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ABSTRACT Dialogue systems are increasingly central to applications in customer service, virtual
assistance, and beyond, generating vast amounts of conversational data. While these systems have advanced
with the exploitation of large language models (LLMs), they still face key limitations, some, in fact,
strengthened by the black-box nature of such models, including the lack of feedback mechanisms and the
absence of effective solutions for human-in-the-loop interaction and iterative improvement. As a result,
understanding, refining, and debugging dialogue behavior remains a major challenge. To address this,
we introduce UnHIDE, a novel, unsupervised framework for Human-Interpretable Dialogue Exploration.
UnHIDE is designed to support human understanding of large collections of dialogues by surfacing
interpretable structures and trends. It operates in three stages: 1) utterance clustering to group semantically
similar dialogue turns, 2) flow discovery to build dialogue trajectories based on these clusters, and 3) the
computation of interpretable metrics to analyze flow complexity, sentiment progression, and response times.
We evaluate UnHIDE using a newly-created, automatically-generated, task-oriented dialogue dataset, where
dialogue length, sentiment dynamics, and timing are systematically varied. Our results show that UnHIDE
reliably captures these variations and provides actionable insights into dialogue structure and quality.
By enabling transparent, human-interpretable analysis of dialogue without supervision, UnHIDE offers a
powerful tool for diagnosing and improving dialogue systems. It not only fills a critical gap in feedback
and interpretability, but also lays the groundwork for incorporating human-in-the-loop practices into future
conversational Artificial Intelligence (AI) development.

INDEX TERMS Dialogue analysis, dialogue flows, flow discovery, human-interpretable AI, metrics, task-
oriented dialogue, unsupervised learning.

I. INTRODUCTION
Natural language interaction capabilities have made dialogue
systems a cornerstone of modern AI applications [1]. From
customer service automation [2] to intelligent tutoring
systems [3], these conversational agents are being deployed
across a wide range of industries to provide timely assistance,
answer questions, and support user needs. Their relevance
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has only intensified with the rapid rise of Large Language
Models (LLMs), which have enabled more coherent, context-
aware, and human-like responses [4], even if at the cost of
lower transparency and control of internal processes. As a
result, dialogue systems have become increasingly influential
in shaping how people access information, receive support,
and interact with digital services. Despite this progress, key
challenges remain, particularly in ensuring that such systems
can be effectively understood, evaluated, and improved
through transparent, human-centered analysis [5].
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However, a key challenge in the development and evalua-
tion of dialogue systems lies in the lack of general-purpose,
unsupervised methods that can adapt across diverse domains
and tasks without relying on labeled data. This limitation
hinders scalable analysis, especially in dynamic or low-
resource settings where supervised training or annotation is
impractical [6]. Furthermore, current approaches often fail to
provide effective visual representations of the conversational
structure, making it difficult for developers and analysts
to explore or diagnose dialogue behaviors at scale [7].
Even when such tools exist, the insights they provide are
typically not interpretable by humans, restricting their value
in iterative system improvement and in integrating human
feedback [8]. Addressing these limitations is essential for
enabling more transparent, actionable, and scalable dialogue
system development.

In an effort to bridge the gap between automated dialogue
systems and human interpretability, a number of supervised
approaches have been proposed that rely on extensive
annotation and dialogue state tracking [9]. These methods
often focus on labeling intents, slot values, or dialogue
acts at the utterance level, enabling fine-grained, step-by-
step tracking of conversation dynamics. Such techniques
can support downstream tasks like dialogue policy learning
and stateful response generation, and are frequently used to
ensure that dialogue systems maintain consistency and goal
orientation.

Nevertheless, these supervised methods face several lim-
itations when it comes to scalable, interpretable dialogue
analysis. First, the annotation processes involved are typically
labor-intensive and domain-specific, making them difficult
to generalize or apply in data-rich but label-scarce environ-
ments. Second, by focusing on dialogue state tracking at the
turn level, these approaches often offer only a narrow, case-
by-case view, rather than providing a global perspective on
dialogue structure and flow across a corpus. Finally, their
outputs tend to serve system-level optimization rather than
human interpretability, leaving analysts and designers with
limited insight into emergent patterns, structural complexity,
or user sentiment trends across dialogues.

