
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARD EXPLORATORY INVERSE CONSTRAINT IN-
FERENCE WITH GENERATIVE DIFFUSION VERIFIERS

Anonymous authors
Paper under double-blind review

ABSTRACT

An important prerequisite for safe control is aligning the policy with the under-
lying constraints in the environment. In many real-world applications, due to the
difficulty of manually specifying these constraints, existing works have proposed
recovering constraints from expert demonstrations by solving the Inverse Con-
straint Learning (ICL) problem. However, ICL is inherently ill-posed, as multiple
constraints can equivalently explain the experts’ preferences, making the optimal
solutions not uniquely identifiable. In this work, instead of focusing solely on
a single constraint, we propose the novel approach of Exploratory ICL (ExICL).
The goal of ExICL is to recover a diverse set of feasible constraints, thereby pro-
viding practitioners the flexibility to select the most appropriate constraint based
on the needs of practical deployment. To achieve this goal, we design a gener-
ative diffusion verifier, which guides the trajectory generation process using the
probabilistic representation of an optimal constrained policy. By comparing these
decisions with those made by expert agents, we can efficiently verify a candidate
constraint. Driven by the verification feedback, ExICL implements an exploratory
constraint update mechanism that strategically facilitates the diversity within the
collection of feasible constraints. Our empirical results demonstrate ExICL can
seamlessly and reliably generalize across different tasks and environments.

1 INTRODUCTION
In recent years, Reinforcement Learning (RL) agents have demonstrated remarkable performance
across a variety of virtual games and environments by extensively exploring and exploiting the
entire state-action space (Mnih et al., 2015; Silver et al., 2018; Vinyals et al., 2019). However, real-
world applications often prioritize the safety and reliability of decisions, requiring the RL policies to
perform under restricted regions or spaces in realistic environments. To learn such policies, safe RL
methods typically update the policy within the bounds of constraints (Liu et al., 2021). However,
in practical applications, these constraints are often not readily available and can be challenging to
specify manually, particularly in complex environments.

Recent advancements in Inverse Constraint Learning (ICL) propose recovering the constraints fol-
lowed by expert agents from their demonstration (Scobee & Sastry, 2020). Previous methods (Malik
et al., 2021; Kim et al., 2023) typically extend the classical Inverse Reinforcement Learning (IRL)
framework to learn the constraint model under the known rewards. However, IRL is essentially an
ill-posed problem (Ng & Russell, 2000), and the optimal solution is often non-identifiable. When it
comes to ICL, we find multiple constraints can equivalently explain expert demonstrations, which
makes it difficult to identify the real constraints. In resolving the problem of unidentifiable solution,
previous ICL solvers typically rely on additional assumptions, such as the expert agent implement-
ing a regularized policy (Malik et al., 2021), or the ground-truth constraint set having a minimum
coverage of state-action pairs (Scobee & Sastry, 2020). While these assumptions reduce the number
of candidate constraints, there is no guarantee that the real constraint can be uniquely identified or
accurately characterized by these assumptions.

To address these issues, in this work, we propose an Exploratory Inverse Constraint Learning (Ex-
ICL) algorithm, which learns the set of feasible constraints with which the agent can accurately
recover the expert demonstration. To deploy these constraints in practical applications, practitioners
can select from the feasible set based on domain knowledge or specific requirements. Although
the concept of a feasible solution set has been theoretically analyzed by IRL solvers (Metelli et al.,
2021), the development of practical implementations remains largely unexplored. This is due to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

two main reasons (see Figure 1): 1) The difficulty in verification: To verify the feasibility of a
candidate constraint, prior studies must tackle a forward constrained RL problem. This involves
multiple rounds of policy model updates under the constraint, rendering the recovery of a feasible
set of constraints computationally intractable, especially in complex environments. 2) The lack
of exploratory mechanisms: Previous ICL algorithms primarily focused on identifying a single
constraint, lacking an exploratory mechanism to infer a diverse set of feasible constraints.

In response to the difficulty in verification, in this work, our ExICL algorithm utilizes a Generative
Diffusion Verifier (GDV) to accelerate verification. Operating within an in-context learning frame-
work, GDV can generate the optimal trajectory for a given constraint model without necessitating
updates to model parameters. This capability is enabled by a generative optimization framework,
where the GDV guides the generative process of a diffusion model with the probabilistic represen-
tation of an optimal policy under a specified constraint. During the trajectory generation process,
the constraint model must accurately predicts the cost of trajectories under varying levels of noise.
Motivated by this requirement, we design a noise-robust objective for updating constraints. The
divergence between the generated trajectories and the expert trajectories efficiently determines the
feasibility of a constraint and guides the updates to our constraint model.

Upon identifying a feasible constraint, our ExICL algorithm initiates an exploratory update to iden-
tify additional constraints. To facilitate this, we develop a strategic exploration mechanism that
enhances the diversity of learned feasible constraints through a contrastive learning objective. In
specific, we characterize each constraint by the predicted feasibility (or cost) values assigned to
each state-action pair. Building on this characterization, we refine the constraint update objective
to encourage divergence between these values and those of other constraints within the feasible set.
This exploratory update mechanism enables the learning of a diverse set of feasible constraints.

To empirically validate our ExICL method, we assess its performance across a diverse set of tasks
(including navigation, locomotion, and autonomous driving) and under various types of constraints
(such as spatial, dynamic, and kinematic). The results demonstrate that ExICL can outperform other
baseline methods from multiple perspectives, including 1) inferring more accurate constraints, 2)
enhancing the diversity of the inferred constraint set, and 3) boosting training efficiency. These
empirical studies consolidate the validity of our ExICL.

Constrained Reinforcement Learning

Policy Net.
Update

Sample Data

Iterate until
Convergence

If Match
Expert

Inverse
Constraint

Update
Value Net.

Update Constraint Model

Generative Diffusion Verifier

Trajectory

Random Noise

Trajectory

Constraint Guided
Denoising

Exploratory
Constraint

Update

Feasible Constraint
Set 𝒞𝔓

Constraint Model

If Match
Expert

Yes

No

Yes

No

Single Constraint

Explore

Figure 1: The flowchart of classic ICL (left) and our ExICL (right). The key differences are: 1)
To verify a constraint, ICL iteratively updates the policy and value functions using samples from
the dataset, whereas ExICL employs a guided generation approach, simplifying the verification
process. 2) while the objective of classic ICL is to infer a single constraint model, ExICL adopts an
exploratory constraint learning strategy aimed at identifying a broader, feasible set of constraints.

2 RELATED WORKS
In this section, we introduce the previous works that are most related to our approach.

Inverse Constraint Learning. Inverse Constraint Learning (ICL) aims at recovering constraints
encoded in demonstrations to autonomously define and reuse constraints. The ICL problem is inher-
ently ill-posed, since there can be multiple combinations of reward and constraint pairs that explain
the optimality of expert behaviors. To address this ambiguity, conventional ICL methods assumed
the constraints are generated from certain constraint templates(Chou et al., 2021; Park et al., 2020;
Pérez-D’Arpino & Shah, 2017), while recent approaches leveraged neural networks to represent
constraints over discrete state-action spaces (Scobee & Sastry, 2020) and continuous state-action
spaces (Malik et al., 2021; Liu et al., 2023). Continuous works explore ICL under the environment
with soft constraint (Garg et al., 2021), multiple agents (Liu & Zhu, 2022; 2024; Qiao et al., 2023),
stochastic transition dynamics (McPherson et al., 2021; Xu & Liu, 2023), multiple tasks (Kim et al.,
2023) and robust optimization framework (Xu & Liu, 2024). A recent study (Quan et al., 2024)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

has explored the method of ICL from offline dataset. However, these methods mainly focus on
identifying a specific constraint without exploring the approach to infer a diverse set of constraints.

