
Generalisable Agents for
Neural Network Optimisation

Kale-ab Tessera1∗† Callum Rhys Tilbury2∗ Sasha Abramowitz2∗
Ruan de Kock2 Omayma Mahjoub2

Benjamin Rosman3,4 Sara Hooker5 Arnu Pretorius2

1University of Edinburgh 2InstaDeep Ltd 3The University of the Witwatersrand
4CIFAR Azrieli Global Scholar, CIFAR 5Cohere For AI

Abstract

Optimising deep neural networks is a challenging task due to complex training
dynamics, high computational requirements, and long training times. To address
this difficulty, we propose the framework of Generalisable Agents for Neural
Network Optimisation (GANNO)—a multi-agent reinforcement learning (MARL)
approach that learns to improve neural network optimisation by dynamically and
responsively scheduling hyperparameters during training. GANNO utilises an
agent per layer that observes localised network dynamics and accordingly takes
actions to adjust these dynamics at a layerwise level to collectively improve global
performance. In this paper, we use GANNO to control the layerwise learning
rate and show that the framework can yield useful and responsive schedules that
are competitive with handcrafted heuristics. Furthermore, GANNO is shown
to perform robustly across a wide variety of unseen initial conditions, and can
successfully generalise to harder problems than it was trained on. Our work
presents an overview of the opportunities that this paradigm offers for training
neural networks, along with key challenges that remain to be overcome.

1 Introduction

Deep neural networks have optimisation landscapes that are non-convex and high-dimensional,
resulting in complicated training dynamics (Li et al., 2018). Furthermore, due to their sheer size,
training modern deep learning models is a particularly expensive endeavour that requires significant
computational resources and time (Kaddour et al., 2023).

The issue of hyperparameters in training is of particular interest, due to both their significant influence
on model performance and training speed (Schmidt et al., 2021), and the prohibitive computational
costs of hyperparameter tuning (Sharir et al., 2020). Furthermore, once a value or schedule has been
obtained, the result is often problem-specific, i.e. a set of parameters that is ideal for one model might
not generalise to other problems differing in architecture or dataset.

Existing strategies for choosing hyperparameters struggle to simultaneously satisfy the requirements
of performance, efficiency, and generalisability. Methods like grid-search and Bayesian optimisa-
tion (Feurer and Hutter, 2019), though straightforward, are tuned to a particular problem and are
unlikely to generalise. Expert-derived heuristics, such as Google’s Deep Learning Playbook (Godbole

∗Equal contribution.
†Corresponding author: kaleabtessera[at]gmail[dot]com. Work done while a research engineer at InstaDeep

Ltd.

Workshop on Advancing Neural Network Training at 37th Conference on Neural Information Processing Systems
(WANT@NeurIPS 2023).

Dataset

Environment

NetworkOptimiser

Agents

Actions

Global State

Local Observations

Local Observations

Observations

Reward

Agent 1 Agent N

Figure 1: GANNO’s training process. There is an agent per layer of a neural network. Each
agent receives a set of global and layer-specific observations about the environment and uses this
information to select an action, which is applied to a corresponding layer. Then, training in the
environment progresses for some time, after which a reward signal is returned and this loop continues.

et al., 2023), are also often problem-specific, requiring reconsideration with each new context. Certain
newer methods are instead data-driven—i.e., they leverage information from observed neural network
dynamics to learn optimisation strategies, with the intention to generalise beyond their trained setting.
One instance of this approach is to train an entirely new optimiser by meta-learning the weight-update
rules for optimisation, based on the performance over a distribution of tasks (e.g. (Andrychowicz et al.,
2016; Li and Malik, 2016; Wichrowska et al., 2017; Chen et al., 2022; Metz et al., 2022)). Though
performant and generalisable, these methods carry a significant computational burden. Consider, for
example, the VeLO optimiser (Metz et al., 2022), which required four-thousand TPU-months to train.
Though this cost is arguably ‘once-off’ after training is complete, developing subsequent versions
of this optimiser (e.g. for tasks unseen in the meta-training distribution, where Metz et al. (2022)
acknowledge that it struggles) remains prohibitively expensive, which constrains this approach for
future development of new optimisers for new problems.

A more compute-efficient approach, which remains data-driven, is to instead learn an optimisation
schedule, rather than the optimiser itself. That is, employ an existing optimisation algorithm (e.g.,
SGD (Robbins and Monro, 1951)), but learn how to evolve its hyperparameters over time. Scheduling
has widely been acknowledged for its potential to provide significant improvements in performance,
especially when applied to the learning rate (Bottou, 2012; Sun et al., 2023), and it has been shown
that it is possible to learn such schedules using reinforcement learning (RL). However, previous
works using RL (e.g. (Xu et al., 2019; Almeida et al., 2021)) have taken a single-agent approach, and
thus were constrained to learning an identical learning rate schedule for all layers, based on global
network information, such as the training loss. Elsewhere though, it has been shown that setting
layerwise learning rates is valuable (You et al., 2017, 2019), and therefore, this global constraint
naturally limits the overall effectiveness of learning dynamic schedules for deep networks.

In this work, we build on the success of RL as a sequential decision-making paradigm for optimisation.
We use the knowledge that operating at a layerwise level is useful, while avoiding problem-specific
heuristics and remaining relatively computationally friendly. Hence, we propose Generalisable Agents
for Neural Network Optimisation (GANNO): a novel, multi-agent reinforcement learning (MARL)
approach to optimisation. GANNO leverages layerwise information to learn adaptive layerwise
learning rate schedules, as depicted in Figure 1. We show that GANNO can learn competitive
schedules when compared to other leading approaches and demonstrates robustness across a wide
range of unseen initial conditions. Importantly, this robustness removes the need to know the optimal
values for these parameters a priori. We further demonstrate generalisation, where GANNO can be
used successfully in problems that are more complex than what it was trained on. Finally, we outline
the core challenges in this paradigm and some avenues for future work.

