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ABSTRACT

Large language models (LLMs) often encode social biases tied to sensitive fea-
tures such as race and gender, undermining fairness in downstream tasks even after
instruction tuning. Conventional debiasing methods require expensive fine-tuning,
are tied to specific architectures, or operate only at the input or decoding stage
while neglecting attention-level representations, which can result in compromised
task performance. Moreover, most approaches are tailored to single-attribute set-
tings and do not explicitly address scenarios with multiple, overlapping protected
attributes and their intersections. This paper proposes a novel method of multi-
feature quantized attention regularization (MQAR) to mitigate multi-feature bias
by injecting a structured quantization into frozen self-attention layers. MQAR
disentangles attribute-specific activations through vector-quantized regularization
and uses a discriminator-guided autoencoding regularizer to adversarially sup-
press protected-attribute information while preserving task-relevant semantics.
Crucially, the proposed method operates without modifying the backbone pa-
rameters or accessing pre-training data, ensuring architecture-agnostic applica-
bility and minimizing representation distortion. MQAR is evaluated on five di-
verse LLMs (BERT, TS5, GPT-Neo, Mixtral, and LLaMA 3.2) using three standard
bias benchmarks (WinoBias, StereoSet, and CrowS-Pairs). Across these models,
MOQAR consistently reduces bias for multiple protected attributes and their inter-
sections while maintaining downstream accuracy within at most 0.4 %, on aver-
age, of non-debiased baselines on sentiment analysis, abusive language detection,
and text generation tasks. These findings highlight quantized attention regular-
ization as a scalable and effective method for mitigating social bias in modern
language models.

1 INTRODUCTION

Large language models (LLMs) have shown remarkable performance across a wide range of natural
language processing (NLP) tasks. By leveraging self-attention mechanisms, LLMs encode rich
contextualized representations that can generalize well to downstream applications such as sentiment
analysis, natural language inference, and text generation (Sun et al.| 2019j|Alaparthi & Mishra,2021;
Lin & Sul 2021} |Zhu et al, 2020). However, it has been widely observed that these models also
absorb and propagate social biases present in the training data, including those related to gender,
race, and religion (Schramowski et al. 2022)). Such biases not only undermine fairness but also
introduce systemic risks when LLMs are deployed in real-world applications.

Recent work has shown that bias in LLMs is not solely inherited from data but is often amplified
by the internal self-attention structures of the models (Jiang et al.,[2022). The attention mechanism
entangles sensitive feature information with semantic content, causing the model to produce biased
outputs even in seemingly neutral contexts (Liu et al.l 2024). For example, in abusive language
detection, sentences containing female-related terms are more likely to be misclassified as offensive,
reflecting a learned association between gender and abuse (Park et al., 2018} [Park & Cho) 2025).
These representational biases persist even when downstream classifiers are trained separately, as the
bias is embedded within the latent representations themselves, and they remain measurable even in
instruction-tuned and alignment-optimized LLMs.
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Figure 1: Overview of the proposed MQAR method. Token sequences are first encoded via the
frozen self-attention layers of a pre-trained LLM. Structured quantization is applied to the attention
outputs to isolate attribute-specific activations, followed by an adversarial autoencoder that regular-
izes the latent space to remove biased information without compromising semantic consistency.

To address this, several debiasing methods have been proposed, including dataset reweighting
(Mozafari et al.,|2020), input perturbation (Manerba & Tonelli,2021)), and fairness-aware fine-tuning
(Yu et al.,[2023). More recently, inference-time techniques based on prompting and decoding have
also been explored to steer model outputs without modifying model parameters. However, these
approaches suffer from two key limitations. First, they often rely on retraining or fine-tuning the
backbone of the LLM, which is computationally expensive and often architecture-dependent. Sec-
ond, many methods are designed for a single protected attribute and do not scale well to real-world
scenarios involving multiple, overlapping protected attributes and their intersections (Zhao et al.,
2023)). Consequently, there remains a need for a model-agnostic, lightweight debiasing method
that directly targets representation-level bias in multi-attribute settings without modifying the core
parameters of the LLM.

To overcome this problem, this paper proposes Multi-feature Quantized Attention Regularization
(MQAR), a novel method for mitigating social bias in LLMs by intervening in their frozen self-
attention layers. As shown in Figure [I[] MQAR introduces a structured quantization process into
attention outputs to disentangle attribute-specific activations, followed by an adversarial autoen-
coder that regularizes the representations to suppress bias while preserving semantic information.
In contrast to prior approaches, MQAR operates directly on the internal attention representations
of a frozen backbone and is trained with multi-feature supervision so that a single MQAR module
can jointly debias multiple protected attributes (e.g., gender and race) without access to the original
training data. Moreover, MQAR leaves the LLM backbone untouched, enabling generalized de-
ployment across diverse pre-trained models, including BERT, T5, GPT-Neo, Mixtral, and LLaMA
3.2.

MQAR is evaluated on two widely used bias benchmarks, WInoBias, StereoSet, and CrowS-Pairs.
Across five LLMs, MQAR consistently reduces bias for multiple protected attributes and their in-
tersections, while maintaining downstream accuracy within at most 0.4% of non-debiased baselines
on tasks such as sentiment analysis, abusive language detection, and text generation. These results
position MQAR as a scalable, architecture-agnostic, and fine-tuning-free debiasing solution. Its
ability to mitigate multi-attribute bias without retraining makes it especially practical for real-world
applications where retraining is infeasible.

2 RELATED WORKS

2.1 LARGE LANGUAGE MODELS AND THEIR BIAS

Transformer-based LLMs such as BERT (Devlin et al.l 2018), TS (Raffel et al., [2020), GPT-3
(Brown et al.} 2020), Mistral (Jiang et al., 2023)), and LLaMA (Touvron et al., 2023) have achieved
remarkable performance on a wide range of NLP tasks. These models learn rich contextual represen-
tations through self-attention over large-scale corpora, which inherently reflect and reproduce social
biases present in the data (Schramowski et al., [2022). Such biases have been shown to propagate to
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downstream applications, leading to discriminatory behavior in practical tasks such as abusive lan-
guage detection, sentiment analysis, and coreference resolution, and they remain measurable even
in instruction-tuned or alignment-optimized variants.

To evaluate these effects, several benchmark datasets have been developed. SEAT (May et al.,[2019)
measures sentence-level association bias, WinoBias (Zhu et al.,|2020) focuses on gendered corefer-
ence resolution, StereoSet (Nadeem et al., 2020) and CrowS-Pairs (Nangia et al.,[2020)) target stereo-
typical associations across domains, BiasBios (De-Arteaga et al.,|2019) evaluates occupational bias
using gender-masked bios, BBQ (Parrish et al.| 2022) explicitly probes social and intersectional bias
in question—answering settings, and CoBia (Nikeghbal et al., |2025) constructs lightweight adversar-
ial conversations in which an LLM first produces a biased claim. These datasets collectively provide
a comprehensive suite for evaluating representational and behavioral biases in LLMs under both
static and interactive settings. This paper primarily employs WinoBias, StereoSet, and CrowS-Pairs
to assess how well MQAR mitigates biases across multiple protected attributes.

