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ABSTRACT

Transformers have gained great popularity for sequential modeling, especially in
fields such as natural language processing (NLP). Recently, numerous architec-
tures based on the Transformer framework are proposed, leading to great achieve-
ments in applications. However, the working principles behind still remain myste-
rious. In this work, we numerically investigate the geometrical properties of data
representation learned by Transformers, via a mathematical concept called intrin-
sic dimension (ID), which can be viewed as the minimal number of parameters
required for modeling. A series of experiments, mainly focusing on text classifi-
cation tasks, backs up the following empirical claims on relationships among em-
bedding dimension, depth, respective ID per layer and tasks performance. First,
we surprisingly observe that a higher ID (of terminal features extracted by Trans-
formers) typically implies a lower classification error rate. This is contrary to that
of CNNs (or other models) performed on image classification tasks. In addition,
it is shown that the ID per layer tends to decrease as the depth increases, and this
reduction usually appears more significant for deeper architectures. Moreover, we
give numerical evidence on geometrical structures of data representation learned
by Transformers, where only the nonlinear dimension reduction can be achieved.
Finally, we explore the effect of sequential lengths on the ID and tasks perfor-
mance, which guarantees the validity of data reduction in training. We hope that
these findings can play a guiding role in hyper-parameters selection and dimen-
sion/data reduction for Transformers on text classification and other mainstream
NLP tasks.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have made a great difference in many machine learning fields,
particularly leading to significant advances in natural language processing (NLP) and computer vi-
sion (CV). It has been shown that the Transformer architecture is capable of handling large-scale
datasets, usually with the help of sufficiently many parameters, with bert (Devlin et al., 2018), GPT-
3 (Brown et al., 2020) and bart (Lewis et al., 2019) as typical examples, and achieves impressive
performance: When the Transformer is trained on enough samples, it often outperforms other com-
peting models such as CNNs (Dosovitskiy et al., 2020). As the potential of Transformers is further
tapped, a large number of variants of Transformers have emerged. For example, reformer (Ki-
taev et al., 2020) reduces the original computation complexity from O(L2) to O(L logL) by using
locality-sensitive hashing, where L denotes the sequential length. Sparse Transformer (Child et al.,
2019) introduces sparse factorizations to reduce the memory cost from O(L2) to O(L logL). Lin-
former (Wang et al., 2020) uses low-rank matrices to approximate the self-attention mechanism to
further reduce both the computational cost and memory cost from O(L2) to O(L logL).

Despite the vigorous development of architectures, the working principles behind Transformers are
still mysteries. The Transformer is often hard to train and we still know little about how it works
and how the performance changes when the embedding dimension and depth increase. However,
clarifying these problems is quite important because people are developing larger and deeper Trans-
formers with additional training techniques to get better performance. Recently, there have been
some preliminary works. (Xiong et al., 2020) and (Popel & Bojar, 2018) numerically illustrated the
effect of tuning hyper-parameters on training Transformer. (Huang et al., 2020) explores the diffi-
culty of optimizing the Transformer model, and proposes a new initialization method to benefit the
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training of deeper Transformers. (Wang et al., 2019) also investigated on how to train huge Trans-
former models. (Wang et al., 2022) successfully trained a Transformer with a depth of 1000 layers.
In this work, we make an initial attempt to clarify the working mechanism of the Transformer from
the perspective of the ID of the Transformer representation.

Generally, people realize that the real-world data such as sounds, texts, images, etc, tends to possess
some kind of low-dimensional structures. That is, only a small fraction of dimensions is required
to characterize sampled data and underlying target relationships. It is reasonable to consider, for
example, the dataset formed by all the 224 × 224 × 3 RGB pictures labeled as dogs. There are in
principle 224×224×256×3 = 38535168 possibilities, but the “intrinsic” number of pictures of dogs
recognized by people is usually much less, where considerable similarities are common. Many algo-
rithms and techniques in deep learning formally exploit the ubiquity of these low-dimensional data
structures, such as (Hinton & Salakhutdinov, 2006) and (Gonzalez & Balajewicz, 2018). Intrinsic
dimension (ID) (Amsaleg et al., 2015),(Houle et al., 2012),(Cutler, 1993) is an important mathemat-
ical tool to characterize the geometrical structure of data. It represents the minimal number of pa-
rameters required for modeling certain ground truths, hopefully capturing the low-dimensional data
structures. In this work, we mainly investigate the data representation by Transformers to uncover
different and interesting phenomena via the concept of ID. Our contributions can be summarized as
four aspects:

