
Published as a conference paper at ICLR 2025

TOWARD EXPLORATORY INVERSE CONSTRAINT IN-
FERENCE WITH GENERATIVE DIFFUSION VERIFIERS

Runyi Zhao1∗, Sheng Xu1∗, Bo Yue1, Guiliang Liu1†
1School of Data Science, The Chinese University of Hong Kong, Shenzhen
{runyizhao,shengxu1,boyue}@link.cuhk.edu.cn
liuguiliang@cuhk.edu.cn

ABSTRACT

An important prerequisite for safe control is aligning the policy with the under-
lying constraints in the environment. In many real-world applications, due to the
difficulty of manually specifying these constraints, existing works have proposed
recovering constraints from expert demonstrations by solving the Inverse Con-
straint Learning (ICL) problem. However, ICL is inherently ill-posed, as multiple
constraints can equivalently explain the experts’ preferences, making the optimal
solutions not uniquely identifiable. In this work, instead of focusing solely on
a single constraint, we propose the novel approach of Exploratory ICL (ExICL).
The goal of ExICL is to recover a diverse set of feasible constraints, thereby pro-
viding practitioners the flexibility to select the most appropriate constraint based
on the practical needs of deployment. To achieve this goal, we design a gen-
erative diffusion verifier that guides the trajectory generation process using the
probabilistic representation of an optimal constrained policy. By comparing these
decisions with those made by expert agents, we can efficiently verify a candidate
constraint. Driven by the verification feedback, ExICL implements an exploratory
constraint update mechanism that strategically facilitates diversity within the col-
lection of feasible constraints. Our empirical results demonstrate that ExICL can
seamlessly and reliably generalize across different tasks and environments. The
code is available at https://github.com/ZhaoRunyi/ExICL.

1 INTRODUCTION

In recent years, Reinforcement Learning (RL) agents have demonstrated remarkable performance
in a variety of virtual games and environments by extensively exploring and exploiting the entire
state-action space (Mnih et al., 2015; Silver et al., 2018; Vinyals et al., 2019). However, real-
world applications often prioritize the safety and reliability of decisions, requiring RL policies to
operate under restricted regions or spaces in realistic environments. To learn such policies, safe RL
methods typically update the policy within the bounds of constraints (Liu et al., 2021). However,
in practical applications, these constraints are often not readily available and can be challenging to
specify manually, particularly in complex environments.

Recent advances in Inverse Constraint Learning (ICL) propose recovering the constraints followed
by expert agents from their demonstration (Scobee & Sastry, 2020). Previous methods (Malik et al.,
2021; Kim et al., 2023) typically extend the classical Inverse Reinforcement Learning (IRL) frame-
work to learn the constraint model under known rewards. However, IRL is essentially an ill-posed
problem (Ng & Russell, 2000), and the optimal solution is often non-identifiable. When it comes
to ICL, we find multiple constraints can equivalently explain expert demonstrations, which makes
it difficult to identify the real constraints. In resolving the problem of unidentifiable solution, pre-
vious ICL solvers typically rely on additional assumptions, such as the expert agent implementing
a regularized policy (Malik et al., 2021), or the ground-truth constraint set having a minimum cov-
erage of state-action pairs (Scobee & Sastry, 2020). While these assumptions reduce the number
of candidate constraints, there is no guarantee that the real constraint can be uniquely identified or
accurately characterized by these assumptions.
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To address these issues, in this work, we propose an Exploratory Inverse Constraint Learning (Ex-
ICL) algorithm, which learns the set of feasible constraints with which the agent can accurately
recover the expert demonstration. To deploy these constraints in practical applications, practitioners
can select from the feasible set based on domain knowledge or specific requirements. Although the
concept of a feasible solution set has been theoretically analyzed by IRL solvers (Metelli et al., 2021)
and extended to ICL settings (Yue et al., 2024; 2025), the development of practical implementations
remains largely unexplored. This is due to two main reasons (see Figure 1): 1) The difficulty in
verification: To verify the feasibility of a candidate constraint, prior studies must tackle a forward
constrained RL problem. This involves multiple rounds of policy model updates under the con-
straint, rendering the recovery of a feasible set of constraints computationally intractable, especially
in complex environments. 2) The lack of exploratory mechanisms: Previous ICL algorithms
focused primarily on identifying a single constraint, lacking an exploratory mechanism to infer a
diverse set of feasible constraints.

In response to the difficulty in verification, in this work, our ExICL algorithm utilizes a Generative
Diffusion Verifier (GDV) to accelerate verification. Operating within an in-context learning frame-
work, GDV can generate the optimal trajectory for a given constraint model without necessitating
updates to model parameters. This capability is enabled by a generative optimization framework,
where the GDV guides the generative process of a diffusion model with the probabilistic represen-
tation of an optimal policy under a specified constraint. During the trajectory generation process,
the constraint model must accurately predict the cost of trajectories under varying levels of noise.
Motivated by this requirement, we designed a noise-robust objective for updating constraints. The
divergence between the generated trajectories and the expert trajectories efficiently determines the
feasibility of a constraint and guides the updates to our constraint model.

Upon identifying a feasible constraint, our ExICL algorithm initiates an exploratory update to iden-
tify additional constraints. To facilitate this, we develop a strategic exploration mechanism that
enhances the diversity of feasible constraints learned through a contrastive learning objective. In
particular, we characterize each constraint by the predicted feasibility (or cost) values assigned to
each state-action pair. Building on this characterization, we refine the constraint update objective
to encourage divergence between these values and those of other constraints within the feasible set.
This exploratory update mechanism enables learning of a diverse set of feasible constraints.

To empirically validate our ExICL method, we assess its performance across a diverse set of tasks
(including navigation, locomotion, and autonomous driving) and under various types of constraints
(such as spatial, dynamic, and kinematic). The results demonstrate that ExICL can outperform other
baseline methods from multiple perspectives, including 1) inferring more accurate constraints, 2)
enhancing the diversity of the inferred constraint set, and 3) boosting training efficiency. These
empirical studies consolidate the validity of our ExICL.
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Figure 1: The flowchart of classic ICL (left) and our ExICL (right). The key differences are: 1)
To verify a constraint, ICL iteratively updates the policy and value functions using samples from
the dataset, whereas ExICL employs a guided generation approach, simplifying the verification
process. 2) while the objective of classic ICL is to infer a single constraint model, ExICL adopts an
exploratory constraint learning strategy aimed at identifying a broader, feasible set of constraints.

