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Abstract
Subsampling is an efficient method to deal with massive data. In this paper, we inves-
tigate the optimal subsampling for linear quantile regression when the covariates are
functions. The asymptotic distribution of the subsampling estimator is first derived.
Then, we obtain the optimal subsampling probabilities based on the A-optimality cri-
terion. Furthermore, the modified subsampling probabilities without estimating the
densities of the response variables given the covariates are also proposed, which are
easier to implement in practise. Numerical experiments on synthetic and real data
show that the proposed methods always outperform the one with uniform sampling
and can approximate the results based on full data well with less computational efforts.

Keywords Functional quantile regression · A-optimality · Asymptotic distribution ·
Optimal subsampling · Massive data

Mathematics Subject Classification 62K05 · 62G08 · 62R10

1 Introduction

Technological advances have made data easier to collect, store, and process, allowing
multiple points in the temporal or spatial domain to be observed and recorded. These
observations can be viewed as smooth functions with respect to time or space, which
is called functional data in statistics. Functional data analysis (FDA) is particularly
important given the widespread availability of functional data. Traditional FDAmeth-
ods, however, are no longer available due to limited computer resources as a result of
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these massive data. In order to overcome this problem, random subsampling methods
are alternative approaches that have shown good performance in extracting meaning-
ful information from large-scale datasets and making statistical methods scalable to
massive data.

To the best of our knowledge, there are two main types of random subsampling
methods in statistical models: Randomized Numerical Linear Algebra (RandNLA)
subsampling approaches and optimal subsampling approaches. Popular RandNLA
subsampling approaches include uniform sampling, leverage score sampling and
shrinkage leverage score sampling; see e.g., (Drineas et al. 2006; Mahoney 2011;
Drineas et al. 2012). Currently, some researchers have studied statistical properties
of these RandNLA subsampling estimators for regression models. For example, Ma
et al. (2015) presented the bias and variance of subsampling estimator for least squares
regression, andWang et al. (2018) and Homrighausen andMcDonald (2019) extended
them to ridge regression. Raskutti and Mahoney (2016) and Dobriban and Liu (2019)
investigated error bounds for the statistical efficiency of the estimator based on sub-
sampling least squares regression. Ma et al. (2020) comprehensively analyzed the
asymptotic properties of the RandNLA subsampling estimator for linear regression
under certain regularity assumptions.

On the other hand, several scholars have developed optimal subsampling methods
for parametric regression problems. For example, Wang et al. (2018) proposed an
inverse weighted subsampling method for logistic regression based on the A- or L-
optimality criterion. Subsequently, a more efficient estimation method and Poisson
subsampling were considered by Wang (2019) to correct the bias of the subsampling
estimator given in Wang et al. (2018) and to improve the computational efficiency.
Later, Yao and Wang (2019), Yu et al. (2020) and Ai et al. (2021) extended the
subsampling method to softmax regression, quasi-likelihood and generalized linear
models, respectively. Very recently, Wang and Ma (2021), Ai et al. (2021), Fan et al.
(2021), and Shao et al. (2022) employed the optimal subsampling method in ordinary
quantile regression, and Shao and Wang (2021) and Yuan et al. (2022) developed the
subsampling for composite quantile regression.

All of the aforementioned studies of subsampling methods focus on statistical
models with scalar variables, and now only little work has been done in the area
of subsampling for functional regression. As far as we know, these studies are mainly
concerned with functional mean regression, which is an extension of the multiple
mean regression model in the functional data setting. Specifically, He and Yan (2022)
proposed a functional principal subspace sampling probability for functional linear
regression with scalar response, which eliminates the impact of eigenvalue inside the
functional principal subspace and properly weights the residuals. Liu et al. (2021)
extended the optimal subsampling method to functional linear regression and func-
tional generalized linear model with scalar response. As we know, the mean regression
is more sensitive to outliers and less able to handle heavy-tailed errors. Also, the
assumption of homoskedasticity of errors in mean regression is usually invalid in
massive data. The quantile regression proposed by Koenker and Bassett (1978) can
tackle these issues and hence has attracted a lot of attention from scholars as a robust
alternative to mean regression. Specifically, the quantile regression gives much more
complete information about the conditional response distribution than the traditional
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mean regression, and exhibits robustness to outliers and data located in the tail of the
conditional response distribution. Additionally, the quantile regression naturally incor-
porates heteroscedasticity. For functional quantile regression with scalar response,
there are also many works; see e.g., (Cardot et al. 2004, 2005; Chen and Müller 2012;
Kato 2012; Sang and Cao 2020). More specifically, Cardot et al. (2004, 2005) stud-
ied penalized spline estimator and its convergence rate. Chen and Müller (2012) and
Kato (2012) obtained the estimation of slope function based on functional principal
component analysis basis. Sang and Cao (2020) studied penalized spline estimator
for functional single index quantile regression. However, these methods cannot be
directly applied to massive data, and, to the best of our knowledge, there is almost no
work on random subsampling for functional quantile regression, in contrast to quantile
regression with scalar variables, where there is a lot of work as previously mentioned.

Based on the above motivation, we investigate the optimal subsampling for quan-
tile regression in massive data when the covariates are functions. We first derive the
asymptotic distribution of the general subsampling estimator and then obtain the opti-
mal subsampling probabilities by minimizing the asymptotic integrated mean squared
error (IMSE) under the A-optimality criterion. In addition, we also provide a feasible
modified version of the optimal subsampling probabilities to ensure the feasibility of
the subsampling method. It is worth pointing out that our work differs substantially
from the one by Liu et al. (2021). On the one hand, the loss function of the mean
regression considered in Liu et al. (2021) is differentiable, but the functional quan-
tile regression is a non-differentiable problem, which makes the theoretical deduction
more challenging. On the other hand, compared with the informative sampling con-
ditional on full data in Liu et al. (2021), our subsampling methods are unconditional
and non-informative, which can make the subsampling estimator more stable (Ai et al.
2021).

The rest of this paper is organized as follows. Section 2 briefly introduces the scalar-
on-function linear quantile regression problem and presents asymptotic behaviors of
the penalized spline estimator. In Section 3, we derive the asymptotic distribution of
the subsampling estimator and the optimal subsampling probabilities based on the A-
optimality criterion. The modified version of these probabilities is also considered in
this section. Section 4 illustrates our methodology through both numerical simulations
and real data sets. Section 5 concludes this paper with some discussions. All proofs
are delivered to the Appendix.