2.2 BIAS MITIGATION IN LANGUAGE MODELS

Bias mitigation strategies for language models are typically categorized into embedding-level,
model-level, and inference-time approaches. Embedding-based methods, such as SentDebias (Liang
et al., [2020), INLP (Ravfogel et al.,|[2020), and OSCaR (Dev et al.|[2020), aim to remove protected-
attribute information via projection (e.g., removing directions aligned with protected attributes) or
representation alignment. However, these methods may compromise the expressiveness of learned
features by overly constraining the latent space, thus reducing its capacity to encode task-relevant
information (Shin et al.l 2020} Kaneko & Bollegala,|2019)).

Model-level approaches, including ADELE (Lauscher et al., 2021) and FaRM (Chowdhury &
Chaturvedi, [2022), inject fairness objectives into training loss functions or introduce debiasing mod-
ules during training. While effective, such methods often require access to training data and exten-
sive fine-tuning of the backbone, which limits their scalability and adaptability to new domains and
proprietary LLMs.

Inference-time approaches aim to mitigate bias during model inference by manipulating prompts
or controlling decoding strategies (Fatemi et al., 2021, and more recent methods such as CRISPR,
CPAD, and RB (e.g.,|Yang et al.| 2024 Dati et al.l |2024; |Kim et al.| 2025)) further refine outputs by
adjusting generation trajectories without changing model parameters. These techniques are attrac-
tive because they are model-agnostic and parameter-free, but they do not directly modify internal
representations, and therefore may leave attention-level biases intact.

Despite recent progress, most prior work targets a single protected attribute at a time and pro-
vides limited support for scenarios involving multiple, intersecting protected features (e.g., gender
and race) (Zhao et al.| [2023). Moreover, existing methods are typically tied either to embedding-
level projections, full-model fine-tuning, or purely output-level inference-time control. In contrast,
MQAR directly targets internal attention activations in frozen LLMs by introducing a quantized bot-
tleneck and an adversarial autoencoder that jointly debias multiple protected features with a single
plug-in module, without access to pre-training data or modification of backbone parameters. To
the best of our knowledge, MQAR is among the first attention-level debiasing methods that operate
entirely on frozen LLMs while explicitly addressing multiple protected attributes and their intersec-
tions.

3  QUANTIZED REGULARIZATION OF SELF-ATTENTION

3.1 REPRESENTING SELF-ATTENTION OF LLMS

To formalize the intervention point for the proposed regularization, this section begins by briefly
reviewing the self-attention mechanism in transformer-based LLMs. Given an input token sequence
W, = {wo,...,wy,}, a pre-trained LLM encodes it through a stack of multi-head self-attention
layers, producing contextualized representations at each layer. Let X;_; € R™*4 denote the hidden
state at layer « — 1. The attention operation at layer ¢ is defined as:
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Figure 2: (a) Visualization of attention heatmaps in BERT for gender-swapped input pairs, reveal-
ing differential focus induced by gender bias. (b) Schematic overview of MQAR’s integration into
the self-attention layer via pre-attention regularization. (c) Conceptual diagram illustrating how
quantized regularization compresses and disentangles protected attribute signals from semantic rep-
resentations.
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where dj, denotes the dimension of the key vectors. While this attention mechanism effectively cap-
tures contextual dependencies, it can also entangle task-irrelevant signals such as sensitive feature
information. As illustrated in Figure [2(a), gender-swapped sentence pairs elicit markedly different
attention maps, indicating that the attention mechanism encodes attribute-specific signals.

&zme( )w Qi=X;i WP, K, =X, WK, Vi=X;.aW)/ ()

To mitigate this, as illustrated in Figure2[b, c), this paper introduces a layer-wise quantized regular-
ization (QR) module that transforms the input X;_; into a debiased representation X;_1:

Xi1=QRi1(Xi1) 2)

Xi WX WE)T
Vj,

Section 3.2 describes a formal explanation of the regularization. This design enables MQAR to
suppress sensitive feature information within the attention computation itself, improving fairness
without degrading contextual expressiveness. Crucially, the method requires no modification to
LLM parameters, making it applicable to frozen pre-trained models.

X,; = softmax Xi_lwiv 3)

3.2 REGULARIZING SELF-ATTENTION WITH QUANTIZED ADVERSARIAL AUTOENCODER

The proposed method mitigates representational bias in self-attention by applying structured reg-
ularization over latent representations within a quantized adversarial autoencoder. Autoencoders
compress high-dimensional embeddings into a lower-dimensional latent space, and when combined
with adversarial learning, allow suppression of sensitive attribute signals while retaining semantic
content.

Structure. Formally, given a token representation x(; ;) at layer [ and position 7, an encoder e;
first maps it to a latent vector z(; ;) = €1 (:U(M)). A reconstruction decoder d; then producesx’(l,i) =
dq (z(l’i)), and a reconstruction loss encourages mzl ;) to remain close to x(; ;), ensuring that 2 ;)

preserves the original semantic content. To introduce a debiasing bottleneck, MQAR applies a
structured vector quantizer () to obtain a mutated latent representation r(; ;) = Q(z(l,i)), which
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is fed forward to subsequent layers in place of the original representation. A second decoder ds
reconstructs the token representation from this quantized latent x’(’l B = ds (T(z,i) ), and an additional

reconstruction term encourages 372/1 i) R T(i) SO that quantization and debiasing do not excessively
distort task-relevant semantics.

For debiasing, each token (or sentence) is annotated with a multi-hot protected-attribute label vector
a € {0, 1}M , where M is the number of protected attributes (e.g., gender, race, religion) and each
dimension indicates the presence of a particular attribute. A discriminator D, takes the mutated
latent 7(; ;) as input and predicts & = D,(r(;)). During training, D, is optimized to correctly
classify a, while the encoder—quantizer pair (eq, @) is trained adversarially to obfuscate a. This
multi-hot supervision discourages the model from encoding correlated attribute signals in a shared
latent subspace and drives r(; ;) toward a representation that retains semantic information but sup-
presses multiple protected features jointly.

Accordingly, the quantized regularization (QR) module at layer [ and position ¢ can be viewed as the
composition QR;(-) = d2(Q(e1(+))), which maps an attention output to its debiased, reconstructed
counterpart before it is passed to the remaining layers.

Training 1: Training quantized autoencoder and discriminator. According to/Hsu et al.|(2024),
the proposed method uses two types of loss to train a quantized autoencoder, consisting of encoder
e1 and decoder d, in a differentiable manner. The two losses enable the autoencoder to learn the
discrete representation @ € Z% of a in the latent space through the data and to guide the latent
vector z of the input data towards a with some integer K and m’. Here, a € Z%/ denotes the quan-
tized latent vector derived from a codebook of size K, representing discrete prototypes aligned with
protected attributes. The encoder e; maps inputs to a continuous latent z, which is then quantized
into a using nearest-neighbor search. The straight-through gradient estimator enables the propaga-
tion of gradients through the non-differentiable quantization step. The quantization 10sS Lgyantize
pulls the discrete values constituting z unilaterally towards the encoder’s pre-quantized continuous
output. This adjustment is necessary to optimize a, because the straight-through gradient estimation
decouples & from the computation graph. In contrast, the commitment 10ss L ymmi: ensures that
the pre-quantized representation, which receives gradients from downstream computations, remains
close to the codebook entries. Although this issue is significant in vector quantization, using scalars
instead of high-dimensional vectors mitigates the problem. This allows for a substantial reduction
in the quantization and commitment losses while maintaining training stability, providing the model
with essential flexibility to reorganize the discrete latent space.

