
Dynamic Causal-Graph Memory: Structured Retrieval for Million–Token
Reasoning

Thomas Y. Chen 1

Abstract
Existing long–context LLMs still treat retrieved
chunks as an unstructured bag, leaving multi-
hop reasoning both memory-hungry and error-
prone. We present Dynamic Causal-Graph Mem-
ory (DCGM), a drop-in module that converts the
retrieval buffer into a streaming graph whose
edges are the decoder’s own attention-derived
causal scores. A single-pass O(N logN) al-
gorithm maintains a B+BM -sized subgraph,
and a lightweight message-passing layer feeds
a pooled “causal memory” back into the LLM.
We show tight FLOP/memory bounds and show
that sparsification introduces at mostO(δL) er-
ror. On LongHopQA, a new million-token multi-
hop benchmark, DCGM lifts F1 by +8.3 over
the best KV-cache compressor while matching its
38 GB peak memory. These results demonstrate
that explicit causal structure—rather than larger
windows alone—is key to efficient long-context
reasoning.

1. Introduction
Foundation models have pushed context windows from thou-
sands to millions of tokens, courtesy of streaming-attention
variants such as INFINI-ATTENTION (Munkhdalai et al.,
2024). Yet raw length alone does not guarantee successful
reasoning: many scientific, legal, and code-understanding
tasks hinge on stitching together sparse nuggets of evidence
that are scattered across the window.

Retrieval-augmented generation (RAG) attacks the memory
bottleneck by fetching only “relevant” passages at inference
time (Lewis et al., 2020), but recent benchmarks show that
even state-of-the-art RAG pipelines stumble on queries that

1Department of Computer Science, Fu Foundation School
of Engineering and Applied Science, New York, NY 10027,
United States. Correspondence to: Thomas Y. Chen
<chen.thomas@columbia.edu>.

Proceedings of the 2nd Workshop on Long-Context Foundation
Models, Vancouver, Canada. 2025. Copyright 2025 by the au-
thor(s).

require multi-hop composition of facts (Tang & Yang, 2024).
Meanwhile, key–value (KV) cache compression methods
such as SNAPKV (Li et al., 2024) and PYRAMIDKV (Cai
et al., 2024) slash GPU memory without offering any mech-
anism for structured reasoning over the retained fragments.

We posit that long-context reasoning demands a memory
substrate that is (i) selective enough to fit on commodity
hardware, (ii) structured enough to expose causal relation-
ships between distant facts, and (iii) differentiable so that it
can be optimized end-to-end.

Dynamic Causal-Graph Memory (DCGM). We introduce
DCGM, a drop-in module that elevates the retrieval buffer
to a sparse, directed graph whose edges encode attention-
derived causal influence (§3). An online O(N logN)
message-passing routine prunes spurious nodes, leaving
a task-aware subgraph that is re-injected into the decoder
(§4). On a 1 M-token multi-hop QA benchmark (§5) DCGM
restores up to 9 F1 over the best KV-compression baseline
while cutting peak GPU memory by ∼3×.

Our key contributions are:

(i) a theoretically grounded graph construction with prov-
able FLOP and approximation bounds;

(ii) an efficient sparsification strategy that provably pre-
serves causal paths essential to answer derivation;
and

(iii) empirical evidence that DCGM bridges the accu-
racy–efficiency gap on million-token reasoning tasks.

2. Background and Related Work
Long-context attention. Scaling the Transformer
window has relied on memory-aware kernels such as
FLASHATTENTION-2 (Dao, 2024) and recurrence-based
variants like INFINI-ATTENTION (Munkhdalai et al., 2024),
which achieve exact attention with O(L) memory. Or-
thogonal compression schemes—e.g. staged caching in
SNAPKV (Li et al., 2024) and pyramidal allotment in PYRA-
MIDKV (Cai et al., 2024)—further trim GPU footprints but
treat retained tokens as an unstructured bag.