2 Model and Estimation

2.1 Functional quantile regression

Suppose that {xi (t), yi }ni=1 are n independent observations of (X(t),Y), where the
covariates xi (t) are square integrable functions defined on [0, 1], i.e., the elements of
the space L2[0, 1], and are assumed to be non-random, and yi are scalar responses. A
scalar-on-function linear quantile regression model is defined as follows
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yi =
∫ 1

0
xi (t)β(t)dt + εi wi th P(εi < 0 | xi (t)) = τ, (1)

whereβ(t) is an unknown slope function satisfyingβ(t) ∈ L2[0, 1], εi are independent
randomerrorswith probability density function fε|X(t)(εi , xi (t)), and the quantile level
τ ∈ (0, 1). Thus, the τ -th conditional quantile of yi given xi (t) is

Qτ (yi | xi (t)) =
∫ 1

0
xi (t)β(t)dt .

2.2 Full data estimation ofˇ(t)

To estimate the slope functionβ(t), we consider theB-spline basis functions defined on
equispaced knots. Specifically, let K equispaced interior knots divide the interval [0, 1]
into K + 1 sub-intervals, i.e., [t j , t j+1], j = 0, . . . , K . In these intervals, we can find
K+ p+1 normalized B-spline basis functions {Bk(t), 1 ≤ k ≤ K+ p+1}, as denoted
by B(t) = (B1(t), B2(t), . . . , BK+p+1(t))T . They are the piecewise polynomials of
degree p on each sub-interval [t j , t j+1] and p − 1 times continuously differentiable
on [0, 1]. More properties of the B-spline function can be found in de Boor (2001).
Thus, we can estimate β(t) using a linear combination of the normalized B-spline
basis functions (Stone 1985), which allows us to find a vector θ̂ ∈ R

K+p+1 such that

β̂(t) =
K+p+1∑
k=1

θ̂k Bk(t) = BT (t)θ̂,

where θ̂ is a solution of the minimization problem

L(θ; λ, K ) =
n∑

i=1

ρτ (yi −
∫ 1

0
xi (t)BT (t)θdt) + λ

2

∫ 1

0

{(
B(q)(t)

)T
θ

}2
dt, (2)

where ρτ (ε) = ε{τ − I (ε < 0)} is the quantile loss function with I (·) being the indi-
cator function, λ > 0 is the smoothing parameter, and B(q)(t) in the penalty term is the
integrated squared q-th order derivative of all the B-splines functions for some integer
q ≤ p. Furthermore, let Bi = ∫ 1

0 xi (t)B(t)dt and Dq = ∫ 1
0 B(q)(t){B(q)(t)}T dt , the

loss function (2) thus can be rewritten as

L(θ; λ, K ) =
n∑

i=1

ρτ (yi − BT
i θ) + λ

2
θT Dqθ . (3)

2.3 Asymptotic theory of ˆ̌ (t)

In this section, we show the asymptotic properties of β̂(t) based on full data. To get
the desired results, here we assume that the following assumptions are satisfied.

123



Optimal subsampling for... 1947

Assumption 1 For the functional covariate X(t), assume there exist a constant C1
such that ‖X(t)‖2 ≤ C1 < ∞ a.s..

Assumption 2 Assume the unknown functional coefficient β(t) is sufficiently smooth.
That is, β(t) has a d ′-th derivative β(d ′)(t) such that

| β(d ′)(t) − β(d ′)(s) |≤ C2 | t − s |v, t, s ∈ [0, 1],

where the constantC2 > 0 and v ∈ [0, 1]. In what follows, we set d = d ′ +v ≥ p+1.

Assumption 3 Assume the density functions fε|X(t)(εi , xi (t)), i = 1, 2, . . . , n, are
continuous and uniformly bounded away from 0 and ∞ at εi = 0. Furthermore,
assume maxi=1,2,...,nE(ε4i ) < ∞.

Assumption 4 Assume the smoothing parameter λ satisfies λ = o(n1/2K 1/2−2q)with
q ≤ p.

Assumption 5 Assume the number of knots K = o(n1/2) and K/n1/(2d+1) → ∞ as
n → ∞.

Remark 1 Assumptions 1 and 2 are quite usual in the functional setting; see e.g.,
(Cardot et al. 2005; Claeskens et al. 2009; Yoshida 2013). Assumption 3 is a regular
condition also used in (Koenker 2005; Cardot et al. 2005) and can imply the uniqueness
of the conditional quantile of order τ . Assumptions 4 and 5 are used to ensure the
unbiasedness of the estimator (Liu et al. 2021).

To describe the asymptotic form of β̂(t), we also need the following preparations.
Define G = 1

n

∑n
i=1 Bi BT

i , Gτ = 1
n

∑n
i=1 fε|X(t)(0, xi (t))Bi BT

i , and

Hτ = Gτ + λ/nDq . (4)

Then,we have ‖G‖∞ = O(K−1) and ‖Dq‖∞ = O(K 2q−1), where ‖A‖∞ = maxi j {|
ai j |} for a matrix A = (ai j ); see Lemma 1 in the Appendix. Related results can
also be found in (Cardot et al. 2003; Claeskens et al. 2009; Liu et al. 2021) and the
references therein. Meanwhile, combining Assumptions 3 and 4, we have ‖H−1

τ ‖∞ =
O(K ). Furthermore, Assumption 2 implies that there exists a spline function β0(t) =
BT (t)θ0, called spline approximation of β(t), which as K → ∞, satisfies

sup
t∈[0,1]

| β(t) + ba(t) − BT (t)θ0 |= o(K−d),

where

ba(t) = −βd(t)

Kdd!
K∑
j=0

I (t j ≤ t < t j+1)Brd

(
t − t j
K−1

)
= O(K−d)
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is the spline approximation bias with I (a < x < b) being the indicator function of an
interval (a, b) and Brd(t) being the d-th Bernoulli polynomial; see e.g., Zhou et al.
(1998). Thus, the penalized spline quantile estimator can be decomposed as

β̂(t) − β(t) = β̂(t) − β0(t) + β0(t) − β(t) = β̂(t) − β0(t) + ba(t) + o(K−d).