Diffusion Planner for RL. Due to the impressive generative capabilities, some recent studies have
explored using diffusion models as planners to simulate environmental dynamics and solve RL prob-
lems in a model-based manner (Zhu et al., 2023). Among these studies, Diffuser (Janner et al.,
2022) guided the denoising process in diffusion models using a probabilistic representation of an
RL policy. To further enhance model performance, subsequent research has expanded on this con-
cept. AdaptDiffuser (Liang et al., 2023) incorporated evolutionary planning, while EDGI (Brehmer
et al., 2023) focused on planning by leveraging the geometric structure in the task. Additionally,
studies such as MTDiff (He et al., 2023) explored multi-task planning, TCD (Hu et al., 2023) uti-
lized temporal information for guiding the planning, LatentDiffuser (Li, 2024) examined planning
in latent action spaces, (Ni et al., 2023) studied the diffusion planning under meta RL setting and
HDMI (Li et al., 2023) developed a hierarchical decision framework for diffusion policy. In the
realm of safety-critical applications, while recent studies such as SafeDiffuser (Xiao et al., 2023)
and LTLDoG(Feng et al., 2024) have proposed safe planning using diffusion models under given
constraints, the extension of this method to the inverse RL problem remains unexplored.

3 PROBLEM FORMULATION
Constrained Reinforcement Learning (CRL). The CRL problem commonly studies a Constrained
Markov Decision Process (CMDP) settingMc := (S,A, T , r, c, ϵ, µ0, γ), where: 1) S and A de-
note the space of states and actions. 2) T (s′|s, a) defines the transition distribution. 3) r(s, a) and
c(s, a) denote the reward and cost function (we assume c ≥ 0). 4) ϵ defines the threshold of the
constraint, where ϵ = 0 refers to a hard constraint, enforcing absolute satisfaction, while ϵ > 0
denotes a soft constraint, permitting a certain degree of constraint violation. 5) µ0 denotes the initial
state distribution. 6) γ ∈ [0, 1) is the discount factor. In our empirical study, we mainly study an
episodic setting where the game ends at some terminating state or time horizon. The goal of CRL
policy π ∈ ∆A

S is to maximize the expected discounted rewards under known constraints

max
π

ET ,π,ρ0

[T∑
t=0

γtr(st, at)
]

s.t. ET ,π,ρ0

[T∑
t=0

γtc(st, at)
]
≤ ϵ (PI)

Inverse Constraint Learning. While traditional CRL problems often assume that cost signals
c(·) are directly observable from the environment, in many real-world scenarios, we typically have
access to expert demonstrations DE rather than observing the cost signals directly. To address this
challenge, a recent study (Scobee & Sastry, 2020) introduced the concept of Inverse Constrained
Reinforcement Learning (ICRL). The objective of ICRL is to infer the underlying constraint models
from expert demonstrations, enabling any policy to reproduce these demonstrations by applying
the recovered constraints. To achieve it, previous works (Malik et al., 2021) apply the Maximum
likelihood Estimation (MLE) objective under the maximum entropy framework:

argmax
c

pMc
(DE |C) = argmax

c

1

Z
|DE |
c

∏
τE∈DE

er(τE)1Mc(τE) (1)

Inspired by (Malik et al., 2021), we approximate 1Mc(τ) =
∏T

t=0 ϕω(st, at) such that ϕω(st, at) ∈
[0, 1] indicates the permissibility of performing action at at a state s. The MLE gradient
∇ωpMc

(DE |C) can be transformed to:

∇ωpMc
(DE |C) = Eτ∗∼DE [∇ω log ϕω(τ

∗)]− Eτ̂∼(πMc ,T) [∇ω log ϕω(τ̂)] (2)

where 1) the cost function can derived by c(s, a) = − log ϕ(s, a), 2) τ̂ denotes the estimated trajec-
tory based on the CMDPMc with the learned cost c. Under this setting, ICRL algorithms typically
assume that reward signals are observable and the goal is to recover only the constraints, in contrast
to Inverse Reinforcement Learning (IRL) (Ziebart et al., 2008), which aims to learn rewards from
an unconstrained MDP.

Identifiability Issue in ICRL. Like many other inverse optimization problems (Arora & Doshi,
2021), ICRL is essentially ill-posed since various combinations of rewards and constraints can ex-
plain the same expert demonstrations, which makes it difficult to identify the ground-truth constraint
uniquely. Striving for the identifiability of solutions, a pioneer work (Scobee & Sastry, 2020) intro-
duced the concept of a minimum constraint under a discrete CMDP. This constraint comprises the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

smallest number of state-action pairs necessary for an expert agent to reproduce expert demonstra-
tions, ensuring that the optimal constraint is as concise as possible. A continuing work (Malik et al.,
2021) extends the concept of the minimum constraint to continuous state-action spaces by incor-
porating a weighted regularizer into the constraint update objective. However, this extension faces
several challenges: 1) Finding the minimum constraint in a continuous state space is intractable. 2)
The scale of regularization is highly sensitive to the chosen weighting term, which can not guarantee
the solution is unique. 3) Even when we capture the minimum constraint, there is no guarantee that
this constraint is the one respected by the actual expert agents.

Beyond focusing on the exact minimum constraints, inspired by the recent theoretical advancement
in IRL (Metelli et al., 2021), an intriguing but less explored solution is to infer the set of feasible
constraints. Under this setting, recent studies (Lindner et al., 2022; Metelli et al., 2023) developed a
theoretical framework for characterizing the feasible set of solutions for inverse optimization prob-
lems. However, these study the reward learning instead of the constraint inference problem. Besides,
their results are only applicable under discrete state-action spaces, but the realistic application aligns
better with continuous state-action space. In the meantime, while previous works commonly rely
on online interaction with the environment, we focus on an offline setting. This is because in prac-
tice data collection is expensive (e.g., in robotics, educational agents, or healthcare) or dangerous
(e.g., in autonomous driving, or healthcare). Motivated by the above considerations, we propose the
following offline ICRL problem considering the feasible constraint set.
Definition 3.1. The problem of offline Inference for feasible constraint set can be characterized by
a pair P = (M,D0), where M is a CMDP\c (CMDP without the cost) and D0 = {DE ,D−E}
is the offline demonstration such that DE = {sEn , aEn , rEn }

NE
n=1 denotes expert demonstrations and

D−E denotes the dataset generated by non-expert agents. A cost model c : S × A × H → R is
feasible for P if πE is an optimal policy for the CMDPM∪ c, i.e., πE ∈ Π∗

M∪c. We denote by CP
the set of feasible cost functions for P, namely feasible constraint set.
In solving the ICSI problem above, a critical prerequisite is to efficiently assess the feasibility of a
constraint by determining whether an expert policy can be learned under this constraint. However,
traditional ICRL solvers (Scobee & Sastry, 2020; Malik et al., 2021) are based on a bi-level opti-
mization framework. This framework requires solving both a forward CRL problem and an Inverse
Constraint Learning problem. Updating both a policy and a constraint function is computationally
intensive, significantly impacting the efficiency of learning the feasible constraint set.

4 EXPLORATORY INVERSE CONSTRAINT LEARNING
To learn a diverse set of feasible constraint, we introduce the Exploratory Inverse Constraint Learn-
ing (ExICL) algorithm (1). Striving for efficient assessment of candidate constraints, ExICL lever-
ages a Generative Diffusion Verifier (GDV) to evaluate whether expert demonstrations can be re-
produced under the examined constraint (Section 4.1). This optimization operates in context, thus it
bypasses the need to update model parameters, resulting in a significant increase in computational
efficiency. To ensure that the constraint model can effectively guide the denoising process, ExICL
implements a noise-robust constraint learning (Section 4.2). Additionally, ExICL employs an iter-
ative exploration process that strategically updates the constraint function, thereby facilitating the
identification of a broad range of feasible and diverse constraints (Section 4.3).

4.1 DIFFUSION PLANNER FOR GENERATIVE VERIFICATION

Learning the Planner from Offline Demonstration. Inspired by the Diffuser (Janner et al., 2022;
Ho et al., 2020), we follow the diffusion probabilistic models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) and formulate planning as a trajectory generation task through a learned iterative denoising
diffusion process pθ(τ i−1|τ i). The data distribution induced by the denoising process is given by:

pθ(τ
0:I) = pθ(τ

I)

I∏
i=1

pθ(τ
i−1|τ i) where pθ(τ

i−1|τ i) = N (µθ(τ
i, i),Σi) (3)

where i ∈ [0, I] denotes the diffusion step and each τ i = (si0, a
i
0, s

i
1, a

i
1, . . . , s

i
T , a

i
T) where t ∈

[0, T] denotes the planning step (i.e., the time step of agents’ execution in the environment).