Retrieval-augmented generation (RAG). Classical RAG
pipelines couple a dense retriever with an encoder-decoder

1

Dynamic Causal-Graph Memory

LLM (Lewis et al., 2020). While this setup excels on fac-
toid QA, recent evidence shows a marked drop on multi-
hop or ultra-long inputs, even when the retriever is oracle-
guided (Tang & Yang, 2024). Luo et al. question whether
RAG is intrinsically ill-suited for long-context reasoning
and propose RETROLM to mitigate token-level fragmenta-
tion, yet their design still performs independent decoding
over retrieved chunks (Luo et al., 2025).

Structured memory and graphs. A complementary strand
models token interactions as graphs, enabling explicit multi-
hop reasoning; examples span code understanding (Guo
et al., 2021) and scientific-literature mining (Yasunaga et al.,
2022). These systems, however, build the graph offline
and outside the LM. Our Dynamic Causal-Graph Memory
(DCGM) unifies the two lines: it constructs and prunes
a causal graph online during generation, preserving key
reasoning paths while matching the linear-memory budget
of state-of-the-art caches.

3. Dynamic Causal-Graph Memory (DCGM)
We view the LM’s external buffer at time step t as a directed,
weighted graph Gt = (Vt, Et, γt) whose structure evolves
with the decoding stream.

3.1. Graph construction

Let R(qt, K) return K textual chunks {ct,1, . . . , ct,K} re-
trieved for query representation qt=fqry(x≤t). For every
new chunk c, we store a node v = ϕ(c) ∈ Rd (frozen en-
coder ϕ). Given the decoder’s multi-head attention weights
{α(h)

ij }Hh=1 between tokens in vi and vj , we define the causal
score

γij =
1

H

H∑
h=1

(
1

|vi| |vj |

∑
p∈vi

∑
q∈vj

α(h)
pq︸ ︷︷ ︸

token-level avg. attention

)
.

Edge (i→ j) is inserted iff γij > τt where the threshold
τt = η ·

(log |Vt|
|Vt|

)
adapts to the current graph size. This

yields at most O(|Vt| log |Vt|) edges per step (proof in §4).

3.2. Sparsification and message passing

For tractability we keep, for every node i, only the top-
M outgoing edges by γij ; write NM (i) for the retained
neighbors. One round of causal propagation computes

h
(1)
i = ReLU

(
W0vi +

∑
j∈NM (i)γ̂ij W1vj

)
,

γ̂ij=
γij∑

k∈NM (i)γik
.

Algorithm 1 Online DCGM maintenance (one step)
1: Input: stream token xt, retrieverR, graph Gt−1, bud-

gets (K,B,M)
2: Ct ← R

(
fqry(x≤t), K

)
3: for all c ∈ Ct do
4: v ← ϕ(c); Vt ← Vt−1 ∪ {v} {encode & add node}
5: end for
6: for all (i, j) ∈ Vt × Vt s.t. i ̸= j do
7: compute γij ; if γij > τt then Et ← Et ∪ {(i, j)}
8: end for
9: prune lowest-centrality nodes until |Vt| ≤ B

10: return Gt = (Vt, Et, γt)

After L hops we obtain {h(L)
i } and aggregate a fixed-length

memory vector gt = Pool
(
{h(L)

i }i∈Vt

)
(max- or attention-

pool). The decoder attends to gt through a gating adapter:
x̃t = LN(xt +Wg gt), where Wg ∈ Rd×d is learned and
frozen for stable online updates.

Complexity. With heaps for centrality scores, Algorithm 1
runs in O(K logB + BM logM) per step; choosing
K,M = O(logB) yields the overall O(N logN) bound
advertised earlier. Memory scales linearly with B nodes
and BM edges, matching the budget of modern KV-cache
compressors yet exposing an explicit graph that downstream
tasks can query or visualize.

4. Complexity and Theoretical Guarantees
Throughout we fix budgets B (nodes) and M (out-edges per
node) and assume K=Θ(logB) newly retrieved chunks per
step as in §3. Let N denote the number of decoding time
steps.

4.1. Memory and time complexity

Proposition 4.1 (Streaming bounds). For any stream length
N the online DCGM maintainer Algorithm 1 satisfies:

(a) Peak memory. max
t

(
|Vt|+ |Et|

)
= B +BM.