To address the limitations of existing approaches in
dialogue analysis and interpretation, we introduce UnHIDE,
an unsupervised framework for Human-Interpretable Dia-
logue Exploration. UnHIDE enables scalable exploration of
large dialogue datasets by combining flow discovery with
interpretable metrics, offering deep insights into conversa-
tional behavior without requiring labeled data or domain-
specific assumptions.

UnHIDE is designed to uncover meaningful structure in
large-scale dialogue data while enabling intuitive, human-
centered insights. The framework operates in three key
stages. First, it performs utterance clustering, grouping
semantically similar utterances across dialogues to identify
recurring conversational patterns. Next, it conducts flow
discovery, constructing abstract representations of how
conversations progress through these clusters. Finally, a set of

interpretable metrics is computed, capturing aspects such as
flow complexity, sentiment progression, response time, and
distribution of dialogue lengths.

Unlike traditional visualization tools that offer only
surface-level representations, UnHIDE combines structure
and statistics to facilitate a deeper understanding of conver-
sational dynamics. This makes it possible to identify frequent
paths, detect anomalies such as spikes in negative sentiment
or delayed responses, and validate the adherence to expected
dialogue protocols.

We validate UnHIDE on MultiSynthiment, a novel,
synthetically generated task-oriented dataset where dialogue
length, sentiment, and response times are systematically
varied. Experimental results confirm that these generation
variables are reliably captured in both the discovered
flows and the associated metrics, enabling rich, human-
interpretable analysis.

Our contributions include:
• UnHIDE, a novel, fully unsupervised framework for
large-scale, human-interpretable dialogue exploration
that requires no annotated data or predefined structure
beyond dialogues involving two participants communi-
cating in turn-taking fashion.

• A three-stage analysis pipeline combining utterance
clustering, flow discovery, and a set of interpretable
metrics to uncover structural, temporal, and emotional
patterns in dialogue.

• MultiSynthiment, a synthetic, task-oriented dialogue
dataset with controlled variation in utterance count,
sentiment, and response time, used to validate the
effectiveness of the framework.

• Empirical results demonstrating that UnHIDE captures
key generative variables and provides actionable insights
into dialogue design, communication trends, and user
experience.

The remainder of this paper is organized as follows.
Section II reviews prior research on dialogue flow discovery
and large-scale dialogue analysis. Section III presents the
proposed UnHIDE framework, detailing its methodology for
unsupervised flow discovery and the suite of interpretable
metrics employed. Section IV outlines the experimental
setup, including the synthetic generation of the MultiSyn-
thiment task-oriented dialogue dataset. Section V reports
and discusses the results, demonstrating the effectiveness of
UnHIDE in capturing meaningful dialogue properties and
validating key hypotheses. Finally, Section VI summarizes
the main findings and outlines directions for future research.

II. RELATED WORK
A. DIALOGUE FLOW DISCOVERY
Dialogue flow discovery has been widely explored as ameans
to support the development, evaluation, and debugging of
dialogue systems [10], [11], [12], [13]. Discovered flows
provide structured abstractions of conversations, commonly
modeled as directed graphs in which nodes represent clusters
of semantically-similar utterances and edges correspond to
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FIGURE 1. The UnHIDE framework: (1) utterance clustering identifies semantically similar dialogue
units across a corpus, (2) flow discovery builds abstracted conversation trajectories based on
cluster transitions, and (3) interpretable metrics quantify structural complexity, sentiment
progression, and response times.

conversational transitions. This structure has proven useful
in both task-oriented [13], [14] and open-domain dialogue
contexts [1].
Various clustering methods have been employed to dis-

cover dialogue states or turns, including co-clustering [10],
DBSCAN [11], and k-means [15]. Transitions between
clusters are typically inferred from the order of utterances
in the dataset, and are quantified using either raw frequency
[10], [11] or transition probabilities [15]. Thresholding
is often applied to remove infrequent transitions, which
improves the readability and interpretability of the resulting
graphs [10], [15].

Although originally motivated by flow-based chatbot plat-
forms such as Google DialogFlow [16] or Rasa [17], recent
work has extended flow discovery to the post hoc analysis of
human-human and human-machine conversations [11], [14],
[18]. These efforts aim not just to support development, but
also to uncover frequent behavioral patterns, identify failure
cases, and guide design improvements.