Lyuantize = ||StopGradient(z) — &Hg 4)
Lco’rrnnit = HZ - StOpGTGdZ@nt(d)”g (5)

Training of the autoencoder, decoder d;, ds, and discriminator occurs simultaneously. The losses
for the decoder and discriminator, which are composed of MLPs, use BCE (Binary Cross-Entropy)
to compare with = and a, respectively. Equation (6) represents the overall loss term at this stage.

L= Lquantize + Lcommit + Ld1 + Ld2 + LD,,, (6)

Training 2: Regularization by discriminator. Subsequently, the discriminator D, is fixed, and
protected feature labels of the mutated latent vector a = {ao, ..., @, } are randomized as a” =
{ag,...,al,}. As z and r are regularized, while D, maintains to discriminate the protected feature
label of them appropriately, z and r are learned not to be distinguished by D,. By iterating learning
the discriminator and randomizing the label, z and r are learned to disentangle for protected features
(Makhzani et al., 2015} |Park & Cho, [2023)).

The goal is to optimize the latent representation r such that it maximally retains information about
the input sentence z, while minimizing the mutual information with protected attributes a. This
objective aligns with the information bottleneck principle, and is formally expressed as equation (7),
where I represents mutual information, X is the original embedded representation, R is the mutated
latent vector, A is the attribute of protected feature, and /3 is a coefficient to balance the two terms.
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max L =1(R;X)— BI(R;A) (7

To deal with the difficulty in estimating mutual information, this paper uses upper and lower bounds
along with Monte Carlo gradient estimates. This paper introduces the following lemmas, and the
proofs for them are presented in Appendix [G|

As maximizing I (R; X) represents the association value between the original token X and the latent
vector R, we can maximize the lower bound of equation (@)
Lemma 1. For any conditional distribution p,

I(R;X)=E Np<mz’“’))’7,N7,L(r|z)7z~el(z|z(l,¢)) [ZOQDZ(x(l,i)V)} + H(x) ®)

T4

where Do is the function of decoder 2 ds, q is the encoder function, p is the real distribution, m is
the projection function, and H is the entropy.

As entropy is non-negative, the lemma implies the lower bound as equation (9).

IEX) 2B, o logDQ(x/(/M)\r)} =L, )

T(1,4) x(lyi))ar’\‘m('r"*z)vz"’el(z‘i(l,i)) |:

At the same time, by minimizing I (R; A) which represents the association value between the latent
vector R and the protected feature attribute A, we can also maximize the lower bound of equation
(7).
Lemma 2. For any conditional distribution m,

m(r|z)

I(R;A) < l
(R ) < [ m(rl2)p () oy ™

However, it is not ideal because considering only the function m is not stable. For the tighter upper
bound when assuming optimal dual regularization, I(R; A) can be approximated.
Corollary 3. If Dk (p(alr) || h(a|r)) <1,

I(R;A) <Eppra)llogp(a|r) —logp(a)] +1 (11

=0 (10)

As the adversarial discriminator approaches the

global optimum, that is, [ — 0, the upper bound of

) : : Algorithm 1: Latent Regularization via
I(R; A) can be written as equation (12). Adversarial Training
Data: Data X and protected features A

I(R;A) <Ep(ra)[logp(a|r) —logp(a)] := Co  Result: Fully trained encoder e;

(12) TInitialize e;, D1, Ds;
for epochs do
for batches do
Sample z, a, a from X, A,

U(0, 1) respectively;

The final objective function for bias mitigation can
be formulated as equation (7).

max L, — $1C1 — 202 (13) Oy < 0 — ngg—i’l‘(x,'d);
As the autoencoder is optimized in the distribution 0p, < 0p, — n%(x,&);
space, this paper can show that strong duality holds 0. 0. — D(C1+Cs) (2, 3);
within a constrained optimization approach (Song et T V5
et all 2019), O O — 2L (2,3);
Theorem 4. If €1,¢e2,¢35 > 0, then strong duality 0p, < 0p, — ngg&(% a);
holds for the following optimization problem over end Pz
distributions p,eq,m:
end
min L s.t.Cy <e,03 < é€r (14) return e;;

p,e1,m

While £, encourages z and r to retain maximal information about the input z, the regularization
terms C7 and Cs act as adversarial constraints, discouraging encoding of protected attribute infor-
mation. Algorithm|I]shows its training process.
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3.3 USING DEBIASED LLMS FOR DOWNSTREAM TASKS

MQAR functions as a lightweight plug-in module applied at the self-attention level of a pre-trained
LLM, transforming token representations before they are processed by the frozen layers. The trans-
formation preserves semantic content while suppressing protected attribute signals. Once debiased,
the modified embeddings are propagated unchanged through the rest of the model. Since MQAR
does not require access to backbone weights or gradient updates, it is well-suited for deployment in
black-box models and resource-constrained environments.

To train the adversarial discriminator D,, MQAR adopts weak supervision from curated lexicons
(Dev et al., 2020), selecting only instances that contain clear linguistic cues of protected attributes
(e.g., pronouns, occupational terms). Ambiguous or neutral instances are excluded to prevent su-
pervision noise and maintain precise regularization. This selective supervision ensures that bias
mitigation is applied only where necessary, avoiding distortion of unbiased content.

Unlike prior debiasing approaches that rely on model fine-tuning, data augmentation, or training-
time fairness constraints, MQAR operates entirely during inference. It introduces no structural
modifications and requires no retraining, making it a practical and scalable solution for fairness-
sensitive applications.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

For experiments, this paper has conducted all experiments on Ubuntu servers equipped with Intel(R)
Xeon(R) Silver 4210R CPUs and four NVIDIA A100 GPUs. For each backbone LLM (BERT, T5,
GPT-Neo, Mixtral, and LLaMA 3.2), this paper follows the original implementation and hyperpa-
rameter settings reported in the corresponding papers unless otherwise noted. The MQAR autoen-
coder is configured so that its input and output dimensions match the hidden size of each LLM, and
the latent dimension is set to 400. This paper optimizes MQAR with a learning rate of 1 x 1074,
apply early stopping with a patience of 7 based on validation loss (checked every 30 epochs), and
keep all LLM parameters frozen.

MOQAR is trained with multi-hot protected-attribute labels (e.g., gender and race) in the adversarial
discriminator to jointly debias multiple attributes within a single model. Unless stated otherwise,
this paper reports the mean and standard deviation over three random seeds for all metrics, and
this paper uses paired t-tests to assess the statistical significance of improvements over baselines.
Detailed hyperparameters and additional implementation details are provided in Appendix [B]

4.2 RESULTS ON BIAS IN LLMS

To measure bias in LLMs, this paper uses WinoBias (Zhao et al., [2018]), StereoSet (Nadeem et al.,
2020), CrowS-Pairs (Nangia et al.,|2020). This section compares the raw LLMs against a wide range
of debiasing methods, including representation-level approaches (INLP (Ravfogel et al.l |2020),
SentDebias (Liang et al., [2020)), model-level methods (ADELE (Lauscher et al.l [2021), FaRM
(Chowdhury & Chaturvedi, 2022), FineDeb(Saravanan et al., [2023)), recent deep debiasing mod-
ules (HDD (Zayed et al., 2023)), and inference-time debiasing techniques (CRISPR(Yang et al.,
2024)), RB(Kim et al.| [2025)), in addition to the MQAR. Appendix [H| summarizes the datasets and
metrics in detail.