This learned denoising process is trained to reverse a forward diffusion process q(τ i|τ i−1) that
slowly corrupts the structure of trajectories by adding noise. The corresponding distribution is:

q(τ0:I) = q(τ0)

I−1∏
i=0

q(τ i|τ i−1) where q(τ i|τ i−1) = N (
√

1− βiτ i−1, βiI) (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Under these denoising and diffusion processes, q(τ0) denotes the data distribution, and q(τ I) indi-
cates the standard Gaussian prior. To learn the denoising model pθ(τ i−1|τ i) from the offline dataset
D0, we optimize its parameters by maximizing the negative log-likelihood of observed trajectories
via constructing a variational lower bound over the individual steps of denoising:

Eq(τ0)[log p(τ
0)] ≥ Eq(τ0:I)

[
log

pθ(τ
0:I)

q(τ1:I |τ0)

]
≈ Eτ0∼D0,τ1:N∼q(τ1:N)

[
I∑

i=1

log pθ(τ
i−1|τ i)

]
(5)

Note that the pθ(τ) =
∫
pθ(τ

0:I)τ1:I approximate the distribution of trajectories within the offline
demonstration D0, and there is no guarantee a trajectory τ ∼ pθ(τ) generated under this model will
be safe. By leveraging this property, GDV can efficiently verify the feasibility of a constraint by
determining whether it can guide the diffusion planning process to generate a safe trajectory.

Verifying Constraint via Guided Denoising. To verify the feasibility of a constraint, GDV utilizes
the guided sampling strategy (Janner et al., 2022) and perturbs the distributions in the iterative
denoising process. At each denoising step, the perturb distribution p̃θ(τ) can be represented as:

p̃θ(τ) = p(τ |O0:T = 1) ∝ pMc
(O0:T = 1|τ)pθ(τ) (6)

where O0:T is a binary variable denoting whether the outcomes are desired. Without considering
the constraint, probabilistic inference framework for RL (Levine, 2018) defines

p(O0:T = 1, τ) = pθ(τ)p(O0:T = 1|τ) = p(s0)

[
T∏

t=0

p(st+1|st, at)πβ(at|st)

]
e
∑T

t=0 r(st,at) (7)

where 1) πβ(at|st) denotes the behavior policy that generates the offline dataset. 2) pθ(τ) =

p(s0)
[∏T

t=0 p(st+1|st, at)πβ(at|st)
]

denotes the trajectory distribution in the offline dataset D0,

and 3) p(O0:T = 1|τ) = e
∑T

t=0 r(st,at) the optimality model.

By extending this advancement to a CMDP Mc, the optimal probabilistic representation for con-
strained policy model pMc(O0:T = 1|τ) is defined by:

pMc
(O0:T = 1|τ) =

{
e
∑T

t=0 r(st,at), Eτ [
∑T

t=0 c(st, at)] ≤ ϵ
0, Eτ [

∑T
t=0 c(st, at)] > ϵ.

(8)

Although the CRL objective is essentially non-convex, this problem in general has zero duality gap:
Theorem 4.1. (CRL has zero duality gap (Paternain et al., 2019)). Suppose that r and c are bounded
and the Slater’s condition holds for (PI), then strong duality holds for (PI), i.e., PI∗ = DI∗.

min
λ>0

max
π

Eµ0,π,PT

[h∑
t=0

γt
(
r(st, at)− λc(st, at)

)]
+ λϵ (DI)

Correspondingly, pMc(O0:T = 1|τ) (Equation 8) can be represented as its dual format by trans-
forming the constraint into penalty such that:

p̃Mc(τ) ∝ pθ(τ)pMc(O0:T = 1|τ) = pθ(τ)e
∑T

t=0[r(st,at)−λc(st,at)+λϵ] (9)
where λ denotes the Lagrange multiplier. p̃Mc

(τ) represents the distribution of trajectories sub-
jected to reward maximizing and constraint satisfying objectives, which can model the trajectories
generated under a given constraint. Since p̃Mc

(τ) is modeled by a diffusion model, the denoising
process transitions can be approximated as Gaussian (Sohl-Dickstein et al., 2015) such that:

pθ(τ
i−1|τ i,O0:T) = N (µθ(τ

i, i) + Σgc,Σ
i) where gc = ∇τpMc

(O0:T = 1|τ) |τ=µθ
(10)

Such a denoising process does not involve parameter updating over the diffusion or cost/reward-
value models, and thus it is more efficient than the classic CRL solver. By comparing the generated
trajectories τ̃ ∼ p̃Mc(τ) with the expert ones τE , GDV efficiently validates the accuracy of inferred
constraints. During this process, to ensure that the GDV can accurately guide trajectory generation
and facilitate the discovery of a diverse set of feasible constraints, we must ensure the following:

• The constraint model can accurately guide the trajectory generation in the GDV. Specifically, the
model must be able to predict the cost of trajectories with added Gaussian noise accurately.

• Our algorithm includes a mechanism to generate a large number of candidate constraints.

In the following sections, we introduce the approach to learning noise-robust constraints with
p̃Mc

(τ) and the exploration strategy for learning a diverse set of constraints.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 NOISE-ROBUST CONSTRAINT UPDATE

To ensure constraint model must accurately estimate the cost of noisy trajectory, we collect noisy
samples (τ∗,0:I and τ̂0:I) during the diffusion process by introducing noise into τ∗ and τ̂ . Sebse-
quentlly, we update the classic constraint inference loss (2) to a noise-robust version in the following:

Eτ∗∼DE

[
Eq(τ∗,1:I |τ0)

(I∑
i=0

log ϕω(τ
∗,i, i)

)]
− Eτ̂∼DP

[
Eq(τ̂1:I |τ0)

(I∑
i=0

log ϕω(τ̂
i, i)

)]
(11)

where 1) DP denotes the nominal trajecotry data generated by policy π under CMDP Mc (with
the estimated cost before update) and 2) ϕω(τ i, i) =

∏T
t=0 ϕω(s

i
t, a

i
t, i) denotes the permissibility

function for accurately determines whether the noise-augmented trajectory τ i is feasible. In this
manner, the corresponding cost estimation cω(sit, a

i
t) = − log ϕω(s

i
t, a

i
t) is noise-robust, which can

accurately guide the trajectory generation during the diffusion process.

4.3 STRATEGIC EXPLORATION FOR CONSTRAINT UPDATE

Based on the above noise-robust objective, we enhance the algorithm’s capability for the active
discovery of feasible constraints by implementing a dynamic exploration algorithm. To achieve this
goal, we extend the object (11) by proposing an exploratory constraint update objective designed for
strategic exploration, detailed as follows:

EDE

[
Eq(τ∗,1:I |τ0)

(I∑
i=0

log ϕω(τ
∗,i, i)

)]
−EDP

[
Eq(τ̂1:I |τ0)

(I∑
i=0

log ϕω(τ̂
i, i)

)]
−ψ(ϕω,Φ), (12)

where ψ refers to a regularization term, controlling the sparsity and the diversity of constraint func-
tions ϕω . To learning a constraint representation, motivate by contrasive learning (He et al., 2020),
we follow the InfoNCE loss (van den Oord et al., 2018) and implement ψ(ϕω,Z) as:

ψ(ϕω,Z) = EDP

δ log e
∑

(st,at)
dist[1,ϕω(st,at)]∑

ϕ̃ω∈Z e
∑

(st,at)
dist[ϕ̃ω(st,at),ϕω(st,at)]

 , (13)

where δ denotes the regularization parameter controls the scale of sparsity, dist(·, ·) indicates the
distance metric, here we choose it to be the l1 norm. Z denotes the set of feasible constraints that
have already been discover. Intuitively, this regularization term e

∑
(st,at)

dist[1,ϕω(st,at)] encourages
the constraint function to assign higher feasibility values to state-action pairs, improving the sparsity
of the inferred constraints. Simultaneously, this objective fosters the diversity of these constraints,
allowing them to be distinguishable from previously learned constraints. Since a constraint model
can be characterized by its predicted cost values at different state-action pairs, we require different
constraint models to assign different feasibility values ϕω to the same state-action pairs

Implementation. Based on the above design, Algorithm 1 illustrates the our implementation.
5 EMPIRICAL EVALUATION
We empirically evaluate the effectiveness of ExICL by its capability of 1) accurately inferring var-
ious types of constraints (e.g., spatial, dynamic, and kinematic) under PointMaze and robot control
environments (Section 5.1), 2) exploring various kinds of constraints with strategic exploration in
constraint updates (Section 5.2), and 3) accelerating the process of constraint inference (Section 5.3).