2 PROBLEM FORMULATION

Constrained Reinforcement Learning (CRL). The CRL problem commonly studies a Constrained
Markov Decision Process (CMDP) settingMc := (S,A, T , r, c, ϵ, µ0, γ), where: 1) S and A de-
note the space of states and actions. 2) T (s′|s, a) defines the transition distribution. 3) r(s, a) and
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c(s, a) denote the reward and cost function (we assume c ≥ 0). 4) ϵ defines the threshold of the
constraint, where ϵ = 0 refers to a hard constraint, enforcing absolute satisfaction, while ϵ > 0
denotes a soft constraint, permitting a certain degree of constraint violation. 5) µ0 denotes the initial
state distribution. 6) γ ∈ [0, 1) is the discount factor. In our empirical study, we mainly study an
episodic setting where the game ends at some terminating state or time horizon. The goal of CRL
policy π ∈ ∆A

S is to maximize the expected discounted rewards under known constraints

max
π

ET ,π,ρ0

[ T∑
t=0

γtr(st, at)
]

s.t. ET ,π,ρ0

[ T∑
t=0

γtc(st, at)
]
≤ ϵ (PI)

Inverse Constraint Learning. While traditional CRL problems often assume that cost signals c(·)
are directly observable from the environment, in many real-world scenarios, we typically have ac-
cess to expert demonstrations DE rather than observing the cost signals directly. To address this
challenge, a recent study (Scobee & Sastry, 2020) introduced Inverse Constrained Reinforcement
Learning (ICRL). The objective of ICRL is to infer the underlying constraint models from expert
demonstrations, enabling any policy to reproduce these demonstrations by applying the recovered
constraints. To achieve it, previous works (Malik et al., 2021) apply the Maximum likelihood Esti-
mation (MLE) objective under the maximum entropy framework:

argmax
c

pMc
(DE |C) = argmax

c

1

Z
|DE |
c

∏
τE∈DE

er(τE)1Mc(τE) (1)

Inspired by (Malik et al., 2021), we approximate 1Mc(τ) =
∏T

t=0 ϕω(st, at) such that ϕω(st, at) ∈
[0, 1] indicates the permissibility of performing action at at a state s. The MLE gradient
∇ωpMc(DE |C) can be transformed to:

∇ωpMc
(DE |C) = Eτ∗∼DE [∇ω log ϕω(τ

∗)]− Eτ̂∼(πMc ,T ) [∇ω log ϕω(τ̂)] (2)

where 1) the cost function can derived by c(s, a) = − log ϕ(s, a), 2) τ̂ denotes the estimated trajec-
tory based on the CMDPMc with the learned cost c. Under this setting, ICRL algorithms typically
assume that reward signals are observable and the goal is to recover only the constraints, in contrast
to Inverse Reinforcement Learning (IRL) (Ziebart et al., 2008), which aims to learn rewards from
an unconstrained MDP.

Identifiability Issue in ICRL. Like many other inverse optimization problems (Arora & Doshi,
2021), ICRL is essentially ill-posed since various combinations of rewards and constraints can ex-
plain the same expert demonstrations, which makes it difficult to identify the ground-truth constraint
uniquely. Striving for the identifiability of solutions, a pioneer work (Scobee & Sastry, 2020) intro-
duced the concept of a minimum constraint under a discrete CMDP. This constraint comprises the
smallest number of state-action pairs necessary for an expert agent to reproduce expert demonstra-
tions, ensuring that the optimal constraint is as concise as possible. A continuing work (Malik et al.,
2021) extends the concept of the minimum constraint to continuous state-action spaces by incor-
porating a weighted regularizer into the constraint update objective. However, this extension faces
several challenges: 1) Finding the minimum constraint in a continuous state space is intractable. 2)
The scale of regularization is highly sensitive to the chosen weighting term, which can not guarantee
the solution is unique. 3) Even when we capture the minimum constraint, there is no guarantee that
this constraint is the one respected by the actual expert agents.

Beyond focusing on the exact minimum constraints, inspired by the recent theoretical advancement
in IRL (Metelli et al., 2021), an intriguing but less explored solution is to infer the set of feasible
constraints. Under this setting, recent studies (Lindner et al., 2022; Metelli et al., 2023) developed a
theoretical framework for characterizing the feasible set of solutions for inverse optimization prob-
lems. However, these studies focus on reward learning instead of the constraint inference problem.
Besides, their results are only applicable under discrete state-action spaces, but the realistic ap-
plication aligns better with continuous state-action space. In the meantime, while previous works
commonly rely on online interaction with the environment, we focus on an offline setting. This is
because in practice data collection is expensive (e.g., in robotics, educational agents, or healthcare)
or dangerous (e.g., in autonomous driving, or healthcare). Motivated by the above considerations,
we propose the following offline ICRL problem considering the feasible constraint set.
Definition 2.1. The problem of offline inference for feasible constraint set can be characterized by a
pair P = (M,D0), whereM is a CMDP\c (CMDP without the cost) andD0 = {DE ,D−E} is the
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offline demonstration such that DE = {sEn , aEn , rEn }
NE
n=1 denotes expert demonstrations and D−E

denotes the dataset generated by non-expert agents. A cost model c : S × A ×H → R is feasible
for P if πE is an optimal policy for the CMDPM∪ c, i.e., πE ∈ Π∗

M∪c. We denote by CP the set
of feasible cost functions for P, namely feasible constraint set.
In solving the ICSI problem above, a critical prerequisite is to efficiently assess the feasibility of a
constraint by determining whether an expert policy can be learned under this constraint. However,
traditional ICRL solvers (Scobee & Sastry, 2020; Malik et al., 2021; Liu et al., 2024) are based on a
bi-level optimization framework, which requires solving both a forward CRL problem and an Inverse
Constraint Learning problem. Updating both a policy and a constraint function is computationally
intensive, significantly impacting the efficiency of learning the feasible constraint set.

3 EXPLORATORY INVERSE CONSTRAINT LEARNING

To learn a diverse set of feasible constraint, we introduce the Exploratory Inverse Constraint Learn-
ing (ExICL) algorithm (1). Striving for efficient assessment of candidate constraints, ExICL lever-
ages a Generative Diffusion Verifier (GDV) to evaluate whether expert demonstrations can be re-
produced under the examined constraint (Section 3.1). This optimization operates in context, thus it
bypasses the need to update model parameters, resulting in a significant increase in computational
efficiency. To ensure that the constraint model can effectively guide the denoising process, ExICL
implements a noise-robust constraint learning (Section 3.2). Additionally, ExICL employs an iter-
ative exploration process that strategically updates the constraint function, thereby facilitating the
identification of a broad range of feasible and diverse constraints (Section 3.3).