Figure 3] reports WinoBias results across five LLMs. Pro (pro-stereotype) and Anti (anti-stereotype)
denote the intensities of pro- and anti-stereotypical preferences, respectively. Avg. is their average,
and | Dif f| is the absolute difference, which this experiment uses as a bias score. As shown, INLP,
SentDebias, ADELE, FaRM, FineDeb, HDD, and MQAR all reduce stereotypical associations com-
pared to the raw LLMs. Among them, MQAR achieves the lowest Avg. and a notably small | Di f f
indicating that it better balances stereotype reduction with context preservation.

[l

Table [1] summarizes results on StereoSet and CrowS-Pairs for LLaMA 3.2 with different debias-
ing methods, results for other backbones are provided in Appendix [C] and results with standard
deviation are provided in Appendix [El Representation-level methods such as INLP and SentDe-
bias reduce the stereotype score (SS) and bias on CrowS-Pairs but often yield suboptimal ICAT or
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Figure 3: Experimental results of WinoBias. Pro and Anti show intensity of pro-stereotype and
anti-stereotype, respectively. Avg and | Dif f| show average and difference of both, which show the
bias score of LLMs.
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Table 1: Experimental results of StereoSet (Nadeem et al., 2020), CrossPairs (Nangia et al., [2020).
LMS (language modeling score), SS (stereotype score), and ICAT (idealized CAT score) are bias
metrics of StereoSet. All (all dataset), Stereo (stereo dataset), and Anti (anti-stereo dataset) are bias
metrics of CrowS-Pairs. First place is written in bold.

StereoSet CrowS-Pairs
Model Gender Race Gender

ILMS SS ICAT | LMS SS ICAT | All Stereo Anti.
Llama 3.2 899 597 725 | 90.1 621 683 | 619 62.1 60.7
+INLP 90.6 583 756 | 904 64 65 482  48.6 45.9
+SentDebias | 91.5 602 72.8 | 90.8 563 794 | 513 522 46
+ADELE 90.7 582 758 | 905 64.1 65.1 | 483 48.7 459
+FaRM 914 603 726 | 90.8 562 79.5 | 514 522 46.1
+FineDeb 82.1 542 752 77 51.8 74.1 | 57.1 57.1 57.3
+CRISPR 89.7 603 724 | 91.0 532 815 | 50.8 520 47.1
+RB 90.8 54.1 76.7 89.1 547 82.8 | 497 523 48.3
+Ours 91.6 53.1 86 91.3 54 84 48.1 479 499

All scores. Model-level debiasing (ADELE, FaRM, FineDeb) and recent deep debiasing modules
(HDD) further improve certain metrics at the cost of increased computational overhead. Inference-
time baselines such as CRISPR offer modest bias reductions without modifying model parameters,
but they largely leave the underlying attention representations unchanged.

By contrast, MQAR achieves the best or near-best scores across LMS, SS, ICAT, and CrowS-Pairs
(All/Stereo/Anti) on LLaMA 3.2. This indicates that quantized attention regularization effectively
suppresses stereotypical associations while preserving language modeling quality, outperforming
both representation-level and inference-time baselines on these benchmarks.

4.3 RESULTS ON DIFFERENT DOWNSTREAM TASKS

This paper next assesses whether MQAR preserves utility while mitigating bias on three downstream
tasks: abusive language detection, hate speech detection, and sentiment analysis, as well as a text
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Table 2: Experimental results for downstream tasks. AUC, FPED, and FNED are represented as
percentage score. First place written in bold and second place written in underlined.

. Model
Task Type Metric Baseline OSCaR SentDebais INLP Ours
. Original AUC 93.8 93.5 93.6 93.7 93.7
Abusive Data FPED 2.32 1.20 2.53 1.92 1.87
language FNED 3.71 6.21 3.46 6.34 3.44
detection Generated AUC 92.3 91.9 92.5 91.5 92.8
(Founta) Data FPED 0.262 0.654 0.131 0.314  0.0654
FNED 0.251 0.036 0.0835 0.332  0.167
Original AUC 96.5 94.3 96.3 88.2 95.1
Hate speech | Data FPED 0.121 0.443 0.0117 0.502  0.060
detection FNED 9.54 3.61 4.43 124 3.21
(CMSB) Generated AUC 94.7 89.2 94.9 84.8 94.3
Data FPED 0.0584  0.0562 0.0137 0.0192 0.0188
FNED 3.01 1.01 0.0442 0.0257 0.0218
Sentiment Ange_r Apr_pry | 0.0074  0.0092 0.0121 0.0052  0.0052
analysis Emotion Ap—mt | 0.0316  0.0217 0.0149 0.0175 0.0163
(EEC) Anger Apr—myp | 00219  0.0159 0.0130 0.0121 0.0133
Valence Apy—my | 0.0198  0.0137 0.0119 0.0130 0.0105
Text GPTScore Bias 8.73 4.36 5.82 431 4.21
generation BLUE Bias 0.1 0.07 0.11 0.08 0.08
Question Bias 36.8 33.5 35.3 346 355
answering

generation setting. For these tasks, this experiment focuses on gender bias and compare a GPT-
Neo backbone equipped with OSCaR, SentDebias, INLP, and MQAR against the original GPT-Neo
baseline. All results are averaged over three random seeds . Overall, MQAR achieves an average
accuracy drop of at most 0.4 percentage points relative to the non-debiased baseline across all tasks
(see Table[2)and Appendix D).

Experiments of abusive language detection are conducted on Twitter datasets from [Founta et al.
(2018). The experimental results are evaluated on two types of datasets: original dataset and gener-
ated dataset. The former shows how bias appears against the original data distribution that is close
to the real situation. The latter is constructed with the selection of sentences containing female and
male phrases from the original datasets and the addition of those replacing female and male phrases,
respectively. The generated dataset that gives the distributions of sentences containing female and
male phrases has the same bias distribution. FPED and FNED are used as bias metrics, and AUC is
used as accuracy (Park et al.,[2018)). FPED and FNED are calculated as equation @I) where FPR is
a false positive rate, FNR is a false negative rate and T is a set of all groups. The upper side of Table
2l shows the results.

FPED = Sep|FPR — FPR,|, FNED = S;c7|FNR — FNR,| (15)

OSCaR achieves strong reductions in FPED and FNED but at the cost of a noticeable decrease
in AUC, indicating that aggressive projection can remove task-relevant information. SentDebias
maintains higher AUC but suffers from information loss due to its projection-based debiasing. By
contrast, MQAR attains AUC that is statistically indistinguishable from the baseline while achieving
competitive or better FPED/FNED scores, showing that it can reduce bias with only a small accuracy
drop.

Sentiment analysis using EEC is evaluated based on the difference in emotion prediction values
between sentences with male phrases and female phrases, where low numbers mean low bias. The
anger attribute is identified mainly where gender bias is the most serious. The middle of Table [2]
shows its result. The proposed model has lower numerical values than other methods, illustrating
that the model effectively removes the bias even for the more difficult downstream tasks.
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In the case of text generation, this study utilizes the bias measurement method proposed by Sun et
al. This method involves scaling the metrics used to evaluate text generation, and then using the
differences in each attribute to measure bias levels. Although this method can be applied to various
metrics, in this paper, it is implemented using BLEU and GPTScore. The experimental results are
summarized in the lower part of Table Compared with other methods, it is confirmed that the
approach presented in this paper is effective in appropriately mitigating bias.

