
Published as a conference paper at ICLR 2022

LARGE-SCALE REPRESENTATION LEARNING ON
GRAPHS VIA BOOTSTRAPPING

Shantanu Thakoor∗
DeepMind

Corentin Tallec
DeepMind

Mohammad Gheshlaghi Azar
DeepMind

Mehdi Azabou
Georgia Institute of Technology

Eva Dyer
Georgia Institute of Technology

Rémi Munos
DeepMind

Petar Veličković
DeepMind

Michal Valko
DeepMind

ABSTRACT

Self-supervised learning provides a promising path towards eliminating the need
for costly label information in representation learning on graphs. However, to
achieve state-of-the-art performance, methods often need large numbers of neg-
ative examples and rely on complex augmentations. This can be prohibitively
expensive, especially for large graphs. To address these challenges, we introduce
Bootstrapped Graph Latents (BGRL) - a graph representation learning method that
learns by predicting alternative augmentations of the input. BGRL uses only simple
augmentations and alleviates the need for contrasting with negative examples, and
is thus scalable by design. BGRL outperforms or matches prior methods on sev-
eral established benchmarks, while achieving a 2-10x reduction in memory costs.
Furthermore, we show that BGRL can be scaled up to extremely large graphs with
hundreds of millions of nodes in the semi-supervised regime - achieving state-of-
the-art performance and improving over supervised baselines where representations
are shaped only through label information. In particular, our solution centered
on BGRL constituted one of the winning entries to the Open Graph Benchmark -
Large Scale Challenge at KDD Cup 2021, on a graph orders of magnitudes larger
than all previously available benchmarks, thus demonstrating the scalability and
effectiveness of our approach.

1 INTRODUCTION

Graphs provide a powerful abstraction for complex datasets that arise in a variety of applications such
as social networks, transportation networks, and biological sciences (Hamilton et al., 2017; Derrow-
Pinion et al., 2021; Zitnik & Leskovec, 2017; Chanussot et al., 2021). Despite recent advances
in graph neural networks (GNNs), when trained with supervised data alone, these networks can
easily overfit and may fail to generalize (Rong et al., 2019). Thus, finding ways to form simplified
representations of graph-structured data without labels is an important yet unsolved challenge.

Current state-of-the-art methods for unsupervised representation learning on graphs (Veličković et al.,
2019; Peng et al., 2020; Hassani & Khasahmadi, 2020; Zhu et al., 2020b;a; You et al., 2020) are
contrastive. These methods work by pulling together representations of related objects and pushing
apart representations of unrelated ones. For example, current best methods Zhu et al. (2020b) and
Zhu et al. (2020a) learn node representations by creating two augmented versions of a graph, pulling
together the representation of the same node in the two graphs, while pushing apart every other node
pair. As such, they inherently rely on the ability to compare each object to a large number of negatives.
In the absence of a principled way of choosing these negatives, this can require computation and
memory quadratic in the number of nodes. In many cases, the generation of a large number of
negatives poses a prohibitive cost, especially for large graphs.

∗Correspondence to: Shantanu Thakoor <thakoor@google.com>.

1

Published as a conference paper at ICLR 2022

~x

(X,A) ~̃x1

(X̃1, Ã1)

~̃x2

(X̃2, Ã2)

T1

T2

~̃
h1

(H̃1, Ã1)

~̃
h2

(H̃2, Ã2)

Eθ

Eφ

~̃z1

(Z̃1, Ã1)

pθ

EMA

− 2
N

N−1∑
i=0

Z̃(1,i)H̃
>
(2,i)

‖Z̃(1,i)‖‖H̃(2,i)‖
‖

Figure 1: Overview of our proposed BGRL method. The original graph is first used to derive two different
semantically similar views using augmentations T1,2. From these, we use encoders Eθ,φ to form online and
target node embeddings. The predictor pθ uses the online embedding H̃1 to form a prediction Z̃1 of the target
embedding H̃2. The final objective is then computed as the cosine similarity between Z̃1 and H̃2, flowing
gradients only through Z̃1. The target parameters φ are updated as an exponentially moving average of θ.

In this paper, we introduce a scalable approach for self-supervised representation learning on graphs
called Bootstrapped Graph Latents (BGRL). Inspired by recent advances in self-supervised learning in
vision (Grill et al., 2020) , BGRL learns node representations by encoding two augmented versions
of a graph using two distinct graph encoders: an online encoder, and a target encoder. The online
encoder is trained through predicting the representation of the target encoder, while the target encoder
is updated as an exponential moving average of the online network. Critically, BGRL does not require
contrasting negative examples, and thus can scale easily to very large graphs.

Our main contributions are:

• We introduce Bootstrapped Graph Latents (BGRL), a graph self-supervised learning method
that effectively scales to extremely large graphs and outperforms existing methods, while
using only simple graph augmentations and not requiring negative examples (Section 2).
• We show that contrastive methods face a trade-off between peak performance and memory

constraints, due to their reliance on negative examples (Section 4.2). Due to having time and
space complexity scaling only linearly in the size of the input, BGRL avoids the performance-
memory trade-off inherent to contrastive methods altogether. BGRL provides performance
competitive with the best contrastive methods, while using 2-10x less memory on standard
benchmarks (Section 3).
• We show that leveraging the scalability of BGRL allows making full use of the vast amounts

of unlabeled data present in large graphs via semi-supervised learning. In particular, we
find that efficient use of unlabeled data for representation learning prevents representations
from overfitting to the classification task, and achieves significantly higher, state-of-the-art
performance. This was critical to the success of our solution at KDD Cup 2021 in which our
BGRL-based solution was awarded one of the winners, on the largest publicly available graph
dataset, of size 360GB consisting of 240 million nodes and 1.7 billion edges (Section 4.3).

2 BOOTSTRAPPED GRAPH LATENTS

2.1 BGRL COMPONENTS

BGRL builds representations through the use of two graph encoders, an online encoder Eθ and a target
encoder Eφ, where θ and φ denote two distinct sets of parameters. We consider a graph G = (X,A),
with node features X ∈ RN×F and adjacency matrix A ∈ RN×N . BGRL first produces two alternate
views of G: G1 = (X̃1, Ã1) and G2 = (X̃2, Ã2), by applying stochastic graph augmentation
functions T1 and T2 respectively. The online encoder produces an online representation from the first
augmented graph, H̃1 := Eθ(X̃1, Ã1); similarly the target encoder produces a target representation of
the second augmented graph, H̃2 := Eφ(X̃2, Ã2). The online representation is fed into a node-level
predictor pθ that outputs a prediction of the target representation, Z̃1 := pθ(H̃1).

BGRL differs from prior bootstrapping approaches such as BYOL (Grill et al., 2020) in that it does
not use a projector network. Unlike vision tasks, in which a projection step is used by BYOL for

2

Published as a conference paper at ICLR 2022

dimensionality reduction, common embedding sizes are quite small for graph tasks and so this is not
a concern in our case. In fact, we observe that this step can be eliminated altogether without loss in
performance (Appendix B).

The augmentation functions T1 and T2 used are simple, standard graph perturbations previously
explored (You et al., 2020; Zhu et al., 2020b). We use a combination of random node feature
masking and edge masking with fixed masking probabilities pf and pe respectively. More details
and background on graph augmentations is provided in Appendix D.

2.2 BGRL UPDATE STEP

Updating the online encoder Eθ: The online parameters θ (and not φ), are updated to make the
predicted target representations Z̃1 closer to the true target representations H̃2 for each node, by
following the gradient of the cosine similarity w.r.t. θ, i.e.,

`(θ, φ) = − 2

N

N−1∑
i=0

Z̃(1,i)H̃
>
(2,i)

‖Z̃(1,i)‖‖H̃(2,i)‖
(1)

θ ← optimize(θ, η, ∂θ`(θ, φ)), (2)

where η is the learning rate and the final updates are computed from the gradients of the objective
with respect to θ only, using an optimization method such as SGD or Adam (Kingma & Ba, 2015). In
practice, we symmetrize this loss, by also predicting the target representation of the first view using
the online representation of the second.

Updating the target encoder Eφ: The target parameters φ are updated as an exponential moving
average of the online parameters θ, using a decay rate τ , i.e.,

φ← τφ+ (1− τ)θ, (3)

Figure 1 visually summarizes BGRL’s architecture.