3.1 DIFFUSION PLANNER FOR GENERATIVE VERIFICATION

Learning the Planner from Offline Demonstration. Inspired by the Diffuser (Janner et al., 2022;
Ho et al., 2020), we follow the diffusion probabilistic models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) and formulate planning as a trajectory generation task through a learned iterative denoising
diffusion process pθ(τ i−1|τ i). The data distribution induced by the denoising process is given by:

pθ(τ
0:I) = pθ(τ

I)

I∏
i=1

pθ(τ
i−1|τ i) where pθ(τ

i−1|τ i) = N (µθ(τ
i, i),Σi) (3)

where i ∈ [0, I] denotes the diffusion step and each τ i = (si0, a
i
0, s

i
1, a

i
1, . . . , s

i
T , a

i
T ) where t ∈

[0, T ] denotes the planning step (i.e., the time step of action execution in the environment).

This learned denoising process is trained to reverse a forward diffusion process q(τ i|τ i−1) that
slowly corrupts the structure of trajectories by adding noise. The corresponding distribution is:

q(τ0:I) = q(τ0)

I−1∏
i=0

q(τ i|τ i−1) where q(τ i|τ i−1) = N (
√

1− βiτ i−1, βiI) (4)

Under these denoising and diffusion processes, q(τ0) denotes the data distribution, and q(τ I) indi-
cates the standard Gaussian prior. To learn the denoising model pθ(τ i−1|τ i) from the offline dataset
D0, we optimize its parameters by maximizing the negative log-likelihood of observed trajectories
via constructing a variational lower bound over the individual steps of denoising:

Eq(τ0)[log p(τ
0)] ≥ Eq(τ0:I)

[
log

pθ(τ
0:I)

q(τ1:I |τ0)

]
≈ Eτ0∼D0,τ1:N∼q(τ1:N )

[
I∑

i=1

log pθ(τ
i−1|τ i)

]
(5)

Note that the pθ(τ) =
∫
pθ(τ

0:I)τ1:I approximate the distribution of trajectories within the offline
demonstration D0, and there is no guarantee a trajectory τ ∼ pθ(τ) generated under this model will
be safe. By leveraging this property, GDV can efficiently verify the feasibility of a constraint by
determining whether it can guide the diffusion planning process to generate a safe trajectory.

Verifying Constraint via Guided Denoising. To verify the feasibility of a constraint, GDV utilizes
the guided sampling strategy (Janner et al., 2022) and perturbs the distributions in the iterative
denoising process. At each denoising step, the perturb distribution p̃θ(τ) can be represented as:

p̃θ(τ) = p(τ |O0:T = 1) ∝ pMc
(O0:T = 1|τ)pθ(τ) (6)
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where O0:T is a binary variable denoting whether the outcomes are desired. Without considering
the constraint, the probabilistic inference framework for RL (Levine, 2018) defines

p(O0:T = 1, τ) = pθ(τ)p(O0:T = 1|τ) = p(s0)

[
T∏

t=0

p(st+1|st, at)πβ(at|st)

]
e
∑T

t=0 r(st,at) (7)

where 1) πβ(at|st) denotes the behavior policy that generates the offline dataset. 2) pθ(τ) =

p(s0)
[∏T

t=0 p(st+1|st, at)πβ(at|st)
]

denotes the trajectory distribution in the offline dataset D0,

and 3) p(O0:T = 1|τ) = e
∑T

t=0 r(st,at) the optimality model.

By extending this advancement to a CMDP Mc, the optimal probabilistic representation for con-
strained policy model pMc

(O0:T = 1|τ) is defined by:

pMc(O0:T = 1|τ) =

{
e
∑T

t=0 r(st,at), Eτ [
∑T

t=0 c(st, at)] ≤ ϵ
0, Eτ [

∑T
t=0 c(st, at)] > ϵ.

(8)

Although the CRL objective is essentially non-convex, this problem in general has zero duality gap:
Theorem 3.1. (CRL has zero duality gap (Paternain et al., 2019)). Suppose that r and c are bounded
and the Slater’s condition holds for (PI), then strong duality holds for (PI), i.e., PI∗ = DI∗.

min
λ>0

max
π

Eµ0,π,PT

[ h∑
t=0

γt
(
r(st, at)− λc(st, at)

)]
+ λϵ (DI)

Correspondingly, pMc
(O0:T = 1|τ) (Equation 8) can be represented as its dual format by trans-

forming the constraint into penalty such that:

p̃Mc(τ) ∝ pθ(τ)pMc(O0:T = 1|τ) = pθ(τ)e
∑T

t=0[r(st,at)−λc(st,at)+λϵ] (9)
where λ denotes the Lagrange multiplier. p̃Mc(τ) represents the distribution of trajectories sub-

jected to reward maximizing and constraint satisfying objectives, which can model the trajectories
generated under a given constraint. Since p̃Mc(τ) is modeled by a diffusion model, the denoising
process transitions can be approximated as Gaussian (Sohl-Dickstein et al., 2015) such that:

pθ(τ
i−1|τ i,O0:T ) = N (µθ(τ

i, i) + Σgc,Σ
i) where gc = ∇τpMc(O0:T = 1|τ) |τ=µθ

(10)
Such a denoising process does not involve parameter updating over the diffusion or cost/reward-
value models, and thus it is more efficient than the classic CRL solver. By comparing the generated
trajectories τ̃ ∼ p̃Mc(τ) with the expert ones τE , GDV efficiently validates the accuracy of inferred
constraints. During this process, to ensure that the GDV can accurately guide trajectory generation
and facilitate the discovery of a diverse set of feasible constraints, we must ensure the following:

• The constraint model can accurately guide the trajectory generation in the GDV. Specifically, the
model must be able to predict the cost of trajectories with added Gaussian noise accurately.

• Our algorithm includes a mechanism to generate a large number of candidate constraints.

In the following sections, we introduce the approach to learning noise-robust constraints with
p̃Mc(τ) and the exploration strategy for learning a diverse set of constraints.