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8
0.0

0.2

0.4

0.6

0.8

1.0

Fe
as

ib
ilit

y

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Figure 2: Constrained PointMaze. From left to
right, the environments are PointMaze UMAZE,
PointMaze-L, and PointMaze-2WALLS, where
the blue, red, and dark regions indicate the start-
ing, destination, and constrained locations.

Experiment Setting. Our experiments inves-
tigate the proposed ExICL in continuous envi-
ronments Specifically, we construct three dis-
tinct PointMaze environments with different
constraints. (see Figure 2) Check Appendix
A.1 for further details. To evaluate model per-
formance in more challenging tasks, we ex-
tend three robot control environments in Mu-
JoCo (Todorov et al., 2012) by incorporat-
ing distinct predefined constraints into different
tasks. The examine tasks include 1) Obstacle
HalfCheetah, where we introduce a spatial con-
straint that prevents the robot from moving backward. 2) Limited-Speed Walker, where we design a

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Exploratory Inverse Constraint Learning (ExICL)
Require: Offline dataset DO = {DE ,D−E}, contrastive exploration rounds M

Randomly initialize feasibility function ϕω and ϕδ
Initialize the set of feasible constraint Z ← {∅} and the Lagrange parameter λ = 0
Train diffusion-based trajectory predictor pθ(τ) based on DO with objective (5)
for each exploration coefficient δ do

Initialize the subset of feasible feasibility constraint Zδ ← {∅}
for exploration round m = 0, . . . ,M do

Set the initial feasibility function ϕmω = ϕδ

Initialize the set of predicted trajectories DP = {∅}
while The predicted trajectory τ̂ ̸= τE ,∀τE ∈ DE do

Generate a trajectory τ̂ with c(·) = − log ϕmω (·) as costs and (10) as denoising process.
Collect the predicted trajectory DP = DP ∪ {τ̂}
Update λ by minimizing the loss L = λEτ̂∼p̃Mc

[c(τ)− ϵ]
Update the feasibility function ϕmω via objective (12) (based on DP , Zδ and δ)

end while
Expand the subset of feasible constraints Zδ = Zδ ∪ {ϕmω }

end for
Expand the feasible constraint set Z = Z ∪ Zδ and reset the feasibility function ϕδ = ϕMω

end for

dynamic constraint to control the robot’s maximum forward speed. 3) Blocked Ant, where we add
a kinematic constraint on the robot’s leg angular velocity, limiting the size of each movement. For
further details, please refer to Appendix A.2. The autonomous exdpertiment setting can be seen in
B.3.

Evaluation Metrics. To quantify model performance, following (Malik et al., 2021), we use the
following evaluation metrics: 1) Cumulative Reward, which adds up the total rewards obtained
throughout the entire episode; 2) Cumulative Cost, which adds the total costs obtained throughout
the entire episode and 3) Feasible Cumulative Reward, which quantifies the accumulated rewards
before any constraint violations occur. Each experiment is repeated with five random seeds, and the
results are reported as the mean ± standard deviation (std). The detailed settings and random seeds
are reported in Appendix A.

5.1 CONTROL PERFORMANCE: QUANTIFYING THE ACCURATENESS OF CONSTRAINTS

In this experiment, we investigate whether ExICL can effectively learn the accurate constraints by
assessing whether the learned constraints can facilitate the reproduction of expert demonstrations.

Constrained PointMaze Environments. In this experiment, we design three different PointMaze
environments, each featuring unique constraints, as shown in Figure 2. The agent’s objective is
to navigate from the starting location to the target location while successfully avoiding the im-
posed constraints. Note that these constrained PointMaze environments differ significantly from the
regular pointMaze scenarios. In the standard version, the agent is allowed to bounce back upon
crashing into a wall. However, in our modified environment, any contact with the wall constitutes
a constraint violation and results in the failure of the navigation task. To facilitate offline Inverse
Constraint Learning, we generate an offline dataset by collecting a total of 3255 trajectories for each
environment, which includes expert trajectories, constraint-violating trajectories, and randomly gen-
erated trajectories. As for performance demonstration, we selected the constraints discovered under
the largest δ. Since δ controls the level of regularization on sparsity, our setting is to align with
the previous setting of ICRL solvers that favor the sparsity of constraints, thereby providing a fair
comparison with previous works. Check Appendix A.3 for details.

Comparison Methods. We mainly compare the proposed ExICL with the following baselines: 1)
Behavior Cloning, which learns a policy by directly imitating actions from expert demonstrations;
2) Least Square Inverse Q-Learning (LS-IQ) (Al-Hafez et al., 2023), which infers reward value
functions from offline data to replicate the expert policy. 3) Inverse Constrained Superior Distribu-
tion Correction Estimation (ICSDICE) (Quan et al., 2024), which utilizes reward information and
solves a regularized dual optimization problem for safe control by exploiting the dataset.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1 presents our evaluation results, revealing that ExICL consistently outperforms other base-
lines by achieving higher cumulative rewards and lower rates of constraint violations. A key factor
contributing to this performance is that classic methods such as LS-IQ and BC do not intentionally
model the constraint. Consequently, there is no guarantee that the agent will maintain a safe distance
from the wall, often resulting in substantial costs and reduced feasible rewards.

Table 1: PointMaze evaluation performance. Each value is reported as the mean± std over 100 runs
and 5 seeds. We highlight the best results with the highest rewards or lowest violations in bold.

Methods
PointMaze-UMAZE PointMaze-2WALLS PointMaze-L

Reward ↑ Cost ↓ Reward w/o Cost ↑ Reward ↑ Cost ↓ Reward w/o Cost ↑ Reward ↑ Cost ↓ Reward w/o Cost ↑
BC 0.88± 0.10 2.09± 5.03 0.78± 0.10 0.90± 0.16 3.29± 5.04 0.66± 0.14 0.92± 0.05 1.15± 3.71 0.92± 0.05

LS-IQ 0.84± 0.16 10.28± 7.68 0.54± 0.20 0.82± 0.24 22.36± 9.28 0.58± 0.28 0.76± 00.10 14.97± 5.63 0.48± 0.12
ICSDICE 1.00± 0.00 0.02± 0.01 0.95± 0.01 0.94± 0.06 1.20± 0.06 0.78± 0.10 0.92± 0.04 0.14± 0.05 0.62± 0.08

ExICL (ours) 1.00± 0.00 0.01± 0.00 0.99± 0.00 1.0± 0.00 0.01± 0.00 0.99± 0.01 1.0± 0.00 0.00± 0.00 1.0± 0.00

Visualization. To better illustrate the learned constraint, Figure 3 shows the validation of trajectory
level constraints. We find that ExICL accurately captures the feasibility of trajectories.

0.0

0.2

0.4

0.6

0.8

1.0

Fe
as

ib
ilit

y

0.0

0.2

0.4

0.6

0.8

1.0

Fe
as

ib
ilit

y

0.0

0.2

0.4

0.6

0.8

1.0

Fe
as

ib
ilit

y

Figure 3: Visualization of the constraints learned by ExICL under the PointMaze-UMAZE,
2WALLS, and L environments. Each point indicate the predicted cost within a trajectory
Comparison Methods. To perform a more comprehensive evaluation, we add more baselines to pre-
viously compared ones: 1) SMODICE (Ma et al., 2022), which leverages the dual and offline reward
function to optimize the policy; 2) OptiDICE-Constraint, which replaces the DICE objective used
in ICSDICE with OptiDICE (Lee et al., 2021); and 3) SMODICE-Constraint, which incorporates
information by adding environment rewards to the SMODICE’s learned discriminator reward.

Results analysis. Table 2 shows the evaluation results in high-dimensional robot control tasks. We
can find that ExICL consistently achieves fewer constraint violations across all three environments,
regardless of the constraint type, demonstrating the effectiveness of the inferred constants. In con-
trast, the offline IL methods, such as BC, IS-IQ, and SMODICE, generally fail to ensure safety, even
when reward information is incorporated. This limitation is expected, as these methods are not ex-
plicitly designed to address safety concerns. Interestingly, OptiDICE-c, with its normalization and
soft-chi divergence tricks, and ICSDICE, utilizing a superior DICE approach tailored for constraint
learning, exhibit satisfactory performance with low costs and relatively high rewards. However,
neither method surpasses ExICL in terms of rewards, except in the Ant environment where perfor-
mance is comparable. This is especially evident in the HalfCheetah environment, where ExICL’s
exploration ability enables the agent to more effectively pursue rewards.