Note that although the objective `(θ, φ) has undesirable or trivial solutions, BGRL does not actually
optimize this loss. Only the online parameters θ are updated to reduce this loss, while the target
parameters φ follow a different objective. This non-collapsing behavior even without relying on
negatives has been studied further (Tian et al., 2021). We provide an empirical analysis of this
behavior in Appendix A, showing that in practice BGRL does not collapse to trivial solutions and
`(θ, φ) does not converge to 0.

Scalable non-contrastive objective: Here we note that a contrastive approach would instead
encourage Z̃(1,i) and H̃(2,j) to be far apart for node pairs (i, j) that are dissimilar. In the absence
of a principled way of choosing such dissimilar pairs, the naïve approach of simply contrasting all
pairs {(i, j) | i 6= j}, scales quadratically in the size of the input. As BGRL does not rely on this
contrastive step, BGRL scales linearly in the size of the graph, and thus is scalable by design.

3 COMPUTATIONAL COMPLEXITY ANALYSIS

We provide a brief description of the time and space complexities of the BGRL update step, and
illustrate its advantages compared to previous strong contrastive methods such as GRACE (Zhu et al.,
2020b), which perform a quadratic all-pairs contrastive computation at each update step. The same
analysis applies to variations of the GRACE method such as GCA (Zhu et al., 2020a).

Consider a graph with N nodes and M edges, and simple encoders E that compute embeddings
in time and space O(N +M). This property is satisfied by most popular GNN architectures such
as convolutional (Kipf & Welling, 2017), attentional (Veličković et al., 2018), or message-passing
(Gilmer et al., 2017) networks. BGRL performs four encoder computations per update step (twice
for the target and online encoders, and twice for each augmentation) plus a node-level prediction
step; GRACE performs two encoder computations (once for each augmentation), plus a node-level
projection step. Both methods backpropagate the learning signal twice (once for each augmentation),

3

Published as a conference paper at ICLR 2022

and we assume the backward pass to be approximately as costly as a forward pass. We ignore
the cost for computation of the augmentations in this analysis. Thus the total time and space
complexity per update step for BGRL is 6Cencoder(M +N) + 4CpredictionN +CBGRLN , compared
to 4Cencoder(M +N)+ 4CprojectionN +CGRACEN

2 for GRACE, where C· are constants depending
on architecture of the different components. Table 1 shows an empirical comparison of BGRL and
GRACE’s computational requirements on a set of benchmark tasks, with further details in Appendix I.

Dataset Amazon Photos WikiCS Amazon Computers Coauthor CS Coauthor Phy
#Nodes 7,650 11,701 13,752 18,333 34,493
#Edges 119,081 216,123 245,861 81,894 247,962
BGRL Memory 0.47 GB 0.63 GB 0.58 GB 2.86 GB 5.50 GB
GRACE Memory 1.81 GB 3.82 GB 5.14 GB 11.78 GB OOM

Table 1: Comparison of computational requirements on a set of standard benchmark graphs. OOM indicates
ruuning out of memory on a 16GB V100 GPU.

4 EXPERIMENTAL ANALYSIS

We present an extensive empirical study of performance and scalability, showing that BGRL is effective
across a wide range of settings from frozen linear evaluation to semi-supervised learning, and both
when performing full-graph training and training on subsampled node neighborhoods. We give results
across a range of dataset scales and encoder architectures including convolutional, attentional, and
message-passing neural networks.

We analyze the performance of BGRL on a set of 7 standard transductive and inductive benchmark
tasks, as well as in the very high-data regime by evaluating on the MAG240M dataset (Hu et al.,
2021). We present results on medium-sized datasets where contrastive objectives can be computed
on the entire graph (Section 4.1), on larger datasets where this objective must be approximated
(Section 4.2), and finally on the much larger MAG240M dataset designed to test scalability limits
(Section 4.3), showing that BGRL improves performance across all scales of datasets. In Appendix C,
we show that BGRL achieves state-of-the-art performance even in the low-data regime on a set of 4
small-scale datasets. Dataset sizes are summarized in Table 2 and described further in Appendix E.

Evaluation protocol: In most tasks, we follow the standard linear-evaluation protocol on
graphs (Veličković et al., 2019). This involves first training each graph encoder in a fully un-
supervised manner and computing embeddings for each node; a simple linear model is then trained
on top of these frozen embeddings through a logistic regression loss with `2 regularization, without
flowing any gradients back to the graph encoder network. In the more challenging MAG240M task,
we extend BGRL to the semi-supervised setting by combining our self-supervised representation
learning loss together with a supervised loss. We show that BGRL’s bootstrapping objective obtains
state-of-the-art performance in this hybrid setting, and even improves further with the added use of
unlabeled data for representation learning - properties which have not been previously demonstrated
by prior works on self-supervised representation learning on graphs.

Implementation details including model architectures and hyperparameters are provided in Ap-
pendix F. Algorithm implementation and experiment code for most tasks can be found at
https://github.com/nerdslab/bgrl while code for our solution on MAG240M has been open-sourced
as part of the KDD Cup 2021 (Addanki et al., 2021) at https://github.com/deepmind/deepmind-
research/tree/master/ogb_lsc/mag.

4.1 PERFORMANCE AND EFFICIENCY GAINS WHEN SCALABILITY IS NOT A BOTTLENECK

We first evaluate our method on a set of 5 recent real-world datasets — WikiCS, Amazon-Computers,
Amazon-Photos, Coauthor-CS, Coauthor-Physics — in the transductive setting. Note that these are
challenging medium-scale datasets specifically proposed for rigorous evaluation of semi-supervised
node classification methods (Mernyei & Cangea, 2020; Shchur et al., 2018), but are almost all small
enough that constrastive approaches such as GRACE (Zhu et al., 2020b) can compute their quadratic
objective exactly. Thus, these experiments present a comparison of BGRL with prior methods in the

4

https://github.com/nerdslab/bgrl
https://github.com/deepmind/deepmind-research/tree/master/ogb_lsc/mag
https://github.com/deepmind/deepmind-research/tree/master/ogb_lsc/mag

Published as a conference paper at ICLR 2022

Task Nodes Edges Features Classes
WikiCS Transductive 11,701 216,123 300 10
Amazon Computers Transductive 13,752 245,861 767 10
Amazon Photos Transductive 7,650 119,081 745 8
Coauthor CS Transductive 18,333 81,894 6,805 15
Coauthor Physics Transductive 34,493 247,962 8,415 5
ogbn-arxiv Transductive 169,343 1,166,243 128 40
PPI (24 graphs) Inductive 56,944 818,716 50 121 (multilabel)
MAG240M Transductive 244,160,499 1,728,364,232 768 153

Table 2: Statistics of datasets used in our experiments.

idealized case where scalability is not a bottleneck. We show that even in this steelmanned setting,
our method outperforms or matches prior methods while requiring a fraction of the memory costs.

We primarily compare BGRL against GRACE, a recent strong contrastive representation learning method
on graphs. We also report performances for other commonly used self-supervised graph methods
from previously published results (Perozzi et al., 2014; Veličković et al., 2019; Peng et al., 2020;
Hassani & Khasahmadi, 2020; Zhu et al., 2020a), as well as Random-Init (Veličković et al., 2019),
a baseline using embeddings from a randomly initialized encoder, thus measuring the quality of the
inductive biases present in the encoder model. We use a 2-layer GCN model (Kipf & Welling, 2017)
as our graph encoder E , and closely follow models, architectures, and graph-augmentation settings
used in prior works (Zhu et al., 2020a; Veličković et al., 2019; Zhu et al., 2020b).