Now, we present the asymptotic distribution of β̂(t) in the following theorem.

Theorem 1 Under the Assumptions 1–3, for t ∈ [0, 1], as n → ∞, we have

{
B(t)T V 0B(t)

}−1/2√
n/K

(
β̂(t) − β(t) − ba(t) − bλ(t)

)
→ N (0, 1),

where the shrinkage bias is define as

bλ(t) = −λ

n
BT (t)H−1

τ Dqθ0 = O(λK 2q/n),

and V 0 is the asymptotic variance-covariance of
√
n/K (θ̂ − θ0) and is given as

V 0 = τ(1 − τ)

K
H−1

τ GH−1
τ = O(1).

Since Assumption 5 ensures that the order of K is nv , where v ≥ 1/(2d + 1), the
spline approximation bias ba(t) = O(K−d) is negligible as n → ∞. In addition,
from Assumption 4, we can get bλ(t) = o(

√
K/n). Thus the shrinkage bias is also

negligible. By the above discussions, we have the following theorem.

Theorem 2 Under the Assumptions 1–5, for t ∈ [0, 1], as n → ∞,

{B(t)T V 0B(t)}−1/2
√
n/K (β̂(t) − β(t)) → N (0, 1),

where V 0 is given in Theorem 1.

3 Optimal subsampling

3.1 Subsampling estimator and its asymptotic distribution

We first introduce a random subsampling approach, in which subsamples are taken at
random with replacement based on some sampling distributions. Let Ri be the total
number of times that the i-th data point is selected from the full data in a subsample
and

∑n
i=1 Ri = r , which is carried out by using a random subsampling method with

the probabilities πi , i = 1, . . . , n, such that
∑n

i=1 πi = 1. Each Ri has a binomial
distribution Bin(r , πi ) since we use subsampling with replacement. Because πi may
depend on the full data Fn = {(xi (t), yi ), i = 1, . . . , n, t ∈ [0, 1]}, we need to add
inverses of πi ’s as weights to the objective function of the subsample to guarantee that
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the loss function is unbiased. Thus, the subsampling estimator of the spline coefficient
vector, says θ̃ , is determined by minimizing

L∗(θ; λ, K ) = 1

r

n∑
i=1

Riρτ (yi − BT
i θ)

πi
+ λ

2
θT Dqθ . (5)

Now,we investigate the asymptotic properties of β̃(t) = BT (t)θ̃ underAssumption
6 listed below, which restricts the weights in the loss function (5) and hence can be
used to protect the loss function from inflating greatly by data points with extremely
small subsampling probabilities. This assumption is also required in Ai et al. (2021)
and Liu et al. (2021).

Assumption 6 Assume that maxi=1,...,n(nπi )
−1 = O(r−1) and r = o(K 2).

Theorem 3 Under the Assumptions 1–6, letting η = limn→∞r/n, for t ∈ [0, 1], as
r , n → ∞, we have

{
B(t)T V B(t)

}−1/2√
r/K

(
β̃(t) − β(t)

)
→ N (0, 1),

in distribution, where

V = τ(1 − τ)

K
H−1

τ (Vπ + ηG)H−1
τ , Vπ = 1

n2

n∑
i=1

Bi BT
i

πi
. (6)

3.2 Optimal subsampling probabilities

To better approximate β(t), it is important to choose the proper subsampling probabil-
ities. It would be meaningful if the asymptotic integrated mean squared error (IMSE)
of β̃(t) attains its minimum. By Theorem 3 and observing that β̃(t) is asymptotic
unbiased, we have the asymptotic IMSE of β̃(t) as follows

IMSE(β̃(t) − β(t)) = K

r

∫ 1

0
BT (t)V B(t)dt . (7)

Note that, in (7), V defined in (6) is the asymptotic variance-covariance matrix of√
r/K (θ̃ − θ0) and the integral inequality

∫ 1
0 BT (t)V B(t)dt ≤ ∫ 1

0 BT (t)V ′B(t)dt
holds if and only if V ≤ V ′ holds in the Löwner-ordering sense. Thus, we focus on
minimizing the asymptotic variance-covariance matrix V and choose the subsampling
probabilities such that tr(V ) is minimized. This is called the A-optimality criterion in
optimal experimental designs; see e.g., Atkinson et al. (2007). Using this criterion, we
are able to derive the optimal subsampling probabilities in the following theorem.
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Theorem 4 (A-optimality) If the subsampling probabilities πi , i = 1, . . . , n, are cho-
sen as

π
FAopt
i = ‖H−1

τ Bi‖2∑n
i=1 ‖H−1

τ Bi‖2
, (8)

then the total asymptotic MSE of
√
r/K (θ̃ − θ0), tr(V ), attains its minimum, and so

does the asymptotic IMSE of β̃(t).

However, from (4), we have that Hτ in (8) depends on the density functions of
εi (i = 1, . . . , n) at zero given the respective xi (t) and hence the implementation of
this subsampling method requires reasonable estimation for all the density functions
fε|X(t)(0, xi (t)), which are often infeasible in practice without additional information.
In addition, it also requires the chosen of smoothing parameter λ in Hτ and the
calculation of ‖H−1

τ Bi‖2, which costs O(n(K+ p+1)2). Theseweaknessesmake this
optimal subsampling method not suitable for practical use. While, for the independent
identically distributed (i.i.d.) errors case, the Gτ in Hτ can be simply replaced by
fε|X(t)(0, x(t))G since fε|X(t)(0, xi (t)) = fε|X(t)(0, x(t)) for all i .
As observed in (6), only Vπ involves πi in the asymptotic variance-covariance

matrix V and H−1
τ Vπ H−1

τ ≤ H−1
τ Vπ ′ H−1

τ if and only if Vπ ≤ Vπ ′ in the
Löwner-ordering. Thus, we focus on Vπ and choose to minimize its trace, which
can be interpreted as minimizing the asymptotic MSE of

√
r/KHτ (θ̃ − θ0) due to its

asymptotic unbiasedness. This is called L-optimality criterion in optimal experimental
designs (Atkinson et al. 2007). Therefore, to circumvent density function estimation
and save calculation cost, we consider the modified optimal criterion: minimizing
tr(Vπ ).