• We analyze the variation of ID for data representation learned by successive Transformer
blocks. It appears a dimension reduction phenomenon across layers, which can be strength-
ened by deepening the architecture.

• We show the geometrical structures of Transformers for sequential modeling: it seems
that Transformers can only achieve nonlinear dimension reduction when applied to text
classification tasks.

• We explore the relationship among embedding dimension (ED), intrinsic dimension (ID)
of learned representation and tasks performance, which motivates a straightforward inter-
pretation on the benefit of increasing ED from the perspective of ID.

• We investigate the effect of training dataset reduction via sequential lengths, which shows
negligible influence on the IDs and tasks performance. This motivates potentially a guid-
ance for efficiency in practical applications.

2 RELATED WORK

TwoNN method. There are lots of works on how to estimate ID of the given datasets. For exam-
ple, (Fukunaga & Olsen, 1971), (Bruske & Sommer, 1998) are methods based on PCA. (Levina &
Bickel, 2004) is a method based on maximum likelihood estimation (MLE). (Costa & Hero, 2004)
estimated the ID by using the so-called geodesic-minimal-spanning-tree. (Kégl, 2002) utilized ca-
pacity dimension to estimate intrinsic dimension . (Facco et al., 2017) presented an estimation ap-
proach named as TwoNN, which takes advantage of the closest and second closest samples to form
modeling probability distributions. Considering its computational efficiency, the TwoNN method is
adopted in this work to estimate intrinsic dimensions of the representations learned by Transform-
ers.1

Mathematically, the TwoNN has the following procedure. Given the dataset D = {xi}Ni=1. For
each data point xi, denote its distance to the closest and second closest sample as si,1 and si,2,
respectively. The TwoNN method estimate the ID by modeling the statistics

si :=
si,2
si,1

.

Actually we can model the statistics si :=
si,2
si,1

by a Pareto distribution (Hussain et al.,
2018),(Rootzén & Tajvidi, 2006) and hence get

1We refer https://github.com/ansuini/IntrinsicDimDeep for some codes.
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P ((s1, s2, ..., sN ) | d) = dN
N∏
i=1

s
−(d+1)
i

Here, the intrinsic dimension of the dataset D, namely d, can be easily estimated by a common
maximum likelihood method. To be more clearly, we give a pipeline of TwoNN method below.

• Ramdomly select N data point, get D = {xi}Ni=1.

• For each xi in D, calculate the distance of closest and second closest data denoted as si,1
and si,2.

• For each xi in D, calculate the statistics si :=
si,2
si,1

.

• Estimate d in P ((s1, s2, ..., sN ) | d) = dN
∏N

i=1 s
−(d+1)
i by maximum likelihood method

and the d is the estimation of ID.

Intrinsic dimension in deep learning. The performance of intrinsic dimension in deep learning
architectures has been also studied recently. For example, (Pope et al., 2021) generated fake images
by GAN to control the upper bound of ID in order to verify the accuracy of the ID estimation method.
(Ansuini et al., 2019) analyzed variation of ID of the representations cross the layer for some classi-
cal neural networks, such as the ResNet (He et al., 2016) and VGG (Simonyan & Zisserman, 2014),
on the image classification tasks. (Aghajanyan et al., 2020) studied the effect of pre-training on the
intrinsic dimension for NLP tasks. However, compared to CNNs and other models applied to com-
puter vision tasks, the related research on sequential models for NLP tasks such as Transformers are
still limited despite of its great popularity. The current work aims to fill this gap.

3 RESULTS

We first introduce the experiment setup, then report our results in five aspects.

