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ABSTRACT

Thus far, end-to-end (E2E) models have not been shown to outperform
state-of-the-art conventional models with respect to both quality, i.e.,
word error rate (WER), and latency, i.e., the time the hypothesis is
finalized after the user stops speaking. In this paper, we develop a
first-pass Recurrent Neural Network Transducer (RNN-T) model and
a second-pass Listen, Attend, Spell (LAS) rescorer that surpasses a
conventional model in both quality and latency. On the quality side,
we incorporate a large number of utterances across varied domains
[1] to increase acoustic diversity and the vocabulary seen by the
model. We also train with accented English speech to make the
model more robust to different pronunciations. In addition, given the
increased amount of training data, we explore a varied learning rate
schedule. On the latency front, we explore using the end-of-sentence
decision emitted by the RNN-T model to close the microphone, and
also introduce various optimizations to improve the speed of LAS
rescoring. Overall, we find that RNN-T+LAS offers a better WER and
latency tradeoff compared to a conventional model. For example, for
the same latency, RNN-T+LAS obtains a 8% relative improvement
in WER, while being more than 400-times smaller in model size.

1. INTRODUCTION

End-to-end (E2E) models [2, 3, 4, 5, 6, 7, 8, 9] have gained large
popularity in the automatic speech recognition (ASR) community
over the last few years. These models replace components of a
conventional ASR system, namely an acoustic (AM), pronunciation
(PM) and language models (LM), with a single neural network. These
models are a fraction of the size of a conventional ASR system,
making them attractive for on-device ASR applications. Specifically,
on-device means that instead of streaming audio from the device to
the server, recognizing text on the server, and then streaming results
back to the device, recognition is performed entirely on the device.
This has important implications for reliability, privacy and latency.

Running an ASR model on-device presents numerous additional
user interaction constraints. First, we require that recognition results
be streaming; the recognized words should appear on the screen
as they are spoken. Second, the delay between when a user stops
speaking and the hypothesis is finalized, which we refer to as latency,
must be low. RNN-T models, which meet these on-device constrains,
have been shown to be competitive in terms of quality in recent
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studies [2, 1]. But under low-latency constrains, they lag behind a
conventional server-side streaming ASR system [2]. At the other
end of the spectrum, non-streaming models, such as LAS, have been
shown to outperform a conventional ASR system [3]. However, LAS
models are not streaming as they must attend to the entire audio
segment. Recently, a 2-pass RNN-T+LAS model was proposed in
[10], where LAS rescores hypotheses from RNN-T. This model was
shown to abide by user interaction constraints, and offer comparable
performance to a conventional model.

In this paper, we extend on the work from [10] in several direc-
tions, to develop an on-device E2E model that surpasses a conven-
tional model [11] in both WER and latency. First, on the quality-front,
we train our model on multi-domain audio-text utterance pairs, utiliz-
ing sources from different domains including search traffic, telephony
data and YouTube data [1]. This not only increases acoustic diversity,
but also increases the vocabulary seen by the E2E model, as it is
trained solely on audio-text pairs which is a small fraction compared
to the text-only LM data used by a conventional model. Because the
transcription and audio characteristics vary between domains, we also
explore adding the domain-id as an input to the model. We find that
by training with multi-domain data and feeding in a domain-id, we
are able to improve upon a model trained on voice search data only.
Second, also on the quality-front, we address improving robustness to
different pronunciations. Conventional models handle this by using
a lexicon that can have multiple pronunciations for a word. Since
our E2E models directly predict word-pieces [12], we address this by
including accented English data from different locales [13]. Third,
given the increased audio-text pairs used in training, we explore using
a constant learning rate rather than gradually decaying the learning
rate over time, thereby giving even weight to the training examples
as training progresses.

