Artflow: Unbiased im-
age style transfer via reversible neural flows. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 862–871, 2021.

Haibo Chen, Zhoujie Wang, Lei Zhao, Jun Li, and Jian Yang. Trtst: Arbitrary high-quality text-
guided style transfer with transformers. IEEE Transactions on Image Processing, 2025.

Tian Qi Chen and Mark Schmidt. Fast patch-based style transfer of arbitrary style. arXiv preprint
arXiv:1612.04337, 2016.

Tai-Yin Chiu and Danna Gurari. Pca-based knowledge distillation towards lightweight and content-
style balanced photorealistic style transfer models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 7844–7853, 2022.

Jiwoo Chung, Sangeek Hyun, and Jae-Pil Heo. Style injection in diffusion: A training-free approach
for adapting large-scale diffusion models for style transfer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8795–8805, 2024.

Yingying Deng, Fan Tang, Weiming Dong, Chongyang Ma, Xingjia Pan, Lei Wang, and Changsheng
Xu. Stytr2: Image style transfer with transformers. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 11326–11336, 2022.

Yingying Deng, Xiangyu He, Fan Tang, and Weiming Dong. Z*: Zero-shot style transfer via atten-
tion reweighting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6934–6944, 2024.

Yarden Frenkel, Yael Vinker, Ariel Shamir, and Daniel Cohen-Or. Implicit style-content separation
using b-lora. arXiv preprint arXiv:2403.14572, 2024.

Tsu-Jui Fu, Xin Eric Wang, and William Yang Wang. Language-driven artistic style transfer. In
European Conference on Computer Vision, pp. 717–734. Springer, 2022.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using convolutional
neural networks. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 2414–2423, 2016.

Huiang He, Minghui Hu, Chuanxia Zheng, Chaoyue Wang, and Tat-Jen Cham. Semantix: An energy
guided sampler for semantic style transfer. arXiv preprint arXiv:2503.22344, 2025.

Kibeom Hong, Seogkyu Jeon, Huan Yang, Jianlong Fu, and Hyeran Byun. Domain-aware universal
style transfer. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 14609–14617, 2021.

Wenyi Hong, Weihan Wang, Ming Ding, Wenmeng Yu, Qingsong Lv, Yan Wang, Yean Cheng,
Shiyu Huang, Junhui Ji, Zhao Xue, et al. Cogvlm2: Visual language models for image and video
understanding. arXiv preprint arXiv:2408.16500, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Nisha Huang, Yuxin Zhang, Fan Tang, Chongyang Ma, Haibin Huang, Weiming Dong, and Chang-
sheng Xu. Diffstyler: Controllable dual diffusion for text-driven image stylization. IEEE Trans-
actions on Neural Networks and Learning Systems, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Siyu Huang, Jie An, Donglai Wei, Jiebo Luo, and Hanspeter Pfister. Quantart: Quantizing im-
age style transfer towards high visual fidelity. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5947–5956, 2023.

Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normal-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 1501–1510,
2017.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8110–8119, 2020.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Ana-
lyzing and improving the training dynamics of diffusion models. ArXiv, abs/2312.02696, 2023.
URL https://api.semanticscholar.org/CorpusID:265659032.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyz-
ing and improving the training dynamics of diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24174–24184, 2024.

Dmytro Kotovenko, Artsiom Sanakoyeu, Sabine Lang, and Bjorn Ommer. Content and style disen-
tanglement for artistic style transfer. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 4422–4431, 2019.

Gihyun Kwon and Jong Chul Ye. Clipstyler: Image style transfer with a single text condition. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 18062–
18071, 2022.

LAION-AI. Laion-aesthetics public release. https://laion.ai/blog/laion-aesthetics/, 2022.

Xueting Li, Sifei Liu, Jan Kautz, and Ming-Hsuan Yang. Learning linear transformations for fast
image and video style transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 3809–3817, 2019.

Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan Yang. Universal style
transfer via feature transforms. Advances in neural information processing systems, 30, 2017.

Yijun Li, Ming-Yu Liu, Xueting Li, Ming-Hsuan Yang, and Jan Kautz. A closed-form solution to
photorealistic image stylization. In Proceedings of the European conference on computer vision
(ECCV), pp. 453–468, 2018.

Xiyao Liu, Siyu Yang, Jian Zhang, Gerald Schaefer, Jiya Li, Xunli Fan, Songtao Wu, and Hui
Fang. Towards compact reversible image representations for neural style transfer. In European
Conference on Computer Vision, pp. 252–268. Springer, 2024.

Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala. Deep photo style transfer. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp. 4990–4998,
2017.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Eric Risser, Pierre Wilmot, and Connelly Barnes. Stable and controllable neural texture synthesis
and style transfer using histogram losses. arXiv preprint arXiv:1701.08893, 2017.