Theorem 5 (L-optimality) If the subsampling probabilities πi , i = 1, . . . , n, are cho-
sen as

π
FLopt
i = ‖Bi‖2∑n

i=1 ‖Bi‖2 , (9)

then tr(Vπ ) attains its minimum.

The functional L-optimal subsampling probabilities π
FLopt
i (9) do not depend on

the densities of εi given the respective xi (t), and thus are much easier to implement
compared with the functional A-optimal subsampling probabilities π

FAopt
i in (8). In

addition, π FLopt
i requires O(n(K + p+ 1)) flops to compute, which is much cheaper

than π
FAopt
i as K increases.

Furthermore, it is worth noting that the subsampling probabilities π
FLopt
i (i =

1, . . . , n) do not contain responses and do not depend on the covariates directly.
In fact, the structural information of the covariates is described by the expression
‖Bi‖2 = ‖ ∫ 1

0 xi (t)B(t)dt‖2, which is similar to the statistical leverage score in
linear model. As a result, the subsampling probabilities result in the non-informative
sampling. This allows us to try different models based on the subsamples. It is in
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contrast to the subsampling probabilities used in functional linear regression, which
result in the informative sampling (Liu et al. 2021).

3.3 Tuning parameters selection

There are four tuning parameters in estimation of β(t): the number of knots K , the
degree p for spline functions, the smoothing parameter λ and the order of derivation q
for the estimator. However, the number of knots K is not a crucial parameter because
smoothing is controlled by the roughness penalty parameter λ; see e.g., (Ruppert
2002; Cardot et al. 2003). In addition, the degree of spline functions p and the order
of derivatives q are also known to be less important. This is because, in practice,
we usually smooth with B-splines of degree 3 and a second-order penalty. Once other
parameters are fixed, a natural way to determine the parameter λ is tominimize a leave-
one-out cross-validation criterion. We preferably employ the generalized approximate
cross-validation (GACV) criterion introduced by Yuan (2006) in smoothing splines
problems, which is defined by

GACV(λ) =
∑n

i=1 ρτ (yi − BT
i θ̂)

n − dfλ
,

where dfλ denotes the effective degrees of freedom of the fit. In the present paper, we
implement θ̂ = (BTWB+λD)−1BTW y and dfλ = tr

(
B(BTWB + λD)−1BTW

)
in the penalized iteratively reweighted least squares (PIRLS) method which is useful
to solve the functional quantile regression problem; see e.g., (Cardot et al. 2005; Reiss
and Huang 2012). In the above expressions, W is a diagonal matrix whose diagonal
elements are weights,

w
(k)
i = τ − I [yi − BT

i θ̂
(k)]

2[yi − BT
i θ̂

(k)]
, i = 1, 2, . . . , n,

which are iterated until convergence; see Appendix A of Reiss and Huang (2012).
However, using full data to select the optimal λ is computationally expensive, so we
select the smoothing parameter λ by GACV under the optimal subsample data.

4 Numerical Experiments

In this section, we aim to study the finite sample performance of the proposed methods
by using synthetic and real data.
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4.1 Simulation

We generate the functional covariates in a similar way to that adopted in Liu et al.
(2021). More specifically, the functional covariates are identically and independently
generated as:

xi (t) =
∑

ai j B j (t), i = 1, 2, . . . , n,

where B j (t) are cubic B-spline basis functions that are sampled at 100 equally spaced
points between 0 and 1. We consider the following three different distributions for the
basis coefficient A = (ai j ):

1. mvNormal. Multivariate normal distribution N (0,�), where �i j = 0.5|i− j |;
2. mvT3. Multivariate t distribution with 3 degrees of freedom, t3(0,�);
3. mvT2. Multivariate t distribution with 2 degrees of freedom, t2(0,�).

The responses are generated as follows:

yi =
∫ 1

0
xi (t)β(t)dt + εi , i = 1, 2, . . . , n,

where the slope function β(t) = 2t2 + 0.25t + 1 and the random errors, εi ’s, are
generated in three cases:

1. Normal. The standard normal distribution;
2. T1. t1 distribution ;
3. Hetero. The standard normal distribution times

∫ 1
0 | xi (t)(t + 1) | dt .

The first two designs consider symmetric i.i.d. random errors while the last one con-
siders conditional heteroscedastic errors.

We first take n = 105 for training, m = 1000 for testing and τ = 0.5, 0.75 to
investigate the influence of different quantile levels on performance of the proposed
subsampling methods. From Assumption 5, we let the number of knots K = �n1/4�.
We shall compare the functional A-optimal subsampling (FAopt) and L-optimal sub-
sampling (FLopt) methods with the uniform subsampling (Unif) method. For fair
comparison, we use the same basis functions and the same smoothing parameter in
the three methods with the same full data. For each τ , we will compute the root
integrated mean squared error (IMSE) from 1000 repetitions:

IMSE = 1

1000

1000∑
k=1

√∫ 1

0

{
β̃(k)(t) − β(t)

}2
dt,

where β̃(k)(t) is the estimator from the k-th run. All the experiments are implemented
in R programming language on a PC with an Intel I5 processor and 16GB memory.

Figures 1 and 2 display the simulation results corresponding to various subsampling
sizes of 600, 800, 1000, 1200, 1400 and 1600 under different quantile levels1. It is clear

1 In Figures 1, 2, and 3, the three columns correspond to the three distributions of the basis coefficients
(mvNormal, mvT3, mvT2), respectively, and the three rows correspond to the three distributions of random
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Fig. 1 IMSE for different subsampling size r with different distributions when τ = 0.5 and n = 105

to see that the FAopt and FLopt subsamplingmethods always have smaller IMSEs than
the Unif subsampling method for all cases, which is in agreement with the theoretical
results that they aim to minimize the asymptotic IMSEs of the subsampling estimator.
Moreover, the advantages of the FAopt and FLopt subsampling methods becomemore
significant as the tail of the basis coefficient distribution becomes heavier. Besides,
we also see that the FAopt and FLopt methods tend to perform similarly, even though
the FLopt method does not theoretically minimize the MSE of the subsample spline
coefficient θ̃ .