3.2 NOISE-ROBUST CONSTRAINT UPDATE

To ensure that the constraint model accurately estimates the cost of noisy trajectory, we collect
noisy samples (τ∗,0:I and τ̂0:I ) during the diffusion process by introducing noise into τ∗ and τ̂ .
Subsequently, we update the classic constraint inference loss (2) to a noise-robust version in the
following:

Eτ∗∼DE

[
Eq(τ∗,1:I |τ0)

( I∑
i=0

log ϕω(τ
∗,i, i)

)]
− Eτ̂∼DP

[
Eq(τ̂1:I |τ0)

( I∑
i=0

log ϕω(τ̂
i, i)

)]
(11)

where 1) DP denotes the nominal trajectory data generated by policy π under CMDP Mc (with
the estimated cost before update) and 2) ϕω(τ i, i) =

∏T
t=0 ϕω(s

i
t, a

i
t, i) denotes the permissibility

function for accurately determines whether the noise-augmented trajectory τ i is feasible. In this
manner, the corresponding cost estimation cω(sit, a

i
t) = − log ϕω(s

i
t, a

i
t) is noise-robust, which can

accurately guide the trajectory generation during the diffusion process.
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3.3 STRATEGIC EXPLORATION FOR CONSTRAINT UPDATE

Based on the above noise-robust objective, we enhance the algorithm’s capability for actively dis-
covering feasible constraints by implementing a dynamic exploration algorithm. To achieve this
goal, we extend the object (11) by proposing an exploratory constraint update objective designed for
strategic exploration, detailed as follows:

EDE

[
Eq(τ∗,1:I |τ0)

( I∑
i=0

log ϕω(τ
∗,i, i)

)]
−EDP

[
Eq(τ̂1:I |τ0)

( I∑
i=0

log ϕω(τ̂
i, i)

)]
−ψ(ϕω,Φ), (12)

where ψ refers to a regularization term, controlling the sparsity and the diversity of constraint func-
tions ϕω . To learning a constraint representation, motivate by contrastive learning (He et al., 2020),
we follow the InfoNCE loss (van den Oord et al., 2018) and implement ψ(ϕω,Z) as:

ψ(ϕω,Z) = EDP

δ log e
∑

(st,at)
dist[1,ϕω(st,at)]∑

ϕ̃ω∈Z e
∑

(st,at)
dist[ϕ̃ω(st,at),ϕω(st,at)]

 , (13)

where δ denotes the regularization parameter controls the scale of sparsity, dist(·, ·) indicates the dis-
tance metric, here we choose it to be the l1 norm. Z denotes the set of feasible constraints that have
already been discovered. Intuitively, this regularization term e

∑
(st,at)

dist[1,ϕω(st,at)] encourages the
constraint function to assign higher feasibility values to state-action pairs, improving the sparsity
of the inferred constraints. Simultaneously, this objective fosters the diversity of these constraints,
allowing them to be distinguishable from previously learned constraints. Since a constraint model
can be characterized by its predicted cost values at different state-action pairs, we require different
constraint models to assign different feasibility values ϕω to the same state-action pairs

Implementation. Based on the above design, Algorithm 1 illustrates the our implementation.

Algorithm 1 Exploratory Inverse Constraint Learning (ExICL)
Require: Offline dataset DO = {DE ,D−E}, contrastive exploration rounds M

Randomly initialize feasibility function ϕω and ϕδ
Initialize the set of feasible constraint Z ← {∅} and the Lagrange parameter λ = 0
Train diffusion-based trajectory predictor pθ(τ) based on DO with objective (5)
for each exploration coefficient δ do

Initialize the subset of feasible feasibility constraint Zδ ← {∅}
for exploration round m = 0, . . . ,M do

Set the initial feasibility function ϕmω = ϕδ

Initialize the set of predicted trajectories DP = {∅}
while The predicted trajectory τ̂ ̸= τE ,∀τE ∈ DE do

Generate a trajectory τ̂ with c(·) = − log ϕmω (·) as costs and (10) as denoising process.
Collect the predicted trajectory DP = DP ∪ {τ̂}
Update λ by minimizing the loss L = λEτ̂∼p̃Mc

[c(τ)− ϵ]
Update the feasibility function ϕmω via objective (12) (based on DP , Zδ and δ)

end while
Expand the subset of feasible constraints Zδ = Zδ ∪ {ϕmω }

end for
Expand the feasible constraint set Z = Z ∪ Zδ and reset the feasibility function ϕδ = ϕMω

end for

4 EMPIRICAL EVALUATION

We empirically evaluate the effectiveness of ExICL by its capability of 1) accurately inferring var-
ious types of constraints (e.g., spatial, dynamic, and kinematic) under PointMaze and robot control
environments (Section 4.1), 2) exploring various kinds of constraints with strategic exploration in
constraint updates (Section 4.2), and 3) accelerating the process of constraint inference (Section 4.3).
We empirically evaluate the effectiveness of ExICL by its capability of 1) accurately inferring var-
ious types of constraints (e.g., spatial, dynamic, and kinematic) under PointMaze and robot control
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environments (Section 4.1), 2) exploring various kinds of constraints with strategic exploration in
constraint updates (Section 4.2), and 3) accelerating the process of constraint inference (Section 4.3).

Figure 2: Constrained PointMaze UMAZE, L,
and 2WALLS from left to right, where the blue,
red, and dark regions indicate the starting, desti-
nation, and constrained locations.

Experiment Setting. Our experiments inves-
tigate the proposed ExICL in continuous en-
vironments. Specifically, we construct three
distinct PointMaze environments with differ-
ent constraints in Figure 2. See Appendix A.1
for further details. To evaluate model per-
formance in more challenging tasks, we ex-
tend three robot control environments in Mu-
JoCo (Todorov et al., 2012) by incorporat-
ing distinct predefined constraints into differ-
ent tasks. The examine tasks include 1) Obsta-
cle HalfCheetah, where we introduce a spatial
constraint that prevents the robot from moving
backward; 2) Limited-Speed Walker, where we design a dynamic constraint to control the robot’s
maximum forward speed; 3) Blocked Ant, where we add a kinematic constraint on the robot’s leg an-
gular velocity, limiting the size of each movement. Please refer to Appendix A.2 for further details.
The autonomous experiment setting can be seen in B.3.