WikiCS Am. Comp. Am. Photos Co.CS Co.Phy
Raw features 71.98 ± 0.00 73.81 ± 0.00 78.53 ± 0.00 90.37 ± 0.00 93.58 ± 0.00
DeepWalk 74.35 ± 0.06 85.68 ± 0.06 89.44 ± 0.11 84.61 ± 0.22 91.77 ± 0.15
DeepWalk + feat. 77.21 ± 0.03 86.28 ± 0.07 90.05 ± 0.08 87.70 ± 0.04 94.90 ± 0.09
DGI 75.35 ± 0.14 83.95 ± 0.47 91.61 ± 0.22 92.15 ± 0.63 94.51 ± 0.52
GMI 74.85 ± 0.08 82.21 ± 0.31 90.68 ± 0.17 OOM OOM
MVGRL 77.52 ± 0.08 87.52 ± 0.11 91.74 ± 0.07 92.11 ± 0.12 95.33 ± 0.03
Random-Init? 78.95 ± 0.58 86.46 ± 0.38 92.08 ± 0.48 91.64 ± 0.29 93.71 ± 0.29
GRACE ? 80.14 ± 0.48 89.53 ± 0.35 92.78 ± 0.45 91.12 ± 0.20 OOM
BGRL? 79.98 ± 0.10 90.34 ± 0.19 93.17 ± 0.30 93.31 ± 0.13 95.73 ± 0.05
GCA 78.35 ± 0.05 88.94 ± 0.15 92.53 ± 0.16 93.10 ± 0.01 95.73 ± 0.03
Supervised GCN 77.19 ± 0.12 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31 95.65 ± 0.16

Table 3: Performance measured in terms of classification accuracy along with standard deviations. Our
experiments, marked as ?, are over 20 random dataset splits and model initializations. The other results are taken
from previously published reports. OOM indicates running out of memory on a 16GB V100 GPU. We report the
best result for GCA out of the proposed GCA-DE, GCA-PR, and GCA-EV models.

In Table 3, we report results of our experiments on these standard benchmark tasks. We see that even
when scalability does not prevent the use of contrastive objectives, BGRL performs competitively both
with our unsupervised and fully supervised baselines, achieving state-of-the-art performance in 4
of the 5 datasets. Further, as noted in Table 1, BGRL achieves this despite using 2-10x less memory.
BGRL provides this improvement in memory-efficiency at no cost in performance, demonstrating a
useful practical advantage over prior methods such as GRACE.

Effect of more complex augmentations: In addition to the original GRACE method, we also
highlight GCA, a variant of it that has the same learning objective but trades off more expressive but
expensive graph augmentations for better performance. However, these augmentations often take
time cubic in the size of the graph, or are otherwise cumbersome to implement on large graphs. As we
focus on scalability to the high-data regime, we primarily restrict our comparisons to the base method
GRACE, which uses the same simple, easily scalable augmentations as BGRL. Nevertheless, for the
sake of completeness, in Table 4 we investigate the effect of these complex augmentations with BGRL.
We see that BGRL obtains equivalent performance with both simple and complex augmentations, while
GCA requires more expensive augmentations for peak performance. This indicates that BGRL can
safely rely on simple augmentations when scaling to larger graphs without sacrificing performance.

5

Published as a conference paper at ICLR 2022

Method Augmentation Co.CS Co.Phy Am. Comp. Am. Photos
BGRL Standard 93.31 ± 0.13 95.73 ± 0.05 90.34 ± 0.19 93.17 ± 0.30

Degree centrality 93.34 ± 0.13 95.62 ± 0.09 90.39 ± 0.22 93.15 ± 0.37
Pagerank centrality 93.34 ± 0.11 95.59 ± 0.09 90.45 ± 0.25 93.13 ± 0.34
Eigenvector centrality 93.32 ± 0.15 95.62 ± 0.06 90.20 ± 0.27 93.03 ± 0.39

GCA Standard 92.93 ± 0.01 95.26 ± 0.02 86.25 ± 0.25 92.15 ± 0.24
Degree centrality 93.10 ± 0.01 95.68 ± 0.05 87.85 ± 0.31 92.49 ± 0.09
Pagerank centrality 93.06 ± 0.03 95.72 ± 0.03 87.80 ± 0.23 92.53 ± 0.16
Eigenvector centrality 92.95 ± 0.13 95.73 ± 0.03 87.54 ± 0.49 92.24 ± 0.21

Table 4: Comparison of BGRL and GCA for simple versus complex augmentation heuristics on four benchmark
graphs. For GCA, we report the numbers provided in their original paper.

Validation Test
MLP 57.65± 0.12 55.50 ± 0.23
node2vec 71.29 ± 0.13 70.07 ± 0.13
Random-Init? 69.90 ± 0.11 68.94 ± 0.15
DGI? 71.26 ± 0.11 70.34 ± 0.16
GRACE full-graph? OOM OOM
GRACE-SUBSAMPLING (k = 2)? 60.49 ± 3.72 60.24 ± 4.06
GRACE-SUBSAMPLING (k = 8)? 71.30 ± 0.17 70.33 ± 0.18
GRACE-SUBSAMPLING (k = 32)? 72.18 ± 0.16 71.18 ± 0.16
GRACE-SUBSAMPLING (k = 2048)? 72.61 ± 0.15 71.51 ± 0.11
BGRL? 72.53 ± 0.09 71.64 ± 0.12
Supervised GCN 73.00 ± 0.17 71.74 ± 0.29

Table 5: Performance on the ogbn-arXiv task measured in terms of classification accuracy along with standard
deviations. Our experiments, marked as ?, are averaged over 20 random model initializations. Other results are
taken from previously published reports. OOM indicates running out of memory on a 16GB V100 GPU.

4.2 SCALABILITY-PERFORMANCE TRADE-OFFS FOR LARGE GRAPHS

When scaling up to large graphs, it may not be possible to compare each node’s representation to all
others. In this case, a natural way to reduce memory is to compare each node with only a subset of
nodes in the rest of the graph. To study how the number of negatives impacts performance in this
case, we propose an approximation of GRACE’s objective called GRACE-SUBSAMPLING, where instead
of contrasting every pair of nodes in the graph, we subsample k nodes randomly across the graph
to use as negative examples for each node at every gradient step. Note that k = 2 is the asymptotic
equivalent of BGRL in terms of memory costs, as BGRL always only compares each node with itself
across both views, i.e., BGRL faces no such computational difficulty or design choice in scaling up.

EVALUATING ON OGBN-ARXIV DATASET

To study the tradeoff between performance and complexity we consider a node classification task on
a much larger dataset, from the OGB benchmark (Hu et al., 2020a), ogbn-arXiv. In this case, GRACE
cannot run without subsampling (on a GPU with 16GB of memory). Considering the increased
difficulty of this task, we slightly expand our model to use 3 GCN layers, following the baseline model
provided by Hu et al. (2020a). As there has not been prior work on applying GNN-based unsupervised
approaches to the ogbn-arXiv task, we implement and compare against two representative contrastive-
learning approaches, DGI and GRACE. In addition, we report results from Hu et al. (2020a) for
node2vec (Grover & Leskovec, 2016) and a supervised-learning baseline. We report results on both
validation and test sets, as is convention for this task since the dataset is split based on a chronological
ordering.

Our results, summarized in Table 5, show that BGRL is competitive with the supervised learning
baseline. Further, we note that the performance of GRACE-SUBSAMPLING is very sensitive to the
parameter k—requiring a large number of negatives to match the performance of BGRL. Note that
BGRL far exceeds the performance of GRACE-SUBSAMPLING with k = 2, its asymptotic equivalent
in terms of memory; and that larger values of k lead to out-of-memory errors on a 16GB GPU.
These results suggest that the performance of contrastive methods such as GRACE may suffer due to
approximations to their objectives that must be made when scaling up.

6

Published as a conference paper at ICLR 2022

PPI
Raw features 42.20
DGI 63.80 ± 0.20
GMI 65.00 ± 0.02
Random-Init 62.60 ± 0.20
GRACE MeanPooling encoder? 69.66 ± 0.15
BGRL MeanPooling encoder? 69.41 ± 0.15
GRACE GAT encoder? 69.71 ± 0.17
BGRL GAT encoder? 70.49 ± 0.05
Supervised MeanPooling 96.90 ± 0.20
Supervised GAT 97.30 ± 0.20

Table 6: Performance on the PPI task measured in terms of Micro-F1 across the 121 labels along with standard
deviations. Our experiments, marked as ?, are averaged over 20 random model initializations. Other results are
taken from previously published reports.

EVALUATING ON PROTEIN-PROTEIN INTERACTION DATASET

Next, we consider the Protein-Protein Interaction (PPI) task—a more challenging inductive task on
multiple graphs where the gap between the best self-supervised methods and fully supervised methods
is (still) significantly large, due to 40% of the nodes missing feature information. In addition to simple
mean-pooling propagation rules from GraphSage-GCN (Hamilton et al., 2017), we also consider
Graph Attention Networks (GAT, Veličković et al., 2018) where each node aggregates features from
its neighbors non-uniformly using a learned attention weight. It has been shown (Veličković et al.,
2018) that GAT improves over non-attentional models on this dataset when trained in supervised
settings, but these models have thus far not been able to be trained to a higher performance than
non-attentional models through contrastive techniques.