To further assess the relative performance of the proposed methods in comparison
with the full data estimator, the prediction efficiency (PE) is adopted on the test data
of simulation, which is defined as follows:

Footnote 1 continued
errors (Normal, T1, Hetero), respectively. For example, the figure in the first column and the first row is for
the mvNormal-Normal datasets.
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Fig. 2 IMSE for different subsampling size r with different distributions when τ = 0.75 and n = 105

PE =
∑

i

[∫ 1
0 xi (t)β(t)dt − ∫ 1

0 xi (t)β̃(t)dt
]2

∑
i

[∫ 1
0 xi (t)β(t)dt − ∫ 1

0 xi (t)β̂(t)dt
]2 , i ∈ testset.

We plot the logarithm of prediction efficiency for the FAopt, FLopt and Unif methods
when τ = 0.75 in Figure 3, from which we can see that the FAopt and FLopt methods
significantly outperform the Unif method, and the FLopt method has comparable or
slightly smaller prediction efficiency than the FAopt method. Results for the case
τ = 0.5 are similar and thus are omitted.

To evaluate the computational efficiency of the subsampling methods, we record
the computing time of the three subsampling methods. We use the function Sys.time()
to count start and end times of the corresponding code only for the estimated part
of θ̃ . Since all the cases have similar performance, we only show the results of
mvNormal–Normal datasets here. The results on different r for the FAopt, FLopt
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Fig. 3 Log prediction efficiency for different subsampling size r with different distributions when τ = 0.75
and n = 105 for 1000 repetitions

and Unif subsampling methods with τ = 0.75 and n = 105 are given in Table 1. It
is not surprising to find that the Unif method takes the least time because it does not
need to calculate the additional optimal subsampling probabilities. As we expected,
the FLopt method is faster than the FAopt method, which agrees with the theoretical
analysis. The computing time for using full data is also given in the last row of Table
1, which is the longest one and confirms that our proposed methods can reduce the
computational burden.

To further demonstrate the performance of our proposed methods in large datasets,
we set the full data size to n = 104, 105, 106 and 5 × 106, respectively. In addition,
we let r = 1000, λ = 0.001 and enlarge the number of knots for spline function
to K = 50. Table 2 presents the CPU seconds for repeating different subsampling
methods 500 times. The results indicate that our proposed methods can improve the
computational efficiency compared with the full data, and their advantage is more
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Table 1 CPU seconds for
different subsampling size r
with τ = 0.75 and n = 105 for
1000 repetitions

Method r
600 800 1000 1200 1400 1600

FLopt 0.155 0.166 0.180 0.201 0.215 0.227

FAopt 0.472 0.462 0.469 0.496 0.515 0.533

Unif 0.115 0.133 0.142 0.161 0.178 0.193

Full data CPU seconds: 4.086

Table 2 CPU seconds for
different full data size n with
r = 1000 when τ = 0.75,
K = 50 and λ = 0.001 for 500
repetitions

Method n
104 105 106 5 × 106

FLopt 0.307 0.431 0.656 2.666

FAopt 0.355 0.790 5.415 33.625

Unif 0.304 0.378 0.383 0.575

Full 2.47 24.543 238.940 1668.454

significant as the full data size increases. For our two methods, we recommend the
FLopt method for practical use.

4.2 Beijingmulti-site air-quality data

Carbon monoxide (CO) is formed by incomplete combustion of fossil fuels and is
ubiquitous in ambient air. The adverse health effects of very high CO concentrations,
such as CO poisoning and cardiovascular deaths, are well documented; see e.g., (Liu
et al. 2018; Kinoshita et al. 2020; Chen et al. 2021). Thus, air quality prediction is vital
to management of human health, especially the respiratory system. There has been
extensive research on prediction CO concentrations, see e.g., (Moazami et al. 2016;
Shams et al. 2020).

Now, we analyze a data set available from https://archive-beta.ics.uci.edu/ml/
datasets/beijing+multi+site+air+quality+data. This data set consists of hourly air pol-
lutants data from 12 nationally controlled air-quality monitoring sites in Beijing from
March 1, 2013 to February 28, 2017. Our primary interest here is to predict the max-
imum CO concentrations (mg/m3) using the CO trajectory (24 hours) of the last day.
After removing 4001 days’ records with missing values, we have a dataset of 13531
days’ complete records. It is randomly partitioned into a training set of n = 10824
observations andm = 2707 for testing. The raw observations are first transformed into
functional data using 15 Fourier basis functions. This transformation can be imple-
mented with the Data2fd function in the fda package, suggested in Sang and Cao
(2020). A random subset of 100 curves of 24-hourly CO concentrations is presented
in the left panel of Figure 4, where the time scale has been transformed to [0, 1]. The
right panel of Figure 4 further supports the fact that the covariates are heavy-tailed. It
depicts the histogram of the maximal values of intraday CO concentrations.

Since the true value β(t) is unknown for real dataset, we use full data esti-
mator instead. We calculate the empirical IMSE using eIMSE = 1

1000

∑1000
k=1
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Fig. 4 Left subfigure: A random subset of 100 curves of 24-hourly CO concentrations. Right subfigure:
Histogram of the maximal values of intraday CO concentrations
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Fig. 5 eIMSE for different subsampling size r when τ = 0.5 (left) and 0.75 (right)

√∫ 1
0

{
β̃(k)(t) − β̂(t)

}2
dt , and compare the FLopt method with the Unif method.

Figure 5 shows the eIMSE of subsampling estimator for different subsampling size
r = 500, 1000, 1500, 2000, 2500, 3000 when τ = 0.5 and 0.75. We can find that the
FLopt method always has smaller eIMSE than the Unif method. All eIMSEs decrease
as the subsampling size r gets large, showing the estimation consistency of the sub-
sampling methods.