4.4 EFFICIENCY AND OVERHEAD

This experiment analyzes the computational
overhead introduced by MQAR. Table [3] re- .
ports the additional parameters, FLOPs per for- Table 3: Computational overhead and latency on
ward pass, and end-to-end inference latency Llama 3.2. Param and FLOPs denote re.latlve
for each backbone LLM with different debias- ©verhead compared to the frozen backbone (in %),
ing methods. On LLaMA 3.2 with StereoSet, and Latency reports end-to-end inference time per
MQAR adds only 48.1% parameters relative to 100 generated tokens (in ms).

the backbone and increases FLOPs by 87.0%,

yet it achieves approximately 43% lo)\jver end- Method Param FLOPs Latency
to-end inference time than FineDeb, which re- Bgckbone 0.0 0.0 97.8
quires full-model fine-tuning. Similar trends FineDeb | +107.3  +191.8  189.8
hold for other backbones, where MQAR con- MQAR +48.1 +87.0 132.7
sistently offers a favorable trade-off between

fairness improvements and computational cost

due to its frozen-backbone design and lightweight quantization modules.

4.5 ABLATION STUDY

For the proposed method, this paper checks the
results of the absence of the discriminator and
decoder to confirm the effect of each compo-
nent on bias mitigation. An experiment is con-
ducted by checking the metric values for abu-

Table 4: Ablation study on abusive language de-
tection. (a) is the result of decoder removal and
(b) is that of discriminator.

sive language detection with the BERT model.
Table @ illustrates the result. Dataset | Metric | Original (a) (b)

AUC 93.9 50.3 939
Original FPED 1.84 202 2.50
FNED 3.46 18.3 346

If the decoder is removed, the original data can-
not be maintained during bias mitigation, re-
sulting in a significant decrease in accuracy and

an increase in the bias metric due to data loss. AUC 92.8 489 924
As a result, it can be confirmed that the de- Generated | FPED | 0.0654 22.1 0.392
coder plays an important role in maintaining the FNED | 0.167 17.5 0.250

original information. If the discriminator is re-
moved, the original data are retained, but bias
mitigation is not done properly, resulting in high bias for the dataset.

5 CONCLUSION

This paper proposes MQAR, a model-agnostic debiasing method that mitigates multi-attribute social
bias in frozen LLMs via structured quantized regularization. Unlike existing approaches that require
fine-tuning or data augmentation, MQAR directly operates on self-attention layers, disentangling
protected attribute activations while preserving semantic content. Extensive experiments across five
LLMs and three standard bias benchmarks show that MQAR achieves consistent bias reduction
while maintaining downstream task accuracy within 0.4% of original models.

While MQAR demonstrates strong performance in zero-shot and large-data settings, future work can
explore its application in low-resource regimes where robust disentanglement is more challenging.
Moreover, extending MQAR to multilingual models and instruction-tuned LLMs presents promis-
ing directions for broadening fairness-aware NLP. Overall, MQAR provides a lightweight, scalable
solution for fair language modeling, pushing the frontier toward bias-resilient LLM deployment.
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Table 5: Parameters for Training BERT, GPT, Llama, TS5 and Mixtral

Model Parameters Value
Model name bert-base-uncased
EPS 1.00E-15
latent vector dimension 400
BERT learning rate for encoder/decoder 1.00E-04
learning rate for discriminator/classifier 5.00E-05
learning rate for fine-tuning BERT on downstream task 2.00E-05
random seed 0
patience for early stop 7
Model name
EPS 1.00E-05
latent vector dimension 1000
GPT learning rate for encoder/decoder 5.00E-04
learning rate for discriminator/classifier 5.00E-05
learning rate for fine-tuning GPT on downstream task 1.00E-05
random seed 0
patience for early stop 7
Model name Llama-3.2-3b
EPS 1.00E-15
latent vector dimension 800
Llama learning rate for encoder/decoder 1.00E-04
learning rate for discriminator/classifier 5.00E-05
learning rate for fine-tuning Llama on downstream task 2.00E-05
random seed 0
patience for early stop 7
Model name t5-base
EPS 1.00E-06
latent vector dimension 400
T5 learning rate for encoder/decoder 1.00E-04
learning rate for discriminator/classifier 5.00E-05
learning rate for fine-tuning TS5 on downstream task 1.00E-04
random seed 0
patience for early stop 7
Model name Mixtral-8x7B-v0.1
EPS 1.00E-06
latent vector dimension 400
Mixtral learning rate for encoder/decoder 1.00E-04
learning rate for discriminator/classifier 5.00E-05
learning rate for fine-tuning Mixtral on downstream task 1.00E-04
random seed 0
patience for early stop 7

A  PROTECTED-ATTRIBUTE LEXICONS AND SUPERVISION

This appendix describes how the proposed method constructs and validates the weak supervision
signals, focusing on lexicons for gender and race, and classifier-based labels for other protected
attributes such as religion and region.

Gender and race lexicons. For gender and race, this paper follows prior work on fairness in
language models and sentiment/toxicity/abusive classification, which commonly uses demographic
term lists as weak supervision signals for protected attributes (e.g., gendered pronouns, kinship
terms, and occupational titles). Building on these sources, this paper constructs moderate-sized
lexicons consisting of gendered and race-related terms that frequently appear in the corpora.
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For gender, this paper uses a list of masculine and feminine terms covering pronouns, kinship re-
lations, professions, and other common descriptors. The full list used in the experiments is shown
below:

* Male: he, him, masculine, actor, author, boy, bridegroom, brother, conductor, count, czar,
daddy, duke, man, emperor, father, grandfather, heir, host, husband, king, master, murderer,
nephew, poet, policeman, prince, sir, son, uncle, wizard, waiter, guy, boyfriend, dad, gentle-
man, lord, monk, priest, prophet, patron, viscount, shepherd, steward, baron, peer, abbot,
traitor, benefactor, hunter, tempter, enchanter, songster, manservant, landlord, milkman,
glant.

* Female: she, her, feminine, actress, authoress, girl, bride, sister, conductress, countess,
czarina, mummy, duchess, woman, empress, mother, grandmother, heiress, hostess, wife,
queen, mistress, murderess, niece, poetess, policewoman, princess, madam, daughter, aunt,
witch, waitress, girlfriend, mom, lady, nun, priestess, prophetess, patroness, viscount-
ess, shepherdess, stewardess, baroness, peeress, abbess, traitress, benefactress, huntress,
temptress, enchantress, songstress, maidservant, landlady, milkmaid, giantess.

For race and ethnicity, this paper constructs a lexicon of descriptors (e.g., ethnic and regional iden-
tifiers, demonyms) by aggregating terms from prior demographic-bias benchmarks and public de-
mographic resources, followed by manual filtering to remove rare or ambiguous entries. Due to
space constraints, this paper does not list all race-related terms here; representative examples and
full vocabularies will be released with the code.

Filtering overlaps with target labels. To avoid leakage between protected-attribute supervision
and downstream task labels, this paper explicitly removes lexicon entries that coincide with target
label tokens. Concretely, for each downstream dataset (e.g., abusive language and hate speech detec-
tion), this paper (i) constructs the set of label strings and their tokenization, (ii) automatically drops
any lexicon term that appears verbatim in the label vocabulary, and (iii) manually inspects border-
line cases where a lexicon term could be semantically close to a label (e.g., “offensive”, “toxic”) and
removes them if necessary. This procedure ensures that the proposed protected-attribute supervision

does not directly encode task-specific labels.