We report our results in Table 6, showing that BGRL is competitive with GRACE when using the
simpler MeanPooling networks. Applying BGRL to a GAT model, results in a new state-of-the-art
performance, improving over the MeanPooling network. On the other hand, the GRACE contrastive
loss is unable to improve performance of a GAT model over the non-attentional MeanPooling encoder.
We observe that the approximation of the contrastive objective results not only in lower accuracies

0 2500 5000 7500 10000 12500 15000 17500
Training Step

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

M
icr

o
f1

Grace sampling 16
Grace sampling 32
Grace sampling 64
Grace sampling 128
Grace sampling 256
Grace sampling all
BGRL

Figure 2: PPI task performance, averaged over 20 seeds.

6 5 4 3 2 1 0
Entropy

0

500

1000

1500

2000

Grace sampling 16
Grace sampling 32
Grace sampling 64
Grace sampling 128
Grace sampling 256
Grace sampling all
BGRL

Figure 3: Histogram of GAT attention entropies.

(Figure 2), but also qualitatively different behaviors in the GAT models being trained. In Figure 3,
we examine the internals of GAT models trained through both BGRL and GRACE by analyzing the
entropy of the attention weights learned. For each training node, we compute the average entropy
of its attention weights across all GAT layers and attention heads, minus the entropy of a uniform
attention distribution as a baseline. We see that GAT models learned using GRACE, particularly
when subsampling few negative examples, tend to have very low attention entropies and perform
poorly. On the other hand, BGRL is able to train the model to have meaningful attention weights,
striking a balance between the low-entropy models learned through GRACE and the maximum-entropy

7

Published as a conference paper at ICLR 2022

uniform-attention distribution. This aligns with recent observations (Kim & Oh, 2021; Wang et al.,
2019) that auxiliary losses must be chosen carefully for the stability of GAT attention weights.

4.3 SCALING TO EXTREMELY LARGE GRAPHS

To further test the scalability and evaluate the performance of BGRL in the very high-data regime, we
consider the MAG240M node classification task (Hu et al., 2021). As a single connected graph of
360GB with over 240 million nodes (of which 1.4 million are labeled) and 1.7 billion edges, this
dataset is orders of magnitude larger than previously available public datasets, and poses a significant
scaling challenge. Since the test labels for this dataset are (still) hidden, we report performance
based on validation accuracies in our experiments. Implementation and experiment details are in
Appendix G.

To account for the increased scale and difficulty of the classification task on this dataset, we make a
number of changes to our learning setup. First, since we can no longer perform full-graph training
due to the sheer size of the graph, we thus adopt the Neighborhood Sampling strategy proposed
by Hamilton et al. (2017) to sample a small number of central nodes at which our loss is to be
applied, and sampling a fixed size neighborhood around them. Second, we use more expressive
Message Passing Neural Networks (Gilmer et al., 2017) as our graph encoders. Finally, as we
are interested in pushing performance on this competition dataset, we make use of the available
labels for representation learning and shift from evaluating on top of a frozen representation, to
semi-supervised training by combining both supervised and self-supervised signals at each update
step. We emphasize that these are significant changes from the standard small-scale evaluation setup
for graph representation learning methods studied previously, and more closely resemble real-world
conditions in which these algorithms would be employed.

0 10000 20000 30000 40000 50000
Training Step

0.720

0.722

0.724

0.726

0.728

0.730

0.732

0.734

Ac
cu

ra
cy

MAG240M Dataset

BGRL semi-supervised
GRACE semi-supervised
Fully supervised

Figure 4: Performance on MAG240M using BGRL
or GRACE-SUBSAMPLING as an auxiliary signal, av-
eraged over 5 seeds and run for 50k steps.

0 100000 200000 300000 400000 500000
Training Step

0.7200

0.7225

0.7250

0.7275

0.7300

0.7325

0.7350

0.7375

0.7400

Ac
cu

ra
cy

Mixing varying fraction unlabeled data

0x unlabeled
1x unlabeled
5x unlabeled
10x unlabeled

Figure 5: Mixing varying amounts of unlabeled
data for representation learning with BGRL, averaged
over 5 seeds and run for 500k steps.

In Figure 4, we see that BGRL used as an auxiliary signal is able to learn faster and significantly
improve final performance over fully supervised learning on this challenging task. Considering the
difficulty of this task and the small gap in final performance between winning entries in the KDD Cup
2021 contest, this is a significant improvement. On the other hand, GRACE-SUBSAMPLING provides
much lower benefits over fully supervised learning, possibly due to no longer being able to sample
sufficiently many negatives over the whole graph. Here we used k = 256 negatives, the largest value
we were able to run without running out of memory.

We further show that we can leverage the high scalability of BGRL to make use of the vast amounts of
unlabeled data present in the dataset. Since labeled nodes form only 0.5% of the graph, unlabeled
data offers a rich self-supervised signal for learning better representations and ultimately improving
performance on the supervised task. In Figure 5, we consider adding some number of unlabeled nodes
to each minibatch of data, and examine the effect on performance as this ratio of unlabeled to labeled
data in each batch increases. Thus at each step, we apply the supervised loss on only the labeled
nodes in the batch, and BGRL on all nodes. Note that a ratio of 0 corresponds to the case where we
apply BGRL as an auxiliary loss only to the training nodes, already examined in Figure 4. We observe
a dramatic increase in both stability and peak performance as we increase this ratio, showing that
BGRL can utilize the unlabeled nodes effectively to shape higher quality representations and prevent

8

Published as a conference paper at ICLR 2022

early overfitting to the supervised signal. This effect shows steady improvement as we increase this
ratio from 1x to 10x unlabeled data, where we stop due to resource constraints on running ablations
on this large-scale graph - however, this trend may continue to even higher ratios, as the true ratio of
unlabeled to labeled nodes present in the graph is 99x.

This result of 73.89% is state-of-the-art for this dataset for the highest single-model performance
(i.e., without ensembling) - the OGB baselines report a score of 70.02% (Hu et al., 2021) while the
KDD Cup 2021 contest first place solution reported a score of 73.71% before ensembling.

KDD Cup 2021:1 Our solution using BGRL to shape representations, utilizing unlabeled data
in conjunction with a supervised signal for semi-supervised learning, was awarded as one of the
winners of the MAG240M track at OGB-LSC(Addanki et al., 2021). It achieved a final position
of second overall, achieving 75.19% accuracy on the test set. The first and third place solutions
achieved 75.49% and 74.60% respectively. Although differences in many other factors such as model
architectures, feature engineering, ensembling strategies, etc. prevent a direct comparison2 between
these solutions, these results serve as a strong empirical evidence for the effectiveness of BGRL for
learning representations on extremely large scale datasets.

5 RELATED WORK

Early methods in the area relied on random-walk objectives such as DeepWalk (Perozzi et al., 2014)
and node2vec (Grover & Leskovec, 2016). Even though the graph neural networks (GNNs) inductive
bias aligns with these objectives (Wu et al., 2019; Veličković et al., 2019; Kipf & Welling, 2017), com-
posing GNNs and random-walks does not work very well and can even degrade performance (Hamil-
ton et al., 2017). Earlier combinations of GNNs and self-supervised learning involve Embedding
Propagation (García-Durán & Niepert, 2017), Variational Graph Autoencoders (Kipf &
Welling, 2016) and Graph2Gauss (Bojchevski & Günnemann, 2018). Hu et al. (2020b) leverages
BERT (Devlin et al., 2019) for representation learning in graph-structured inputs. Hu et al. (2020b)
assumes specific graph structures and uses feature masking objectives to shape representations.