5.2 EXPLORATORY PERFORMANCE: EVALUATING THE DIVERSITY OF CONSTRAINTS

In this section, we study the exploratory performance of our method by quantifying the diversity of
constraints within the learned feasible constraint set.

Table 2: MuJoCo evaluation results. The baseline results are adapted from (Quan et al., 2024). Each
value is reported as the mean ± std over 10 runs and 5 seeds. Bold denotes safe methods with
maximum rewards.

Methods
Obstacle-HalfCheetah Limited-Walker Blocked-Ant

Reward w/o Cost ↑ Cost ↓ Reward w/o Cost ↑ Cost ↓ Reward w/o Cost ↑ Cost ↓
BC 731± 693 0.30± 0.40 -7± 0.5 0.01± 0.02 876± 138 0.04± 0.02

LS-IQ 2175± 775 0.04± 0.05 603± 203 0.17± 0.09 -63± 208 0.40± 0.12
SMODICE 3565± 345 0.13± 0.11 2334± 238 0.52± 0.19 1410± 153 0.33± 0.07

SMODICE-c 3829± 661 0.30± 0.24 1871± 155 0.18± 0.15 1763± 180 0.53± 0.03
OptiDICE-c 2749± 597 0.03± 0.06 1538± 283 0.01± 0.01 3070± 91 0.01± 0.00
ICSDICE 2315± 740 0.04± 0.04 1587± 308 0.01± 0.02 3073± 103 0.01± 0.00

ExICL (ours) 5298± 480 0.00± 0.00 1862± 29 0.00± 0.00 3061± 199 0.01± 0.01

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Constrained PointMaze Environments. In this experiment, we study whether the ExICL can learn
a diverse set of constraints by analyzing the cost values assigned to the expert trajectories and non-
expert ones. Ideally, the constraints in the feasible set should assign different costs to the same
trajectory, in the meantime, the expert trajectories should consistently have lower costs.

Comparison Methods. In this study, we primarily compare several common exploration methods,
including 1) Random-Noise, which involves directly adding noise to the parameters of learned con-
straints to discover alternative constraints; and 2) Random Initialization, where we repeatedly learn
different constraints starting from normal distributed initial model parameters other than zero con-
stant initialization for other methods.

0 1 2 3 4 5
Model index

20

0

20

40

60

80

100

120

140

Co
st

 V
al

ue

Random Noise 1e-4 PointMaze-UMAZE bad_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or

0 1 2 3 4 5
Model index

0

10

20

30

40

50

60

Co
st

 V
al

ue

Random Noise 1e-4 PointMaze-UMAZE expert_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or

0 1 2 3 4 5
Model index

20

0

20

40

60

80

100

120

140

Co
st

 V
al

ue

Random Init PointMaze-UMAZE bad_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or
0 1 2 3 4 5

Model index
0

10

20

30

40

50

60

Co
st

 V
al

ue

Random Init PointMaze-UMAZE expert_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006
Delta

20

0

20

40

60

80

100

120

140

Co
st

 V
al

ue

Ex-ICL PointMaze-UMAZE bad_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006
Delta

0

10

20

30

40

50

60

Co
st

 V
al

ue

Ex-ICL PointMaze-UMAZE expert_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or

Figure 4: The delta varying exploratory results for both constraint-violating trajectories (top) and
expert trajectories (bottom) of PointMaze-UMAZE environment. Each data point corresponds to
the cumulative costs for a trajectory. Three exploration strategies are presented: random noise (left),
random initialization (middle) and Ex-ICL (right).

Figure 4 illustrates the exploratory results in the PointMaze-UMAZE environment, with exploratory
models varying in regularization parameter δ. Additional δ-varying exploratory results for the other
two environments, PointMaze-L and PointMaze-2Walls, are displayed in Figure 7 and Figure 8 in
the Appendix, and the exploratory results depending on exploration rounds are displayed in Figure 9.
The decrease of cost value as regularization parameter δ increase in Figure 4, 7, 8 implies the
enlarging sparsity of the constraints. Our results reveal that the diversity of feasible constraints
discovered by random noise and initialization methods is less effective compared to that achieved
by our ExICL method. Another intriguing observation is the costs of constraint-violating trajectories
have a significantly higher variance than those of expert trajectories. This is because, to recover the
constraint, ICRL algorithms must increase the cost values of bad trajectories above the threshold ϵ.
On the other hand, for the cost values of expert trajectories, ICRL algorithms must guarantee their
values to be smaller than ϵ. In this work, our ϵ is set to close to zero, so the scale of variances for bad
trajectories is much larger than those of expert trajectories. By implementing strategic exploration,
our EX-ICL exploration strategy successfully identifies this diverse set of feasible cost models,
causing the variance of predicted cost values to be higher.

Robot Control Tasks. Figure 5 visualizes the robot trajectory segments during evaluation in three
MuJoCo environments. From left to right are the results without constraint model (nominal), and
with three different constraint models during exploration. The constrained value of the last frame is
displayed, where yellow indicates constraint violations and green indicates safety. We present the
average reward and cost per step for each figure. We observe that different constraint models lead to
distinct behaviors, with red circles highlighting the key differences. For example, in the HalfCheetah
environment, the robot moves varying distances due to the exploration process influenced by the
constraint model. Similarly, the Walker robot is encouraged to lift its foot higher to increase speed,
while the Ant robot explores in the northward direction. Appendix B.2 reports numerical results.
5.3 LEARNING EFFICIENCY: HOW FAST A CONSTRAINT CAN BE INFERRED

We conduct an empirical study to compare the learning efficiency of our ExICL algorithm with other
baselines within the PointMaze environment. The learning efficiency is measured by data points

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Planning w/o Cost Planning w/ Cost0 Planning w/ Cost1 Planning w/ Cost2

xpos=-5.6

Reward=2.20, Cost=0.53 Reward=1.33, Cost=0.00 Reward=1.77, Cost=0.00 Reward=2.32, Cost=0.00

xpos=1.39 xpos=2.20xpos=0.59

Reward=2.92, Cost=0.90 Reward=1.84, Cost=0.00 Reward=1.87, Cost=0.00 Reward=1.95, Cost=0.00

speed=1.61
speed=0.90 speed=0.91 speed=0.93

Reward=2.23, Cost=0.84 Reward=3.00, Cost=0.05 Reward=3.01, Cost=0.04 Reward=3.00, Cost=0.03

ang_v=8.35
ang_v=0.005 ang_v=0.012 ang_v=0.006

Figure 5: Visualization of the exploration results in MuJoCo environments. Each row represents an
environment with identical frames for comparison.

used for training as emphasized in offline reinforcement learning where the dataset collection is more
costly (Levine et al., 2020). The data efficiency curve illustrated in Figure 6 below depicts the trend
of performance as data point usage increases. The EX-ICL curve represents the progression till the
discovery of the first valid constraint, aiming to offer a fair comparison with previous work that study
only one constraint. The area circled with orange ellipse represents the training phase of the GDV
model and reward value model. Among the compared methods, we find that our ExICL exhibits
the highest sample efficiency. This efficiency stems from its ability to learn feasible constraints
that yield significant rewards while utilizing a minimal number of data points. This is attributed to
our GDV model, which performs a generative denoising process to validate candidate constraints
without relying on frequent policy updates, thereby significantly improving sample complexity.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Data Point 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Fe
as

ib
le

 R
ew

ar
ds

PointMaze-UMAZE
ICSDICE
LS_IQ
Ex-ICL

Diffusion Training
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Data Point 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Fe
as

ib
le

 R
ew

ar
ds

PointMaze-2WALLS
ICSDICE
LS_IQ
Ex-ICL

Diffusion Training
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Data Point 1e8

0.0

0.2

0.4

0.6

0.8

1.0

Fe
as

ib
le

 R
ew

ar
ds

PointMaze-L
ICSDICE
LS_IQ
Ex-ICL

Diffusion Training

Figure 6: Training efficiency of three methods in three PointMaze environments.