Classifier-based supervision for other attributes. For attributes that are less amenable to stable
lexicon construction—such as religion, region, or other socio-demographic categories—this paper
resorts to off-the-shelf sentence-level classifiers. Specifically, this paper applies publicly available
pre-trained models (e.g., toxicity/fairness or demographic-attribute classifiers) to each sentence and
treats high-confidence predictions as weak labels for the corresponding protected attribute. This
paper then binarizes these predictions into multi-hot attribute vectors and uses them in the adversar-
ial discriminator. In all cases, this paper only retains predictions above a conservative confidence
threshold to reduce noise and treats this classifier-based supervision as complementary to lexicon-
based labels rather than a replacement.

Overall, this hybrid strategy—combining curated lexicons for gender and race with classifier-
based supervision for other attributes, and explicitly filtering out overlaps with downstream la-
bels—provides a flexible yet controlled way to obtain protected-attribute signals needed to train
MOQAR without requiring manual annotation of sensitive attributes.

B HYPERPARAMETERS FOR TRAINING LLMS

The main parameters of the model are summarized in Table 1 and 2. For most hyperparameters, the
default values are set based on the papers proposing each LLM. The autoencoder of the proposed
model is designed as a Multi-Layer Perceptron (MLP) using three layers. Experiments are conducted
by adjusting the dimension of each latent vector and the learning rate. Training is incorporated
with early stopping, and the related numerical values are also documented in the table. For the
downstream tasks, the model has been fine-tuned using each dataset.
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Table 6: Experimental results of StereoSet (Nadeem et al., [2020), CrossPairs (Nangia et al., [2020).
LMS (language modeling score), SS (stereotype score), and ICAT (idealized CAT score) are bias
metric of StereoSet. All (all dataset), Stereo (stereo dataset), and Anti (anti-stereo dataset) are bias
metrics of CrowS-Pairs. First place is written in bold.

StereoSet CrowS-Pairs

Model Gender Race Gender

IMS SS ICAT | LMS SS ICAT | Al Stereo Anti.
BERT-Base 854 583 712 | 8.3 61.7 676 | 60.5 6l1.1 56.9
BERT-Base+INLP 86.3 573 73.7 88.9 63 65.8 | 48.3 49.7 40
BERT-Base+SentDebias | 87.2 594 70.8 89.3 552 80 51.3 532 40.1
BERT-Base+ADELE 86.3 573 737 88.9 63 65.8 | 48.3 49.7 40
BERT-Base+FaRM 87.2 594 708 89.3 552 80 51.3 532 40.1
BERT-Base+FineDeb 777 533 72,6 | 754 508 74.1 | 546 58.1 51.5
BERT-Base+Ours 87.3 523 833 | 89.8 53.1 85.7 | 48.2 489 44.1
T5 847 602 674 88 623 664 | 642 66.3 51.3
T5+INLP 853 586 706 | 884 643 63.1 | 505 52.8 36.4
T5+SentDebias 86.2 60.7 67.7 88.8 565 773 | 53.6 564 36.6
T5+ADELE 854 588 704 | 884 64.1 635 | 504 527 36.3
T5+FaRM 864 60.8 67.8 88.8 563 776 | 534 563 36.5
T5+FineDeb 769 547 69.7 | 74.8 521 717 | 593 613 47.8
T5+Ours 86.4 538 799 | 89.2 543 815 | 504 52 40.6
GPT-Neo 86.1 595 702 | 89.1 60.8 713 | 63.0 655 53.1
GPT-Neo+INLP 86.6 575 74.1 89.2 633 660 | 487 50.1 40.3
GPT-Neo+SentDebias 874 596 71.1 89.6 556 804 | 51.5 535 40.4
GPT-Neo+ADELE 86.6 577 740 | 89.2 633 66.1 | 486 499 40.2
GPT-Neo+FaRM 875 597 71.1 89.7 554 804 | 51.6 535 40.5
GPT-Neo+FineDeb 780 53.6 73.0 | 75.6 511 744 | 549 584 51.7
GPT-Neo+Ours 877 525 83.6 | 90.1 534 86.0 | 484 49.2 44 .4
Mixtral 869 585 722 | 899 59.8 733 | 61.8 643 52.5
Mixtral+INLP 874 565 76.1 90.0 623 68.0 | 475 489 39.7
Mixtral+SentDebias 88.2 586 73.1 904 546 824 | 503 523 39.8
Mixtral+ ADELE 874 567 760 | 90.0 623 68.1 | 474 487 39.6
Mixtral+FaRM 883 587 73.1 90.5 544 824 | 504 523 39.9
Mixtral+FineDeb 78.8 52,6 750 | 764 501 764 | 537 572 51.1
Mixtral+Ours 885 515 856 | 909 524 88.0 | 47.2 48.0 43.8

C RESULT ON BI1AS IN OTHER LLMs

Table 3 shows the result of two datasets, StereoSet (Nadeem et al.| [2020) and CrossPairs (Nangia
et al., 2020), with four LLMs, BERT, T5, GPT-Neo, and Llama 3.2. From these metrics, the ex-
perimental results show that, similar as the content of the main paper, INLP, SentDebias, ADELE,
FaRM, and FineDeb have mitigated stereotypical associations compared to the original models. The
proposed method demonstrated superior performance in these two datasets compared to other al-
gorithms, suggesting that it is more effective in preserving semantic elements and removing biased
elements in stereotype categories than other algorithms.

D RESULT ON DOWNSTREAM TASKS IN OTHER LLMS

Table 4 shows the result of 4 downstream tasks, abusive language detection (Founta et al., |2018)),
sentiment analysis (Kiritchenko & Mohammad, |2018)), text generation (Sun et al.l [2019), question
answering (Hendrycks et al.l[2020), with two LLMs, BERT and T5 (the result of GPT-Neo is written
in section 4.3).
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Table 7: Experimental results for downstream tasks. AUC, FPED, and FNED are represented as
percentage score. First place written in bold and second place written in underlined.

. Model
Task Type Metric Baseline OSCaR SentDebais INLP Ours
BERT
Original AUC 93.8 93.5 93.6 93.7 93.7
Abusive Datga FPED 232 1.20 2.53 1.92 1.87
language FNED 3.71 6.21 3.46 6.34 3.44
detection Generated AUC 92.3 91.9 92.5 91.5 92.8
(Founta) Data FPED 0.262 0.654 0.131 0314  0.0654
FNED 0.251 0.036 0.0835 0332 0.167
Original AUC 96.5 943 96.3 88.2 95.1
Hate soeech Datga FPED 0.121 0.443 0.0117 0.502  0.060
P FNED 9.54 3.61 4.43 12.4 3.21
detection AUC 947 89.2 94.9 848 943
CMSB 24.7 : . : :
( ) gg?;rated FPED | 00584 00562  0.0137 00192 0.0188
FNED 3.01 1.01 0.0442  0.0257 0.0218
Sentiment Anger Apr_ag | 00074 0.0092 0.0121 0.0052  0.0052
analysis Emotion Ap,_ap | 00316 0.0217 0.0149 00175 0.0163
(EEC) Anger Apr_ay | 00219 0.0159 0.0130  0.0121 0.0133
Valence Ap,_ap | 00198 0.0137 0.0119  0.0130 0.0105
Text veneration BERTScore Bias 8.73 4.36 5.82 4.31 4.21
xte ! BLUE Bias 0.1 0.07 0.11 0.08  0.08
T5
AUC 91.4 90.1 89.7 90.7 90.9
Abusive Original data FPED 245 1.13 2.61 2.03 1.72
language FNED 4.03 5.7 3.19 6.66 3.17
detection AUC 804 90.7 89.3 90.1 90.5
(Founta) Generated data FPED 0.256 0.605 0.123 0.335 0.071
FNED 0.243 0.038 0.187 032  0.183
Sentiment Anger Arr_ay | 00076  0.0088 0.0132  0.0049 0.0053
aalvsis emotion Ap;_ap | 00287 0.0214 0.0139  0.0165 0.0117
(EEE{,) Anger Apt_ay | 00199  0.0144 0.0132 0.013  0.0121
valence Ar|— 0.0187 0.0134 0.0121 0.0123  0.0107
Text vencration GPTScore Bias 5.51 4.12 4.48 4.36 4.01
g BLUE Bias 0.09 0.07 0.1 0.09  0.08
Question Bias 29.1 26.9 24 243 28.8
answerlng