We also explore various ideas to improve latency of our model.
We define endpointer (EP) latency as the amount of time it takes for
the microphone to close after a user stops speaking. To make a fair
comparison, this metric excludes network latency and computation
time when comparing the on-device and server endpointer latencies.
Typically, an external voice activity detector (VAD) is used to make
microphone-closing decisions. For conventional ASR systems, an
end-of-query (EOQ) endpointer [14, 15, 16] is often used for im-
proved EP latency. Recently, integrating the EOQ endpointer into the
E2E model by predicting the end-of-query symbol, </s> , to aid in
closing the microphone was shown to improve latency [17]. We build
on this work here, introducing a penalty in RNN-T training for emit-
ting </s> too early or too late. Second, we improve the computation
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latency of the 2nd-pass rescoring model. Specifically, we reduce the
2nd-pass run time of LAS by batching inference over multiple arcs of
a rescoring lattice, and also offloading part of the computation to the
first pass. LAS rescoring also obtains better tradeoff between WER
and EP latency due to the improved recognition quality.

2. MODEL ARCHITECTURE

The proposed 2-pass E2E architecture [10] is shown in Figure 1. Let
us denote input acoustic frames as x = (x1 . . .xT ), where xt ∈ Rd

are stacked log-mel filterbank energies (d = 512) and T the number
of frames in x. In the 1st-pass, each acoustic frame xt is passed
through a shared encoder, consisting of a multi-layer LSTM, to get
output es

t , which is then passed to an RNN-T decoder 1 that predicts
yr = {y1, . . . yT }, the output sequence, in a streaming fashion.
Here yr is a sequence of word-piece tokens [18]. In the 2nd-pass,
the full output of the shared encoder, es = (es

1 . . . e
s
T ), is passed

to a small additional encoder to generate ea = (ea
1 . . . e

a
T ), which

is then passed to an LAS decoder. We add the additional encoder
since it is found to be useful to adapt the encoder output to be more
suitable for LAS. During training, the LAS decoder computes output
yl according to ea. During decoding, the LAS decoder rescores
multiple top hypotheses from RNN-T, yr , represented as a lattice.
Specifically, we run the LAS decoder on each lattice arc in the teacher-
forcing mode, with attention on ea, to update the probability in the
arc. At the end, the top output sequence with the highest probability
is extracted from the rescored lattice.

Fig. 1: Two-Pass Architecture

3. QUALITY IMPROVEMENTS

3.1. Multi-domain Data

Our E2E model is trained on audio-text pairs only, which is a small
fraction of data compared to the trillion-word text-only data a con-
ventional LM is trained with. Previous work [2, 10] used only search
utterances. To increase vocabulary and diversity of training data, we
explore using more data by incorporating multi-domain utterances
as described in [1]. These multi-domain utterances span domains of
search, farfield, telephony and YouTube. All datasets are anonymized
and hand-transcribed; the transcription for YouTube utterances is
done in a semi-supervised fashion [19, 20].

One of the issues with using multi-domain data is that each
domain has different transcription conventions. For example, search
data has numerics in the written-domain (e.g., $100) while YouTube
queries are often in the spoken domain (one hundred dollars). Another

1RNN-T decoder consists of a prediction network and a joint network.

issue is with respect to multiple speakers. Search queries contain only
one speaker per utterance, while YouTube queries contain multiple
speakers. Since a main goal is to improve the quality of search queries,
we explore feeding a domain-id to the E2E model as a one-hot vector,
with the id being one of the 4 domains. Following work from [13],
we find it adequate to only feed the domain-id to the RNN-T encoder.

3.2. Robustness to Accents

Conventional ASR systems operate on phonemic representations of a
word [21]. Specifically, a lexicon maps each word in the vocabulary
to a few pronunciations, represented as a sequence of phonemes, and
this mapping is fixed before training. This poses challenges when it
comes to accents; building an English recognizer that is accurate for
American, Australian, British, Canadian, Indian, and Irish English
variants is challenging because of phonetic variations.

Attempting to solve these issues by merging the phoneme sets
is difficult. Using a lexicon with an on-device E2E system signifi-
cantly increases the memory footprint, since the size of the lexicon
can be upwards of 0.5 GB [3]. In addition, the increased number
of phonemes causes confusion and creates data sparsity problems.
Finally, decisions regarding the phoneme set and the pronunciations
of a word are not made directly from data.

Instead, our E2E model directly predicts word pieces. The model
itself decides how to handle pronunciation and phonetic variations
based on data. Its size is fixed regardless of the number of variants.
As a simple strategy to improve robustness to different accents, we
explore including additional training data from different English-
accented locales, using the same data as described in [13]. Specifi-
cally, we use data from Australia, New-Zealand, United Kingdom,
Ireland, India, Kenya, Nigeria and South Africa. We down-weight
the data proportion from these locales by a factor of 0.125 during
training. This number was chosen empirically to be the largest value
that did not degrade performance on the American English set.