11

https://api.semanticscholar.org/CorpusID:265659032


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Lu Sheng, Ziyi Lin, Jing Shao, and Xiaogang Wang. Avatar-net: Multi-scale zero-shot style transfer
by feature decoration. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 8242–8250, 2018.

Stability-AI. Stable diffusion. https://github.com/CompVis/stable-diffusion, 2022.

Hao Tang, Songhua Liu, Tianwei Lin, Shaoli Huang, Fu Li, Dongliang He, and Xinchao Wang.
Master: Meta style transformer for controllable zero-shot and few-shot artistic style transfer.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
18329–18338, 2023.

Chi Wang, Min Zhou, Tiezheng Ge, Yuning Jiang, Hujun Bao, and Weiwei Xu. Cf-font: Content
fusion for few-shot font generation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 1858–1867, 2023a.

Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and
feel of images. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 2555–2563,
2023b.

Ye Wang, Ruiqi Liu, Jiang Lin, Fei Liu, Zili Yi, Yilin Wang, and Rui Ma. Omnistyle: Filtering high
quality style transfer data at scale. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 7847–7856, 2025.

Zhizhong Wang, Lei Zhao, and Wei Xing. Stylediffusion: Controllable disentangled style transfer
via diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 7677–7689, 2023c.

Linfeng Wen, Chengying Gao, and Changqing Zou. Cap-vstnet: Content affinity preserved versatile
style transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 18300–18309, 2023.

Zijie Wu, Zhen Zhu, Junping Du, and Xiang Bai. Ccpl: Contrastive coherence preserving loss for
versatile style transfer. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2022.

Xide Xia, Meng Zhang, Tianfan Xue, Zheng Sun, Hui Fang, Brian Kulis, and Jiawen Chen. Joint
bilateral learning for real-time universal photorealistic style transfer. In European Conference on
Computer Vision, pp. 327–342. Springer, 2020.

Peng Xing, Haofan Wang, Yanpeng Sun, Qixun Wang, Xu Bai, Hao Ai, Renyuan Huang, and
Zechao Li. Csgo: Content-style composition in text-to-image generation. arXiv preprint
arXiv:2408.16766, 2024.

Serin Yang, Hyunmin Hwang, and Jong Chul Ye. Zero-shot contrastive loss for text-guided diffusion
image style transfer. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 22873–22882, 2023.

Jaejun Yoo, Youngjung Uh, Sanghyuk Chun, Byeongkyu Kang, and Jung-Woo Ha. Photorealistic
style transfer via wavelet transforms. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 9036–9045, 2019.

Yexun Zhang, Ya Zhang, and Wenbin Cai. Separating style and content for generalized style transfer.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8447–
8455, 2018.

Yuxin Zhang, Nisha Huang, Fan Tang, Haibin Huang, Chongyang Ma, Weiming Dong, and Chang-
sheng Xu. Inversion-based style transfer with diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10146–10156, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sizhe Zheng, Pan Gao, Peng Zhou, and Jie Qin. Puff-net: Efficient style transfer with pure content
and style feature fusion network. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8059–8068, 2024.

Yang Zhou, Xu Gao, Zichong Chen, and Hui Huang. Attention distillation: A unified approach to
visual characteristics transfer. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 18270–18280, 2025.

A ADDITIONAL ANALYSIS

To further investigate the relationship between the input image, the content representation, and the
style representation, we conduct quantitative evaluations using 10k randomly selected images I . For
each image, we generate the inverted content Ic and the inverted style Is, and then compute the Gram
loss and CLIP cosine similarity. As shown in Table 5 (a), Ic and Is are effectively disentangled in
terms of low-level texture and color, while I and Is share similar style. Table 5 (b) shows that Ic and
Is are entangled at high-level semantics, which helps model to generate consistent stylization of the
same semantic region.

We also analyze the feature spaces of the content encoder and style encoder. Specifically, we com-
pute the mean squared error between the features of I , Ic, and Is using each encoder. The results,
shown in Table 6, reveal that images with similar structures are closer in the content encoder’s fea-
ture space, whereas images with similar styles are closer in the style encoder’s feature space. This
validates that our disentanglement strategy successfully assigns structure and style information to
the appropriate representations.

Table 5: Quantitative analysis of the learned
content and style representations. I: original
image, Ic: inverted content, Is: inverted style.

(a) LGram

I Ic Is

I 0.00 2.94 0.26
Ic 2.94 0.00 2.78
Is 0.26 2.78 0.00

(b) SCLIP

I Ic Is

I 1.00 0.84 0.77
Ic 0.84 1.00 0.81
Is 0.77 0.81 1.00

Table 6: Quantitative analysis of content and
style encoder feature space. I: original image,
Ic: inverted content, Is: inverted style.