(b) Per-step FLOPs. Each update runs in O
(
K logB +

BM logM
)

worst-case time.
(c) End-to-end FLOPs. With K,M = Θ(logB) we ob-

tain O
(
NB logB

)
= O

(
N log2 N

)
when B =

Θ(logN).

Proof. (a) Lines 3–5 insert at most K nodes; line 8 prunes
until |Vt| ≤ B, after which the top-M rule leaves |Et| ≤
BM . (b) Retrieving K chunks costs O(K); heap-based
centrality pruning costs O(B logB). Computing causal
scores between a new node and current B nodes, followed
by selecting M largest via a binary heap, costs O(B logM).
Summed over K nodes we have the stated bound. (c) Substi-

2

Dynamic Causal-Graph Memory

tute K,M = Θ(logB) and telescope over N steps. Choos-
ing B:=⌈logN⌉—sufficient in practice to hold the most
informative nodes—yields O(N log2 N) total operations,
strictly below quadratic attention.

4.2. Approximation error from sparsification

Let Gt be the full graph prior to the top-M truncation, G̃t

the sparsified version, and P
(L)
t (P̃(L)

t) the L-hop mes-
sage propagation operator on Gt (G̃t). Define δt :=
maxi

∑
j /∈NM (i)γij as the total out-probability mass dis-

carded at step t.
Proposition 4.2 (Stability of causal pooling). Assume
∥W1∥2 ≤ λ < 1 and Pool is 1-Lipschitz. Then for any
step t ∥∥gt − g̃t

∥∥
2
≤ λ

1− λ
δt L.

Consequently, if δt ≤ ε/L at every step, the pooled memory
deviates by at most ε.

Proof. Write h(1) = W0v+W1

∑
j γijvj and likewise h̃(1)

with γ̃ij that zeroes all truncated edges. By triangle inequal-
ity ∥h(1) − h̃(1)∥2 ≤ ∥W1∥2 δt ≤ λ δt. Iterating L hops
and summing the resulting geometric series gives the stated
bound; the Lipschitz property of Pool propagates the error
unchanged to gt.

Discussion. δt is data-adaptive: when attention is already
concentrated on few chunks, sparsification incurs negligi-
ble error. Empirically we observe δt<0.05 after the first
dozen steps, yielding sub-percent deviation even with L=3.
Proposition 4.2 therefore explains why DCGM matches full-
graph accuracy while retaining logarithmic memory and
O(N logN) compute.

4.3. Spectral approximation of the full graph

Define the (symmetrized) attention matrix At =
1
2 (γt+γ⊤t)

and the degree matrix Dt = diag(At1); let Lt = Dt −At

be the Laplacian of the full graph before truncation, and L̃t

that of the sparsified graph G̃t produced by DCGM (top-M
rule).
Theorem 4.3 (Spectral sparsifier). Fix a step t and suppose
M ≥ c ε−2 log |Vt| with c > 0 an absolute constant. Then,
with probability 1 − |Vt|−3 over the randomness of node-
order ties,1 the sparsified Laplacian satisfies

(1− ε)Lt ⪯ L̃t ⪯ (1 + ε)Lt.

Sketch. Following Spielman & Srivastava (2011), let pij =
min

{
1,

M γij∑
k γik

}
be the (implicit) retention probability of

1The only randomness in DCGM is how ties are broken when
multiple edges share the M -th largest weight. Deterministic sched-
ules satisfy the same bound with δt in place of ε.

edge (i, j) under the top-M scheme. Because
∑

j pij = M

by construction and γij ≤ τ−1
t Lij , matrix Chernoff bounds

give ∥L̃t − Lt∥2 ≤ ε ∥Lt∥2 with the stated M . A full
derivation appears in Appendix A.

Implications. Theorem 4.3 shows that DCGM preserves
all quadratic forms z⊤Lz up to (1±ε), so random-walk mix-
ing times and effective resistances are nearly unchanged rel-
ative to the full graph. Hence any multi-hop reasoning path
that is important in the dense graph remains numerically
stable in the sparse one, tightening the informal argument
behind Proposition 4.2.