6 CONCLUSION

In the paper, we introduced the ExICL algorithm, which is designed to learn a diverse set of con-
straints from an offline demonstration dataset. By proposing a GDV model, we significantly accel-
erated the verification of candidate constraints. Additionally, we developed a strategic exploration
mechanism that updates constraints and efficiently expands the constraint set, thereby facilitating the
discovery of varied constraints. To validate our method, we conducted experiments across a diverse
array of tasks, including navigation, locomotion, and autonomous driving, and under various types
of constraints. Our results demonstrate that ExICL significantly outperforms other baseline methods
in terms of learning more accurate constraints, discovering diverse constraints, and enhancing learn-
ing efficiency. A promising direction for future work involves expanding ExICL to more practical
environments, such as quadrapedal and humanoid robot control.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Firas Al-Hafez, Davide Tateo, Oleg Arenz, Guoping Zhao, and Jan Peters. Ls-iq: Implicit reward
regularization for inverse reinforcement learning. arXiv preprint arXiv:2303.00599, 2023.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, meth-
ods and progress. Artif. Intell., 297:103500, 2021.

Johann Brehmer, Joey Bose, Pim de Haan, and Taco S. Cohen. EDGI: equivariant diffusion for plan-
ning with embodied agents. In Advances in Neural Information Processing Systems, (NeurIPS),
2023.

Glen Chou, Dmitry Berenson, and Necmiye Ozay. Learning constraints from demonstrations with
grid and parametric representations. The International Journal of Robotics Research, 40(10-11):
1255–1283, 2021.

Zeyu Feng, Hao Luan, Pranav Goyal, and Harold Soh. Ltldog: Satisfying temporally-extended
symbolic constraints for safe diffusion-based planning. CoRR, abs/2405.04235, 2024.

Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn:
Inverse soft-q learning for imitation. In Neural Information Processing Systems ((NeurIPS)), pp.
4028–4039, 2021.

Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao, and Xue-
long Li. Diffusion model is an effective planner and data synthesizer for multi-task reinforcement
learning. In Advances in Neural Information Processing Systems, (NeurIPS), 2023.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum contrast for
unsupervised visual representation learning. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, (CVPR), pp. 9726–9735. Computer Vision Foundation / IEEE, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems (NeurIPS), 2020.

Jifeng Hu, Yanchao Sun, Sili Huang, Siyuan Guo, Hechang Chen, Li Shen, Lichao Sun, Yi Chang,
and Dacheng Tao. Instructed diffuser with temporal condition guidance for offline reinforcement
learning. CoRR, abs/2306.04875, 2023.

Michael Janner, Yilun Du, Joshua B. Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, (ICML), volume
162 of Proceedings of Machine Learning Research, pp. 9902–9915, 2022.

Konwoo Kim, Gokul Swamy, Zuxin Liu, Ding Zhao, Sanjiban Choudhury, and Zhiwei Steven Wu.
Learning shared safety constraints from multi-task demonstrations. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2023.

Robert Krajewski, Julian Bock, Laurent Kloeker, and Lutz Eckstein. The highd dataset: A drone
dataset of naturalistic vehicle trajectories on german highways for validation of highly automated
driving systems. In 2018 21st International Conference on Intelligent Transportation Systems
(ITSC), pp. 2118–2125, 2018. doi: 10.1109/ITSC.2018.8569552.

Jongmin Lee, Wonseok Jeon, Byungjun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice: Offline
policy optimization via stationary distribution correction estimation. In International Conference
on Machine Learning (ICML), pp. 6120–6130, 2021.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
CoRR, abs/1805.00909, 2018.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. CoRR, abs/2005.01643, 2020.

Wenhao Li. Efficient planning with latent diffusion. In The Twelfth International Conference on
Learning Representations, (ICLR), 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wenhao Li, Xiangfeng Wang, Bo Jin, and Hongyuan Zha. Hierarchical diffusion for offline decision
making. In International Conference on Machine Learning, (ICML), volume 202, pp. 20035–
20064, 2023.

Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser:
Diffusion models as adaptive self-evolving planners. In International Conference on Machine
Learning, (ICML), volume 202, pp. 20725–20745, 2023.

David Lindner, Andreas Krause, and Giorgia Ramponi. Active exploration for inverse reinforcement
learning. Advances in Neural Information Processing Systems (NeurIPS), 35:5843–5853, 2022.

Guiliang Liu, Yudong Luo, Ashish Gaurav, Kasra Rezaee, and Pascal Poupart. Benchmarking con-
straint inference in inverse reinforcement learning. In International Conference on Learning
Representations (ICLR), 2023.

Shicheng Liu and Minghui Zhu. Distributed inverse constrained reinforcement learning for multi-
agent systems. In Neural Information Processing Systems (NeurIPS), 2022.

Shicheng Liu and Minghui Zhu. Meta inverse constrained reinforcement learning: Convergence
guarantee and generalization analysis. In International Conference on Learning Representations
(ICRL), 2024.

Yongshuai Liu, Avishai Halev, and Xin Liu. Policy learning with constraints in model-free reinforce-
ment learning: A survey. In International Joint Conference on Artificial Intelligence (IJCAI), pp.
4508–4515, 2021.

Yecheng Ma, Andrew Shen, Dinesh Jayaraman, and Osbert Bastani. Versatile offline imitation from
observations and examples via regularized state-occupancy matching. In International Confer-
ence on Machine Learning (ICML), pp. 14639–14663, 2022.

Shehryar Malik, Usman Anwar, Alireza Aghasi, and Ali Ahmed. Inverse constrained reinforcement
learning. In International Conference on Machine Learning (ICML), pp. 7390–7399, 2021.

David L McPherson, Kaylene C Stocking, and S Shankar Sastry. Maximum likelihood constraint
inference from stochastic demonstrations. In 2021 IEEE Conference on Control Technology and
Applications (CCTA), pp. 1208–1213. IEEE, 2021.

Alberto Maria Metelli, Giorgia Ramponi, Alessandro Concetti, and Marcello Restelli. Provably effi-
cient learning of transferable rewards. In International Conference on Machine Learning (ICML),
pp. 7665–7676. PMLR, 2021.

Alberto Maria Metelli, Filippo Lazzati, and Marcello Restelli. Towards theoretical understanding
of inverse reinforcement learning. In International Conference on Machine Learning (ICML),
volume 202, pp. 24555–24591. PMLR, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In International
Conference on Machine Learning (ICML), pp. 663–670, 2000.

Fei Ni, Jianye Hao, Yao Mu, Yifu Yuan, Yan Zheng, Bin Wang, and Zhixuan Liang. Metadif-
fuser: Diffusion model as conditional planner for offline meta-rl. In International Conference on
Machine Learning, (ICML), volume 202, pp. 26087–26105, 2023.

Daehyung Park, Michael Noseworthy, Rohan Paul, Subhro Roy, and Nicholas Roy. Inferring task
goals and constraints using bayesian nonparametric inverse reinforcement learning. In Conference
on robot learning, pp. 1005–1014. PMLR, 2020.

Santiago Paternain, Luiz F. O. Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained
reinforcement learning has zero duality gap. In Advances in Neural Information Processing Sys-
tems (NeurIPS), pp. 7553–7563, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Claudia Pérez-D’Arpino and Julie A Shah. C-learn: Learning geometric constraints from demon-
strations for multi-step manipulation in shared autonomy. In 2017 IEEE International Conference
on Robotics and Automation (ICRA), pp. 4058–4065. IEEE, 2017.

Guanren Qiao, Guiliang Liu, Pascal Poupart, and ZhiQiang Xu. Multi-modal inverse constrained
reinforcement learning from a mixture of demonstrations. In Neural Information Processing
Systems (NeurIPS), 2023.

Guorui Quan, Zhiqiang Xu, and Guiliang Liu. Learning constraints from offline demonstrations via
superior distribution correction estimation. In International Conference on Machine Learning,
ICML, 2024.