Spelling conventions vary from one variant of English to another.
Since our training data was transcribed using the spelling convention
of the locale, using the raw transcript can potentially cause unneces-
sary confusion during training. The E2E model might try to learn to
detect the accent in order to decide which spelling convention to use,
thus degrading robustness. Instead, we used VarCon [22] to convert
the transcripts to the American spelling convention. For each word
in the target, we use VarCon’s many-to-one mapping for conversion,
and then use the converted sentence as a target. In addition, during
inference when evaluating accented test sets, we convert all reference
transcipts to the American spelling as well.

3.3. Learning Rates

Our past work has explored using an exponentially-decaying learning
rate when training both RNN-T and LAS [2, 10]. Given the increased
amount of multi-domain training data compared to search-only data,
we explore using a constant learning rate. To help the model con-
verge, we maintain an exponential moving average (EMA) [23] of
the weights during training and use the EMA weights for evaluation.

4. LATENCY IMPROVEMENTS

4.1. Endpointer

An external voice activity detector (VAD)-based endpointer is often
used to detect speech and filter out non-speech. It declares an end-of-
query (EOQ) as soon as the VAD observes speech followed by a fixed



interval of silence. EOQ-based endpointers which directly predict
</s> and have been shown to improve latency [14]. The EOQ
detector can also be folded into the E2E systems for joint endpointing
and recognition by introducing a </s> token into the training target
vocabulary of the RNN-T model [17]. During beam search decoding,
</s> is a special symbol that signals the microphone should be
closed. Premature prediction of </s> causes deletion errors, while
late prediction increases latency.

In this work we extend the joint RNN-T endpointer (EP) model
and address the above issue by applying additional early and late
penalties on the </s> token. Specifically, during training for every
input frame in x = {x1, . . . , xT } and every label y = {y1, . . . , yU},
RNN-T computes a U × T matrix PRNN−T (y|x), which is used
in the training loss computation. Here label yU is </s> , the last
label in the sequence. We denote t</s> as the frame index after the
last non-silence phoneme, obtained from the forced alignment of
the audio with a conventional model. The RNN-T log-probability
PRNN−T (yU |x) is modified to include a penalty at each time step t
for predicting </s> too early or too late. tbuffer gives a grace period
after the reference t</s> before this late penalty is applied, while
αearly and αlate are scales on the early and late penalties respectively.
All hyperparameters are tuned experimentally.

logPRNN−T (yU |xt) −=
(
max(0, αearly ∗ (t</s> − t))+
max(0, αlate ∗ (t− t</s> − tbuffer))

)
In this work, the RNN-T model is trained on a mix of data

from different domains. This poses a challenge for the endpointer
models as different applications may require different endpointing
behaviors. Endpointing aggressively for short search-like queries is
preferrable, but can result in deletions for long-form transcription
tasks like YouTube. Since the goal of this work is to improve the
latency of search queries, we utilize the fed-in domain-id to only add
the </s> token for the search queries, which addresses the latency
on search queries while not affecting other domains.

4.2. LAS Rescoring

We apply LAS rescoring to a tree-based lattice, instead of rescoring
an N-best list, for efficiency, as it avoids duplicate computation on the
common prefixes between candidate sequences [10]. We further re-
duce the LAS latency with batch inference of the arcs when expanding
each lattice branch for rescoring, as it utilizes matrix-matrix multipli-
cation more efficiently. Furthermore, we reduce the 2nd-pass latency
by offloading the computation of the additional encoder as well as
the attention source keys and values to the 1st-pass in a streaming
fashion, whose outputs are cached to be used in the 2nd-pass.