E RESULTS ON BIAS IN LLAMA WITH STANDARD DEVIATION

In the main paper (Table [I)), this paper reported bias results on StereoSet and CrowS-Pairs for
LLaMA 3.2 and several debiasing methods using single-point estimates. For completeness, this
section provides the corresponding results with mean + standard deviation over multiple random
seeds, restricted to the LLaMA 3.2 backbone. This paper splits the results by dataset for readability:
Table[§]reports StereoSet scores, and Table 0] reports CrowS-Pairs scores.

Across both benchmarks, this paper observes that the variance across runs is relatively small for
all methods, indicating that the reported improvements are stable rather than artifacts of a single
seed. On StereoSet, MQAR achieves the best or near-best ICAT scores while substantially reducing
the stereotype score (SS) for both gender and race, without degrading the language modeling score
(LMS). On CrowS-Pairs, MQAR attains the lowest (or competitive) bias scores on the All and
Stereo subsets while keeping performance on the Anti subset comparable to other methods. These
patterns are consistent with the main-table findings and support the claim that MQAR provides
robust fairness gains on LLaMA 3.2 with minimal variance across runs.
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Table 8: StereoSet results for LLaMA 3.2 with debiasing methods, reported as mean =+ standard
deviation over multiple runs. LMS, SS, and ICAT are language modeling, stereotype, and idealized
CAT scores, respectively. Best values are in bold.

Model Gender Race

LMS SS ICAT LMS SS ICAT
LLaMA 3.2 89.94+0.2 59.7+0.4  72.5+0.5 | 90.1+0.2 62.1+0.4 68.3+0.5
+INLP 90.6+0.2 58.3+0.3 75.6£0.4 | 90.44+0.2 64.0+£0.3 65.0+0.4

+SentDebias | 91.5£0.3 60.2+£0.6 72.840.7 | 90.8£0.3 56.3+£0.6  79.4+0.7
+ADELE 90.7+£0.3 58.2+0.5 75.840.6 | 90.5+£0.3 64.1£0.5 65.1+£0.6
+FaRM 91.4+0.3 60.3+£0.6 72.6+0.6 | 90.8£0.3 56.2+£0.6 79.5+0.6
+FineDeb 82.1£0.6 54.2+£0.8 75.2+0.9 | 77.0+£0.7 51.840.8 74.1£0.9
+CRISPR 89.7+0.4 60.3+0.6 72.4+0.7 | 91.0+£0.4 53.2+£0.6 81.5+0.7
+RB 90.8+£0.2 54.1+£0.3 76.7+£0.4 | 89.1+£0.2 54.7+£0.3 82.8+0.4
+MQAR 91.6£0.2 53.1£0.3 86.0£0.4 | 91.3+0.2 54.0£0.3 84.0+0.4

Table 9: CrowS-Pairs results for LLaMA 3.2 with debiasing methods, reported as mean =+ standard
deviation over multiple runs. All, Stereo, and Anti denote the overall, stereotype, and anti-stereotype
subsets, respectively. Best values are in bold.

Model All Stereo Anti
LLaMA 3.2 61.94+0.6 62.1£0.6 60.7£0.6
+INLP 48.24+0.5 48.6+0.5 45.940.5

+SentDebias | 51.3£0.8 52.2+0.9  46.04+0.9
+ADELE 48.3+£0.6 48.7+£0.6 45.9+0.6
+FaRM 51.4+0.7  52.2+0.7 46.1+0.7
+FineDeb 57.1£1.1 57.1£1.2 57.3£1.0
+CRISPR 50.8+0.9 52.0+£0.9 47.1+0.9
+RB 49.7£0.5 52.3£0.5 48.3£0.5
+MQAR 48.1+0.4 47.9+£04 49.9+0.6

F EFFECTIVENESS OF STRUCTURED QUANTIZATION

To isolate the effect of quantization in the proposed MQAR method, this section conducts an ablation
study comparing three variants:

* Full MQAR: with both vector quantization and adversarial regularization.
* No-Quant MQAR: with adversarial regularization but without quantization.

* Quant-only: applying quantization without adversarial regularization.

This paper evaluates these variants on the StereoSet dataset using LLaMA 3.2. As shown in Ta-
ble Full MQAR achieves the lowest bias scores (SS) and the highest ICAT while slightly im-
proving LMS over the baseline. Removing quantization (No-Quant MOAR) weakens attribute dis-
entanglement and yields substantially worse ICAT, especially in scenarios with multiple protected
attributes. Conversely, using quantization alone (Quant-only) reduces bias only marginally and even
harms ICAT, indicating that the quantized bottleneck requires the adversarial regularizer to properly
separate protected-attribute information from task-relevant semantics.

This section also studies the impact of the quantization codebook size K in the latent space. In
practice, this paper selects K from a small candidate set (K € {2,3,4,8}) based on validation
performance and keep K fixed across layers for simplicity. The sensitivity analysis shows that
MQAR is robust to moderate changes in K: very small codebooks (e.g., K = 2) overly compress the
latent space and slightly hurt LMS, whereas very large codebooks weaken the debiasing bottleneck
and increase SS. A moderate choice such as K = 3 consistently yields the best fairness-utility
trade-off across benchmarks, and is therefore used in all main experiments.
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Table 10: Effect of quantization on bias mitigation for LLaMA 3.2 on StereoSet (gender). LMS, SS,
and ICAT denote language modeling, stereotype, and idealized CAT scores, respectively.

Method LMS SS ICAT
Full MQAR (ours) 91.6 531 86.0
No-Quant MQAR 90.7 55.1 67.8
Quant-only 90.5 583 639
Baseline (no mitigation) 89.9 59.7 725
K=2 909 525 82.1
K=3 91.6 53.1 86.0
K=14 91.5 540 84.7
K =38 914 556 80.3

G OMITTED PROOF FOR LEMMAS AND THEOREM

Lemma 5. For any conditional distribution p,

I(L,i)NP(xE/l,i))’TNm("'lz)vZNQ(Zlm(l,i)) {long(x(l_’i)V)} + H(@wy) (16)

where Dy is the function of decoder 2 ds, q is the encoder function, p is the real distribution, m is
the projection function, and H is the entropy.