We further compare these twomethods in terms of prediction accuracy. The relative
efficiency (RE) is defined as follows:

RE =
∑

i

[∫ 1
0 xi (t)β̃(t)dt − ∫ 1

0 xi (t)β̂(t)dt
]2

∑
i

[∫ 1
0 xi (t)β̂(t)dt

]2 , i ∈ testset. (10)
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Fig. 6 Log relative efficiency for different subsampling size r when τ = 0.5 (left) and 0.75 (right) for 1000
repetitions

Figure 6 displays the relative efficiency based on the subsampling methods with τ =
0.5 and 0.75. In general, the relative efficiency of the subsampling estimator gradually
decreases as the r increases, and the FLopt method is better than the Unif method. So
it yields a better approximation to the results based on full data.

5 Conclusions

Existing optimal subsampling methods mainly focus on statistic models with scalar
variables or functional mean regression. In this paper, we develop the optimal sub-
sampling for quantile regression model when the covariates are functions. Not only
is asymptotic normality estimated, but also the optimal and feasible optimal subsam-
pling probabilities are derived according to the functional A- and L-optimality criteria,
respectively. The latter results in the non-informative subsampling, which ismore flex-
ible and feasible to apply to other models compared with information sampling. Our
numerical experiments show that, the FAopt and FLopt methods outperform the Unif
subsampling method and are computationally feasible for massive data, and they yield
good approximations to the results based on full data.

In this paper, we only consider the subsampling for the scalar-on-function quantile
regression at the single quantile level. As done in (Shao and Wang 2021; Yuan et al.
2022), it is interesting to investigate multiple quantile levels. Observing that our FLopt
sampling probabilities are irrelevant to quantile levels, this problem should be doable.
In fact, a more interesting problemworth further investigations is how to apply optimal
subsampling methods to the quantile regression process. In addition, other functional
regression models are worth exploring, such as function-on-function regression and
function-on-scalar regression.
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Appendix A: proofs for theoretical results

To prove our theorems, we begin with the following several lemmas. Note that the
subsampling model involves two kinds of random errors: sampling error and model
error, so we need to consider these two types of randomness in the calculation.

Lemma 1 Under Assumptions 1 and 5, for any vector μ ∈ R
K+p+1, there are some

positive constants C3, C4, C5 and C6 such that

C3K
−1 ≤ σmin(G) ≤ σmax (G) ≤ C4K

−1,

C5K
2q−1‖μ‖22 ≤ μT Dqμ ≤ C6K

2q−1‖μ‖22,

where σmin(·) and σmax (·) denote the smallest and largest eigenvalues of a matrix,
respectively. In addition, we have ‖G‖∞ = O(K−1) and ‖Dq‖∞ = O(K 2q−1).

Proof These results can be derived directly from Lemma S2 and S3 in the supplemen-
tary file of Liu et al. (2021). �
Lemma 2 Under Assumptions 1, and 3–5, there are two positive constants C7 and C8
such that

C7K
−1 ≤ σmin(Hτ ) ≤ σmax (Hτ ) ≤ C8K

−1,

and ‖Hτ‖∞ = O(K−1).

Proof From Assumption 3, we have that there are two positive constants cε and Cε

such that cε ≤ fε|X(t)(0, x(t)) ≤ Cε . On the other hand, by Lemma 1, we have
‖Gτ‖∞ = O(K−1). Thus, the lemma can be directly proved by combining Lemma 1
with Assumptions 3 and 4. �
Lemma 3 Let ψτ (u) = τ − I (u < 0) and ui = yi − BT

i θ0. Under the same assump-
tions as Theorem 3, for any non-zero δ ∈ R

K+p+1, we have

−
√

K

r

n∑
i=1

Ri

nπi
BT
i δψτ (ui ) = −√

KWT δ + oP (1), (A1)

where {τ(1 − τ)(Vπ + ηG)}−1/2 W → N (0, I) in distribution.
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Proof Set

Ur = −
√

K

r

n∑
i=1

Ri

nπi
BT
i δψτ (ui ).

To prove the asymptotic normality of Ur , it suffices to verify that Ur satisfies the
Lindeberg-Feller conditions. Firstly, the conditional expectation and conditional vari-
ance are given by

E {Ur | Fn} = −
√

K

r

n∑
i=1

E

{
Ri

nπi
BT
i δψτ (ui ) | Fn

}

= −
√
r K

n

n∑
i=1

BT
i δψτ (ui ),

Var {Ur | Fn} = K

r

n∑
i=1

Var

{
Ri

nπi
BT
i δψτ (ui ) | Fn

}

= K

n2

n∑
i=1

πi (1 − πi )

π2
i

(BT
i δ)2ψ2

τ (ui ).

From the fact that P(yi <
∫ 1
0 xi (t)β(t)dt | xi (t)) = τ , we have

E {ψτ (ui ) | xi (t)} = τ − E {I (ui < 0) | xi (t)}
= τ − P

(
yi < BT

i θ0 | xi (t)
)

= τ − P

(
yi <

∫ 1

0
xi (t)(β(t) + ba(t)(1 + oP (1)))dt | xi (t)

)

= −bi fε|X(t)(0, xi (t))(1 + oP (1))

= oP (1),

where bi = ∫ 1
0 xi (t)ba(t)dt , and the third equality is from the definition of θ0 and

the fourth equality is obtained by the Taylor expansion of the cumulative distribution
function of the error εi at point εi = 0. As a result, the unconditional expectation of
Ur can be calculated as

E [Ur ] = −
√
r K

n
E

{
n∑

i=1

BT
i δψτ (ui ) | xi (t)

}

=
√
r K

n

n∑
i=1

BT
i δbi fε|X(t)(0, xi (t))(1 + oP (1))

= O(
√
r K K−(d+1)). (A2)
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More specifically, since xi (t) are square integrable functions, by the Cauchy-Schwarz
inequality in integral form, there exist constant c such that

B2
i =

(∫ 1

0
xi (t)B(t)dt

)2

≤
∫ 1

0
x2i (t)dt ·

∫ 1

0
B2(t)dt ≤ c

∫ 1

0
B2(t)dt .

Similarly, we have

b2i ≤ c
∫ 1

0
b2a(t)dt .

Thus, by the property of B-spline function,
∫ 1
0 B(t)dt = O(K−1), and ba(t) =

O(K−d), we can find that ‖Bi‖∞ = O(K−1) and bi = O(K−d) are satisfied.
Putting them together, we obtain (A2).