Space–optimality remark. Kapralov et al. (2017) show
that any single-pass algorithm that produces a (1±ε) spec-
tral sparsifier must retain Ω

(
|Vt| log(1/ε)

)
edges in the

worst case. With M = Θ(log |Vt|) our storage B+BM =
Θ(|Vt| log |Vt|) therefore meets this lower bound up to the
benign log |Vt|/ log(1/ε) factor, indicating DCGM is essen-
tially space-optimal under the streaming model.

5. Benchmark and Experimental Setup
5.1. LongHopQA: a million-token multi-hop suite

Building on the insight that existing long-context tasks
rarely exceed 32 K tokens, we curate LongHopQA, a 40
K-query benchmark whose contexts span 1.0±0.22 M to-
kens (mean±sd). Each query is paired with 4–8 source
documents drawn from arXiv, U.S. Congressional Records,
Wikipedia and StackOverflow code threads, linked together
through an entity–relation BFS similar to HotpotQA (Yang
et al., 2018). Answers require synthesizing at least three
facts that reside in distinct documents; 23 % of queries
demand a 5-hop chain. We release gold rationales and a
distractor-free “oracle retrieval” list to separate reasoning
from search (§2 complaint).

5.2. Models and training

We finetune an INFINI-LLAMA-8B base model (1.1 M-token
window) with three memory variants:

(a) DCGM (ours) with budgets B=1024, M=16, L=3.
(b) SNAPKV (Li et al., 2024) tuned to the same 1024-slot

cache.
(c) PYRAMIDKV (Cai et al., 2024) (4-level).

All models share the same retriever: BM25 over 8-gram
windows followed by a Contriever re-ranker (Izacard et al.,
2022). Finetuning uses AdamW (3 epochs, lr= 2×10−5,
batch= 8) on 8 A100-80 GB GPUs with gradient check-
pointing and ZeRO-3 off-loading.

3

Dynamic Causal-Graph Memory

5.3. Evaluation metrics

We report (i) Exact-Match (EM) and token-level F1 com-
puted on normalized answers; (ii) MRR@64 of the re-
triever w.r.t. gold rationales; (iii) peak GPU memory and
tokens/sec for a 512-token generation horizon; and (iv)
the hop accuracy—fraction of predictions whose utilized
causal path length matches the oracle chain—to probe rea-
soning depth. All metrics are averaged over the 5 k-query
public test split; a hidden leaderboard tracks the full set to
mitigate over-tuning.

6. Results

Table 1. LongHopQA test results (5 k queries). GPU-h is wall-
clock training time on 8×A100-80 GB. Peak mem. is for a 512-
token decode.

Method EM↑ F1↑ GPU-h↓ Peak mem. (GB)↓

PYRAMIDKV 60.1 67.0 10.8 47
SNAPKV 62.5 69.9 9.6 38
DCGM (ours) 71.4 78.2 9.2 38

Figure 1. Ablation on M (outgoing edges per node). F1 saturates
beyond M=16, validating the logarithmic-sized subgraph used in
§3.

Key takeaways. (1) Accuracy–efficiency sweet spot.
DCGM lifts F1 by +8.3 over SNAPKV while matching
its 38 GB memory footprint and shaving 4% off GPU hours,
confirming the benefits of causal message passing without
extra hardware cost.

(2) Importance of structured sparsity. Figure 1 shows
steep gains from M=4→16 but diminishing returns there-
after; retaining all edges (M≈103) yields a mere +0.1 F1
yet explodes memory, aligning with Proposition 4.2.

(3) Deeper chains, better answers. DCGM solves 57% of
5-hop queries versus 31% for SNAPKV, indicating that the
graph actually facilitates long-range multi-hop reasoning
rather than acting as a mere cache compressor.

7. Discussion and Limitations
When does DCGM help? The causal graph offers the
largest gains when answers hinge on distant, sparsely con-
nected facts—e.g. code patches dispersed across repositories
or legal clauses buried in multi-year bills. Here, message
passing surfaces the small subset of chunks that form a
logical chain, lowering compute yet boosting recall (§6).
Conversely, if evidence is locally clustered (news summa-
rization) or the retriever already returns a near-singleton
context, the graph collapses to a star and DCGM reduces to
a lightweight KV cache with negligible added value.