3.1 EXPERIMENT SETTING

Tasks. To explore the ID of Transformers in a convenient manner, we conduct numerical exper-
iments on the text classification task. The reasons are as follows. First, the text classification is a
representative but important task in natural language processing, and has wide applications such as
spam detection (Crawford et al., 2015), (Asghar et al., 2020), text style classification (Wu et al.,
2019), (Sudhakar et al., 2019), sentiment analysis (Medhat et al., 2014), (Xu et al., 2019) and so on.
In addition, a great number of works, such as (Devlin et al., 2018), (Wang et al., 2020), (Shaheen
et al., 2020) and so on, have shown a great success of the Transformer architecture applied to the
classification task. Moreover, people usually use only a series of encoder blocks (with an additional
MLP (Rosenblatt, 1961) block for classification) in the framework of Transformer when conducting
the text classification, which implies the convenience for ID analysis. As a comparison, for other
tasks where decoders are necessary, e.g. the text generation, one may encounter difficulties for the
layer-wise ID computation and analysis.

Datasets. The experiments are performed on three datasets: IMDB (Maas et al., 2011), AG (Zhang
et al., 2015) and SST2 (Socher et al., 2013). Among them, IMDB (Maas et al., 2011) is a two
classification movie review dataset with 25,000 training data and 25,000 test data; AG (Zhang et al.,
2015) is a news articles four classification dataset with 120,000 training data and 7,600 test data;
SST2 is a two classification movie review dataset with around 7,000 training data and 2,000 test
data.

Models. We use the classic Transformer model (Vaswani et al., 2017) with successive encoder
blocks to extract features and learn data representation of the full input texts. As a common prac-
tice and also for simplicity, pure MLPs (Rosenblatt, 1961) are applied for the terminal classification
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layer, which maintains to a large extent the dominating effect on the final performance of the Trans-
former (encoders).2

Goals and related hyper-parameters. The present work aims to study and analyze the relation-
ship between intrinsic dimensions of the representations learned by Transformers and the corre-
sponding classification performance. To achieve this and conduct more comprehensive and rigorous
experiments, we set to vary the following hyper-parameters:

• D: depth, i.e. the total number of layers of the Transformer.
• ED: embedding (Mikolov et al., 2013) dimension. For simplicity and by convention (fol-

lowing the classic work (Vaswani et al., 2017)), we set the dimension of each hidden layer
to be equal.

That is, the goal is to find out their influences on the ID and classification accuracy. We unfold the
analysis from the following aspects.

Figure 1: The variation of ID with respect to hidden layers.

3.2 THE LAYER-WISE VARIATION OF INTRINSIC DIMENSIONS

We first study the variation of ID across different layers. For a Transformer model with depth D and
hidden dimensions {nl}Dl=1, every input data is successively mapped into a nl-dimensional vector
space, l = 1, 2, · · · , D. However, the hidden dimension is incapable of characterizing the inherent
geometrical structures of data. Here, we use the TwoNN (Facco et al., 2017) method to compute the
respective ID per layer.

Following the setting presented in Section 3.1, we perform experiments on three datasets (AG,
IMDB and SST2), using the Transformer model with varied depths and embedding dimensions:
D ∈ {4, 6, 8}, and ED ∈ {128, 256, 512}. The intrinsic dimension and its variation with respect to
different layers are shown in Figure 1. The horizontal axis of Figure 1 represents each layer, where
emb and layer i denote the embedding layer and the i-th encoder layer, respectively. The vertical
axis shows the corresponding ID. Every single line in Figure 1 represents the layer-wise variation of
ID under a certain hyper-parameters configuration.

From Figure 1, one can straightforwardly obtain the following observations:

• With the increase of depth, the overall intrinsic dimension appears a downward trend. Gen-
erally, the ID may only increase at the first encoder layer (see Figure 1 (c)), and then
decreases through the following layers, and reaches the minimum at the last layer. This

2We also refer https://github.com/lyeoni/nlp-tutorial/tree/master/
text-classification-transformer for some codes.
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decrease process of ID across layers can be regarded as a type of dimension reduction for
Transformers along with the extraction of effective information for the final classification.