2

2 Background

Neural network optimisation. We consider a neural network fθ, parameterised by learnable
weights θ. Given a training dataset D =

{(
x(m), y(m)

)}M

m
containing M examples, we aim to

minimise the objective, J(θ;λ) = Ex,y∼p̂data(x,y)[L(f(x;θ), y;λ)], where L is a loss function
evaluated using the predictions from the model f(x(m);θ) and the true labels from the dataset
y(m). We notate p̂data as the empirical distribution over the training set, and λ as the weight decay
coefficient.

To minimise this objective, we consider optimisation methods that adopt an update rule of the form,
θ(τ+1) ← θ(τ) − ϕ

(
∇θJ(θ

(τ);λ(τ)),θ(τ);α(τ)
)
, where θ(τ) are the current parameters at step τ

and θ(τ+1) are the updated parameters. ϕ is the chosen optimiser (e.g. Adam (Kingma and Ba, 2015))
and is parameterised by α(τ) (e.g. the learning rate) and is a function of the gradient of the loss with
respect to the parameters,∇θJ(θ

(τ);λ(τ)) and the parameters themselves, θ(τ).

Multi-agent reinforcement learning (MARL). We consider the case of common-reward coop-
erative MARL, which can be formulated as a decentralised partially-observable Markov decision
process (Bernstein et al., 2002) with a set of N agents, N = {1, . . . , N}, a state space S, a joint-
observation space O = (O1 × · · · × ON) ⊆ S, and a joint-action space A = A1 × · · · × AN .
At each discrete timestep t, the agents exist in a state s(t) ∈ S, where each agent i perceives its
own observation o

(t)
i ∈ Oi and accordingly takes its own action a

(t)
i ∈ Ai. Based on the joint

action, the agents transition to a next state s(t+1) ∈ S, with probabilities defined by a transition
distribution P : S × A × S → [0, 1], and receive a shared scalar reward, r(t) from the reward
function R : S × A × S → R. The agents’ return is defined by their discounted cumulative
rewards, G =

∑T
t γtr(t), where T is the number of time steps in an episode, and γ ∈ (0, 1] is a

discounting factor. Each agent’s policy is given by πi(ai|oi), with the set of all agents’ policies
as π = {π1, . . . , πN}. The objective in cooperative MARL is to find a policy πi for each agent i
such that the return is maximised with respect to the other agents’ policies, π−i := {π\πi}. That is,
∀i : πi ∈ argmaxπ̂i E [G|π̂i, π−i].

Notions of generalisation in RL. Along with Metz et al. (2020) and Almeida et al. (2021), we assert
that generalisation is a critical component of learned optimisers. Yet generalisation, particularly
in the context of reinforcement learning, can often lack a consistent definition. Here, we adopt
an environment categorisation introduced by Kirk et al. (2023), where environments may be (1)
singleton, (2) independent and identically distributed (IID), or (3) out-of-distribution (OOD). When
learning optimisers with this categorisation, environment generalisation can occur across various axes
of the environment components, such as generalisation across various combinations of fθ , D, L, and
ϕ. In this work, we focus on IID generalisation of the neural network fθ and OOD generalisation of
the dataset D. We consider it important to keep the specific area of generalisation clear and encourage
future work into more complex levels of generalisation to do so as well.

3 Related Work

Our work primarily relates to three key insights from the literature on neural network optimisation.

Scheduling is useful. Using a schedule for hyperparameters has been recommended in training
neural networks for several decades (Darken et al., 1992), and many subsequent works have sought to
find good schedules via a wide variety of strategies (Loshchilov and Hutter, 2016; Smith, 2017; Smith
and Topin, 2019). Importantly, many of these scheduling approaches are based on simple heuristics,
developed using the observations of practitioners with experience in the field (e.g. (Godbole et al.,
2023)). We aim to employ the power of scheduling in our work, but in a dynamic and responsive way,
avoiding the need for handcrafted functions.

Layerwise information is important. The Layerwise Adaptive Rate Scaling (LARS) method (You
et al., 2017) adapts stochastic gradient descent (SGD) to have layerwise learning rates, where a defined
global rate is scaled for each layer by the ratio between the norm of that layer’s weights and the norm
of the gradient updates, referred to as the trust ratio. LAMB (You et al., 2019) extends this approach
to use Adam (Kingma and Ba, 2015) and additionally considers weight decay. These techniques
demonstrate faster convergence times showing that layerwise information is useful. However, the trust

3

ratio fundamentally remains a handcrafted heuristic, which happens to work well in certain domains
and not necessarily in others (You et al., 2019). We aim to leverage the layerwise information in a
network while avoiding handcrafted heuristics, with the end goal of generalisation.

RL is effective for learning schedules. Most closely related to our work are methods which learn
data-driven optimisation schedules using RL (Xu et al., 2019; Almeida et al., 2021; Xiong et al.,
2022). These works highlight the potential usefulness of such a strategy; however, none of them
operate in a layerwise manner—considering layer-specific dynamics and taking layer-specific actions.
Thus, we aim to extend these RL approaches to a multi-agent setting using a separate agent per layer.

4 Methodology

In this section, we present GANNO: Generalisable Agents for Neural Network Optimisation. GANNO
is a general framework that uses MARL to train agents to observe aspects of a neural network
fθ during supervised learning, and develop a policy for selecting the optimiser hyperparameters
dynamically during the learning process. Figure 1 provides a high-level illustration of how GANNO
works: each layer passes observations to its corresponding agent; agents make decisions on how
to adjust the hyperparameters; the neural network fθ is trained for τ steps; and a reward is yielded
from the performance of supervised learning. Note that in this work, we constrain the parameters
under control, α, to be adjustments of the learning rate; however, the framework can be extended to
other hyperparameters of interest—e.g., future work could explore using GANNO to control both
the learning rate and weight decay parameters simultaneously. We describe below the details of our
MARL formulation.

Timescale. Each timestep t in the MARL environment corresponds to τ steps of training in the
underlying neural network, fθ. Acting too frequently (e.g. τ = 1) makes the environment highly
non-stationary, making it difficult for agents to learn the impact of their actions. On the other hand,
acting too infrequently slows down training. Empirically, we find that acting with τ = 100 (i.e. every
100 gradient updates of fθ) performs well.