Recently, contrastive methods effective on images have also been adapted to graphs using GNNs.
This includes DGI (Veličković et al., 2019), inspired by Deep InfoMax Hjelm et al. (2019), which
contrasts node-local patches against global graph representations. Next, InfoGraph (Sun et al., 2020)
modified DGI’s pipeline for graph classification tasks. GMI Peng et al. (2020) maximizes a notion
of graphical mutual information inspired by MINE (Belghazi et al., 2018), allowing for a more fine-
grained contrastive loss than DGI’s. The SimCLR method of Chen et al. (2020a;b) has been specialized
for graphs by GRACE and variants such as GCA (Zhu et al., 2020b;a) that rely on more complex data-
adaptive augmentations. GraphCL (You et al., 2020) adapts SimCLR to learn graph-level embeddings
using a contrastive objective. MVGRL (Hassani & Khasahmadi, 2020) generalizes CMC (Tian et al.,
2020) to graphs. Graph Barlow Twins (Bielak et al., 2021) presents a method to learn representations
by minimizing correlation between different representation dimensions. Concurrent works DGB (Che
et al., 2020) and SelfGNN (Kefato & Girdzijauskas, 2021), like BGRL, adapt BYOL (Grill et al., 2020)
for graph representation learning. However, BGRL differs from these works in the following ways:

• We show that BGRL scales to and attains state-of-the-art results on the very high-data regime
on the MAG240M dataset. These results are unprecedented in the graph self-supervised
learning literature and demonstrate a high degree of scalability.
• We show that BGRL is effective even when trained on sampled subgraphs and not full graph.
• We provide an extensive analysis of the performance-computation trade-off of BGRL versus

contrastive methods, showing that BGRL can be more efficient in terms of computation and
memory usage as it requires no negative examples.
• We show that BGRL is effective when performing semi-supervised training, providing further

gains when leveraging both labeled data and unlabeled data. This is a significant result that
has not been demonstrated in graph representation learning methods using neural networks
prior to our work.

1Leaderboard at https://ogb.stanford.edu/kddcup2021/results/#awardees_mag240m.
2For example, the first place solution used a much larger set of 30 ensembled models compared to our 10, and

exclusively relied on architectural improvements to improve performance without using self-supervised learning.

9

https://ogb.stanford.edu/kddcup2021/results/#awardees_mag240m

Published as a conference paper at ICLR 2022

ICLR ETHICS STATEMENT

Our contributions are in developing and evaluating a general method for self-supervised representation
learning in graphs. As such, they may be helpful in applications where obtaining labels can be
challenging or expensive, thus enabling newer applications potentially in the direction of positive
social good.

On the other hand, as an unsupervised pretraining method, there is a risk of practitioners using it
for downstream tasks without carefully considering how these embeddings were originally trained,
potentially leading to stereotyping or unfair biases. Further, since the bootstrapping dynamics of
BGRL are not yet fully understood, there is a higher chance of it being used as a blackbox machine
learning method and harmful downstream effects being difficult to diagnose and resolve.

ICLR REPRODUCIBILITY STATEMENT

We believe that the results we report in this paper are reproducible and strengthen our empirical
contributions.

We have submitted our algorithm implementation and experimental setup, config, and code for almost
all of our experiments as supplementary material. Most experiments finish within 30 minutes on
a single V100 GPU, and thus are easy to verify with few resources. In addition, we are providing
trained model weights/checkpoints for directly loading and verifying performance without train-
ing. Experiments for which code has not been provided are described in detail in the appendices
(Appendix E and Appendix F) and should allow for reproduction.

Besides this, code for our large-scale MAG240M solution has been open-sourced as part of the KDD
Cup 2021 and has been verified independently by the OGB-LSC contest organizers.

REFERENCES

Ravichandra Addanki, Peter W. Battaglia, David Budden, Andreea Deac, Jonathan Godwin, Thomas
Keck, Wai Lok Sibon Li, Alvaro Sanchez-Gonzalez, Jacklynn Stott, Shantanu Thakoor, and Petar
Velickovic. Large-scale graph representation learning with very deep gnns and self-supervision.
CoRR, abs/2107.09422, 2021. URL https://arxiv.org/abs/2107.09422.

Jimmy Ba, J. Kiros, and Geoffrey E. Hinton. Layer normalization. ArXiv, abs/1607.06450, 2016.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and Devon Hjelm. Mutual information neural estimation. In International Conference on
Machine Learning, 2018. URL http://proceedings.mlr.press/v80/belghazi18a.html.

Piotr Bielak, Tomasz Kajdanowicz, and Nitesh V. Chawla. Graph barlow twins: A self-supervised
representation learning framework for graphs. CoRR, abs/2106.02466, 2021. URL https:
//arxiv.org/abs/2106.02466.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking. arXiv preprint arXiv:1707.03815, 2017.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=r1ZdKJ-0W.

Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut Lavril, Muhammed Shuaibi, Morgane
Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, and et al. Open catalyst 2020
(oc20) dataset and community challenges. ACS Catalysis, 11(10):6059–6072, May 2021. ISSN
2155-5435. doi: 10.1021/acscatal.0c04525. URL http://dx.doi.org/10.1021/acscatal.
0c04525.

Feihu Che, Guohua Yang, Dawei Zhang, Jianhua Tao, Pengpeng Shao, and Tong Liu. Self-supervised
graph representation learning via bootstrapping. arXiv preprint arXiv:2011.05126, 2020.

10

https://arxiv.org/abs/2107.09422
http://proceedings.mlr.press/v80/belghazi18a.html
https://arxiv.org/abs/2106.02466
https://arxiv.org/abs/2106.02466
https://openreview.net/forum?id=r1ZdKJ-0W
http://dx.doi.org/10.1021/acscatal.0c04525
http://dx.doi.org/10.1021/acscatal.0c04525

Published as a conference paper at ICLR 2022

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International Conference on Machine Learning,
2020a. URL http://proceedings.mlr.press/v119/chen20j.html.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E. Hinton.
Big self-supervised models are strong semi-supervised learners. In Neural Information Pro-
cessing Systems, 2020b. URL https://proceedings.neurips.cc/paper/2020/hash/
fcbc95ccdd551da181207c0c1400c655-Abstract.html.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learn-
ing by exponential linear units (elus). In International Conference on Learning Representations,
2016. URL http://arxiv.org/abs/1511.07289.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez, Marc
Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, Peter W. Battaglia, Vishal Gupta, Ang Li,
Zhongwen Xu, Alvaro Sanchez-Gonzalez, Yujia Li, and Petar Velickovic. ETA prediction with
graph neural networks in google maps. CoRR, abs/2108.11482, 2021. URL https://arxiv.
org/abs/2108.11482.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Conference of the North American
Chapter of the Association for Computational Linguistics, 2019. doi: 10.18653/v1/N19-1423.
URL https://www.aclweb.org/anthology/N19-1423.

Alberto García-Durán and Mathias Niepert. Learning graph representations with embedding propaga-
tion. In Neural Information Processing Systems, 2017. ISBN 9781510860964.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, 2017.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Conference on Artificial Intelligence and Statistics, 2010.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent:
A new approach to self-supervised learning. In Neural Information Processing Systems, 2020.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In ACM
SIGKDD International Conference on Knowledge discovery and Data Mining, 2016.

Sylvain Gugger and Jeremy Howard. Adamw and super-convergence is now the fastest way to train
neural nets. https://www.fast.ai/2018/07/02/adam-weight-decay/, 2018.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In Neural Information Processing Systems, 2017. URL https://proceedings.
neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In International Conference on Machine Learning, 2020. URL http://proceedings.
mlr.press/v119/hassani20a.html.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In International Conference on Computer
Vision, USA, 2015. ISBN 9781467383912. doi: 10.1109/ICCV.2015.123. URL https://doi.
org/10.1109/ICCV.2015.123.

11

http://proceedings.mlr.press/v119/chen20j.html
https://proceedings.neurips.cc/paper/2020/hash/fcbc95ccdd551da181207c0c1400c655-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fcbc95ccdd551da181207c0c1400c655-Abstract.html
http://arxiv.org/abs/1511.07289
https://arxiv.org/abs/2108.11482
https://arxiv.org/abs/2108.11482
https://www.aclweb.org/anthology/N19-1423
https://www.fast.ai/2018/07/02/adam-weight-decay/
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
http://proceedings.mlr.press/v119/hassani20a.html
http://proceedings.mlr.press/v119/hassani20a.html
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123

Published as a conference paper at ICLR 2022

R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=Bklr3j0cKX.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Neural
Information Processing Systems, 2020a. URL https://proceedings.neurips.cc/paper/
2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In International Conference on Learning
Representations, 2020b. URL https://openreview.net/forum?id=HJlWWJSFDH.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-lsc: A
large-scale challenge for machine learning on graphs, 2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, 2015. URL
http://proceedings.mlr.press/v37/ioffe15.html.