• When fixing the model depth on a certain dataset, we find that the intrinsic dimension
basically increases with the embedding dimension. In fact, according to Figure 1, the
above conclusion always holds for all depths and datasets. This result is natural at the first
glance, since when increasing the embedding dimension, the (initial) intrinsic dimension
generally increases as well, which leads to an increment of the terminal ID.

To scope the dimension reduction effect in a detailed manner, we can further check the variation of
ratios of intrinsic dimension over embedding dimension and hidden dimensions, which is convenient
and straightforward since the last two has been set to be equal. It is shown that the ratio is about
O(10−1) at the embedding layer (approximately 0.1-0.3), while it is notably reduced to O(10−2) at
the final layer.

3.3 CORRELATIONS BETWEEN INTRINSIC DIMENSIONS AND CLASSIFICATION ACCURACY

Figure 2: The positive correlations between the ID and classification accuracy.

Since ID characterizes the intrinsic (geometrical) structures of data distribution, and the classifica-
tion performance directly depends on the final representation extracted by the last hidden layer of
Transformers, it is reasonable to believe that the ID of the last hidden layer (terminal ID) is correlated
with the predicted classification accuracy.

Therefore, we numerically investigate the relationship between terminal ID and corresponding clas-
sification error rate for various configurations of hyper-parameters and datasets, see Figure 2. For
robustness, the training costs several independent runs using randomized initialization to ensure the
convergence. The horizontal axis in Figure 2 represents the error rate of classification and vertical
axis shows the ID of representation learned by the last hidden layer. The dash lines connect the
results for different depths under a fixed embedding dimension, with the stars as mean values for
both terminal ID and error rates.

From Figure 2, one can observe that although all experiments are performed under the same type
of hypothesis space (i.e. Transformers), there are remarkable differences in term of classification
performance and terminal ID along with the model size (the ED herein). As is shown in the solid
lines in Figure 2, the terminal ID basically increases with the embedding dimension, while the
classification error changes adversely. Interestingly, the uncovered phenomenon for Transformers
applied to NLP tasks is opposite to that in (Ansuini et al., 2019), where the terminal ID of CNNs is
positively correlated with the classification error rate in image modeling.

The underlying interpretation may be as follows. When the embedding dimension increases, accord-
ing to the discussion in Section 3.2, we get a larger ID for the representation of input data, resulting
in an increment of the terminal ID. Meanwhile, a higher embedding dimension, as well as hidden
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dimensions, definitely extend the corresponding hypothesis space for modeling. Hence, it is reason-
able to gain a better classification accuracy. Based on this phenomenon, increasing the embedding
dimension helps to enhance classification performance via enlarging the intrinsic dimension.

This point may motivate a further extension for practical guidance in applications: one can imagine
a principled method to utilize the terminal ID as a posterior “indicator” for generalization. That
is, by monitoring the variation of terminal ID during training, we may achieve to guarantee better
classification performance without using a completely new dataset for both validation and test. This
would benefit a lot when encountering limited data in practical applications and hence deserves to
explore in the future work.

Remark 1 Our investigation shows the inherent nature of transformer models on textual tasks. For
ViT models, the conclusion conclusion no longer holds as in Table 1. We notice that either the ViT
embedding dimension or the ViT depth influence have little effect on ID.

fixed depth=7 last layer’s ID fixed ED=384 last layer’s ID
ED=192 23.52 depth=3 22.02
ED=288 23.07 depth=5 22.33
ED=384 22.51 depth=7 22.51

Table 1: The correlations between the ID and classification accuracy of ViT model on CIFAR-10
dataset. The left subtable shows the results under a fixed depth and the right one shows those under
a fixed embedding dimension.

3.4 A PRINCIPAL COMPONENT ANALYSIS VIEWPOINT OF DATA REPRESENTATION

Figure 3: PCA results on data representation of the last hidden layer (ED = 256, depth = 6).