On the other hand, according to law of total variance, the unconditional variance is
given by

Var [Ur ] = Var

{
−
√

K

r

n∑
i=1

Ri

nπi
BT
i δψτ (ui )

}

= E

{
Var

{
−
√

K

r

n∑
i=1

Ri

nπi
BT
i δψτ (ui ) | Fn

}}

+Var

{
E

{
−
√

K

r

n∑
i=1

Ri

nπi
BT
i δψτ (ui ) | Fn

}}
. (A3)

We first deal with the first term in (A3) as follows

E

{
Var

{
−
√

K

r

n∑
i=1

Ri

nπi
BT
i δψτ (ui ) | Fn

}}

= K

n2
E

{
n∑

i=1

πi (1 − πi )

π2
i

(BT
i δ)2ψ2

τ (ui ) | xi (t)
}

= K τ(1 − τ)δT

{
n∑

i=1

Bi BT
i

n2πi
−

n∑
i=1

Bi BT
i

n2

}
δ(1 + oP (1)). (A4)

Similarly, the second term in (A3) equals

Var

{
E

{
−
√

K

r

n∑
i=1

Ri

nπi
BT
i δψτ (ui ) | Fn

}}
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= r K

n2
Var

{
n∑

i=1

BT
i δψτ (ui ) | xi (t)

}

= r K τ(1 − τ)δT

(
n∑

i=1

Bi BT
i

n2

)
δ(1 + oP (1)). (A5)

Thus, substituting (A4) and (A5) into (A3), we have

Var [Ur ] = K τ(1 − τ)δT

{
n∑

i=1

Bi BT
i

n2πi
+ r − 1

n

n∑
i=1

Bi BT
i

n

}
δ(1 + oP (1))

= K τ(1 − τ)δT (Vπ + ηG) δ(1 + oP (1)). (A6)

Denote ξi = −
√

K
r

Ri
nπi

BT
i δψτ (ui ).We now check the Lindeberg-Feller conditions.

For every ε > 0,

n∑
i=1

E
{
‖ξi‖2 I (‖ξi‖ > ε)

}
≤ 1

ε

n∑
i=1

E
{
‖ξi‖3

}

≤
(
K

r

)3/2 1

ε

n∑
i=1

E

{
R3
i ‖BT

i δ‖3‖ψτ (ui )‖3
n3π3

i

}

=
(
K

r

)3/2 1

ε

n∑
i=1

E
[
R3
i

] | BT
i δ |3 E {‖ψτ (ui )‖3 | xi (t)

}
n3π3

i

= oP (1), (A7)

where

E
[
R3
i

]
= r(r − 1)(r − 2)π3

i + 3r(r − 1)π2
i + rπi ,

and the last equality holds by combining Assumption 6 and the fact that | ψτ (ui ) |≤ 1.
Thus, by Lindeberg-Feller central limit theorem, it can be concluded that as n → ∞,
r → ∞,

Ur − E [Ur ]√
Var [Ur ]

→ N (0, 1)

in distribution, which implies that the equation (A1) holds because E [Ur ] =
O(

√
r K K−(d+1)) = oP (1). This completes the proof. �

Lemma 4 Let vi = √
K/rBT

i . Under the same assumptions as Theorem 3,

n∑
i=1

Ri
∫ vi
0 {I (ui ≤ s) − I (ui ≤ 0)}ds

nπi
= K

2
δTGτ δ + oP (1).
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Proof Let

Mr =
n∑

i=1

Ri
∫ vi
0 {I (ui ≤ s) − I (ui ≤ 0)}ds

nπi
.

Since

E

{
Ri
∫ vi
0 {I (ui ≤ s) − I (ui ≤ 0)} ds

nπi

}

= E

{
E

{
Ri
∫ vi
0 {I (ui ≤ s) − I (ui ≤ 0)} ds

nπi
| Fn

}}

= r

n
E

{∫ vi

0
{I (ui ≤ s) − I (ui ≤ 0)} ds | xi (t)

}

= r

n

∫ vi

0

{
P
(
yi < BT

i θ0 + s | xi (t)
)

− P
(
yi < BT

i θ0 | xi (t)
)}

ds

=
√
r K

n

∫ BT
i δ

0

{
P

(
yi < BT

i θ0 + l

√
K

r
| xi (t)

)
− P

(
yi < BT

i θ0 | xi (t)
)}

dl

= K

n

∫ BT
i δ

0
fε|X(t)(BT

i θ0, xi (t))ldl · (1 + oP (1))

= K

2n
fε|X(t)(BT

i θ0, xi (t))(BT
i δ)2(1 + oP (1)),

we can obtain the total expectation of Mr as follows

E [Mr ] = K

2n

n∑
i=1

fε|X(t)(BT
i θ0, xi (t))(BT

i δ)2(1 + oP (1))

= K

2
δT

(
1

n

n∑
i=1

fε|X(t)(0 + o(1), xi (t))Bi BT
i

)
δ(1 + oP (1))

= K

2
δTGτ δ(1 + oP (1)). (A8)

Now, we show the total variance of Mr satisfying Var[Mr ] = oP (1). Note that the
variance of Mr can be evaluated as

Var [Mr ] ≤
n∑

i=1

E

{
Ri
∫ vi
0 {I (ui ≤ s) − I (ui ≤ 0)}ds

nπi

}2

≤
√

K

r

{
max

i=1,2,...,n

‖BT
i δ‖

nπi

}
· E [Mr ]
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≤
√

K

r

{
max

i=1,2,...,n

1

nπi

}
·
{

max
i=1,2,...,n

| BT
i δ |

}
· E [Mr ] , (A9)

where the second inequality is from the fact that

∫ vi

0
{I (ui ≤ s) − I (ui ≤ 0)}ds ≤

∣∣∣∣
∫ vi

0
|{I (ui ≤ s) − I (ui ≤ 0)}| ds

∣∣∣∣
≤
√

K

r

∣∣∣BT
i δ

∣∣∣ , i = 1, 2, . . . , n.

Thus, from (A8), (A9) and Assumption 6, and noting E [Mr ] = O(1), we have
Var [Mr ] = oP (

√
K/r3) = oP (1). As a result, Lemma 4 holds by Chebyshev’s

inequality. �
In the following, we present the proofs of Theorems 1, 2, 3, 4, and 5 in turn.