Proof. As information is recovered with Decoder 2:

IR X) = Eong(alag o)) rmm(rl2) {Ezggwp(za,i)\r) [logp(w(z,i)lr)“ +H(zay) A7

2 Ezngleleq)r mirlz) [Ex;;yi)w,,(m(l,i)m [ZOQDz(xa,i)lr)H + H(z,) (18)
=B P (sl ) remels) ala ) [logD 2(”9(172')'7’)} + H(z.0) (19)
O

Lemma 6. For any conditional distribution m,
m(r[2)

s(r)

Proof. Using additional function m, information is transformed from z to r and it is recovered with
Ds.

I(R;A) < /m(r|z)p(2) log =0 (20)

I(R;A) =1(Z;Dy(m(R))) (21)
< I(R;m(R)) (22)

< / m(rl2)p(2) log"l((ﬂ)z ) (23)
O

Corollary 7. If Dic (plalr) || h (alr)) < I
I(R; A) < Ep(yq) [logp(a|r) —logp(a)] +1 (24)

Proof. For the tighter upper bound when assuming optimal dual regularization, I(R; A) can be
written as shown in Equations (23)), where D, is KL divergence and h is an any distribution.

I(R; A) = Epr.a)Prr(pa| ) [| h(a)) — Drr(p(a) || h(a)) 25
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Where D1, > 0, it shows:

I(R; A) = Epr,a)Drr(pla | 7) || h(a)) — Drr(p(a) || h(a)) (26)

Note that the distribution of p is traceable which implies the Equations and (29):

Ep(r,a) [logp (a | T) - logp (a)] 27
=Epr,a) [Prr(pla|r) || ha)) — Drr(p(alr) || h(alr))] (28)
> By (pla | 1) || h(@) 1 29)

where [ is positive such that Dx-r.(p(a|r) || h (a]r)) < I. From Equation (8) and (11),

I(R;A) <Epr,a)llogp(a|r) —logp(a)]+1 (30

H DETAILED INFORMATION ON DATASETS

The WinoBias dataset is the benchmark for paired male and female cross-reference-solving exam-
ples according to the Winograd format (Hirst, (1979} Peng et al. 2015). It contains two different
subsets: the pro-stereotype where pronouns are anti-stereotypes primarily related to the gender-
related occupation of pronouns, and the anti-stereotype when the opposite relationship is true. Each
subset consists of two types of sentences. One is a sentence that requires a semantic understanding
of the sentence for cross-reference resolution (Semantics Only), and the other is a sentence that relies
on syntactic cues (w/ Semantic Cues). Gender bias is measured using the performance difference
between a typical subset and a semi-structured subset.

StereoSet dataset is a benchmark dataset that measures the social bias of LLMs in that model. Gen-
der and race are selected among the domains of it. LMS (language modeling score), SS (stereotype
score), and ICAT (idealized CAT score) are bias metrics for StereoSet. The closer to 100 on LMS
and ICAT, and the closer to 50 on SS, the more the bias is ideally mitigated. LMS is a value for
the meaningful association, SS is a value for the stereotypic association, and ICAT represents a
comprehensive number of these two figures. The CrowS-Pairs dataset is designed to evaluate social
biases in textual models, containing pairs of sentences that highlight biases and stereotypes, in the
CrowS-Pairs-stereo and CrowS-Pairs-antistereo categories. The dataset allows for the measurement
of biases by comparing the model’s responses to both biased and unbiased statements in the pairs.

I TABLE OF RELATED WORKS

Mitigating bias in large language models (LLMs) has received substantial attention, with prior works
proposing methods across different stages of model deployment. Based on Table|[TT] this paper sum-
marizes these approaches along three dimensions: model-level interventions, sentence-level repre-
sentation manipulation, and prompt-based inference-time strategies.

Model-level Approaches. These methods directly modify the training process of LLMs.
Projection-based techniques, such as SentDebias (Liang et al., 2020) and OSCaR (Dev et al.,
2020), remove protected attribute components by projecting representations onto orthogonal sub-
spaces. While simple, such methods risk reducing representation capacity for downstream tasks
(Shin et al., 2020). Regularization-based methods, including FaRM (Chowdhury & Chaturvedi,
2022)) and dropout-based debiasing (Webster et al., 2020), introduce fairness constraints into train-
ing losses. Others exploit token-level statistics, such as the masked token divergence in (Guo et al.,
2022). However, all these methods typically require access to training data and full model fine-
tuning, limiting scalability to new domains or closed-source LLMs.
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Table 11: Related works for reducing bias of large language models (LLMs).

Target Method Description B
Proiecti Hard debiasing on layer result (Liang et al., [ 2020)
rojection Proiecti h 1 sub h -
based rOJectlgn on orthogonal subspace with correction
and rectification (Dev et al.LZOZO)
Drop out regularization (Webster et al., [2020)
Reoularization Post-hoc debiasing procedure using
o intrinsic data (Schick et al}, 2021
Learning Debiasing using the rate-distortion function
Model (Chowdhury & Chaturvedi, [2022)
[MASK] Jensen—Shannon divergence with mask probability
token based of pair sentences with protected feature (Guo et al., 2022)
Generative self-conditioning methods (Cuadros et al., 2022)
Data based Sustainable modular debiasing based on dedicated debiasing
adapters with counterfactual data (Lauscher et al., 2021)
Combining important counterfactual (Zayed et al.} 2023)
Projection Interactive null space projection (Ravfogel et al., 2020)
Embedded based Autoregressive interactive projection (Liang et al., 2021)
Sentence Regularization  Reinforced calibration on embedding (Liu et al.,[2021)
based LSTM-based bias mitigation on BERT (Pryzant et al.,[2020)

Analyzing the bias mitigation effects of prompts in

Static-prompt various levels of abstraction (Mattern et al.L2022)

Prompt of

LLM Dynamic- Using gender-neutral datasets for prompt to update
prompt biased word embeddings (Fatemi et al., 2021)

Embedding-level Techniques. These operate on the latent sentence representations of pre-trained
models. INLP (Ravfogel et al., 2020) and its variants project sentence embeddings away from
attribute-relevant directions. More recent work combines LSTM-based debiasing with BERT
(Pryzant et al., [2020). However, such techniques may over-constrain the latent space, leading to
information loss or degraded performance.

Prompt-based Inference-time Strategies. These methods aim to mitigate bias without modifying
model parameters, using static or dynamic prompts. Static prompt tuning (e.g., (Mattern et al.,
2022))) adjusts prompt phrasing to reduce bias exposure. Dynamic prompt updates, such as those
proposed by [Fatemi et al.|(2021)), retrain embeddings with gender-neutral prompts or counterfactual
data. While appealing due to their low-cost deployment, these methods cannot correct internal
representational biases embedded within attention layers.

Gap in Multi-Attribute Mitigation. Despite progress, most existing methods target single-
attribute settings (e.g., gender only) and fail to generalize across intersecting attributes. Moreover,
techniques that modify embeddings or prompts fail to address internal bias entanglement at the
self-attention level—a known amplifier of representational bias (Jiang et al.l 2022).

Our Contribution. MQAR addresses these gaps by introducing a quantized regularization frame-
work that operates directly on frozen self-attention layers. Unlike projection-based or prompt-based
methods, MQAR disentangles and suppresses protected attribute signals within attention outputs,
without requiring model fine-tuning. To our knowledge, it is the first scalable, multi-attribute debi-
asing method that is model-agnostic and operates entirely post-hoc, making it suitable for black-box
LLM deployments.
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