B. INTERPRETABILITY AND LABELING
Beyond structural discovery, a significant body of work
focuses on making dialogue flows interpretable to human
analysts. A common strategy is to label clustered utterances,
either through manual annotation, statistical heuristics,
or automatic generation. Earlier efforts relied on labeling
states with frequent words or n-grams [10], [15] or with
manually assigned dialogue acts [19]. More recently, LLMs
have been leveraged to generate more descriptive and
context-aware labels for clusters [14], [20], and even to
annotate entire dialogues in an unsupervised fashion [21].

Interpretability has also become a key component in
synthetic dialogue generation, where dialogue flows are used
to guide controllable generation using LLMs [22], [23], [24].
These works demonstrate that structured flows can serve not

only for analysis, but also as scaffolding for consistent and
coherent dialogue generation.

However, few approaches offer integrated tools that
combine structure and interpretability in a way that directly
supports human-in-the-loop diagnostics, scalable error anal-
ysis, or protocol validation across datasets.

C. METRICS FOR DIALOGUE STRUCTURE EVALUATION
A challenging area of research has focused on defining
quantitative metrics to evaluate the structure and coverage of
discovered dialogue flows. Some studies propose computing
the proportion of transitions covered in unseen dialogue sets
to assess generalizability [15]. Others evaluate graphs based
on complexity (for example, number of states or branching
factor) and path coverage to estimate flow completeness [25].
In addition to structural metrics, there is increasing interest

in incorporating contextual or behavioral signals such as
sentiment and response time. Sentiment analysis has been
used both as an input signal for clustering [19], [21], [26]
and as a feature for analyzing dialogue quality, satisfaction,
or emotional progression [18], [26]. Similarly, response
latency has been used to characterize user engagement and
to distinguish between efficient and inefficient conversational
paths [18].

While several metrics have been proposed individually,
there is limited exploration of how they can be systematically
combined to support a multifaceted, interpretable evaluation
of dialogue behavior.
Summary: In summary, existing work has laid important

foundations for discovering and analyzing dialogue flows,
as well as for developing interpretable representations
and evaluative metrics. However, most approaches focus
on isolated components, either flow structure, labeling,
or single metrics, and often require supervision or domain-
specific tuning. In contrast, UnHIDE offers an unsupervised,
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TABLE 1. Metrics computed in raw dialogues, discovered clusters, and flow. A dataset contains dialogues (d ∈ D), which contain utterances (u ∈ U), which
contain tokens (w ∈ W ). Utterances have an assigned sentiment (+, −, none) and timestamps. Flow states (c ∈ C) are connected by transitions (e ∈ E). nc
and nf denote, respectively, the normalized complexity and the normalized average Fuzzy Dialogue-Graph Edit distance (FuDGE) score.

integrated framework that combines flow discovery with a
comprehensive set of interpretable metrics, enabling scalable,
human-centered analysis of dialogue data across tasks and
domains.

III. UnHIDE
UnHIDE, illustrated in Figure 1, is an unsupervised frame-
work for analyzing large collections of dialogue. It centers
on flow discovery and computes a diverse set of interpretable
metrics using three data representations: the raw dialogues,
the utterance clusters, and the flow graph itself. This section
outlines the process of flow construction and describes the
metrics used for quantitative interpretation.

A. DIALOGUE FLOW DISCOVERY
Given a collection of text-based dialogues between two
participants (e.g., user and agent), the dialogue flow is
discovered in two main stages, following the principles
outlined by Ferreira et al. [15].

1) UTTERANCE CLUSTERING
Utterances are embedded and grouped based on semantic
similarity, separately for each speaker. These clusters define
the states of the dialogue flow. The number of clusters can
be selected by optimizing the Silhouette Score [27], ensuring
meaningful groupings. For enhanced interpretability, each
cluster is assigned a human-readable label. This can be

achieved using LLMs for summarizing representative utter-
ances from each cluster [14], [20].

2) FLOW CONSTRUCTION
Transitions between discovered states are then extracted
from the dialogue sequences, resulting in a directed graph
G(C,E), where nodes c ∈ C represent clusters (hereafter,
states), and edges e(c1, c2, p12) ∈ E indicate observed
transitions between states, weighted by transition probability
p12, i.e., the proportion of utterances in c1 followed by
c2. To ensure clarity, low-probability transitions can be
pruned using a threshold θ . Each flow starts and ends with
special states, namely: Start of Dialogue (SOD) and End of
Dialogue (EOD).

To further enrich the flow, each state is associated with
the average sentiment of the utterances it contains. This
sentiment is reflected visually in the graph through the color
of transitions: green for predominantly positive states, yellow
for neutral, and red for negative.