Evaluation Metrics. To quantify model performance, following (Malik et al., 2021), we use the
following evaluation metrics: 1) Cumulative Reward, which adds up the total rewards obtained
throughout the entire episode; 2) Cumulative Cost, which adds the total costs obtained throughout
the entire episode and 3) Feasible Cumulative Reward, which quantifies the accumulated rewards
before any constraint violations occur. Each experiment is repeated with five random seeds, and the
results are reported as the mean ± standard deviation (std). The detailed settings and random seeds
are reported in Appendix A.

4.1 CONTROL PERFORMANCE: QUANTIFYING THE ACCURATENESS OF CONSTRAINTS

In this experiment, we investigate whether ExICL can effectively learn the accurate constraints by
assessing whether the learned constraints can facilitate the reproduction of expert demonstrations.

Constrained PointMaze Environments. In this experiment, we design three different PointMaze
environments, each featuring unique constraints, as shown in Figure 2. The agent’s objective is to
navigate from the starting location to the target location while successfully avoiding the imposed
constraints. As for performance demonstration, we selected the constraints discovered under the
largest δ. Since δ controls the level of regularization on sparsity, our setting is to align with the
previous setting of ICRL solvers that favor the sparsity of constraints, thereby providing a fair com-
parison with previous works.

Comparison Methods. We mainly compare the proposed ExICL with the following baselines: 1)
Behavior Cloning (BC), which learns a policy by directly imitating actions from expert demonstra-
tions; 2) Least Square Inverse Q-Learning (LS-IQ) (Al-Hafez et al., 2023), which infers reward
value functions from offline data to replicate the expert policy. 3) Inverse Constrained Superior Dis-
tribution Correction Estimation (ICSDICE) (Quan et al., 2024), which utilizes reward information
and solves a regularized dual optimization problem for safe control by exploiting the dataset.

Table 1: PointMaze evaluation performance. Each value is reported as the mean± std over 100 runs
and 5 seeds. We highlight the best results with the highest rewards or lowest violations in bold.

Methods
PointMaze-UMAZE PointMaze-2WALLS PointMaze-L

Reward ↑ Cost ↓ Reward w/o Cost ↑ Reward ↑ Cost ↓ Reward w/o Cost ↑ Reward ↑ Cost ↓ Reward w/o Cost ↑
BC 0.88± 0.10 2.09± 5.03 0.78± 0.10 0.90± 0.16 3.29± 5.04 0.66± 0.14 0.92± 0.05 1.15± 3.71 0.92± 0.05

LS-IQ 0.84± 0.16 10.28± 7.68 0.54± 0.20 0.82± 0.24 22.36± 9.28 0.58± 0.28 0.76± 00.10 14.97± 5.63 0.48± 0.12
ICSDICE 1.00± 0.00 0.02± 0.01 0.95± 0.01 0.94± 0.06 1.20± 0.06 0.78± 0.10 0.92± 0.04 0.14± 0.05 0.62± 0.08

ExICL (ours) 1.00± 0.00 0.01± 0.00 0.99± 0.00 1.0± 0.00 0.01± 0.00 0.99± 0.01 1.0± 0.00 0.00± 0.00 1.0± 0.00

Results Analysis. Table 1 presents our evaluation results, revealing that ExICL consistently out-
performs other baselines by achieving higher cumulative rewards and lower rates of constraint vi-
olations. A key factor contributing to this performance is that classic methods such as LS-IQ and
BC do not intentionally model the constraint. Consequently, there is no guarantee that the agent
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will maintain a safe distance from the wall, often resulting in substantial costs and reduced feasible
rewards.

Visualization. To better illustrate the learned constraint, Figure 3 shows the validation of trajectory
level constraints. We find that ExICL accurately captures the feasibility of trajectories.
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Figure 3: Visualization of the constraints learned by ExICL under the PointMaze-UMAZE,
2WALLS, and L environments. Each point indicates the predicted cost within a trajectory

Constrained MuJoCo Environments. Three different MuJuCo environments that differ in agent
and constraint are designed for this experiment. The agent’s objective is to cover the maximum
possible distance within a unit of time while prevent violating the constraints.

Comparison Methods. To perform a more comprehensive evaluation, we add more baselines to pre-
viously compared ones: 1) SMODICE (Ma et al., 2022), which leverages the dual and offline reward
function to optimize the policy; 2) OptiDICE-Constraint, which replaces the DICE objective used
in ICSDICE with OptiDICE (Lee et al., 2021); and 3) SMODICE-Constraint, which incorporates
information by adding environment rewards to the SMODICE’s learned discriminator reward.

Table 2: MuJoCo evaluation results. The baseline results are adapted from (Quan et al., 2024). Each
value is reported as the mean ± std over 10 runs and 5 seeds. Bold denotes safe methods with
maximum rewards.

Methods
Obstacle-HalfCheetah Limited-Walker Blocked-Ant

Reward w/o Cost ↑ Cost ↓ Reward w/o Cost ↑ Cost ↓ Reward w/o Cost ↑ Cost ↓
BC 731± 693 0.30± 0.40 -7± 0.5 0.01± 0.02 876± 138 0.04± 0.02

LS-IQ 2175± 775 0.04± 0.05 603± 203 0.17± 0.09 -63± 208 0.40± 0.12
SMODICE 3565± 345 0.13± 0.11 2334± 238 0.52± 0.19 1410± 153 0.33± 0.07

SMODICE-c 3829± 661 0.30± 0.24 1871± 155 0.18± 0.15 1763± 180 0.53± 0.03
OptiDICE-c 2749± 597 0.03± 0.06 1538± 283 0.01± 0.01 3070± 91 0.01± 0.00
ICSDICE 2315± 740 0.04± 0.04 1587± 308 0.01± 0.02 3073± 103 0.01± 0.00

ExICL (ours) 5298± 480 0.00± 0.00 1862± 29 0.00± 0.00 3061± 199 0.01± 0.01

Results Analysis. Table 2 shows the evaluation results in high-dimensional robot control tasks. We
can find that ExICL consistently achieves fewer constraint violations across all three environments,
regardless of the constraint type, demonstrating the effectiveness of the inferred constants. In con-
trast, offline IL methods, such as BC, IS-IQ, and SMODICE, generally fail to ensure safety, even
when reward information is incorporated. This limitation is expected, as these methods are not ex-
plicitly designed to address safety concerns. Interestingly, OptiDICE-c, with its normalization and
soft-chi divergence tricks, and ICSDICE, utilizing a superior DICE approach tailored for constraint
learning, exhibit satisfactory performance with low costs and relatively high rewards. However,
neither method surpasses ExICL in terms of rewards, except in the Ant environment where perfor-
mance is comparable. This is especially evident in the HalfCheetah environment, where ExICL’s
exploration ability enables the agent to more effectively pursue rewards.