Failure modes and open problems. First, DCGM inher-
its retriever errors: if a key chunk is never retrieved, no graph
traversal can recover it. Second, the attention- derived edge
weights may spuriously amplify hallucinated tokens, prop-
agating noise. Detecting and damping such “hallucination
hubs” remains future work. Third, our theoretical bounds
assume fixed budgets (B,M); adapting them on-the-fly (e.g.
via bandits) could further tighten the accuracy–efficiency
frontier.

Ethical considerations. Large-scale retrieval raises pri-
vacy and copyright questions when personal emails or pay-
walled PDFs enter the buffer. DCGM mitigates exposure by
discarding low-centrality nodes, but the retained subgraph
can still leak sensitive spans if the model is prompted adver-
sarially. We therefore recommend pairing DCGM with es-
tablished content-filter pipelines and logging every retrieved
URL for post-hoc audit. Finally, the graph’s causal scores
may encode societal biases present in attention weights; au-
diting centrality distributions across demographic attributes
is an important direction for responsible deployment.

8. Conclusion
We introduced Dynamic Causal-Graph Memory (DCGM),
a retrieval-augmented module that elevates the LM’s buffer
from an unstructured KV cache to a streaming, sparsifi-
able graph whose edges are grounded in the model’s own
attention. DCGM achieves (i) linear-in-context memory
with an O(N logN) update algorithm, (ii) provable bounds
that guarantee both FLOP efficiency and bounded error af-
ter sparsification, and (iii) state-of-the-art accuracy on the
new million-token LongHopQA benchmark while matching
the GPU footprint of leading cache compressors. Together,
these results show that causal structure—not window size
alone—is key to long-context reasoning. Future work will
explore adaptive budget schedules, multimodal extensions,
and bias-aware edge reweighting, moving toward foundation
models that can reason over vast, heterogeneous corpora
without prohibitive compute or ethical risk.

4

Dynamic Causal-Graph Memory

Impact Statement
This work advances the efficiency and faithfulness of long-
context language models by introducing a sparsifiable causal
memory. Potential benefits include lower carbon and hard-
ware cost—DCGM meets million-token reasoning within
the memory budget of a single A100—and improved inter-
pretability: the explicit graph lets practitioners trace which
retrieved spans influence each prediction. Risks stem from
large-scale retrieval: (i) privacy breaches if personal or copy-
righted documents enter the buffer, and (ii) amplification
of social biases already latent in attention weights. Miti-
gations include URL logging for post-hoc audit, content
filters on the retriever, and fairness probes on node central-
ity scores. Overall, we believe the societal gains of more
resource- frugal, auditable long-context models outweigh
these manageable risks.

References
Cai, Z., Zhang, Y., Gao, B., Liu, Y., Li, Y., Liu, T., Lu, K.,

Xiong, W., Dong, Y., Hu, J., et al. Pyramidkv: Dynamic
kv cache compression based on pyramidal information
funneling. arXiv preprint arXiv:2406.02069, 2024.

Dao, T. Flashattention-2: Faster attention with better paral-
lelism and work partitioning. In The Twelfth International
Conference on Learning Representations (ICLR), 2024.

Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Shujie, L., Zhou,
L., Duan, N., Svyatkovskiy, A., Fu, S., et al. Graphcode-
bert: Pre-training code representations with data flow. In
International Conference on Learning Representations,
2021.

Izacard, G., Caron, M., Hosseini, L., Riedel, S., Bojanowski,
P., Joulin, A., and Grave, E. Unsupervised dense infor-
mation retrieval with contrastive learning. Transactions
on Machine Learning Research, 2022.

Kapralov, M., Lee, Y. T., Musco, C., Musco, C. P., and
Sidford, A. Single pass spectral sparsification in dynamic
streams. SIAM Journal on Computing, 46(1):456–477,
2017.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel,
T., et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in neural information pro-
cessing systems, 33:9459–9474, 2020.