Proof of Theorem 1 and 2 Theorem 1 can be proved similar to Theorem 1 of Yoshida
(2013), and Theorem 2 can be obtained directly from Theorem 1 by considering
Assumptions 4 and 5. Here we omit the details. � �
Proof of Theorem 3 Let

Zr (δ) =
n∑

i=1

Ri (ρτ (ui − vi ) − ρτ (ui ))

πi

+rλ

2
(θ0 +

√
K

r
δ)T Dq(θ0 +

√
K

r
δ) − rλ

2
θT0 Dqθ0,

where ui = yi − BT
i θ0 and vi = √

r/K BT
i δ. It is easy to see that this function is

convex and minimized at
√
r/K (θ̃ − θ0).

On the other hand, using Knight’s identity,

ρτ (u − v) − ρτ (u) = −vψτ (u) +
∫ v

0
{I (u ≤ s) − I (u ≤ 0)}ds, (A10)

where ψτ (u) = τ − I (u < 0), we have

Zr (δ) = Z1r (δ) + Z2r (δ) + Z3r (δ) + Z4r (δ), (A11)

where

Z1r (δ) = −
√

K

r

n∑
i=1

Ri

πi
BT
i δψτ (ui ),

Z2r (δ) =
n∑

i=1

Ri
∫ vi
0 {I (ui ≤ s) − I (ui ≤ 0)} ds

πi
,
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Z3r (δ) = Kλ

2
δT Dqδ,

Z4r (δ) = √
r KλθT0 Dqδ.

From Lemma 3, Z1r (δ) in (A11) satisfies

Z1r (δ)

n
= −√

KWT δ + oP (1), (A12)

where {τ(1 − τ)(Vπ + ηG)}−1/2 W → N (0, I) in distribution. Furthermore,
Lemma 4 and Z3r (δ) in (A11) yield

Z2r (δ)

n
+ Z3r (δ)

n
= K

2
δT

(
Gτ + λ

n
Dq

)
δ + oP (1) = K

2
δT Hτ δ + oP (1). (A13)

Therefore, from (A11), (A12) and (A13), we can obtain

Zr (δ)

n
= −√

KWT δ + K

2
δT Hτ δ +

√
r K

n
λθT0 Dqδ + oP (1).

Since Zr (δ)/n is convex with respect to δ and has unique minimizer, from the
corollary in page 2 of Hjort and Pollard (2011), its minimizer,

√
r/K (θ̃ −θ0), satisfies

that
√

r

K
(θ̃ − θ0) = H−1

τ

(
1√
K
W −

√
r

K
· λ

n
Dqθ0

)
+ oP (1).

Because the random vector is only W in asymptotic form of θ̃ and β̃(t) − β0(t) =
BT (t)(θ̃ − θ0), the expectation of β̃(t) − β0(t) can be written as

E{β̃(t) − β0(t)} = bλ(t)(1 + oP (1)),

where bλ(t) = −λ
n B

T (t)H−1
τ Dqθ0. Together with β̃(t) − β(t) = β̃(t) − β0(t) +

β0(t) − β(t), we have the asymptotic bias of β̃(t) as

E{β̃(t) − β(t)} = ba(t)(1 + oP (1)) + bλ(t)(1 + oP (1)).

Thus, we have

{B(t)T V B(t)}−1/2
√
r/K (β̃(t) − β(t) − ba(t) − bλ(t))

={B(t)T V B(t)}−1/2BT (t)H−1
τ

1√
K
W + oP (1).

Combining the fact that

{B(t)T V B(t)}−1/2BT (t)V B(t){B(t)T V B(t)}−1/2 = 1,
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by the definition of W and Slutsky’s Theorem, we can obtain for t ∈ [0, 1], as r , n →
∞,

{B(t)T V B(t)}−1/2
√
r/K (β̃(t) − β(t) − ba(t) − bλ(t)) → N (0, 1).

Further, from the discussions before Theorem2,we know that bλ(t) and ba(t) = oP (1)
are negligible. Thus, we have

{B(t)T V B(t)}−1/2
√
r/K (β̃(t) − β(t)) → N (0, 1).

So Theorem 3 is proved. �
Proof of Theorem 4 Note that

tr(V ) = τ(1 − τ)

K
tr

[
H−1

τ

(
n∑

i=1

Bi BT
i

n2πi
+ η

n∑
i=1

Bi BT
i

n

)
H−1

τ

]

= τ(1 − τ)

Kn2

n∑
i=1

tr

[
H−1

τ Bi BT
i H

−1
τ

πi

]

+τ(1 − τ)η

Kn

n∑
i=1

tr
[
H−1

τ Bi BT
i H

−1
τ

]

= τ(1 − τ)

Kn2

n∑
i=1

‖H−1
τ Bi‖22
πi

+ τ(1 − τ)η

Kn

n∑
i=1

‖H−1
τ Bi‖22

= τ(1 − τ)

Kn2

(
n∑

i=1

πi

)(
n∑

i=1

‖H−1
τ Bi‖22
πi

)
+ τ(1 − τ)η

Kn

n∑
i=1

‖H−1
τ Bi‖22

≥ τ(1 − τ)

Kn2

(
n∑

i=1

‖H−1
τ Bi‖2

)2

+ τ(1 − τ)η

Kn

n∑
i=1

‖H−1
τ Bi‖22,

where the last inequality is from the Cauchy-Schwarz inequality and the equality in
it holds if and only if πi ∝ ‖H−1

τ Bi‖2. So the proof is completed by considering∑n
i=1 πi = 1. �

Proof of Theorem 5 Note that

tr [Vπ ] = tr

(
n∑

i=1

Bi BT
i

n2πi

)
= 1

n2

n∑
i=1

tr

(
Bi BT

i

πi

)

= 1

n2

n∑
i=1

‖Bi‖22
πi

= 1

n2

(
n∑

i=1

πi

)(
n∑

i=1

‖Bi‖22
πi

)

≥ 1

n2

(
n∑

i=1

‖Bi‖2
)2

,
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where the last inequality is from the Cauchy-Schwarz inequality and the equality
in it holds if and only if πi ∝ ‖Bi‖2. So the proof is completed by considering∑n

i=1 πi = 1. �
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