Environments. We make an important delineation between train and evaluation environments. The
former is a neural network with a particular architecture, dataset, and optimiser, which is used when
our MARL agents are training. The latter, in contrast, is only run after the MARL agents have been
trained, and in this case, the neural network can be the same or different to the one used as the training
environment. We are particularly interested in evaluating generalisation, which is the case when the
evaluation environment differs from the training environment and is more complex.

Observations. Each agent receives a shared global observation along with a set of local observations
specific to that agent’s own layer. An example of a global observation is the current training loss,
as this metric is the same across all layers. In contrast, a local observation could be the mean of the
neural network weights of a layer. Details of all observations can be found in Appendix A.

Actions. Our agents operate in a discrete action space, taking actions to modify the current
learning rate. Each action consists of a mathematical operation ⊕ with a corresponding value x. The
modification to the learning rate is then α⊕ x. For example, with the action {⊕ = +;x = 0.001},
the agent adds 0.001 to the current learning rate.

Reward. For the reward, we use the classification accuracy on a hold-out validation dataset used in
the training environment,3 to encourage the learning of generalisable behaviour. Importantly, when
using solely this metric as a reward, our agents cannot tell if their actions directly resulted in a change
in reward, or if the neural network’s performance simply changed as a result of progress in the training
of fθ. To handle this problem, we leverage difference rewards (Wolpert and Tumer, 2001; Proper
and Tumer, 2012), where instead of using a reward signal r(t) = R(s(t), a(t), s(t+1)), we shape the
reward r(t) = R(s(t), a(t), s(t+1))−R(s(t), ã, s(t+1)), where ã is the action of no modification to
the current learning rate (often referred to as a ‘no-op’ action). Note that this modification requires
two steps of training the neural network fθ (one with each action, a and ã) at each MARL timestep t,
but this extra step only occurs during training and is not necessary during evaluation.

3Note that since we aim to generalise to unseen datasets during evaluation, there is no chance of dataset
contamination.

4

0 20000 40000
Step

0.000

0.005

0.010

Le
ar

ni
ng

 R
at

e Episode 0
Episode 40

(a) Learning rate schedule.

0 20000 40000
Step

0.5

1.0

1.5

Lo
ss

(b) Classification loss.

Figure 2: GANNO’s dynamic learning rate and corresponding training loss on Fashion-MNIST,
shown at episodes 0 and 40. The first episode of MARL training is shown in orange and in later
training, at episode 40, in blue. Both training and evaluation use a two-layered CNN. We observe
clear evidence of a useful schedule being learned, which improves the classification loss.

Initial conditions. We aim for GANNO to have competitive performance across a wide range
of initial conditions. Accordingly, to encourage such generalisation across starting conditions, we
sample different values for the initial learning rate αinit and weight decay λ used in the training
environment. Specifically, we use a log-uniform distribution to yield samples uniformly across
different orders of magnitude. In evaluation, we use a fixed set of reasonable initial values for the
problem, to robustly assess the performance of different approaches.

Agent policies. We use independent proximal policy optimisation (IPPO) (Schulman et al., 2017;
de Witt et al., 2020)4, where each agent’s policy is parameterised by a recurrent neural network, with
parameters ξi. We use weight sharing for efficient training by setting ξ = ξ1 = · · · = ξN . We still
enable agent specialisation by conditioning each agent’s policy on information local to that agent as
well as an embedding of the agent’s depth in the network. Note that this shared-parameter formulation
naturally enables depth generalisation: we can train on a network with L1 layers, yet evaluate on a
network with L2 > L1 layers, while avoiding an observation-dimension mismatch due to having
more layers in evaluation.

5 Results

We perform several experiments to validate our approach. We find that GANNO produces useful
schedules which are responsive and robust, while being capable of generalising to more difficult
problems. We further show that our MARL formulation is crucial for such capabilities. We use the
Adam (Kingma and Ba, 2015) optimiser and unless otherwise stated, the hyperparameters used are
those listed in Appendix A. Values in tables are given with one standard deviation over three seeds,
and boldface indicates the largest value in a column.

Useful and responsive schedules are generated. We first consider the simplest case of GANNO,
without any notion of generalisation. Here we train and evaluate our MARL system on identical
environments—the same network architecture, optimiser, and dataset. We use a two-layered convolu-
tional neural network (CNN), applied to Fashion-MNIST (Xiao et al., 2017). Figure 2 shows two
instances of the learning rate that GANNO yields in this setting, at episode zero at the beginning of
training, and then later in training at episode 40, along with their corresponding loss curves.

We highlight several interesting insights. Firstly, we observe clear learning taking place. GANNO
outputs a random learning rate schedule during the first episode, which results in an undesirable loss
curve; yet later in training, it yields a much improved dynamic schedule, resulting in a more desirable
loss curve. Secondly, this dynamic schedule is reminiscent of some of the leading handcrafted
schedules in the literature. We see similarity to exponential decay in the early stages of learning, and
cyclical patterns akin to SGDR (Loshchilov and Hutter, 2016) as training progresses.

Lastly, GANNO seems to instil in the learning rate schedule the ability to escape local optima in
the loss landscape dynamically during training. To demonstrate this, we plot Figure 3, which shows
another instance of training and evaluating on Fashion-MNIST with a two-layered CNN. We show

4Implemented using Mava (Pretorius et al., 2021), a MARL framework.

5

0 20000 40000
Step

0.0000

0.0004

0.0008

0.0012

Le
ar

ni
ng

 R
at

e

(a) First layer schedule.

0 20000 40000
Step

0.0000

0.0002

0.0004

0.0006

Le
ar

ni
ng

 R
at

e

(b) Second layer schedule.

0 20000 40000
Step

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

(c) Test accuracy.