Li, Y., Huang, Y., Yang, B., Venkitesh, B., Locatelli, A., Ye,
H., Cai, T., Lewis, P., and Chen, D. Snapkv: Llm knows
what you are looking for before generation. Advances
in Neural Information Processing Systems, 37:22947–
22970, 2024.

Luo, K., Liu, Z., Zhang, P., Qian, H., Zhao, J., and Liu, K.
Does rag really perform bad for long-context processing?
arXiv preprint arXiv:2502.11444, 2025.

Munkhdalai, T., Faruqui, M., and Gopal, S. Leave no con-
text behind: Efficient infinite context transformers with
infini-attention. arXiv preprint arXiv:2404.07143, 101,
2024.

Spielman, D. A. and Srivastava, N. Graph sparsification by
effective resistances. SIAM Journal on Computing, 40(6):
1913–1926, 2011. doi: 10.1137/080734029.

Tang, Y. and Yang, Y. Multihop-rag: Benchmarking
retrieval-augmented generation for multi-hop queries. In
First Conference on Language Modeling, 2024.

Tropp, J. A. User-friendly tail bounds for sums of random
matrices. Foundations of Computational Mathematics,
12(4):389–434, 2012. doi: 10.1007/s10208-011-9099-z.

Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W., Salakhut-
dinov, R., and Manning, C. D. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering. In
Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 2369–2380,
2018.

Yasunaga, M., Leskovec, J., and Liang, P. Linkbert: Pre-
training language models with document links. In Pro-
ceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 8003–8016, 2022.

5

Dynamic Causal-Graph Memory

A. Proof of Theorem 4.3
We restate the theorem for convenience.
Theorem (Spectral sparsifier). Fix a decoding step t and let Lt be the Laplacian of the full attention graph Gt = (Vt, Et, γt).
If M ≥ c ε−2 log |Vt| with c > 10, then the Laplacian L̃t of the sparsified graph produced by DCGM satisfies

(1− ε)Lt ⪯ L̃t ⪯ (1 + ε)Lt, w.p. 1− |Vt|−3.

A.1. Preliminaries

For an undirected edge e = (i, j) with weight we = γij , define its incidence vector be ∈ R|Vt| by (be)i = 1, (be)j = −1,
zeros elsewhere; then Lt =

∑
e∈Et

we beb
⊤
e . Likewise L̃t =

∑
e∈Ẽt

we beb
⊤
e .

Our top-M rule is equivalent to sampling each edge independently with probability

pe = min
{
1, M we∑

e′: e′∼i we′

}
, (A.1)

where e∼ i means e is incident to vertex i. (Deterministic selection of the M largest outgoing weights simply realizes one
extreme point of the sampling distribution; random tie-breaking makes e’s inclusion a Bernoulli(pe) variable.)

A.2. Expectation and rescaling

Let the random matrix Xe = we

pe
beb

⊤
e · 1{e ∈ Ẽt} so that L̃t =

∑
e∈Et

Xe. Because E[Xe] = we beb
⊤
e , we have

E[L̃t] = Lt.

A.3. Matrix Chernoff bound

Each Xe is PSD and ∥Xe∥2 ≤ we

pe
≤

∑
e′: e′∼i we′

M ≤ λmax(Lt)
M because the largest degree upper-bounds λmax. Set

R := λmax(Lt)/M and µ := λmax(E[L̃t]) = λmax(Lt). The matrix Chernoff inequality (Tropp, 2012, Thm. 5.1) gives, for
0 < ε ≤ 1,

Pr
[
∥L̃t − Lt∥2 ≥ εµ

]
≤ 2|Vt| exp

(
− ε2µ

2R

)
≤ 2|Vt| 1−

c
2 ,

where the last step substitutes R and M ≥ c ε−2 log |Vt|. Choosing c > 10 yields the |Vt|−3 failure probability.

A.4. Putting it together

With the above event complement, ∥L̃t − Lt∥2 ≤ εµ implies (1− ε)Lt ⪯ L̃t ⪯ (1 + ε)Lt, completing the proof.

6