As long as the dialogues are sequential and speaker turns
are identifiable, UnHIDE can be applied to any dialogue
corpus, regardless of language, domain, or structure.

B. INTERPRETABLE METRICS
To support human interpretation, UnHIDE computes a range
of complementary metrics, categorized according to their
input: raw dialogues, utterance clusters, or the discovered
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flow graph. A full summary of the computed metrics, their
definitions, and formulae is provided in Table 1.

1) DIALOGUE METRICS
Dialogue metrics are computed directly from the original
dialogues, prior to flow discovery. They provide high-level
statistics on dialogue volume and structure:

• Total number of utterances (U ) and average utterances
per dialogue (|U |/|D|).

• Average dialogue duration (1T/|D|), offering a proxy
for response time.

• Sentiment composition, including the proportion of
positive (S+/|D|) and negative (S−/|D|) utterances per
dialogue.

2) CLUSTERING METRICS
Clustering metrics describe the discovered utterance clus-
ters (i.e., flow states), regardless of flow structure:

• Number of states (|C|) and average utterances per
state (|U |/|C|).

• Silhouette Score (SS) [27], indicating cluster separation
and cohesion.

• Sentiment Cohesion (FSC) [26], measuring the consis-
tency of sentiment within each cluster.

Additional per-cluster metrics include:
• Number of utterances assigned to the cluster (Uc).
• Average utterance length in tokens (|W |/|U |).
• Average time elapsed since dialogue start (1TSOD) and
since previous utterance (1Tprev).

• Average sentiment score (Sentc).

3) FLOW METRICS
Flow metrics quantify the structural complexity of the
resulting flow graph, which can impact its interpretability and
overall quality:

• Number of transitions (|E|) and flow density (FD),
indicating flow complexity.

• Sentiment progression, including average sentiment at
the start (SentSOD) and end (SentEOD), proportion of
negative sentiment at final states (EOD−), and overall
sentiment change (1Sent).

Moreover, two quality metrics are computed using held-out
dialogues, namely:

• Transition Coverage (EC) [15] evaluates the proportion
of transitions in test dialogues that are represented in
the flow.

• Flow F1-Score (FF1) [25] balances flow complexity and
generalization, combining the number of states with the
similarity of dialogue paths (measured via Levenshtein
distance) between test dialogues and the flow.

C. EXPECTED INSIGHTS AND HYPOTHESES
UnHIDE is designed to surface interpretable patterns in
dialogue datasets by combining flow discovery with a diverse
set of structural and behavioral metrics. We aim to validate

whether these metrics meaningfully reflect key dialogue
properties, and to explore the type of insights that UnHIDE
can provide to both researchers and practitioners. To this end,
we formulate the following high-level hypotheses:

H1. Dialogue volume and pacing: Basic dialogue char-
acteristics, such as the number of utterances and the
pacing of responses, should be reflected in global
metrics like total utterances (|U |) and average dialogue
duration (1T/|D|). These serve as foundational indi-
cators of interaction length and intensity.

H2. Flow complexity: Variations in dialogue length and
structure are expected to impact flow complexity. This
should be observable through metrics such as the
number of discovered states (|C|), transitions (|E|), and
flow density (FD). Simpler dialogues may yield more
linear flows, while richer conversations may produce
more branched and diverse patterns.

H3. Flow quality: The coherence and generalizability of
the discovered flow should be influenced by dialogue
diversity and complexity. We anticipate this will be
reflected in quality metrics such as the Silhouette
Score (SS), Transition Coverage (EC), and Flow F1-
Score (FF1), which together assess how well the flow
captures conversational structure across instances.

H4. Sentiment dynamics: Sentiment should manifest
both visually—through color-coded transitions in
the flow—and quantitatively, via metrics capturing
emotional trajectory (e.g., SentSOD, SentEOD, EOD_,
1Sent). These indicators are expected to reveal trends
such as sentiment improvement or escalation over time.

In real-world dialogues, response time may also correlate
with sentiment, e.g., longer pauses could signal confusion or
dissatisfaction. While this relationship is beyond the scope
of the current setup, it represents a promising direction for
applying UnHIDE to naturally occurring data.

IV. EXPERIMENTS
To evaluate the effectiveness of UnHIDE, we conducted
experiments on a suite of synthetically generated dialogues
designed with controlled variations in key conversational
attributes. These variables include dialogue length, sentiment
progression, and response timing factors that are later
analyzed using UnHIDE’s metrics and flow representations.
This section describes the experimental design, including

the dialogue generation process, configuration of controlled
variables, and the computational environment used.