Figure 3: GANNO’s learning rate schedule dynamically escaping local optima during training for
a two-layer CNN on Fashion-MNIST. In both layers at key moments (around 14 000 and 29 000
training steps), GANNO spikes the learning rate and thereby escapes a local optima and improves
performance.

the two layers’ learning rate curves and the corresponding test accuracy. Here, the learned strategy
for scheduling, particularly in Layer 1, is not as refined as seen in Figure 2. However, we draw
attention to the two significant jumps in training accuracy at around 14 000 and 29 000 training
steps—corresponding to spikes in the learning rate: firstly in Layer 2, and then in Layer 1. At this
point in training, GANNO shows clear evidence of helping the neural network escape local optima,
improving the test accuracy by several percentage points each time. Moreover, we observe how the
layerwise learning rates coordinate to achieve this. This observation demonstrates the power of a
responsive, layerwise scheduling algorithm. We see how GANNO can do more than simply yield a
schedule akin to the handcrafted schedules from the literature, by acting dynamically based on the
the layerwise information it observes.

Signs of generalisation and robustness. An important aim of GANNO is to generalise to problems
of different levels of complexity. For example, to train on a simpler, shallower neural network,
and still capture the dynamics well enough to be evaluated zero-shot on a more complex, deeper
network. To investigate GANNO’s ability to generalise in this way, we experiment by training on a
two-layered CNN as before, but now evaluating on a five-layered CNN. Furthermore, we train on
Fashion-MNIST, but evaluate on CIFAR-10 (Krizhevsky et al., 2009), with the latter being a more
complex dataset. We compare these methods across a range of initial learning rates during evaluation,
with the results given in Table 1. To benchmark our performance, we include the results of using
various manual learning rate baselines from the literature, initialised across the same learning rate
values, as well as two meta-learned optimisers, VeLO (Metz et al., 2022) and Lion (Chen et al., 2023).

When comparing GANNO to manual schedules, we see that although GANNO is not the best-
performing schedule, it performs well across initial learning rate conditions, thus indicating robustness,
while remaining competitive with popular expertly handcrafted schedules. In Appendix B, we show

Table 1: Test accuracy (%) when generalising to a five-layered CNN on CIFAR-10, using manual,
learned schedules and learned optimisers. We compare GANNO to several manual learning rate
schedules and two learned optimisers. This comparison is done across various initial learning rates,
except for VeLO which does not take a learning rate parameter. All experiments are done with a
weight decay of λ = 0.1, with additional experiments using λ = 0.01 for VeLO and Lion since they
failed to generalise when using λ = 0.1. We find that GANNO performs competitively compared to
the baselines and on average, is the third most performant approach across initial learning rates. We
find this to be consistent across smaller λ values as shown in Table 5 in Appendix C.

Initial learning rate
Method 0.0001 0.0003 0.001 0.003 0.01 Average

Constant 71.99 ± 0.38 71.33 ± 0.20 71.95 ± 0.43 73.25 ± 0.73 62.34 ± 0.45 70.17 ± 0.21
Linear decay 71.27 ± 0.58 72.51 ± 0.52 72.77 ± 0.13 73.19 ± 0.39 69.87 ± 0.72 71.92 ± 0.23
Exponential decay 69.67 ± 0.59 72.99 ± 0.52 72.55 ± 0.24 72.47 ± 0.54 68.97 ± 0.74 71.33 ± 0.25
SGDR (Loshchilov and Hutter, 2016) 70.72 ± 0.28 72.90 ± 0.36 73.79 ± 0.50 74.83 ± 0.09 71.36 ± 2.44 72.72 ± 0.51
LAMB (You et al., 2019) w/ cosine decay 62.43 ± 0.38 69.65 ± 0.18 71.5 ± 0.15 72.58 ± 0.13 75.48 ± 0.33 70.33 ± 0.11

VeLO (Metz et al., 2022), λ = 0.1 / / / / / 10.00 ± 0.00
Lion (Chen et al., 2023), λ = 0.1 71.53 ± 0.28 73.82 ± 0.14 55.34 ± 17.27 10.00 ± 0.00 10.00 ± 0.00 44.14 ± 3.54
VeLO (Metz et al., 2022), λ = 0.01 / / / / / 76.16 ± 0.25
Lion (Chen et al., 2023), λ = 0.01 71.46 ± 0.13 73.25 ± 0.12 44.90 ± 8.44 10.00 ± 0.00 10.00 ± 0.00 41.96 ± 1.74

GANNO 72.93 ± 0.21 72.88 ± 0.80 74.32 ± 0.16 73.79 ± 0.26 67.12 ± 2.05 72.21 ± 0.70

6

depictions of various manual schedules in Figure 5 and provide a full set of results for these schedules
in Table 4. These results also highlight that expert-derived learning rate schedules, notably SGDR,
are competitive baselines.

Competing with learned optimisers. We also compare GANNO to VeLO (Metz et al., 2022) and
Lion (Chen et al., 2023). We see in Table 1 that while GANNO performs better than Lion, it remains
worse than VeLO on this benchmark. VeLO’s impressive performance indicates that it has learned
useful parameter update rules distinctively different from Adam. Even with the promise of VeLO,
it has some challenges. Notably, we see that it performs poorly using a weight decay of λ = 0.1,
hinting that it is sensitive to λ values. This could be problematic in compute-intensive tasks since
sensitive values of λ are often unknown before evaluating on a task. Furthermore, meta-learned
optimisers like VeLO require exceptionally more compute to train. We discuss this in more detail in
Section 6.

0 25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

Random (wd=0.1)
GANNO (wd=0.1)
GANNO (wd=0.01)
VeLO (wd=0.1)
VeLO (wd=0.01)

Figure 4: Robustness of GANNO on ResNet-
18. Test accuracy across epochs for a ran-
dom agent, VeLO and GANNO, evaluated
on ResNet-18 on CIFAR-10, with an initial
learning rate of 0.001 for GANNO and the
random agent. We see that GANNO produces
robust and competitive schedules better able
to handle different weight decay values.