There are many tools to estimate the intrinsic dimension of data representation, such as a series
of methods based on principal component analysis (PCA) ((Fukunaga & Olsen, 1971), (Bruske &
Sommer, 1998), TwoNN (Facco et al., 2017) and so on). Due to the computational efficiency, the
TwoNN algorithm is selected. One can refer to Section 2 for further details.

According to the results shown in Figure 1, we conclude that the intrinsic dimensions of Trans-
formers are much smaller than embedding and hidden dimensions. In this section, we will further
illustrate that the data representation learned by Transformers exists on low-dimensional but curved
manifolds instead of flat subspaces, hence are incapable of model reduction via linear methods.

To achieve this, we perform the classic PCA (Pearson, 1901) method on the normalized covariance
matrix of each layer in Transformers for varied hyper-parameters and all three datasets. Figure
3 shows the results obtained on the last hidden layer. The horizontal axis represents the order
of eigenvalues of data representation in a descending sort. The vertical axis shows the value of
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corresponding eigenvalues. The green and red vertical dotted lines denote the number of components
required to capture 50% and 85% of the variance in data representation. Here, we call the abscissa
indicated by the red line as PCA-ID, meaning the “pseudo” intrinsic dimension computed by a direct
PCA method.

It is shown that the ID derived from the TwoNN method is much smaller than the PCA-ID. For
example, the ID shown in Figure 1 (a) is about 34 for ED = 256 on the AG dataset, while the PCA-
ID shown in Figure 3 (a) is about 180 under the same setting, which is 5-6 times larger. Furthermore,
the ratio of PCA-ID with respect to embedding dimension is about 0.7-0.9, which is much larger than
that of ID (0.05-0.15). The great difference between ID inferred by TwoNN and PCA method shows
the strong nonlinearity in the correlations among data samples. Based on the above results, we
conclude that the space where data representation is located is totally not a linear subspace, but a
certain curved manifold, which prevents people from performing the basic linear model reduction.

3.5 THE EFFECT OF INTRINSIC DIMENSION REDUCTION WITH RESPECT TO DEPTH

depth=4 depth=8
emb layer’s ID last layer’s ID decrease emb layer’s ID last layer’s ID decrease

ED=128 42.04 27.85 14.19 43.81 27.14 16.66
ED=256 54.91 33.86 21.05 55.09 32.44 22.65
ED=512 60.93 37.21 23.73 60.96 32.46 28.50

Table 2: The ID reduction w.r.t. depth for different embedding dimensions on the AG dataset, where
“emb layer” denotes the embedding layer.

depth=4 depth=8
emb layer’s ID last layer’s ID decrease emb layer’s ID last layer’s ID decrease

ED=128 52.36 38.74 13.62 51.14 37.68 13.46
ED=256 73.91 55.65 18.27 72.98 47.30 25.68
ED=512 102.41 69.86 32.55 103.33 60.55 42.78

Table 3: The ID reduction w.r.t. depth for different embedding dimensions on the IMDB dataset.

depth=4 depth=8
emb layer’s ID last layer’s ID decrease emb layer’s ID last layer’s ID decrease

ED=128 40.85 34.50 6.34 41.39 30.12 11.26
ED=256 52.29 41.48 10.82 48.32 37.87 10.45
ED=512 60.30 46.22 14.08 59.8 43.27 16.53

Table 4: The ID reduction w.r.t. depth for different embedding dimensions on the SST2 dataset.

In Transformers as well as other neural network architectures, the model depth always plays an
important role. A shallow model may have weak representation ability and poor training perfor-
mance, while a quite deep model may lead to generalization issues such as overfitting (poor test
performance) and requires unacceptable computation and memory cost. In this section, we further
investigate the dependence of ID variation on the depth.

According to Figure 1, an ID reduction phenomenon across layers appears. To further track its effect
with respect to the model depth, one can naturally focus on the gaps between IDs of embedding
layers and last hidden layers. Since the relevant ID results have been already shown in Figure 1, we
just summarize them in Table 2, 3 and 4.3 It is straightforward to have the following observations:

• Fix the dataset and embedding dimension, the IDs of embedding layers almost remain the
same despite the change of depth.