A. EXPERIMENTAL SETTINGS
For flow discovery, all utterances were first embedded
into 384-dimensional vectors using the sentence transformer
model all-MiniLM-L6-v2.1 Clustering was performed using
the K-means algorithm from the scikit-learn library.2

1hf.co/sentence-transformers/all-MiniLM-L6-v2
2https://tinyurl.com/4ymet8ff
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To ensure meaningful and interpretable flows, the number
of clusters for each participant (agent and user) was optimized
to maximize the Silhouette Score [27]. This was done using
the Optuna hyperparameter optimization framework,3 which
explored cluster counts in the range of 3 to 10. This range
was chosen to balance expressiveness and interpretability
of the resulting dialogue flow. Transitions between clusters
were computed from dialogue sequences, and a threshold
θ = 0.1 was applied across all experiments to remove
low-probability transitions. This pruning step improves the
readability of the flow graphs by filtering out infrequent
paths.

Cluster labels were generated using a quantized Llama3–
8B model running in Ollama.4 For each cluster, the model
was prompted to summarize the dominant intent or action
from a random sample of 30 utterances. The labeling prompt
template is shown in Figure 2.

FIGURE 2. Prompt template for generating labels for dialogue states,
where the {input} variable is to be replaced by a random sample of
30 clustered utterances.

The same model was used to classify the sentiment
polarity of each utterance as positive, negative, or neutral.
The sentiment classification prompt template is shown in
Figure 3. For both prompting tasks, the temperature was
set to 0.1 to promote consistency and minimize variance
in model responses. All experiments were conducted on a
system equipped with an NVIDIA RTX A6000 GPU (48GB
VRAM).

FIGURE 3. Prompt template for sentiment classification of each dialogue
utterance, where {utterance} is to be replaced by the utterance to
classify.

B. SYNTHETIC DIALOGUE GENERATION
To meaningfully evaluate the interpretability and diagnostic
power of UnHIDE, we require dialogue data where specific
conversational attributes are both systematically varied and
precisely known.

3https://optuna.org
4https://ollama.com

FIGURE 4. Prompt template for dialogue generation, with variables:
{sentiment}, with possible values positive, negative, positive to
negative, negative to positive; {number_utterances}, at most
10 utterances, at least 18 utterances; {original_dialogue}, obtained
from MultiWOZ.

To this end, we introduce MultiSynthiment, a synthet-
ically generated, task-oriented dialogue dataset designed
with specific subsets that target key variables analyzed
by UnHIDE, namely: (i) sentiment progression (i.e., how
sentiment evolves throughout the dialogue), (ii) number of
utterances, and (iii) response time. Rather than generating
dialogues entirely from scratch, MultiSynthiment was built
by aligning synthetic content with MultiWOZ 2.2 [28],
a widely used benchmark of task-oriented dialogues without
sentiment or temporal dynamics. For each MultiWOZ
dialogue, LLaMA3 was prompted to generate a new dialogue
based on the original (see Figure 4 for the prompt template),
while incorporating a predefined sentiment progression and
a target number of utterances. The dialogue subsets can
be reliably recreated using the same prompt template and
controlled variable settings, ensuring reproducibility and
enabling comparable analyses across subsets, despite slight
variations in individual dialogues due to the generative nature
of LLMs.

To ensure both diversity and fidelity to the underlying
dialogue structure, the generation temperature was set to 0.7.
A summary of the 16 dialogue subsets with their respective
generation variables is in Table 2.

TABLE 2. Synthetic dialogue subsets (S1–S16), defined by combinations
of generation variables: sentiment progression (static positive or
negative, or a transition between the two), response time (fast or slow),
and utterance count (few or many).

To construct a diverse and balanced dataset, we system-
atically combined: four types of sentiment progression, two
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levels of utterance count, and two response time conditions,
resulting in a total of 16 dialogue subsets (4×2×2). Since the
original MultiWOZ dataset contains 8,436 training and 1,000
test dialogues, quantities not evenly divisible by 16, we added
12 dialogues to the training set and 8 to the test set to ensure
balanced subset sizes. This results in 528 dialogues per subset
in the training split and 63 dialogues per subset in the test
split. The final distribution of dialogues across subsets for
both the original and synthetic datasets is shown in Table 3.