Generalising to deeper networks. We now con-
sider GANNO’s generalisation ability in a more com-
plex setting: training on a residual network (He
et al., 2016) that is 9 layers deep (ResNet-9) on
Fashion-MNIST, and evaluating on one that is 18
layers deep (ResNet-18) on CIFAR-10. We com-
pare GANNO to VeLO, the best-performing method
from our smaller-scale experiments, along with sim-
ply using random layerwise agents. This compari-
son is done across two weight decay values, λ =
{0.01, 0.1}. These results are shown in Figure 4 (we
include results for SGDR, the best-performing man-
ual schedule, in Figure 7 in Appendix C).

We see that GANNO performs competitively with
VeLO. Furthermore, we find that it is more robust
across the weight decay conditions compared to
VeLO—which struggles to learn with a higher weight
decay value, which is consistent with the results pre-
sented on a five-layer CNN. Moreover, the poor per-
formance of the random agent demonstrates the dif-
ficulty of this problem (i.e. learning a responsive
learning rate schedule for 18 layers), and thus the
significance of GANNO’s performance.

It is promising that our framework can successfully generalise and control the hyperparameters of a
network with vastly different dynamics than it was trained on. We see this evidence as a signal that
GANNO is able to generalise to harder problem contexts (different layer depth, dataset difficulty),
with robustness across unseen starting states (initial learning rate and weight decay values).

The necessity of MARL. In the previous results, we see early signs that GANNO is able to generate
useful schedules and generalise to harder problem contexts. We now consider two further questions:
is GANNO actually making use of the neural network dynamics to develop its control strategy?
And is it important to observe such dynamics at a layerwise level? Accordingly, we study three
ablated versions of GANNO: (1) GANNO-LR-only, where only the current learning rate is included
in the observation, (2) GANNO-timestep-only, where only the training progress (current epoch
count / total epoch count) is included in the observation, and (3) GANNO-single-agent, a single-
agent version of GANNO where only global information (e.g. classification loss) is included in the
observation and the agent learns a global learning rate schedule.5 Table 2 shows the outcome of
these experiments, with the same simplified problem configuration as used previously: training on a
two-layered CNN with Fashion-MNIST and evaluating on a five-layered CNN with CIFAR-10.

Firstly, we notice that GANNO-LR-only performs well with some of the initial learning rates, specifi-
cally 0.003, but deteriorates at other values. Notably, with an initial learning rate of 0, it achieves a
poor accuracy of just 35%. Studying the schedules that GANNO-LR-only yields, we find that agents

5Note this version would be comparable to work by Xu et al. (2019); Almeida et al. (2021). We were unable
to find working code implementations for these methods so we implemented our own single-agent PPO agent
with the same hyperparameters as our GANNO MARL agent.

7

Table 2: An ablation study showing the necessity of GANNO’s MARL formulation for learning
dynamic schedules. We show classification accuracies (%) using a five-layered CNN on CIFAR-10
achieved by GANNO, along with the three ablations, all trained with a two-layered CNN on
Fashion-MNIST, across various initial learning rates. We see that our GANNO formulation performs
better than the ablated iterations, showing the necessity of observing layerwise dynamics and taking
layerwise actions.

Initial learning rate
Ablations 0 0.0001 0.0003 0.001 0.003 0.01 Average

GANNO-LR-only 35.80 ± 0.69 62.85 ± 0.55 70.13 ± 0.30 64.64 ± 0.91 74.27 ± 0.65 63.48 ± 2.83 61.54 ± 0.65
GANNO-timestep-only 57.81 ± 15.29 68.99 ± 4.51 73.04 ± 2.11 72.37 ± 3.88 74.39 ± 0.97 63.69 ± 2.48 68.38 ± 6.84
GANNO-single-agent 9.74 ± 0.11 51.32 ± 0.46 60.37 ± 0.74 69.24 ± 0.30 73.63 ± 0.37 64.10 ± 1.29 54.73 ± 0.54

GANNO 69.38 ± 1.47 72.93 ± 0.21 72.88 ± 0.80 74.32 ± 0.16 73.79 ± 0.26 67.12 ± 2.05 71.74 ± 0.83

often learn to simply decay the learning rate directly to zero, irrespective of the impact of this on the
network dynamics. With an appropriate initial value, this strategy actually works reasonably well;
but it is evidently not generalisable whatsoever, since it is not truly adaptive, leading to poor results
across initial conditions.

For GANNO-timestep-only, we see that the training stage is indeed a useful observation, achieving
relatively good performance across a fairly wide range of initial conditions. Nonetheless, we see
again that this version of GANNO underperforms compared to the original, thus motivating the
inclusion of network dynamics in our observations. Moreover, we witness much higher variance in
the performance of GANNO-timestep-only, making the approach less reliable and robust.

Finally, we find that GANNO-single-agent significantly underperforms the layerwise version, and
also fails to learn a generalisable schedule across initial conditions. This outcome clearly supports
the usefulness of observing dynamics at a layerwise granularity and layerwise learning scheduling, as
suggested in previous work (You et al., 2017, 2019).

6 Challenges, Opportunities, and Future Work

We believe our results indicate that the GANNO formulation for controlling network dynamics is a
powerful one, which opens up promising research directions. Nonetheless, there remain several key
challenges which we identify in this section. We specifically enumerate three primary dimensions:
(1) agent foresight, (2) understanding agent success, and (3) computational requirements.

Agent foresight is necessary for great performance. It is both common and useful in supervised
learning to ‘warm up’ the learning rate hyperparameter during training—that is, use lower values
when starting training, increase them in some way, and thereafter proceed with a scheduling strategy
like exponential decay (He et al., 2016; Goyal et al., 2017; Godbole et al., 2023). In Table 3, we show
the results of two such approaches when evaluating with a five-layered CNN on CIFAR-10: a simple
strategy with linear warm-up and cosine decay, and the ‘cosine one-cycle’ schedule (Smith and Topin,
2019). We compare these schedules to GANNO’s performance in this evaluation environment, setting
its initial learning rate to zero to induce warm-up behaviour, after training it with a two-layered CNN
on Fashion-MNIST.