5. EXPERIMENTAL DETAILS

All models are trained using a 128-dimensions log-mel feature fron-
tend [1]. The features are computed using 32 msec windows with
a 10 msec hop. Features from 4 contiguous frames are stacked to
form a 512 dimensional input representation, which is further sub-
sampled by a factor of 3 and passed to the model. Following [2, 10],
all LSTM layers in the model are unidirectional, with 2,048 units and
a projection layer with 640 units. The shared encoder consists of 8
LSTM layers, with a time-reduction layer after the 2nd-layer. The
RNN-T decoder consists of a prediction network with 2 LSTM layers,
and a joint network with a single feed-forward layer with 640 units.
The additional LAS-specific encoder consists of 2 LSTM layers. The
LAS decoder consists of multi-head attention [24] with 4 attention

heads, which is fed into 2 LSTM layers. Both decoders are trained to
predict 4,096 word pieces [12].

The RNN-T model has 120M parameters. The additional encoder
and the LAS decoder have 57M parameters. All parameters are
quantized to 8-bit fixed-point, as in our previous work [2]. The
total model size in memory/disk is 177MB. All models are trained
in Tensorflow [25] using the Lingvo [26] toolkit on 8 × 8 Tensor
Processing Units (TPU) slices with a global batch size of 4,096.

In addition to the diverse training sets described in Sec. 3.1 and
3.2, multi-condition training (MTR) [27, 28] and random data down-
sampling to 8kHz [29] are also used to further increase data diversity.
Noisy data is generated at signal-noise-ratio (SNR) from 0 to 30 dB,
with an average SNR of 12 dB, and with T60 times ranging from
0 to 900 msec, averaging 500 msec. Noise segments are sampled
from YouTube and daily life noisy environmental recordings. Both
8 kHz and 16 kHz versions of the data are generated, each with equal
probability, to make the model robust to varying sample rates.

The main test set includes ∼14K Voice-search utterances (VS)
extracted from Google traffic. Additionally, we use test sets with
numeric (Num) and multi-talker interfering speech data (MT), with
∼4K and ∼6K utterances, respectively, to test robustness of the
proposed models. Accented test sets come from the following locales:
Australia (en-au), United Kingdom (en-gb), India (en-in), Kenya (en-
ke), Nigeria (en-ng), and South Africa (en-za), with approximately
14k, 10K, 5K, 12K, 15K and 10K utterances, respectively. All test
sets are anonymized and hand-transcribed.

6. RESULTS

6.1. Quality

In this section, all results presented are without endpointer and LAS
rescoring.

6.1.1. Domain-ID Models

First, we analyze the behavior of RNN-T when training with multi-
domain (MD) data. Table 1 shows the behavior on 3 datasets when
training with Voice Search (VS) vs. Multi-domain data. The con-
ventional model [11] (B0) is also listed. The table shows that while
behavior on V S and MT improves with MD data (E1) compared to
E0, performance on the numeric set degrades significantly due to the
spoken-domain issue of MD data discussed in Section 3.1. However,
once we train with a domain-id (DI) in E2, performance across all 3
sets improves, and outperforms B0 on Num and MT .

Exp ID Train VS Num MT
B0 Conventional 6.3 13.3 8.4
E0 VS 6.8 10.1 10.4
E1 MD 6.7 11.7 8.0
E2 MD + DI 6.6 10.4 7.7

Table 1: Results for multi-domain RNN-T models.

6.1.2. Robustness to Accents

Next, we explore the behavior when including accented English data
in training. Table 2 shows thatE2 (MD+DI) degrades significantly on
accented test sets compared to the baseline conventional model B0,
which is trained with a large lexicon. E3, which includes accented
data, improves over B0 on all accented sets. This demonstrates that
injecting data with alternative accents helps for E2E models that are
trained directly to output wordpieces, bypassing a lexicon.



Exp ID B0 E2 E3
Training Data Conventional MD + DI + enX

VS 6.3 6.6 6.7
en-au 12.1 12.6 10.3
en-gb 11.2 10.9 9.1
en-in 23.9 24.7 17.8
en-ke 27.2 28.3 27.2
en-ng 25.6 23.6 22.8
en-za 14.3 15.7 14.8

Table 2: Results including accented English data in training.

6.1.3. Learning Rates

Next, we explore performance of RNN-T when decaying the learn-
ing rate (LR) (E3) compared to using a constant LR (E4), which
should have more benefits given the larger number of utterances in
the MD training set. Table 3 shows that using a constant LR improves
performance on V S and MT by ∼7% and ∼8% relative respec-
tively, without significantly harming performance on Num. Note
that while other types of learning-rate schedule could also help; we
leave optimizing learning rate schedule further for future work.