• Fix the dataset and embedding dimension, the IDs of last hidden layers often decrease
significantly with the increase of depth.

3Here, the depth 6 case is not included due to space constraints.
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• Combining the above two points gives that, the Transformer model shows a larger dimen-
sion reduction across layers for deeper architectures.

A direct explanation for the above phenomena is as follows. When fixing the embedding dimension,
the learned representation of input data basically remains accordant, which implies similar IDs of
embedding layers. Meanwhile, according to Figure 1 and the discussion in Section 3.2, the ID
reduction effect may strengthen through more layers, i.e. deeper models.

Figure 4: The length distribution of each dataset.

3.6 INSTANCES OF DATA REDUCTION: INFLUENCE OF SEQUENTIAL LENGTHS

In practice, the Transformer model usually possesses massive parameters and hence requires large
dataset to guarantee reasonable training performance, resulting in enormous space and time costs.
Therefore, it would be meaningful if one can reduce the size of training dataset (“data reduction”)
without significant damages on the test performance. Motivated by this, we aim to investigate the
feasibility and procedure of data reduction in the training of Transformers from the viewpoint of
intrinsic dimension (of data representation). It is shown that unlike other hyper-parameters such as
the embedding dimension, the intrinsic dimension hardly changes with the sequential length of data
samples. This motivates potential chances to achieve data reduction by appropriately discarding
training samples.

As an initial attempt, we first focus on the sequential length of samples in the training dataset.
Specifically, given a dataset, we first sort all the sentences used for training by their lengths (i.e. word
counts, see the length distributions shown in Figure 4), and then form a “long-set” by selecting the
top 80% longest sentences in the training dataset. Similarly, one can form a corresponding “short-
set” by selecting the top 80% shortest sentences, while the original training dataset without any
reduction is called as ”full-set”. In principle, we only remove extreme cases such as too short/long
samples, to hopefully avoid affecting the training data and performance. Naturally, the test datasets
remain unchanged.

ID of embedding layer error rate
full long short full long short

AG
ED=128 43.77 46.23 44.35 9.6 10.3 10.6
ED=256 55.49 54.07 57.21 8.8 9.5 10.1
ED=512 58.96 59.22 59.12 9.3 9.2 9.4

IMDB
ED=128 51.10 51.17 48.29 14.6 14.7 15.3
ED=256 74.38 74.77 71.78 13.5 13.6 14.1
ED=512 101.34 103.70 104.15 13.2 13.2 13.9

SST2
ED=128 42.10 41.63 42.16 23.3 25.9 26.1
ED=256 53.17 53.14 54.40 24.2 26.2 25.5
ED=512 62.23 60.51 62.84 22.8 24.6 24.3

Table 5: The effect of sequential lengths on IDs of embedding layers and classification errors, where
the depth of Transformers is fixed as 5.

We conduct experiments on these three training sub-datasets: long-set, short-set and full-set, for
various configurations of hyper-parameters (mainly embedding dimensions) and datasets. For each
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Transformer model trained under the above settings, we train and record the IDs of embedding layers
as well as the final classification error rates (on the full test datasets) in Table 5.

There is only a key phenomenon shown in Table 5. That is, if we check the results in Table 5
row by row, both the IDs of embedding layers and classification errors do not change significantly,
despite that each Transformer model is trained on different subsets of the original training dataset.
This helps to verify the validity of data reduction in training, at least in the aspect of sequential
lengths. It would be valuable in applications where sufficient data is unavailable, and hence worthy
of exploration in the future work.