We see in these results that the warm-up schedules, particularly with a good peak learning rate
selection, are the most performant, achieving up to 77% in this classification task—the best results on

Table 3: GANNO compared to warm-up schedules. We show classification accuracies (%)
achieved using a five-layered CNN on CIFAR-10 by GANNO, trained with a two-layered CNN on
Fashion-MNIST, along with two leading warm-up schedules, across various peak learning rates. We
see that the warm-up schedules achieve higher accuracies than GANNO.

Peak learning rate
Warm-up schedules 0.0001 0.0003 0.001 0.003 0.01 Average

Linear warm-up, cosine decay 70.77 ± 0.45 72.36 ± 0.45 73.61 ± 0.06 75.84 ± 0.26 77.24 ± 0.32 73.96 ± 0.15
Cosine one-cycle (Smith and Topin, 2019) 70.80 ± 0.16 72.71 ± 0.51 73.29 ± 0.11 75.80 ± 0.35 77.62 ± 0.60 74.04 ± 0.18
GANNO from LR = 0 / / / / / 69.38 ± 1.47

8

this evaluation environment in this paper. In contrast, when we evaluate GANNO using an initial
learning rate of zero, we see inferior performance.

The challenge here rests in the tricky balance between venturing into high learning rate regions while
maintaining learning stability. We know from Table 1 that a constant learning rate at a high value
performs poorly, yet we now observe in Table 3 that a great strategy is to increase up to this high
value and thereafter decrease it. Notice that for an agent to replicate this effective schedule, it must
have the foresight to move into a potentially unstable state of learning, but only do so temporarily.
Though recurrent policies can help with the longer-term planning required here (Hausknecht and
Stone, 2015), we find that agents tend to be more conservative to avoid this potential instability
altogether (see Figure 6 for an example of such behaviour). A promising direction for this problem is
to use existing manual schedules as demonstrations: e.g. to generate offline data from the successful
handcrafted routines, and use this data in an offline MARL pre-training step (Formanek et al., 2023),
thereby showing the agents the benefits of warm-up-like schedules.

Understanding agent success. The reward signal is a vital component of reinforcement learning,
though one which is often considered as a given, simply as a part of the environment definition. Yet
designing a reward signal for a particular goal may be an important task in itself (Eschmann, 2021).
Consider the challenge of defining a meaningful reward signal when the underlying environment
is itself a supervised learning problem. Ultimately, we want to optimise some final metric, e.g.
maximise classification accuracy. Thus, suppose we used the training accuracy of the supervised loop
as our reward; we are faced with the question discussed earlier in this paper: is our agent receiving a
‘good’ reward because of its own ‘good’ actions, or simply because of progress in the underlying
training loop? Indeed, to illustrate this point empirically, notice that the agent could yield a constant
learning rate (by taking ‘no-op’ actions, leaving the value unchanged), and in Table 1, we see that
such a schedule yields a decent performance of around 70%. Instead, we want our agents to find a
schedule that can squeeze out the extra performance—e.g., reach scores of 77%, as seen in Table 3.

Various directions for future work could extend from this point, such as reward shaping (as was done
in the ‘difference’ rewards, discussed earlier) or using a centralised critic to improve multi-agent
credit assignment (Yu et al., 2022).

Computational Requirements. In RL, it often takes millions of timesteps to train effective
agents (Mnih et al., 2013; Schulman et al., 2017). In the case of GANNO, we train our agents for
50 000 timesteps. This shorter timespan is a result of two considerations. Firstly, for each training
step, we require τ (e.g. 100) gradient updates from a supervised learning setting, which makes
each environment step relatively slow compared to other RL environments. Secondly, we want
our approach to be viable without access to large compute. In contrast, methods like VeLO (Metz
et al., 2022) are trained using a computational budget on the order of thousands of TPU months.
This immense computational requirement, despite being ‘once-off’ after training is complete, makes
subsequent development of similar methods impossible for most of the machine learning community.
GANNO’s formulation is comparably much cheaper, with the above results yielded in just under six
hours on a single NVIDIA A100 GPU. This lower barrier to entry enables greater access, and thus
more development opportunities.

7 Conclusion

We introduced GANNO, a MARL approach that is used to control the training of a neural network.
We described the salient details of our solution—the observations, actions, and rewards. We then
enumerated the strengths of our proposed framework, supported by empirical results: that responsive
and robust schedules can be generated; that the framework demonstrates signs of generalisation
ability, where we can perform well on environments more complex than we trained on; and that
observing layerwise neural dynamics is important, thus validating our choice of utilising MARL. We
also presented the core challenges and opportunities for this framework to flourish: in particular, the
need for agent foresight, a good reward signal and computational challenges. In sum, this paper offers
a novel paradigm for tackling neural network optimisation—one which demonstrates strong signs of
viability. However, challenges remain, and with them, many avenues for exciting future work.

9

References
Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape

of neural nets. Advances in neural information processing systems, 31, 2018. 1

Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and Robert
McHardy. Challenges and applications of large language models, 2023. 1

Robin M Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley -
benchmarking deep learning optimizers. In Marina Meila and Tong Zhang, editors, Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 9367–9376. PMLR, 18–24 Jul 2021. URL https://proceedings.
mlr.press/v139/schmidt21a.html. 1

Or Sharir, Barak Peleg, and Yoav Shoham. The cost of training nlp models: A concise overview.
arXiv preprint arXiv:2004.08900, 2020. 1

Matthias Feurer and Frank Hutter. Hyperparameter optimization. Automated machine learning:
Methods, systems, challenges, pages 3–33, 2019. 1

Varun Godbole, George E. Dahl, Justin Gilmer, Christopher J. Shallue, and Zachary Nado. Deep
learning tuning playbook, 2023. URL https://github.com/google-research/tuning_
playbook. Version 1.0. 1, 3, 8

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. Advances in neural information processing systems, 29, 2016. 2

Ke Li and Jitendra Malik. Learning to optimize. arXiv preprint arXiv:1606.01885, 2016. 2