Exp ID Train VS Num MT
E3 decay LR 6.7 10.4 7.7
E4 const LR 6.2 10.5 7.1

Table 3: Results for different learning rate schedule.

6.2. Latency

In this section, we analyze results with the various latency improve-
ments proposed in Section 4. The endpointer latency is measured by
the median (EP50) and the 90-percentile latency (EP90).

6.2.1. E2E Endpointer

We first apply an external EOQ-based endpointer to the E4 RNN-
T model [16]. The endpointer model and the RNN-T model are
optimized independently. This degrades WER since the endpointer
might cut off the decoding hypotheses when the speaker has a short
pause or the ASR model is not confident and delays the outputs.
We report the best operating point that balances WER and latency
gains obtained via sweeping endpointer parameters during decoding 2.
With the acoustic endpointer alone, we degrade the WER from 6.2%
(no EP) to 7.4% to achieve a 450ms EP50 latency and 860ms EP90
latency. The joint RNN-T EP model that predicts </s> as a target in
the RNN-T model training (E5) obtains a WER of 6.8% and reduces
EP50 and EP90 by 20ms and 70ms, respectively. Like [17], E5 also
combines EOQ for better endpointing coverage. It has a better WER
and latency tradeoff than E4, which uses the acoustic EP alone.

Exp ID EP VS EP50 EP90
E4 no EP 6.2 N/A N/A
E4 EOQ 7.4 450 860
E5 Joint RNN-T EP + EOQ 6.8 430 790

Table 4: Results on VS with endpointer on.

6.2.2. Second-Pass LAS Rescoring

Next, we explore adding LAS rescoring (E6), where LAS is first
trained with cross-entropy and then with MWER [30, 10]. The RNN-
T model is kept unchanged during LAS training. Table 5 shows that

2For E2E EP, we sweep an added penalty to </s> during decoding [16].

adding LAS for rescoring reduces WER by 10% relative, from 6.8%
to 6.1%, while not affecting EP latency. As a comparison, we also
list the server model (B0), and will discuss this in the next section.

Exp ID Train VS EP50 EP90
E5 RNN-T 6.8 430 790
E6 +LAS, MWER 6.1 430 780
B0 Conventional 6.6 460 870

Table 5: Results for LAS Rescoring.

In order to show the improvement in LAS computation latency
by batch inference, we benchmark the wall time for the second-pass
rescoring part when we run the recognition system on 100 search
utterances on a Google Pixel4 phone. Inference is run on the phone’s
CPU. In Table 6, we show that batch inference reduces both me-
dian and 90-percentile computation latency by around 32% for LAS
rescoring, achieving 97ms 90% latency.

Exp ID 50% latency 90% latency
E6 w/o batch inference 86 145
E6 w/ batch inference 58 97

Table 6: LAS rescoring computation latency (ms).

6.3. Comparison to Conventional Model

In this section, we compare the proposed RNN-T+LAS model (0.18G
in model size) to a state-of-the-art conventional model. This model
uses a low-frame-rate (LFR) acoustic model which emits context-
dependent phonemes [11] (0.1GB), a 764k-word pronunciation model
(2.2GB), a 1st-pass 5-gram language-model (4.9GB), as well as a
2nd-pass larger MaxEnt language model (80GB) [31]. Similar to
how the E2E model incurs cost with a 2nd-pass LAS rescorer, the
conventional model also incurs cost with the MaxEnt rescorer. We
found that for voice-search traffic, the 50% computation latency
for the MaxEnt rescorer is around 2.3ms and the 90% computation
latency is around 28ms. In Figure 2, we compare both the WER and
EP90 of the conventional and E2E models. The figure shows that for
an EP90 operating point of 550ms or above, the E2E model has a
better WER and EP latency tradeoff compared to the conventional
model. At the operating point of matching 90% total latency (EP90
latency + 90% 2nd-pass rescoring computation latency) of E2E and
server models, Table 6 shows E2E gives a 8% relative improvement
over conventional, while being more than 400-times smaller in size.

Fig. 2: WER vs EP90 for conventional model and E2E.
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