Dexter R. R. Scobee and S. Shankar Sastry. Maximum likelihood constraint inference for inverse
reinforcement learning. In International Conference on Learning Representations (ICLR), 2020.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International Conference on Machine
Learning, (ICML), volume 37, pp. 2256–2265, 2015.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5026–5033,
2012.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. CoRR, abs/1807.03748, 2018.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Xiao Wang, Hanna Krasowski, and Matthias Althoff. Commonroad-rl: A configurable reinforce-
ment learning environment for motion planning of autonomous vehicles. In 2021 IEEE Interna-
tional Intelligent Transportation Systems Conference (ITSC), pp. 466–472. IEEE, 2021.

Wei Xiao, Tsun-Hsuan Wang, Chuang Gan, and Daniela Rus. Safediffuser: Safe planning with
diffusion probabilistic models. CoRR, abs/2306.00148, 2023.

Sheng Xu and Guiliang Liu. Uncertainty-aware constraint inference in inverse constrained rein-
forcement learning. In The Twelfth International Conference on Learning Representations, 2023.

Sheng Xu and Guiliang Liu. Robust inverse constrained reinforcement learning under model mis-
specification. In International Conference on Machine Learning, ICML. OpenReview.net, 2024.

Zhengbang Zhu, Hanye Zhao, Haoran He, Yichao Zhong, Shenyu Zhang, Yong Yu, and Weinan
Zhang. Diffusion models for reinforcement learning: A survey. CoRR, abs/2311.01223, 2023.

Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy
inverse reinforcement learning. In AAAI Conference on Artificial Intelligence, pp. 1433–1438,
2008.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION AND ENVIRONMENTAL DETAILS

A.1 POINTMAZE ENVIRONMENTS

We designed three PointMaze environments: one with a grid of 5×5 cells and two others with 7×7
grids. Each cell spans an area of 0.5m × 0.5m. The center of the grid is positioned at the origin
(0, 0). Constraints are applied at specific cells marked as ”1” on the corresponding maze map. The
outer walls, also marked as ”1”, are impassable, while the inner regions allow the agent to move
freely.

The agent is modeled as a 2-DoF ball actuated by forces in the Cartesian x- and y-directions. The
agent’s objective is to navigate through the maze and reach a designated target. The goal is consid-
ered reached when the Euclidean distance between the ball and the target is less than 0.45m. The
reward system assigns a value of 1 when the agent reaches the goal, while all other cells have a re-
ward of 0. Similarly, entering a constrained location incurs a cost of 1. The environment terminates
after a maximum of 150, 500, or 250 time steps, depending on the specific maze.

The state space is continuous and comprises four dimensions: the agent’s x and y coordinates, as
well as the linear velocity in both directions. The action space is also continuous, consisting of
accelerations in the x- and y-axes.

A.2 MUJOCO ENVIRONMENTS

Our simulated environments are constructed using Mujoco. We derived state-action function c(s, a)
from a state-dependent function c(s′) with c(s, a) = Es′∼P (s′|s,a)[c(s

′)]. Below are more details
regarding the environments used:

1. HalfCheetah (Obstacle): These environments are adapted from Liu et al. (2023). In this
setup, the agent controls a robot that moves faster backward than forward. The rewards are
based on the distance covered between consecutive time steps, along with penalties tied to
the magnitude of the actions. Additionally, a constraint restricts movement to areas where
the X-coordinate is greater than -3, forcing the robot to move forward only.

2. Ant (Blocked): In these environments, the agent manages a robot that moves forward and
gains rewards based on the distance traveled. However, a constraint limits the robot’s leg
angular velocity to prevent excessive force on the ground. The limit is set at 1.

3. Walker (LS): In these environments, the agent controls a robot that moves forward and
earns rewards for traveling distances. However, there is a speed limit is set at 1, resulting
in reduced rewards compared to an environment without such a constraint.

A.3 OFFLINE DATASETS

Offline Dataset for Navigation Tasks. This offline dataset collects a total number of 3255 trajecto-
ries consisting of around 1.5× 105 state-action pairs in three environments. More precisely, we col-
lect 1638 trajectories for PointMaze-UMAZE, 667 trajectories for PointMaze-2Walls and 950 trajec-
tories for PointMaze-L. In each individual environment, the trajectories can be categorized into three
parts: 1) expert trajectories generated by the expert policy trained under the PPO-Lagrangian algo-
rithm and incorporates a stochasticity of 0.05, allowing for random actions; 2) constraint-violating
trajectories created by a policy that accelerates the agent’s movement directly toward the terminat-
ing location, with a stochasticity of 0.1; 3) random trajectories generated by the uniformly random
policy. The proportion of the number of pairs in each kind of trajectories is around 5 : 1 : 1.

Offline Dataset for Robot Control Tasks. We use the public offline dataset provided by (Quan
et al., 2024). Specifically, this offline dataset includes a total number of 250 trajectories, which
obtains 200 suboptimal trajectories (each with 1000 steps) and 50 expert trajectories from a PPO-
lag algorithm.

A.4 MODEL ARCHITECTURES

We construct our generative diffusion verifier and reward value model following the official im-
plementation of (Janner et al., 2022), both with a U-Net based architecture. We also design our

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

cost value model similar to reward value model with a U-Net based architecture but differs in out-
putting a horizon H-length feature takes value in [0, 1] representing the feasibility ϕω(st, at) for
each state-action pair in the H-length trajectory. And the cost value is explicitly calculated by

Vc =
H∑
t=0

γtcω(s
i
t, a

i
t, i) =

H∑
t=0

γt − log ϕω(s
i
t, a

i
t, i). Note that diffusion time i is explicit input

into the network and embedded by an MLP to perceive the denoising process. Thus the cost value
model can accurately predict the cost value of noisy trajectory and use it to guide the generation.
Environment-dependent model hyperparameters presented in 3 below.

A.5 EVALUATION DETAILS

The evaluation in MuJoCo is conducted over 10 runs using 5 random seeds, while the evaluation in
the PointMaze environments is carried out over 100 runs with 5 random seeds.

Table 3: List of the utilized hyperparameters in the navigation tasks in PointMaze and MuJoCo
environments.

Parameters PointMaze-UMAZE PointMaze-2WALLS PointMaze-L Obstacle-HalfCheetah Limitted-Walker Blocked-Ant CommonRoad-Velocity<40

Max Episode Length 150 500 250 1000 1000 1000 400
Discount Factor 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Episodes Collected 64 64 64 64 64 64 64
Policy Batchsize 512 1024 1024 1024 1024 1024 1024
Expert Batchsize 512 1024 1024 1024 1024 1024 1024

Initial Lagrange Multiplier 10 100 100 5 5 5 200
Lagrange Multiplier Learning Rate 0.01 0.01 0.01 0.1 0.1 0.1 0.1

Guided Scale 0.1 0.01 0.001 0.1 0.01 0.1 0.01
Cost Model Horizon 32 32 32 32 32 32 32

Cost Model Learning Rate 1e-4 1e-5 1e-5 1e-5 1e-5 1e-5 5e-5
Cost Model Update Step 4 1 4 4 4 4 2

Diffusion steps 20 20 20 20 20 20 20
Diffusion Time Feature Dimension 32 32 32 32 32 32 32
Diffusion Time Hidden Dimension 128 128 128 128 128 128 128

Hidden Feature Dimension 32 32 32 32 32 32 32
Convolution Kernal Size 5 5 5 5 5 5 5

U-Net depth 4 4 4 4 4 4 3
Convolution Layers Dimension (1×,2×,4×,8×) (1×,2×,4×,8×) (1×,2×,4×,8×) (1×,2×,4×,8×) (1×,2×,4×,8×) (1×,2×,4×,8×) (1×,4×,8×)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B ADDTIONAL RESULTS

B.1 ADDITIONAL EXPLORATORY RESULTS OF THE CONSTRAINTS IN POINTMAZE
ENVIRONMENT

The following 2 figures illustrate the output cost value of the cost models trained under different
exploratory regularization parameters δ for PointMaze-L and PointMaze-2-Walls environments re-
spectively.