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Colmenarejo, Misha
Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and generalize. In
International conference on machine learning, pages 3751–3760. PMLR, 2017. 2

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Yao Liu, Kaiyuan Wang, Cho-Jui Hsieh,
Yifeng Lu, and Quoc V Le. Evolved optimizer for vision. In First Conference on Automated
Machine Learning (Late-Breaking Workshop), 2022. 2

Luke Metz, James Harrison, C Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury,
Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, et al. Velo: Training versatile learned
optimizers by scaling up. arXiv preprint arXiv:2211.09760, 2022. 2, 6, 7, 9

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pages 400–407, 1951. 2

Léon Bottou. Stochastic gradient descent tricks. Neural Networks: Tricks of the Trade: Second
Edition, pages 421–436, 2012. 2

Jianhui Sun, Ying Yang, Guangxu Xun, and Aidong Zhang. Scheduling hyperparameters to improve
generalization: From centralized sgd to asynchronous sgd. ACM Transactions on Knowledge
Discovery from Data, 17(2):1–37, 2023. 2

Zhen Xu, Andrew M Dai, Jonas Kemp, and Luke Metz. Learning an adaptive learning rate schedule.
arXiv preprint arXiv:1909.09712, 2019. 2, 4, 7

Diogo Almeida, Clemens Winter, Jie Tang, and Wojciech Zaremba. A generalizable approach to
learning optimizers. arXiv preprint arXiv:2106.00958, 2021. 2, 3, 4, 7, 13

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017. 2, 3, 8

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019. 2, 3, 4, 6, 8, 13

10

https://proceedings.mlr.press/v139/schmidt21a.html
https://proceedings.mlr.press/v139/schmidt21a.html
https://github.com/google-research/tuning_playbook
https://github.com/google-research/tuning_playbook

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980. 3, 5, 13

Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of
decentralized control of markov decision processes. Mathematics of operations research, 27(4):
819–840, 2002. 3

Luke Metz, Niru Maheswaranathan, C Daniel Freeman, Ben Poole, and Jascha Sohl-Dickstein. Tasks,
stability, architecture, and compute: Training more effective learned optimizers, and using them to
train themselves. arXiv preprint arXiv:2009.11243, 2020. 3

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of zero-shot
generalisation in deep reinforcement learning. Journal of Artificial Intelligence Research, 76:
201–264, 2023. 3

Christian Darken, Joseph Chang, John Moody, et al. Learning rate schedules for faster stochastic
gradient search. In Neural networks for signal processing, volume 2, pages 3–12. Citeseer, 1992. 3

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016. 3, 5, 6

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter conference
on applications of computer vision (WACV), pages 464–472. IEEE, 2017. 3

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
large learning rates. In Artificial intelligence and machine learning for multi-domain operations
applications, volume 11006, pages 369–386. SPIE, 2019. 3, 8

Yuanhao Xiong, Li-Cheng Lan, Xiangning Chen, Ruochen Wang, and Cho-Jui Hsieh. Learning
to schedule learning rate with graph neural networks. In International Conference on Learning
Representation (ICLR), 2022. 4

David H Wolpert and Kagan Tumer. Optimal payoff functions for members of collectives. Advances
in Complex Systems, 4(02n03):265–279, 2001. 4

Scott Proper and Kagan Tumer. Modeling difference rewards for multiagent learning. In AAMAS,
pages 1397–1398, 2012. 4

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. 5, 9

Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020. 5

Arnu Pretorius, Kale-ab Tessera, Andries P Smit, Claude Formanek, St John Grimbly, Kevin Eloff,
Siphelele Danisa, Lawrence Francis, Jonathan Shock, Herman Kamper, et al. Mava: A research
framework for distributed multi-agent reinforcement learning. arXiv preprint arXiv:2107.01460,
2021. 5

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017. 5

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
6

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi
Dong, Thang Luong, Cho-Jui Hsieh, et al. Symbolic discovery of optimization algorithms. arXiv
preprint arXiv:2302.06675, 2023. 6, 7

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016. 7, 8

11

http://arxiv.org/abs/1412.6980

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017. 8

Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps. In
2015 aaai fall symposium series, 2015. 9

Claude Formanek, Asad Jeewa, Jonathan Shock, and Arnu Pretorius. Off-the-grid marl: a framework
for dataset generation with baselines for cooperative offline multi-agent reinforcement learning.
arXiv preprint arXiv:2302.00521, 2023. 9

Jonas Eschmann. Reward function design in reinforcement learning. Reinforcement Learning
Algorithms: Analysis and Applications, pages 25–33, 2021. 9

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611–24624, 2022. 9

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013. 9

12

A Hyperparameters

We list below the hyperparameters used for all GANNO results, unless otherwise stated.

Observations:

• At a global level:
– Train and test classification accuracy
– Train and test classification loss
– Boolean flag indicating if the loss is undefined or infinite
– Training progress (current number of epochs/total epochs)
– Ratio between the train and test loss (following Almeida et al. (2021))
– Initial learning rate
– Initial weight decay

• At a layerwise level:
– Current learning rate
– Previous action taken
– Layer type (linear, convolutional, or attention)
– Layer depth (an embedding which indicates if the current layer is first, intermediate, or

final layer)

– LAMB trust ratio (You et al., 2019) (||θ(t)
l ||

||ul
(t)|| , where θl is the weights for layer l and ul

is the Adam update term)
– Norm of gradients for the layer ||gl(t)||
– Norm of the updates ||ul

(t)||
– Mean and variance of the weights θ(t)l

– Norm of the layer weights ||θ(t)l ||

Actions:

Current learning rate ... {+0.00,× 1.01,× 1.10,÷ 1.01,÷ 1.10,+0.0005,− 0.0005,+0.001,− 0.001}
PPO Details:

• Number of executors/parallel copies of the environment = 4
• Max executor steps/number of training timesteps = 50 000
• Layer norm? = False
• Policy layer sizes = [128,128]
• Critic layer sizes = [64,64]
• Policy recurrent layer size = 64
• Policy layer size after recurrent layer = 64
• Epoch batch size = 32
• Sequence length = 8
• Number of epochs = 2
• Number of mini-batches = 4
• Normalise advantage? = True
• Normalise target values? = True
• Clip value? = True
• Normalise observations? = True

Supervised learning of fθ:

• Optimiser: Adam (Kingma and Ba, 2015)
• Weight decay: λ = 0.1

Initial conditions:

13

• Learning Rate, αinit: Log-uniform distribution with bounds [10−5, 10−2].
• Weight Decay, λ: Log-uniform distribution with bounds [10−5, 10−1].