4.2 EXPLORATORY PERFORMANCE: EVALUATING THE DIVERSITY OF CONSTRAINTS

In this section, we study the exploratory performance of our method by quantifying the diversity of
constraints within the learned feasible constraint set.

Constrained PointMaze Environments. In this experiment, we study whether the ExICL can learn
a diverse set of constraints by analyzing the cost values assigned to the expert trajectories and non-
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expert ones. Ideally, the constraints in the feasible set should assign different costs to the same
trajectory, in the meantime, the expert trajectories should consistently have lower costs.

Comparison Methods. In this study, we primarily compare several common exploration methods,
including 1) Random-Noise, which involves directly adding noise to the parameters of learned con-
straints to discover alternative constraints; and 2) Random Initialization, where we repeatedly learn
different constraints starting from normal distributed initial model parameters other than zero con-
stant initialization for other methods.
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Figure 4: The delta varying exploratory results for both constraint-violating trajectories (top) and
expert trajectories (bottom) of PointMaze-UMAZE environment. Each data point corresponds to
the cumulative costs for a trajectory. Three exploration strategies are presented: random noise (left),
random initialization (middle) and Ex-ICL (right).

Figure 4 illustrates the exploratory results in the PointMaze-UMAZE environment, with exploratory
models varying in regularization parameter δ. Additional δ-varying exploratory results for the other
two environments, PointMaze-L and PointMaze-2Walls, are displayed in Figure 7 and Figure 8 in
the Appendix, and the exploratory results depending on exploration rounds are displayed in Figure 9.
The decrease of cost value as regularization parameter δ increase in Figure 4, 7, 8 implies the
enlarging sparsity of the constraints. Our results reveal that the diversity of feasible constraints
discovered by random noise and initialization methods is less effective compared to that achieved by
our ExICL method. Another intriguing observation is the costs of constraint-violating trajectories
have a significantly higher variance than those of expert trajectories. This is because, to recover the
constraint, ICRL algorithms must increase the cost values of bad trajectories above the threshold ϵ.
On the other hand, for the cost values of expert trajectories, ICRL algorithms must guarantee their
values to be smaller than ϵ. In this work, our ϵ is set to close to zero, so the scale of variances for bad
trajectories is much larger than those of expert trajectories. By implementing strategic exploration,
our EX-ICL exploration strategy successfully identifies this diverse set of feasible cost models,
causing the variance of predicted cost values to be higher.

Robot Control Tasks. Figure 5 visualizes the robot trajectory segments during evaluation in three
MuJoCo environments. From left to right are the results without constraint model (nominal), and
with three different constraint models during exploration. The constrained value of the last frame is
displayed, where yellow indicates constraint violations and green indicates safety. We present the
average reward and cost per step for each figure. We observe that different constraint models lead to
distinct behaviors, with red circles highlighting the key differences. For example, in the HalfCheetah
environment, the robot moves varying distances due to the exploration process influenced by the
constraint model. Similarly, the Walker robot is encouraged to lift its foot higher to increase speed,
while the Ant robot explores in the northward direction. Appendix B.2 reports numerical results.

4.3 LEARNING EFFICIENCY: HOW FAST A CONSTRAINT CAN BE INFERRED

We conduct an empirical study to compare the learning efficiency of our ExICL algorithm with
other baselines within the PointMaze environment. The learning efficiency is measured by data
points used for training as emphasized in offline reinforcement learning where the dataset collection
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Planning w/o Cost Planning w/ Cost0 Planning w/ Cost1 Planning w/ Cost2

xpos=-5.6
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ang_v=8.35
ang_v=0.005 ang_v=0.012 ang_v=0.006

Figure 5: Visualization of the exploration results in MuJoCo environments. Each row represents an
environment with identical frames for comparison.

is more costly (Levine et al., 2020). The data efficiency curve illustrated in Figure 6 below depicts
the trend of performance as data point usage increases. The EX-ICL curve represents the progression
till the discovery of the first valid constraint, aiming to offer a fair comparison with previous work
that studies only one constraint. The area circled with an orange ellipse represents the training
phase of the GDV model and reward value model. Among the compared methods, we find that
our ExICL exhibits the highest sample efficiency. This efficiency stems from its ability to learn
feasible constraints that yield significant rewards while utilizing a minimal number of data points.
This is attributed to our GDV model, which performs a generative denoising process to validate
candidate constraints without relying on frequent policy updates, thereby significantly improving
sample complexity.
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Figure 6: Training efficiency of three methods in three PointMaze environments.

5 CONCLUSION

In the paper, we introduced the ExICL algorithm, which is designed to learn a diverse set of con-
straints from an offline demonstration dataset. By proposing a GDV model, we significantly accel-
erated the verification of candidate constraints. Additionally, we developed a strategic exploration
mechanism that updates constraints and efficiently expands the constraint set, thereby facilitating the
discovery of varied constraints. To validate our method, we conducted experiments across a diverse
array of tasks, including navigation, locomotion, and autonomous driving, and under various types
of constraints. Our results demonstrate that ExICL significantly outperforms other baseline methods
in terms of learning more accurate constraints, discovering diverse constraints, and enhancing learn-
ing efficiency. A promising direction for future work involves expanding ExICL to more practical
environments, such as quadrapedal and humanoid robot control.
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A IMPLEMENTATION AND ENVIRONMENTAL DETAILS

A.1 POINTMAZE ENVIRONMENTS

We designed three PointMaze environments: one with a grid of 5×5 cells and two others with 7×7
grids. Each cell spans an area of 0.5m × 0.5m. The center of the grid is positioned at the origin
(0, 0). Constraints are applied at specific cells marked as ”1” on the corresponding maze map. The
outer walls, also marked as ”1”, are impassable, while the inner regions allow the agent to move
freely.

The agent is modeled as a 2-DoF ball actuated by forces in the Cartesian x- and y-directions. The
agent’s objective is to navigate through the maze and reach a designated target. The goal is consid-
ered reached when the Euclidean distance between the ball and the target is less than 0.45m. The
reward system assigns a value of 1 when the agent reaches the goal, while all other cells have a re-
ward of 0. Similarly, entering a constrained location incurs a cost of 1. The environment terminates
after a maximum of 150, 500, or 250 time steps, depending on the specific maze.