Zekarias T. Kefato and Sarunas Girdzijauskas. Self-supervised graph neural networks without explicit
negative sampling. CoRR, abs/2103.14958, 2021. URL https://arxiv.org/abs/2103.14958.

Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention design
with self-supervision. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=Wi5KUNlqWty.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015. URL http://arxiv.org/abs/1412.6980.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=SJU4ayYgl.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. Image-based recom-
mendations on styles and substitutes. In ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’15, 2015. ISBN 9781450336215. doi: 10.1145/2766462.2767755.
URL https://doi.org/10.1145/2766462.2767755.

Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
networks, 2020.

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. In International Conference on Learning Representations, 2013. URL
http://arxiv.org/abs/1301.3781.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and Jun-
zhou Huang. Graph Representation Learning via Graphical Mutual Information Maximiza-
tion, pp. 259–270. Association for Computing Machinery, New York, NY, USA, 2020. ISBN
9781450370233. URL https://doi.org/10.1145/3366423.3380112.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for word
representation. In Conference on Empirical Methods in Natural Language Processing, 2014. doi:
10.3115/v1/D14-1162. URL https://www.aclweb.org/anthology/D14-1162.

12

https://openreview.net/forum?id=Bklr3j0cKX
https://openreview.net/forum?id=Bklr3j0cKX
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://openreview.net/forum?id=HJlWWJSFDH
http://proceedings.mlr.press/v37/ioffe15.html
https://arxiv.org/abs/2103.14958
https://openreview.net/forum?id=Wi5KUNlqWty
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1145/2766462.2767755
http://arxiv.org/abs/1301.3781
https://doi.org/10.1145/3366423.3380112
https://www.aclweb.org/anthology/D14-1162

Published as a conference paper at ICLR 2022

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk. ACM SIGKDD International Con-
ference on Knowledge discovery and Data Mining, 2014. doi: 10.1145/2623330.2623732. URL
http://dx.doi.org/10.1145/2623330.2623732.

Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan L. Yuille. Weight standardization. CoRR,
abs/1903.10520, 2019. URL http://arxiv.org/abs/1903.10520.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convo-
lutional networks on node classification. In International Conference on Learning Representations,
2019.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. Relational Representation Learning Workshop, NeurIPS 2018,
2018.

Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June (Paul) Hsu, and Kuansan
Wang. An overview of microsoft academic service (mas) and applications. In International
Conference on World Wide Web, 2015. ISBN 9781450334730. doi: 10.1145/2740908.2742839.
URL https://doi.org/10.1145/2740908.2742839.

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. In Interna-
tional Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=r1lfF2NYvH.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In ECCV, 2020. doi:
10.1007/978-3-030-58621-8_45. URL https://doi.org/10.1007/978-3-030-58621-8_
45.

Yuandong Tian, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning dynamics
without contrastive pairs. CoRR, abs/2102.06810, 2021. URL https://arxiv.org/abs/2102.
06810.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=rklz9iAcKQ.

Guangtao Wang, Rex Ying, Jing Huang, and J. Leskovec. Improving graph attention networks with
large margin-based constraints. ArXiv, abs/1910.11945, 2019.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplify-
ing graph convolutional networks. In International Conference on Machine Learning, 2019.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang
Shen. Graph contrastive learning with augmentations. In Neural Information Pro-
cessing Systems, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
3fe230348e9a12c13120749e3f9fa4cd-Abstract.html.

Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propaga-
tion. 2002.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, S. Wu, and Liang Wang. Graph contrastive learning
with adaptive augmentation. ArXiv, abs/2010.14945, 2020a.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. ArXiv, abs/2006.04131, 2020b.

13

http://dx.doi.org/10.1145/2623330.2623732
http://arxiv.org/abs/1903.10520
https://doi.org/10.1145/2740908.2742839
https://openreview.net/forum?id=r1lfF2NYvH
https://openreview.net/forum?id=r1lfF2NYvH
https://doi.org/10.1007/978-3-030-58621-8_45
https://doi.org/10.1007/978-3-030-58621-8_45
https://arxiv.org/abs/2102.06810
https://arxiv.org/abs/2102.06810
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rklz9iAcKQ
https://proceedings.neurips.cc/paper/2020/hash/3fe230348e9a12c13120749e3f9fa4cd-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3fe230348e9a12c13120749e3f9fa4cd-Abstract.html

Published as a conference paper at ICLR 2022

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue net-
works. Bioinformatics, 33(14):i190–i198, Jul 2017. ISSN 1460-2059. doi: 10.1093/bioinformatics/
btx252. URL http://dx.doi.org/10.1093/bioinformatics/btx252.

14

http://dx.doi.org/10.1093/bioinformatics/btx252

Published as a conference paper at ICLR 2022

A BGRL DOES NOT CONVERGE TO TRIVIAL SOLUTIONS

In Figure 6 we show the BGRL loss curve throughout training for all the datasets considered. As we
see, the loss does not converge to zero, indicating that the training does not result in a trivial solution.

In Figure 7 we plot the spread of the node embeddings, i.e., the standard deviation of the represen-
tations learned across all nodes, divided by the average norm. As we see, the embeddings learned
across all datasets have a standard deviation that is a similar order of magnitude as the norms of the
embeddings themselves, further indicating that the training dynamics do not converge to a constant
solution.

Further, Figure 8 shows that the embeddings do not collapse to zero or blow up as training progresses.

0 2000 4000 6000 8000
Training Step

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

BG
RL

 L
os

s

amazon-computers
amazon-photos
coauthor-cs
coauthor-phy
wiki-cs
ogbn-arXiv
PPI

Figure 6: BGRL Loss

0 2000 4000 6000 8000
Training Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Em
be

dd
in

g
Sp

re
ad

amazon-computers
amazon-photos
coauthor-cs
coauthor-phy
wiki-cs
ogbn-arXiv
PPI

Figure 7: Embedding spread

0 2000 4000 6000 8000
Training Step

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Em
be

dd
in

g
No

rm

amazon-computers
amazon-photos
coauthor-cs
coauthor-phy
wiki-cs
ogbn-arXiv
PPI

Figure 8: Average embedding norm

B ABLATIONS ON PROJECTOR NETWORK

As noted in Section 2, BGRL does not use a projector network, unlike both BYOL and GRACE. Prior
works such as GRACE use a projector network to prevent the embeddings from becoming completely
invariant to the augmentations used - however in BGRL, the predictor network can serve the same
purpose. On the other hand, BYOL relies on this for dimensionality reduction, to simplify the task of
the predictor pθ, as it is challenging to directly predict very high-dimensional embeddings. required
for large-scale vision tasks like ImageNet (Deng et al., 2009). Here we empirically verify that even in
our most challenging, large-scale task of MAG240M, the projector network is not needed and only
slows down learning. In Figure 9 we can see that adding the projector network leads to both slower
learning and a lower final performance.

0 10000 20000 30000 40000 50000
Training Step

0.720

0.722

0.724

0.726

0.728

0.730

0.732

0.734

Ac
cu

ra
cy

MAG240M Dataset

BGRL with projector
BGRL without projector

Figure 9: Performance on OGB-LSC MAG240M task, averaged over 5 seeds, testing effect of using
projector network.

15

Published as a conference paper at ICLR 2022

C COMPARISON ON SMALL DATASETS

We perform additional experiments on 4 commonly used small datasets, (Cora, CiteSeer, PubMed,
and DBLP) (Sen et al., 2008; Bojchevski & Günnemann, 2017) and show that BGRL’s bootstrapping
mechanism still performs well in the low-data regime, even attaining a new state of the art performance
on two of the datasets.

Note that Table 7 reports results averaged over 20 random dataset splits, as has been followed in Zhu
et al. (2020b), instead of using the standard fixed splits for these datasets which are known to be easy
to unreliable for evaluating GNN methods (Shchur et al., 2018).

Cora CiteSeer PubMed DBLP
GRACE 83.02 ± 0.89 71.63 ± 0.64 86.06 ± 0.26 84.08 ± 0.29
BGRL 83.83 ± 1.61 72.32 ± 0.89 86.03 ± 0.33 84.07 ± 0.23
Supervised 82.8 72.0 84.9 82.7

Table 7: Evaluation on small datasets. Results averaged over 20 dataset splits and model initializations.