(a) Content distance

I Ic Is

I 0.00 0.08 0.37
Ic 0.08 0.00 0.42
Is 0.37 0.42 0.00

(b) Style distance

I Ic Is

I 0.00 0.30 0.01
Ic 0.30 0.00 0.31
Is 0.01 0.31 0.00

B STYLE INTERPOLATION

We further explore the flexibility of our model by interpolating between different style representa-
tions. Given a style representation Sc extracted from a content image and a style representation Ss

obtained from a reference image or text, we perform linear interpolation as follows:

Smix = (1− α)Sc + αSs, (3)

where α ∈ [0, 1] controls the interpolation ratio between the two styles. Figures 8 and 9 illustrate
that gradually varying α produces smooth transitions from one style to another, demonstrating that
our disentangled style representation is well-suited for controllable style blending.

C REFINEMENT DIFFUSION

The refinement diffusion is designed to enhance fine-grained details in the images generated by
the magnitude-preservation diffusion stage. We initialize it from the SDXL refiner (Stability-AI,
2022) and augment it with an additional style cross-attention layer to explicitly incorporate style
information. Specifically, we insert the style cross-attention layer immediately after the text cross-
attention layer, and use the same query Q for both operations. The output of the combined cross-
attention is formulated as:

Zout = Attention(Q,Kt, Vt) + Attention(Q,Ks, Vs), (4)
where Kt, Vt denote the key and value derived from text features, and Ks, Vs represent the key and
value derived from style features. The text prompt is set to “professional, highly detailed” by default.
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Content Styleα = 1.00α = 0.75α = 0.50α = 0.25

Figure 8: Style interpolation. The first three rows shows artistic style transfer, while the last three
rows show photorealistic style transfer.

Content Textα = 1.00α = 0.75α = 0.50α = 0.25
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Figure 9: Style interpolation on text-guided style transfer.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Model Content
encoder

Style
encoder

MP
diffusion

Refinement
diffusion

Text-to-style
diffusion

Resolution 256×256 256×256 32×32 64×64 -
Channels 256 512 256 384 1024
Channel multiplier 1,2,4 1,1,1,1,1 1,2,3,4 1,2,4,4 1
Blocks 3,4,23 3,3,4,4,8 4,4,4,4 2,2,2,2 24
Attention resolutions - 16,32 8,16 16,32 -
Head channels - 64,64 64,64 64,64 64
Attention type - self self+cross self+cross self+cross
Context dim - - 512 1280,512 2048
EMA power 2/3 2/3 2/3 - 2/3
Warm-up iterations 5000 5000 5000 5000 5000
Trainable param. 10.6M 64.5M 592.0M 32.1M 559.3M
Non-trainable param. 27.6M 0.0M 0.0M 2314.8M 0.0M
Total param. 38.2M 64.5M 592.0M 2346.8M 559.3M

Table 7: Hyperparameters for model training.

D TEXT-TO-STYLE DIFFUSION

Our text-to-style diffusion adopts the diffusion transformer as the base architecture. Each trans-
former block consists of a multi-head self-attention layer and a feed-forward layer. A multi-head
cross-attention layer is placed after the self-attention layer to interact with the text embedding. Fol-
lowing the EDM formulation (Karras et al., 2022), we implement the denoiser Dtext2style that pre-
dicts denoised style tokens as:

Dtext2style(z;σ, c) = cskip(σ)z + cout(σ)F (cin(σ)z; cnoise(σ), c), (5)

where z is the noisy style tokens, σ is the noise level, c is the text condition, and F denotes the
transformer network. cin, cnoise cskip and cout are the precondition terms to keep input and output
signal magnitudes fixed. Since EDM (Karras et al., 2022) has strong constraints on the mean-
variance of data, we normalize the input style tokens with predefined values which is computed by
randomly select a set of style tokens from dataset and calculate the mean-variance. For noise level σ,
we use log-normal distribution, i.e. ln(σ) ∼ N (Pmean, P

2
std) with Pmean = −1.2 and Pstd = 1.2.

To enable classifier-free guidance, the text is randomly dropout 10% of the time during training.

E HYPERPARAMETERS

Table 7 lists the configuration of each network in the model during training.

F ADDITIONAL COMPARISONS

Figure 10 and 11 show additional artistic and photorealistic style transfer qualitative comparison
results with versatility methods and disentanglement methods.

Figure 12 shows additional text-guided style transfer qualitative comparison results.
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Content Style DSTN CCPL CAP-VST DreamStyler B-LoRA CSGO Ours

Figure 10: Qualitative comparison of artistic style transfer.
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Content Style DSTN CCPL CAP-VST DreamStyler B-LoRA CSGO Ours

Figure 11: Qualitative comparison of photorealistic style transfer.
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Figure 12: Qualitative comparison of text-guided style transfer.
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