The state space is continuous and comprises four dimensions: the agent’s x and y coordinates, as
well as the linear velocity in both directions. The action space is also continuous, consisting of
accelerations in the x- and y-axes.

A.2 MUJOCO ENVIRONMENTS

Our simulated environments are constructed using Mujoco. We derived state-action function c(s, a)
from a state-dependent function c(s′) with c(s, a) = Es′∼P (s′|s,a)[c(s

′)]. Below are more details
regarding the environments used:

1. HalfCheetah (Obstacle): These environments are adapted from Liu et al. (2023). In this
setup, the agent controls a robot that moves faster backward than forward. The rewards are
based on the distance covered between consecutive time steps, along with penalties tied to
the magnitude of the actions. Additionally, a constraint restricts movement to areas where
the X-coordinate is greater than -3, forcing the robot to move forward only.

2. Ant (Blocked): In these environments, the agent manages a robot that moves forward and
gains rewards based on the distance traveled. However, a constraint limits the robot’s leg
angular velocity to prevent excessive force on the ground. The limit is set at 1.

3. Walker (LS): In these environments, the agent controls a robot that moves forward and
earns rewards for traveling distances. However, there is a speed limit is set at 1, resulting
in reduced rewards compared to an environment without such a constraint.

A.3 OFFLINE DATASETS

Offline Dataset for Navigation Tasks. This offline dataset collects a total number of 3255 trajec-
tories consisting of around 1.5 × 105 state-action pairs in three environments. More precisely, we
collect 1638 trajectories for PointMaze-UMAZE, 667 trajectories for PointMaze-2Walls, and 950
trajectories for PointMaze-L. In each individual environment, the trajectories can be categorized into
three parts: 1) expert trajectories generated by the expert policy trained under the PPO-Lagrangian
algorithm and incorporates stochasticity of 0.05, allowing for random actions; 2) constraint-violating
trajectories created by a policy that accelerates the agent’s movement directly toward the terminating
location, with stochasticity of 0.1; 3) random trajectories generated by the uniformly random policy.
The proportion of the number of pairs in each kind of trajectory is around 5 : 1 : 1.

Offline Dataset for Robot Control Tasks. We use the public offline dataset provided by (Quan
et al., 2024). Specifically, this offline dataset includes a total number of 250 trajectories, which
obtains 200 suboptimal trajectories (each with 1000 steps) and 50 expert trajectories from a PPO-
lag algorithm.

A.4 MODEL ARCHITECTURES

We construct our generative diffusion verifier and reward value model following the official im-
plementation of (Janner et al., 2022), both with a U-Net based architecture. We also design our
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cost value model similar to the reward value model with a U-Net based architecture but differs in
outputting a horizon H-length feature takes value in [0, 1] representing the feasibility ϕω(st, at)
for each state-action pair in the H-length trajectory. And the cost value is explicitly calculated by

Vc =
H∑
t=0

γtcω(s
i
t, a

i
t, i) =

H∑
t=0

γt − log ϕω(s
i
t, a

i
t, i). Note that diffusion time i is explicit input

into the network and embedded by an MLP to perceive the denoising process. Thus the cost value
model can accurately predict the cost value of noisy trajectory and use it to guide the generation.
Environment-dependent model hyperparameters are presented in 3 below.

A.5 EVALUATION DETAILS

The evaluation in MuJoCo is conducted over 10 runs using 5 random seeds, while the evaluation in
the PointMaze environments is carried out over 100 runs with 5 random seeds.

Table 3: List of the utilized hyperparameters in the navigation tasks in PointMaze and MuJoCo
environments.

Parameters PointMaze-UMAZE PointMaze-2WALLS PointMaze-L Obstacle-HalfCheetah Limitted-Walker Blocked-Ant CommonRoad-Velocity<40

Max Episode Length 150 500 250 1000 1000 1000 400
Discount Factor 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Episodes Collected 64 64 64 64 64 64 64
Policy Batchsize 512 1024 1024 1024 1024 1024 1024
Expert Batchsize 512 1024 1024 1024 1024 1024 1024

Initial Lagrange Multiplier 10 100 100 5 5 5 200
Lagrange Multiplier Learning Rate 0.01 0.01 0.01 0.1 0.1 0.1 0.1

Guided Scale 0.1 0.01 0.001 0.1 0.01 0.1 0.01
Cost Model Horizon 32 32 32 32 32 32 32

Cost Model Learning Rate 1e-4 1e-5 1e-5 1e-5 1e-5 1e-5 5e-5
Cost Model Update Step 4 1 4 4 4 4 2

Diffusion steps 20 20 20 20 20 20 20
Diffusion Time Feature Dimension 32 32 32 32 32 32 32
Diffusion Time Hidden Dimension 128 128 128 128 128 128 128

Hidden Feature Dimension 32 32 32 32 32 32 32
Convolution Kernal Size 5 5 5 5 5 5 5

U-Net depth 4 4 4 4 4 4 3
Convolution Layers Dimension (1×,2×,4×,8×) (1×,2×,4×,8×) (1×,2×,4×,8×) (1×,2×,4×,8×) (1×,2×,4×,8×) (1×,2×,4×,8×) (1×,4×,8×)
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B ADDTIONAL RESULTS

B.1 ADDITIONAL EXPLORATORY RESULTS OF THE CONSTRAINTS IN POINTMAZE
ENVIRONMENT

The following 2 figures illustrate the output cost value of the cost models trained under different
exploratory regularization parameters δ for PointMaze-L and PointMaze-2-Walls environments re-
spectively.
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Figure 7: The delta varying exploratory results for both bad trajectories (top) and expert trajectories
(bottom) of PointMaze-2WALLS environment. Each data point corresponds to the cumulative costs
for a trajectory. Three exploration strategies are presented: random noise (left), random initialization
(middle) and Ex-ICL (right).
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Figure 8: The delta varying exploratory results for both bad trajectories (top) and expert trajectories
(bottom) of PointMaze-L environment. Each data point corresponds to the cumulative costs for
a trajectory. Three exploration strategies are presented: random noise (left), random initialization
(middle), and Ex-ICL (right)
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We also illustrate the cost value-exploration round figures below, in which the cost model is trained
under the largest δ to demonstrate the effectiveness of our exploration method:
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Figure 9: The exploration round varying exploratory results for both bad trajectories (top) and expert
trajectories (bottom) of PointMaze-UMAZE, PointMaze-2WALLS, and PointMaze-L environments.
Each data point corresponds to the cumulative costs for a trajectory. Three exploration strategies are
presented: random noise (left), random initialization (middle) and Ex-ICL (right).