0 1 2 3 4 5
Model index

20

30

40

50

60

70

80

Co
st

 V
al

ue

Random Noise 1e-3 PointMaze-2WALLS bad_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or

0 1 2 3 4 5
Model index

40

50

60

70

80

90

Co
st

 V
al

ue

Random Noise 1e-3 PointMaze-2WALLS expert_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or

0 1 2 3 4 5
Model index

20

30

40

50

60

70

80

Co
st

 V
al

ue

Random Init PointMaze-2WALLS bad_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or
0 1 2 3 4 5

Model index
40

50

60

70

80

90

Co
st

 V
al

ue

Random Init PointMaze-2WALLS expert_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or

0.0001 0.0002 0.0003 0.0004 0.0005
Delta

20

30

40

50

60

70

80

Co
st

 V
al

ue

Ex-ICL PointMaze-2WALLS bad_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or

0.0001 0.0002 0.0003 0.0004 0.0005
Delta

40

50

60

70

80

90

Co
st

 V
al

ue

Ex-ICL PointMaze-2WALLS expert_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or

Figure 7: The delta varying exploratory results for both bad trajectories (top) and expert trajectories
(bottom) of PointMaze-2WALLS environment. Each data point corresponds to the cumulative costs
for a trajectory. Three exploration strategies are presented: random noise (left), random initialization
(middle) and Ex-ICL (right).

0 1 2 3 4 5
Model index

30

40

50

60

70

80

90

Co
st

 V
al

ue

Random Noise 0.001 PointMaze-L bad_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or

0 1 2 3 4 5
Model index

40

45

50

55

60

65

70

75

80

Co
st

 V
al

ue

Random Noise 0.001 PointMaze-L expert_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or

0 1 2 3 4 5
Model index

30

40

50

60

70

80

90

Co
st

 V
al

ue

Random Init PointMaze-L bad_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or

0 1 2 3 4 5
Model index

40

45

50

55

60

65

70

75

80

Co
st

 V
al

ue

Random Init PointMaze-L expert_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006
Delta

30

40

50

60

70

80

90

Co
st

 V
al

ue

Ex-ICL PointMaze-L bad_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006
Delta

40

45

50

55

60

65

70

75

80

Co
st

 V
al

ue

Ex-ICL PointMaze-L expert_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or

Figure 8: The delta varying exploratory results for both bad trajectories (top) and expert trajectories
(bottom) of PointMaze-L environment. Each data point corresponds to the cumulative costs for
a trajectory. Three exploration strategies are presented: random noise (left), random initialization
(middle) and Ex-ICL (right)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

We also illustrate the cost value-exploration round figures below, in which the cost model is trained
under the largest δ to demonstrate the effectiveness of our exploration method:

0 1 2 3 4 5 6 7 8 9
Exploration Round

20

0

20

40

60

80

100

120

140

Co
st

 V
al

ue

Ex-ICL PointMaze-UMAZE-M bad_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or

0 1 2 3 4 5 6 7 8 9
Exploration Round

0

10

20

30

40

50

60

Co
st

 V
al

ue

Ex-ICL PointMaze-UMAZE-M expert_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or

0 1 2 3 4 5 6 7 8 9
Exploration Round

20

30

40

50

60

70

80

Co
st

 V
al

ue

Ex-ICL PointMaze-2WALLS-M bad_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or

0 1 2 3 4 5 6 7 8 9
Exploration Round

40

50

60

70

80

90

Co
st

 V
al

ue

Ex-ICL PointMaze-2WALLS-M expert_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or

0 1 2 3 4 5 6 7 8 9
Exploration Round

30

40

50

60

70

80

90

Co
st

 V
al

ue

Ex-ICL PointMaze-L-M bad_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or

0 1 2 3 4 5 6 7 8 9
Exploration Round

40

45

50

55

60

65

70

75

80

Co
st

 V
al

ue

Ex-ICL PointMaze-L-M expert_traj

Mean Cost
0

5

10

15

20

25

30

35

40

45

tra
j i

nd
ex

-c
ol

or

Figure 9: The exploration round varying exploratory results for both bad trajectories (top) and expert
trajectories (bottom) of PointMaze-UMAZE, PointMaze-2WALLS and PointMaze-L environments.
Each data point corresponds to the cumulative costs for a trajectory. Three exploration strategies are
presented: random noise (left), random initialization (middle) and Ex-ICL (right).

As we expected, the cost values of the same trajectory gradually vary from the original ones, as the
InfoNCE term in 13 encourages them to be distinct.

B.2 NUMERICAL ANALYSIS FOR THE DIVERSITY OF THE CONSTRAINT IN MUJOCO
ENVIRONMENT

Table 4: Costs values across varying exploration
epochs. The reported values are the mean ± std
over 5 different constraints.

Environment HalfCheetah Walker Ant
Violated Segments 49.2±5.7 23.9±2.2 36.6±5.4

Safe Segments 6.1±0.7 10.9±0.8 10.1±2.1

For numerical analysis, we use five different
constraint models during exploration to esti-
mate the cost values of identical trajectory seg-
ments in each environment, and report the mean
and standard deviation results across them. The
results, shown in Table 4, indicate that: 1) con-
straint models effectively distinguish between
safe and violated segments, assigning higher
cost values to violated trajectories and lower values to safe ones; and 2) the std results across the
five constraint models suggest that the exploration process successfully induces variability among
the constraint models.

B.3 ADDITIONAL PERFORMANCE EXPERIMENTS IN COMMONROAD ENVIRONMENT WITH
HIGHD DATASET

Table 5: Performance measuring by reward, cost,
and Area Under Curve(AUC) of different meth-
ods. The reported value of reward and cost are the
mean ± std over 500 runs under 5 random seeds

Methods BC OptiDice-c ICSDICE EX-ICL(ours) Expert
reward -2.3±2.3 -1.6±3.7 10.7±1.5 10.5±2.2 14.0

cost 1.4% 12% 6.5% 3.2% 0.8%
AUC NA 0.76±0.02 0.81±0.01 0.84±0.06 NA

To demonstrate the effectiveness of our method
in more realistic environment, we conducted
experiments on performance in CommonRoad-
RL (Wang et al., 2021) Environment with a
velocity<40 constraints. We chose the pro-
cessed HighD (Krajewski et al., 2018) data
given by (Liu et al., 2023), aligning with base-
line method (Quan et al., 2024). Our methods
outperformed the baseline methods in terms of trajectory cumulative cost>0 rate while achieving
comparable performance on cumulative reward and AUC metric. Such a result suggested that our

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

method maintains effectiveness in complicated realistic environments and broadens its future appli-
cations.

C PERFORMANCE OF DEMONSTRATIONS, BASELINE AND OUR METHOD

To support our claim that our method achieved expert-level performance in all 3 MuJoCo locomotion
environments and thus the large or small performance gaps between our method and baseline (Quan
et al., 2024) are determined by the gap between expert demonstration and baseline performance, we
reported the cumulative feasible reward and cumulative cost of expert demonstration, suboptimal
demonstration, our method, and baseline (Quan et al., 2024) in the below Table 6.

Table 6: MuJoCo demonstration and policy cumulative feasible reward and cumulative cost. Bold
denotes expert demonstration its comparable performances .

Methods
Obstacle-HalfCheetah Limited-Walker Blocked-Ant

Reward w/o Cost ↑ Cost ↓ Reward w/o Cost ↑ Cost ↓ Reward w/o Cost ↑ Cost ↓
Expert 4915± 1170 0.00± 0.00 1870± 12 1.64± 1.67 3059± 276 7.22± 2.74

Suboptimal 3784± 1455 487± 482 1003± 757 309± 243 732± 595 233± 213
ICSDICE 2315± 740 0.04± 0.04 1587± 308 0.01± 0.02 3073± 103 0.01± 0.00

ExICL (ours) 5298± 480 0.00± 0.00 1862± 29 0.00± 0.00 3061± 199 0.01± 0.01

18

	Introduction
	Related Works
	Problem Formulation
	Exploratory Inverse Constraint Learning
	Diffusion Planner for Generative Verification
	Noise-Robust Constraint Update
	Strategic Exploration for Constraint Update

	Empirical Evaluation
	Control Performance: Quantifying the Accurateness of Constraints
	Exploratory Performance: Evaluating the Diversity of Constraints
	Learning Efficiency: How Fast a Constraint Can be Inferred

	Conclusion
	Implementation and Environmental Details
	PointMaze Environments
	MuJoCo Environments
	Offline Datasets
	Model Architectures
	Evaluation Details

	Addtional Results
	Additional Exploratory Results of the Constraints in PointMaze Environment
	Numerical Analysis for the Diversity of the Constraint in MuJoCo Environment
	Additional Performance Experiments in CommonRoad Environment with HighD Dataset

	Performance of Demonstrations, Baseline and Our Method