TABLE 3. Distribution of dialogues (|D|) and utterances (|U |) across the
training and test splits of the MultiWOZ 2.2 and MultiSynthiment.

To define dialogue length categories, we analyzed the
distribution of utterance counts in the original Multi-
WOZ 2.2 dataset. Dialogues in the first quartile (with at
most 10 utterances) served as references for generating short
dialogues, while those in the third quartile (with at least
18 utterances) guided the generation of long dialogues. This
approach enabled a clear separation between the ‘‘few’’ and
‘‘many’’ utterance categories, while maintaining alignment
with the original train-test split of MultiWOZ.

After generation, timestamps were assigned to each
utterance to simulate either fast or slow response times,
reflecting different interaction paces between the user and
the system. Response intervals were randomly sampled from
normal distributions: (i) Fast responses were drawn from
a distribution with a mean of 10 seconds and a standard
deviation of 5 seconds; (ii) Slow responses used a mean of
120 seconds with a standard deviation of 60 seconds.

This setup introduces realistic temporal variability,
enabling analysis of how dialogue pace influences flow
dynamics and metrics. To illustrate the diversity of the
generated dialogues, Table 4 shows examples from subsets
S5 and S6, while Table 5 presents an example from
subset S12. In each case, the original dialogue from the
MultiWOZ dataset and its corresponding generated version
from MultiSynthiment are included, highlighting controlled
variations in sentiment, pacing, and number of utterances.
These examples showcase different patterns: (i) a dialogue
with predominantly positive sentiment, slower response
times, and few utterances; (ii) a dialogue with negative
sentiment, also with slow response times and few utterances;
and (iii) a dialogue that shifts from negative to positive
sentiment, with faster response times and a larger number
of utterances.

V. RESULTS AND ANALYSIS
The validation of UnHIDE is conducted through its applica-
tion to the MultiSynthiment, focusing on how effectively the
generated variables are reflected in the computed metrics.

A. DIALOGUE METRICS
Table 6 presents the computed dialogue-level metrics for
each subset. As expected, there is a clear distinction in the
number of utterances (|U |), with subsets S1–S8 containing
fewer utterances and S9–S16 containing more. This variation
is also reflected in the average dialogue duration (1T/|D|),
which shows an inverse correlation with response time,
confirming that faster responses result in shorter dialogues,
as hypothesized in H1.

Table 7 reports the global clustering and flow-level metrics
for each dialogue subset. While certain trends can be
observed directly from the table, a more comprehensive
understanding is gained by examining broader patterns.
To this end, we analyze the correlation heatmap between
generation variables and computed metrics (Figure 5) and
visualize selected metrics across all subsets to highlight key
differences (Figure 6).

This suggests that dialogue length does not influence flow
complexity, contrary to our expectation in Hypothesis H2.
Instead, its primary effect is on the average number of
utterances per state (|U |/|C|), indicating denser states in
longer dialogues. A potential explanation lies in the clustering
constraints imposed during flow discovery. Specifically, the
number of clusters was capped at 10 per speaker during
Silhouette-based optimization. Although the theoretical max-
imum number of states (22, including SOD and EOD) is
not reached in practice, this upper bound may limit flow
complexity. Furthermore, the transition pruning threshold
(θ = 0.1) may suppress additional structure by removing
low-probability edges, effectively eliminating transitions to
states that were rarely or never reached.

Despite the clustering optimization process, the Silhouette
Score (SS) remains consistently low across subsets. This
may be attributed to the low-dimensional sentence embed-
dings (384 dimensions), which may not fully capture the
nuances required for precise utterance grouping. Another
likely factor is the upper bound placed on the number of
clusters during optimization. While intended to preserve
interpretability, this constraint may have limited the model’s
ability to separate diverse interaction types. In many cases,
utterances with distinct semantics may have been grouped
into the same cluster, leading to larger, less coherent
states and ultimately weaker separation—reflected in the
persistently low SS values.
In contrast, the quality of the discovered transitions is

noticeably stronger. Although Transition Coverage (EC)
appears relatively insensitive to the generation variables,
we observe a strong negative correlation between utterance
count and Flow F1-Score (FF1), supporting Hypothesis H3.
As dialogues grow longer and more structurally complex,
it becomes increasingly difficult for the flow to capture all
observed paths. This results in reduced path overlap between
the test dialogues and the generated flow and increasing
the trade-off penalty between complexity and coverage
embedded in the FF1 metric. Although most transitions are
included (high EC), rare sequences of utterances in complex
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TABLE 4. MultiWOZ S5 and S6 dialogues and their MultiSynthiment generated counterparts, showcasing controlled variation in sentiment, pacing, and
length.

dialogues are not fully captured, thus reflecting lower
generalizability. Notably, this is quantified by a correlation
of −0.89 between utterance count and FF1, indicating a
sharp decline in flow alignment quality as dialogue length
increases.