D GRAPH AUGMENTATION FUNCTIONS

Generating meaningful augmentations is a much less explored problem in graphs than in other
domains such as vision. Further, since we work over entire graphs, complex augmentations can be
very expensive to compute and will impact all nodes at once. Our contributions are orthogonal to
this problem, and we primarily consider only the standard graph augmentation pipeline that has been
used in previous works on representation learning (You et al., 2020; Zhu et al., 2020b).

In particular, we consider two simple graph augmentation functions — node feature masking and
edge masking. These augmentations are graph-wise: they do not operate on each node indepen-
dently, and instead leverage graph topology information through edge masking. This contrasts with
transformations used in BYOL, which operate on each image independently. First, we generate a single
random binary mask of size F , each element of which follows a Bernoulli distribution B(1− pf),
and use it to mask features of all nodes in the graph (i.e., all nodes have the same features masked).
Empirically, we found that performance is similar for using different random masks per node or
sharing them, and so we use a single mask for simplicity. In addition to this node-level attribute
transformation, we also compute a binary mask of size E (where E is the number of edges in the
original graph), each element of which follows a Bernoulli distribution B(1 − pe), and use it to
mask edges in the augmented graph. To compute our final augmented graphs, we make use of both
augmentation functions with different hyperparameters for each graph, i.e. pf1 and pe1 for the first
view, and pf2 and pe2 for the second view.

Beyond these standard augmentations, in Section 4.1 we also consider more complex adaptive
augmentations proposed by prior works (Zhu et al., 2020a) which use various heuristics to mask
different features or edges with different probabilities.

E DATASET DETAILS

WikiCS3 This graph is constructed from Wikipedia references, with nodes representing articles
about Computer Science and edges representing links between them. Articles are classified into 10
classes based on their subfield, and node features are the average of GloVE (Pennington et al., 2014)
embeddings of all words in the article. This dataset comes with 20 canonical train/valid/test splits,
which we use directly.

Amazon Computers, Amazon Photos4 These graphs are from the Amazon co-purchase graph
(McAuley et al., 2015) with nodes representing products and edges being between pairs of goods
frequently purchased together. Products are classified into 10 (for Computers) and 8 (for Photos)

3https://github.com/pmernyei/wiki-cs-dataset/raw/master/dataset
4https://github.com/shchur/gnn-benchmark/tree/master/data/npz

16

https://github.com/pmernyei/wiki-cs-dataset/raw/master/dataset
https://github.com/shchur/gnn-benchmark/tree/master/data/npz

Published as a conference paper at ICLR 2022

classes based on product category, and node features are a bag-of-words representation of a product’s
reviews. We use a random split of the nodes into (10/10/80%) train/validation/test nodes respectively
as these datasets do not come with a standard dataset split.

Coauthor CS, Coauthor Physics5 These graphs are from the Microsoft Academic Graph (Sinha
et al., 2015), with nodes representing authors and edges between authors who have co-authored
a paper. Authors are classified into 15 (for CS) and 5 (for Physics) classes based on the author’s
research field, and node features are a bag-of-words representation of the keywords of an author’s
papers. We again use a random (10/10/80%) split for these datasets.

ogbn-arXiv: This is another citation network, where nodes represent CS papers on arXiv indexed
by the Microsoft Academic Graph (Sinha et al., 2015). In our experiments, we symmetrize this graph
and thus there is an edge between any pair of nodes if one paper has cited the other. Papers are
classified into 40 classes based on arXiv subject area. The node features are computed as the average
word-embedding of all words in the paper, where the embeddings are computed using a skip-gram
model (Mikolov et al., 2013) over the entire corpus.

PPI 6 is a protein-protein interaction network (Zitnik & Leskovec, 2017; Hamilton et al., 2017),
comprised of multiple (24) graphs each corresponding to different human tissues. We use the standard
dataset split as 20 graphs for training, 2 for validation, and 2 for testing. Each node has 50 features
computed from various biological properties. This is a multilabel classification task, where each node
can possess up to 121 labels.

F IMPLEMENTATION DETAILS

In all our experiments, we use the AdamW optimizer (Kingma & Ba, 2015; Gugger & Howard, 2018)
with weight decay set to 10−5, and all models initialized using Glorot initialization (Glorot & Bengio,
2010). The BGRL predictor pθ used to predict the embedding of nodes across views is fixed to be a
Multilayer Perceptron (MLP) with a single hidden layer. The decay rate τ controlling the rate of
updates of the BGRL target parameters φ is initialized to 0.99 and gradually increased to 1.0 over the
course of training following a cosine schedule. Other model architecture and training details vary
per dataset and are described further below. The augmentation hyperparameters pf1,2 and pe1,2 are
reported below.

Graph Convolutional Networks Formally, the GCN propagation rule (Kipf & Welling, 2017) for
a single layer is as follows,

GCNi(X,A) = σ
(
D̂−

1
2 ÂD̂−

1
2XWi

)
, (4)

where Â = A+ I is the adjacency matrix with self-loops, D̂ is the degree matrix, σ is a non-linearity
such as ReLU, and Wi is a learned weight matrix for the i’th layer.

Mean Pooling Rule Formally, the Mean Pooling (Hamilton et al., 2017) rule for a single layer is
given by:

MPi(X,A) = σ(D̂−1ÂXWi) (5)

As proposed by Veličković et al. (2019), our exact encoder in inductive experiments E is a 3-layer
mean-pooling network with skip connections. We use a layer size of 512 and PReLU (He et al., 2015)
activation. Thus, we compute:

H1 = σ(MP1(X,A)) (6)
H2 = σ(MP2(H1 +XWskip,A)) (7)

E(X,A) = σ(MP3(H2 +H1 +XWskip′ ,A)) (8)

5https://github.com/shchur/gnn-benchmark/tree/master/data/npz
6https://s3.us-east-2.amazonaws.com/dgl.ai/dataset/ppi.zip

17

https://github.com/shchur/gnn-benchmark/tree/master/data/npz
https://s3.us-east-2.amazonaws.com/dgl.ai/dataset/ppi.zip

Published as a conference paper at ICLR 2022

Graph Attention Networks The GAT layer (Veličković et al., 2018) consists of a learned matrix
W that transforms each node features. We then use self-attention to compute attention coeffi-
cient for a pair of nodes i and j as eij = a(hi,hj). The attention function a is computed as
LeakyReLU(a[Whi||Whj]), where a is a learned matrix transforming a pair of concatenated at-
tention queries into a single scalar attention logit. The weight of the edge between nodes i and j is
computed as αij = softmaxj(eij). We follow the architecture proposed by Veličković et al. (2018),
including a 3-layer GAT model (with the first 2 layers consisting of 4 heads of size 256 each and the
final layer size 512 with 6 output heads), ELU activation (Clevert et al., 2016), and skip-connections
in intermediate layers.

Model architectures As described in Section 4, we use GCN (Kipf & Welling, 2017) encoders
in our experiments on the smaller transductive tasks, while on the inductive task of PPI we use
MeanPooling encoders with residual connections. The BGRL predictor pθ is implemented as a
mutilayer perceptron (MLP). We also used stabilization techniques like batch normalization (Ioffe
& Szegedy, 2015), layer normalization (Ba et al., 2016), and weight standardization (Qiao et al.,
2019). The decay rate use for statistics in the batch normalization is fixed to 0.99. We use PReLU
activation (He et al., 2015) in all experiments except those using a GAT encoder, where we use the
ELU activation (Clevert et al., 2016). In all our models, at each layer including the final layer, we
apply first the batch/layer normalization as applicable, and then the activation function. Table 8
describes hyperparameter and architectural details for most of our experimental setups with BGRL.
In addition to these standard settings, we perform additional experiments on the PPI dataset using
a GAT (Veličković et al., 2018) model as the encoder. When using the GAT encoder on PPI, we
use 3 attention layers — the first two with 4 attention heads of size 256 each, and the final with 6
attention heads of size 512, following a very similar model proposed by Veličković et al. (2018). We
concatenate the attention head outputs for the first 2 layers, and use the mean for the final output. We
also use the ELU activation (Clevert et al., 2016), and skip connections in the intermediate attention
layers, as suggested by Veličković et al. (2018).