As we expected, the cost values of the same trajectory gradually vary from the original ones, as the
InfoNCE term in 13 encourages them to be distinct.

B.2 NUMERICAL ANALYSIS FOR THE DIVERSITY OF THE CONSTRAINT IN MUJOCO
ENVIRONMENT

Table 4: Costs values across varying exploration
epochs. The reported values are the mean ± std
over 5 different constraints.

Environment HalfCheetah Walker Ant
Violated Segments 49.2±5.7 23.9±2.2 36.6±5.4

Safe Segments 6.1±0.7 10.9±0.8 10.1±2.1

For numerical analysis, we use five different
constraint models during exploration to esti-
mate the cost values of identical trajectory seg-
ments in each environment and report the mean
and standard deviation results across them. The
results, shown in Table 4, indicate that: 1) con-
straint models effectively distinguish between
safe and violated segments, assigning higher
cost values to violated trajectories and lower values to safe ones; and 2) the std results across the
five constraint models suggest that the exploration process successfully induces variability among
the constraint models.

B.3 ADDITIONAL PERFORMANCE EXPERIMENTS IN COMMONROAD ENVIRONMENT WITH
HIGHD DATASET

To demonstrate the effectiveness of our method in a more realistic environment, we conducted exper-
iments on performance in CommonRoad-RL (Wang et al., 2021) Environment with a velocity<40
constraints. We chose the processed HighD (Krajewski et al., 2018) data given by (Liu et al., 2023),
aligning with baseline method (Quan et al., 2024). Our methods outperformed the baseline methods
in terms of trajectory cumulative cost>0 rate while achieving comparable performance on cumu-
lative reward and AUC metric. Such a result suggested that our method maintains effectiveness in
complicated realistic environments and broadens its future applications.
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Table 5: Performance measured by reward, cost, and Area Under Curve (AUC) of different methods.
The reported value of reward and cost are the mean ± std over 500 runs under 5 random seeds

Methods BC OptiDice-c ICSDICE EX-ICL(ours) Expert
reward -2.3±2.3 -1.6±3.7 10.7±1.5 10.5±2.2 14.0

cost 1.4% 12% 6.5% 3.2% 0.8%
AUC NA 0.76±0.02 0.81±0.01 0.84±0.06 NA

C PERFORMANCE OF DEMONSTRATIONS, BASELINE, AND OUR METHOD

To support our claim that our method achieved expert-level performance in all 3 MuJoCo locomotion
environments and thus the large or small performance gaps between our method and baseline (Quan
et al., 2024) are determined by the gap between expert demonstration and baseline performance, we
reported the cumulative feasible reward and the cumulative cost of expert demonstration, suboptimal
demonstration, our method, and baseline (Quan et al., 2024) in the below Table 6.

Table 6: MuJoCo demonstration and policy cumulative feasible reward and cumulative cost. Bold
denotes expert demonstration its comparable performances .

Methods
Obstacle-HalfCheetah Limited-Walker Blocked-Ant

Reward w/o Cost ↑ Cost ↓ Reward w/o Cost ↑ Cost ↓ Reward w/o Cost ↑ Cost ↓
Expert 4915± 1170 0.00± 0.00 1870± 12 1.64± 1.67 3059± 276 7.22± 2.74

Suboptimal 3784± 1455 487± 482 1003± 757 309± 243 732± 595 233± 213
ICSDICE 2315± 740 0.04± 0.04 1587± 308 0.01± 0.02 3073± 103 0.01± 0.00

ExICL (ours) 5298± 480 0.00± 0.00 1862± 29 0.00± 0.00 3061± 199 0.01± 0.01

D RELATED WORKS

In this section, we introduce the previous works that are most related to our approach.

Inverse Constraint Learning. Inverse Constraint Learning (ICL) aims at recovering constraints
encoded in demonstrations to autonomously define and reuse constraints. The ICL problem is inher-
ently ill-posed since there can be multiple combinations of reward and constraint pairs that explain
the optimality of expert behaviors. To address this ambiguity, conventional ICL methods assumed
the constraints are generated from certain constraint templates(Chou et al., 2021; Park et al., 2020;
Pérez-D’Arpino & Shah, 2017), while recent approaches leveraged neural networks to represent
constraints over discrete state-action spaces (Scobee & Sastry, 2020) and continuous state-action
spaces (Malik et al., 2021; Liu et al., 2023). Continuous works explore ICL under the environment
with soft constraint (Garg et al., 2021), multiple agents (Liu & Zhu, 2022; 2024; Qiao et al., 2023),
stochastic transition dynamics (McPherson et al., 2021; Xu & Liu, 2023), multiple tasks (Kim et al.,
2023) and robust optimization framework (Xu & Liu, 2024). A recent study (Quan et al., 2024)
has explored the method of ICL from offline dataset. However, these methods mainly focus on
identifying a specific constraint without exploring the approach to infer a diverse set of constraints.

Diffusion Planner for RL. Due to the impressive generative capabilities, some recent studies have
explored using diffusion models as planners to simulate environmental dynamics and solve RL prob-
lems in a model-based manner (Zhu et al., 2023). Among these studies, Diffuser (Janner et al.,
2022) guided the denoising process in diffusion models using a probabilistic representation of an
RL policy. To further enhance model performance, subsequent research has expanded on this con-
cept. AdaptDiffuser (Liang et al., 2023) incorporated evolutionary planning, while EDGI (Brehmer
et al., 2023) focused on planning by leveraging the geometric structure in the task. Additionally,
studies such as MTDiff (He et al., 2023) explored multi-task planning, TCD (Hu et al., 2023) uti-
lized temporal information for guiding the planning, LatentDiffuser (Li, 2024) examined planning
in latent action spaces, (Ni et al., 2023) studied the diffusion planning under meta RL setting and
HDMI (Li et al., 2023) developed a hierarchical decision framework for diffusion policy. In the
realm of safety-critical applications, while recent studies such as SafeDiffuser (Xiao et al., 2023)
and LTLDoG(Feng et al., 2024) have proposed safe planning using diffusion models under given
constraints, the extension of this method to the inverse RL problem remains unexplored.
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