14

B Manual Schedules

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Constant Quadratic SGDR

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Linear Cosine Cosine Warmup

0 20000 40000
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Exponential

0 20000 40000

Piecewise

0 20000 40000

Cosine Onecycle

Step

Le
ar

ni
ng

 R
at

e

Figure 5: Nine common handcrafted learning rate schedules used at various points in the paper.

15

C Extended Results

0 5000 10000 15000 20000 25000 30000 35000 40000

0.000

0.002

0.004

0.006

0.008

0.010 Cosine One Cycle
GANNO (1)
GANNO (2)
GANNO (3)

Figure 6: Comparison of the manual learning rate schedule cosine-one-cycle with three instances
of schedules from GANNO. Notice how the GANNO agents act more conservatively in their scheduling
to avoid the potential instability of a high learning rate.

Table 4: Classification accuracies (%) achieved by GANNO, along with several simple learning
rate schedules, using a five-layered CNN on CIFAR-10, across various initial learning rates, with
λ = 0.1. We see that GANNO performs competitively with the best manual schedules.

Initial Learning Rate
Simple schedules 0.0001 0.0003 0.001 0.003 0.01 Average

Constant 71.99 ± 0.38 71.33 ± 0.20 71.95 ± 0.43 73.25 ± 0.73 62.34 ± 0.45 70.17 ± 0.21
Linear 71.27 ± 0.58 72.51 ± 0.52 72.77 ± 0.13 73.19 ± 0.39 69.87 ± 0.72 71.92 ± 0.23
Quadratic 69.71 ± 0.50 73.12 ± 0.50 72.07 ± 0.83 72.63 ± 0.26 69.58 ± 1.42 71.42 ± 0.36
Cosine 70.85 ± 0.41 72.83 ± 0.35 73.26 ± 0.23 73.74 ± 0.69 69.82 ± 0.72 72.10 ± 0.23
Exponential 69.67 ± 0.59 72.99 ± 0.52 72.55 ± 0.24 72.47 ± 0.54 68.97 ± 0.74 71.33 ± 0.25
Piecewise 69.83 ± 0.44 73.56 ± 0.42 73.14 ± 0.24 73.42 ± 0.09 69.96 ± 0.71 71.98 ± 0.19
SGDR 70.72 ± 0.28 72.90 ± 0.36 73.79 ± 0.50 74.83 ± 0.09 71.36 ± 2.44 72.72 ± 0.51

GANNO 72.14 ± 0.77 73.44 ± 0.86 72.99 ± 1.37 73.08 ± 0.21 68.15 ± 2.35 71.96 ± 1.11

16

Table 5: Classification accuracies (%) achieved by GANNO, along with several simple learning
rate schedules, using a five-layered CNN on CIFAR-10, across various initial learning rates, with
λ = 0.0001. We see that GANNO remains competitive with the other schedules, even at a lower
weight decay value.

Initial Learning Rate
Simple schedules 0.0001 0.0003 0.001 0.003 0.01 Average

Constant 70.72 ± 0.55 70.08 ± 0.81 69.95 ± 0.81 66.60 ± 0.26 57.88 ± 1.30 67.05 ± 0.37
Linear 70.43 ± 0.52 70.35 ± 0.37 72.33 ± 0.09 69.90 ± 0.79 59.67 ± 2.68 68.54 ± 0.57
Quadratic 69.67 ± 0.57 71.90 ± 0.95 71.97 ± 0.25 70.94 ± 0.74 59.40 ± 1.33 68.78 ± 0.38
Cosine 70.50 ± 0.38 70.70 ± 0.38 72.51 ± 0.22 70.29 ± 0.38 58.33 ± 2.24 68.47 ± 0.47
Exponential 69.33 ± 0.41 70.73 ± 0.34 72.10 ± 0.53 70.93 ± 0.14 57.98 ± 1.51 68.21 ± 0.34
Piecewise 69.85 ± 0.59 71.97 ± 0.44 72.08 ± 0.27 70.28 ± 0.54 60.04 ± 1.86 68.84 ± 0.42
SGDR 70.55 ± 0.41 70.91 ± 0.40 72.78 ± 0.43 70.54 ± 0.36 61.48 ± 1.48 69.25 ± 0.34

VeLO / / / / / 74.86 ± 0.31
LION 71.49 ± 0.23 73.16 ± 0.27 36.02 ± 11.00 10.00 ± 0.00 10.00 ± 0.00 40.13 ± 2.30

GANNO 72.45 ± 0.32 71.14 ± 0.49 72.09 ± 0.65 71.08 ± 0.83 62.61 ± 1.25 69.87 ± 0.35

0 25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

Random (wd=0.1)
GANNO (wd=0.1)
GANNO (wd=0.01)
VeLO (wd=0.1)
VeLO (wd=0.01)
SGDR (wd=0.1)
SGDR (wd=0.01)

Figure 7: Robustness of GANNO on ResNet-18. Test accuracy across epochs for different schedules
and learned optimisers on ResNet-18 trained on CIFAR-10, with an initial learning rate of 0.001 for
GANNO and the random agent. We see that GANNO produces robust and competitive schedules
better able at handling different weight decay values. Note this is the same as 4 but it includes SGDR
as an extra set of results.

17

	Introduction
	Background
	Related Work
	Methodology
	Results
	Challenges, Opportunities, and Future Work
	Conclusion
	Hyperparameters
	Manual Schedules
	Extended Results