Dataset WikiCS Am. Computers Am. Photos Co. CS Co. Physics ogbn-arXiv PPI
pf,1 0.2 0.2 0.1 0.3 0.1 0.0 0.25
pf,2 0.1 0.1 0.2 0.4 0.4 0.0 0.00
pe,1 0.2 0.5 0.4 0.3 0.4 0.6 0.30
pe,2 0.3 0.4 0.1 0.2 0.1 0.6 0.25
η base 5 · 10−4 5 · 10−4 10−4 10−5 10−5 10−2 5 · 10−3

embedding size 256 128 256 256 128 256 512
E hidden sizes 512 256 512 512 256 256, 256 512, 512
pθ hidden sizes 512 512 512 512 512 256 512
batch norm Y Y Y Y Y N N
layer norm N N N N N Y Y
weight standard. N N N N N Y N

Table 8: Hyperparameter settings for unsupervised BGRL learning.

Augmentation parameters The hyperparameter settings for graph augmentations, as well as the
sizes of the embeddings and hidden layers, very closely follow previous work (Zhu et al., 2020b;a) on
all datasets with the exception of ogbn-arXiv. On this dataset, since there has not been prior work on
applying self-supervised graph learning methods, we provide the hyperparameters we found through
a small grid search.

Optimization settings We perform full-graph training at each gradient step on all small-scale
experiments, with the exception of experiments using GAT encoders on the PPI dataset. Here, due to
memory constraints, we perform training with a batch size of 1 graph. Since the PPI dataset consists
of multiple smaller, disjoint subgraphs, we do not have to perform any node subsampling at training
time.

We use Glorot initialization (Glorot & Bengio, 2010) the AdamW optimizer (Kingma & Ba, 2015;
Gugger & Howard, 2018) with a base learning rate η base and weight decay set to 10−5. The learning
rate is annealed using a cosine schedule over the course of learning of ntotal total steps with an initial
warmup period of nwarmup steps. Hence, the learning rate at step i is computed as

18

Published as a conference paper at ICLR 2022

ηi ,

{ i×η base
nwarmup

if i ≤ nwarmup,

η base ×
(
1 + cos

(i−nwarmup)×π
ntotal−nwarmup

)
× 0.5 if nwarmup ≤ i ≤ ntotal.

We fix ntotal to be 10,000 total steps and nwarmup to 1,000 warmup steps, with the exception of
experiments on the GAT encoder that requires using a batch size of 1 graph on the PPI dataset. In this
case, we increase the number of total steps to 20,000 and warmup to 2,000 steps.

The target network parameters φ are initialized randomly from the same distribution of the online
parameters θ but with a different random seed. The decay parameter τ is also updated using a cosine
schedule starting from an initial value of τbase = 0.99 and is computed as

τi , 1− (1− τbase)

2
×
(
cos

(
i× π
ntotal

)
+ 1

)
.

These annealing schedules for both η and τ follow the procedure used by Grill et al. (2020).

Frozen linear evaluation of embeddings In the linear evaluation protocol, the final evaluation
is done by fitting a linear classifier on top of the frozen learned embeddings without flowing any
gradients back to the encoder. For the smaller datasets of WikiCS, Amazon Computers/Photos,
and Coauthor CS/Physics, we use an `2-regularized LogisticRegression classifier from Scikit-Learn
(Pedregosa et al., 2011) using the ‘liblinear’ solver. We do a hyperparameter search over the
regularization strength to be between {2−10, 2−9, . . . 29, 210}.
For larger PPI and ogbn-arXiv datasets, where the liblinear solver takes too long to converge, we
instead perform 100 steps of gradient descent using AdamW with learning rate 0.01, with a smaller
hyperparameter search on the weight decay between {2−10, 2−8, 2−6, . . . 26, 28, 210}.
In all cases, we `2-normalize the frozen learned embeddings over the entire graph before fitting the
classifier on top.

G MAG240M EXPERIMENT DETAILS

Full implementation and experiment code has been open-sourced as part of the KDD Cup 2021. Key
implementation details and hyperparameter descriptions are reproduced below.

OGB-LSC MAG240M Dataset: This is a heterogeneous graph introduced for the KDD Cup 2021
(Hu et al., 2021), comprised of 121 million academic papers, 122 million authors, and 26 thousand
institutions. Papers are represented by 768-dimensional BERT embeddings (Devlin et al., 2019), and
the task is to classify arXiv papers into one of 153 categories, where 1% of the paper nodes are from
arXiv.

Message Passing Neural Networks encoders: We use a bi-directional version of the standard
MPNN (Gilmer et al., 2017) architectures with 4 message passing steps, a hidden size of 256 at each
layer, with node and edge update functions represented by Multilayer Perceptrons (MLPs) with 2
hidden layers of size 512 each.

Node Neighborhood Sampling: Since we can no longer perform full-graph training, we sample a
batch size of 1024 central nodes split across 8 devices, and subsample a fixed-size neighborhood for
each. Specifically, we sample a depth-2 neighborhood with different numbers of neighbors sampled
per layer depending on the type (paper, author, institution) of each neighbor. We sample up to 80
papers and 20 authors for each paper; and 40 papers and 10 institutions per author.

Other hyperparamters: We use edge masking probability pe of 0.2 and feature masking probabil-
ity pf of 0.4 for each augmentation. We use a higher decay rate τ , starting at 0.999 and decayed to
1.0 with a cosine schedule. We use AdamW optimizer with a weight decay of 10−5, and a learning
rate starting at 0.01 and annealed to 0 over the course of learning with a warmup step equal to 10%
the period of learning.

19

Published as a conference paper at ICLR 2022

H MODEL ABLATIONS ON MAG240M EXPERIMENTS

In our main experiments on the OGB-LSC MAG240M dataset, we focus on MPNN encoders to (i)
achieve high accuracy on this challenging dataset, and (ii) to evaluate the stability of training these
more complex models with the BGRL approach. In this section, we further experiment with simpler
GCN encoders and evaluate the benefits of applying BGRL even on top of these weaker encoders.

We use a 2-layer GCN encoder, with an embedding size of 128. All other settings such as learning
rate schedules, augmentation parameters, etc. are unchanged.

In Figure 10, we see that both BGRL and GRACE improve over the performance of a fully supervised
approach, with BGRL learning faster and more stably. Thus the effectiveness of BGRL even with
weaker encoder architectures makes it more applicable in practice.

0 10000 20000 30000 40000 50000
Training Step

0.700

0.705

0.710

0.715

0.720

0.725

0.730

Ac
cu

ra
cy

GCN Encoders on MAG Dataset

BGRL semi-supervised
GRACE semi-supervised
Fully supervised

Figure 10: Performance on OGB-LSC MAG240M task, averaged over 3 seeds, using GCN encoders.

I VISUALIZATION OF SCALING BEHAVIOR

10000 15000 20000 25000 30000 35000
Number of nodes

0

2

4

6

8

10

12

M
em

or
y

in
 G

iB

BGRL
GRACE

Figure 11: Memory usage of BGRL and GRACE across 5 standard datasets.

In this section, we provide the information contained in Table 1 as a scatterplot, to more easily
visualize the different scaling properties of BGRL and GRACE. We see in Figure 11 that the empirical
scaling behavior matches the theoretical predictions in Section 3. Note that we do not show the
memory usage of GRACE for the largest dataset, as it runs out of memory here, and we only visualize
as a function of the number of nodes in the graph and ignore the number of edges for the purposes of
this visualization.

20

Published as a conference paper at ICLR 2022

J FROZEN LINEAR EVALUATION ON MAG240M

We briefly run experiments evaluating BGRL and GRACE under the frozen evaluation protocol using an
MLP classification layer on the MAG240M dataset. We see that although GRACE outperforms BGRL
in this setting, both methods perform poorly. In particular, they underperform LabelProp (Zhu &
Ghahramani, 2002; Hu et al., 2021) a simple parameterless, graph-agnostic baseline. This, combined
with our goal of pushing performance on the competition dataset, motivates our consideration of the
semi-supervised learning setting.

0 10000 20000 30000 40000 50000
Training Step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Self-supervised learning on MAG

BGRL
GRACE
LabelProp

Figure 12: Performance on OGB-LSC MAG240M task, averaged over 5 seeds, under frozen evalua-
tion protocol.

21