4 CONCLUSION

In this work, we propose a new perspective to understand the mechanism of Transformers, which is
related to intrinsic dimensions of data representation. Many interesting phenomena are numerically
uncovered to reveal the intricate relationships between intrinsic dimensions and task performance,
with respect to hyper-parameters such as depths, embedding dimensions of models and sequential
lengths of data. We form a series of empirical conclusions. On one hand, for the influence of
hyper-parameters on intrinsic dimensions and classification tasks performance, it is shown that there
are positive correlations among embedding dimensions, intrinsic dimensions and the classification
accuracy. In addition, the intrinsic dimension reduction across layers exists, which can be strength-
ened by deepening architectures. On the other hand, for the interaction between model and data
(i.e. modeling effect), we give numerical evidence that the data representation learned by Trans-
formers lies on curved manifolds. Furthermore, the data reduction in training can be valid, which
possibly motivates efficient methods to utilize data and applicable guidance for practical learning.
This deserves further exploration in the future. Certainly, the outlook is not limited. We intend
to extend the current research on classification to more general settings, particularly on generative
tasks. Moreover, the present work focuses on the basic transformer network, and it is also necessary
to further investigate the most commonly-used architectures such as typical pre-trained language
models. Apart from that, it is our goal to perform quantitative analysis to complete the theoretical
gaps of Transformers and intrinsic dimensions herein.
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Kawarabayashi, and Michael Nett. Estimating local intrinsic dimensionality. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 29–38, 2015.

Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic dimension of
data representations in deep neural networks. Advances in Neural Information Processing Sys-
tems, 32, 2019.

Muhammad Zubair Asghar, Asmat Ullah, Shakeel Ahmad, and Aurangzeb Khan. Opinion spam
detection framework using hybrid classification scheme. Soft Computing, 24(5):3475–3498, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Jörg Bruske and Gerald Sommer. Intrinsic dimensionality estimation with optimally topology pre-
serving maps. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(5):572–575,
1998.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Jose A Costa and Alfred O Hero. Geodesic entropic graphs for dimension and entropy estimation in
manifold learning. IEEE Transactions on Signal Processing, 52(8):2210–2221, 2004.

9



Under review as a conference paper at ICLR 2023

Michael Crawford, Taghi M Khoshgoftaar, Joseph D Prusa, Aaron N Richter, and Hamzah Al Na-
jada. Survey of review spam detection using machine learning techniques. Journal of Big Data,
2(1):1–24, 2015.

Colleen D Cutler. A review of the theory and estimation of fractal dimension. Dimension Estimation
and Models, pp. 1–107, 1993.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Elena Facco, Maria d’Errico, Alex Rodriguez, and Alessandro Laio. Estimating the intrinsic dimen-
sion of datasets by a minimal neighborhood information. Scientific Reports, 7(1):1–8, 2017.

Keinosuke Fukunaga and David R Olsen. An algorithm for finding intrinsic dimensionality of data.
IEEE Transactions on Computers, 100(2):176–183, 1971.

Francisco J Gonzalez and Maciej Balajewicz. Deep convolutional recurrent autoencoders for learn-
ing low-dimensional feature dynamics of fluid systems. arXiv preprint arXiv:1808.01346, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
770–778, 2016.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313(5786):504–507, 2006.

Michael E Houle, Hisashi Kashima, and Michael Nett. Generalized expansion dimension. In 2012
IEEE 12th International Conference on Data Mining Workshops, pp. 587–594. IEEE, 2012.

Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims Volkovs. Improving transformer opti-
mization through better initialization. In International Conference on Machine Learning, pp.
4475–4483. PMLR, 2020.

Shahzad Hussain, Sajjad Haider Bhatti, Tanvir Ahmad, Muhammad Aftab, and Muhammad Tahir.
Parameter estimation of pareto distribution: some modified moment estimators. Maejo Interna-
tional Journal of Science and Technology, 12(1):11–27, 2018.

Balázs Kégl. Intrinsic dimension estimation using packing numbers. Advances in Neural Informa-
tion Processing Systems, 15, 2002.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Elizaveta Levina and Peter Bickel. Maximum likelihood estimation of intrinsic dimension. Advances
in Neural Information Processing Systems, 17, 2004.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461, 2019.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human language technologies, pp. 142–150, 2011.

Walaa Medhat, Ahmed Hassan, and Hoda Korashy. Sentiment analysis algorithms and applications:
A survey. Ain Shams Engineering Journal, 5(4):1093–1113, 2014.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

10



Under review as a conference paper at ICLR 2023

Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, 1901.

Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic
dimension of images and its impact on learning. arXiv preprint arXiv:2104.08894, 2021.
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