We also observe a positive correlation between flow
density (FD) and transition coverage (EC). This relationship
arises because denser flow graphs contain more transitions

per state, thereby increasing the likelihood that transitions
observed in unseen test dialogues are already represented in
the flow. As a result, higher density contributes to broader
structural coverage, even if it does not necessarily imply
better clustering quality.

Regarding sentiment, results are consistent with expecta-
tions outlined inHypothesis H4. Dialogues labeled as positive
or negative exhibit a corresponding dominance of positive
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TABLE 5. MultiWOZ S12 dialogue and its MultiSynthiment generated counterpart, showcasing controlled variation in sentiment, pacing, and length.

TABLE 6. Dialogue metrics computed for each subset, including: number of utterances (|U |), average number of utterances per dialogue (|U |/|D|),
average dialogue duration (1T/|D|), proportion of utterances with positive (S+/|D|) and negative (S−/|D|) sentiment per dialogue, and average
utterances per discovered state (|U |/|C |).

(S+/|D|) or negative (S−/|D|) utterances, respectively. Inter-
estingly, dialogues with sentiment transitions tend to show

a higher proportion of positive utterances overall. This may
reflect an underlying bias in the MultiWOZ dataset, where
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TABLE 7. Clustering and flow metrics per subset. Clustering metrics include: number of dialogue states (|C |), Silhouette Score (SSusr , SSsys) and
sentiment cohesion (FSCusr , FSCsys), both for user and system utterances. Flow metrics include: number of transitions between states (|E |), average
sentiment of SOD states (SentSOD), average sentiment of EOD (SentEOD), sentiment variation across dialogue(1Sent), proportion of negative sentiment in
EOD states (EOD−), flow density (FD), transition coverage (EC), and flow F1-score (FF 1).

FIGURE 5. Heatmap with correlations between variables and UnHIDE metrics.

FIGURE 6. Flow metric values across dialogue subsets. All metrics are plotted on the left axis,
except for the number of discovered states (|C |), which is shown on the right axis for clarity.

negative utterances are comparatively scarce. EmoWOZ [29],
built on MultiWOZ with emotion annotations, shows a

similar scarcity of negative utterances due to its task-oriented
nature. To systematically study sentiment and other dialogue
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FIGURE 7. Dialogue flow discovered for Subset 12.

TABLE 8. Clustering metrics for Subset 12: number of utterances (Uc ), tokens per utterance (|W |/|U |), time since dialogue start (1TSOD), time since
previous utterance (1Tprev), and average sentiment (Sentc ).

variables, synthetic datasets were used, allowing controlled
analysis of their impact on the metrics.

To facilitate clearer analysis, Figure 5 splits sentiment
progression into two independent variables: Sentiment Start
and Sentiment End, computed respectively as the average

sentiment of utterances in the initial and final dialogue
clusters. As expected, Sentiment Start shows a strong
correlation with the initial sentiment metric (SentSOD), while
Sentiment End correlates with both the final sentiment
(SentEOD) and the proportion of negative sentiment in
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final states (EOD_). Both start and end sentiment values
exhibit moderate correlation with overall sentiment change
(1Sent), further validating the interpretability of the derived
metrics.

In addition, changes in sentiment across dialogues are
reflected in flow sentiment cohesion (FSC), which captures
the internal consistency of sentiment within discovered
dialogue states.

B. CLUSTERING AND FLOW METRICS
To illustrate state-level clustering characteristics, we analyze
the flow discovered for subset S12, a group of dialogues
defined by a negative-to-positive sentiment shift, fast
response time, and many utterances. The corresponding flow
graph is shown in Figure 7, and detailed per-state metrics are
reported in Table 8. Sentiment values range from 0 (indicating
more negative sentiment) to 1 (indicating more positive
sentiment). In subset S12, as expected, sentiment progresses
from negative to positive—with an initial sentiment of
SentSOD = 0.39 and a final sentiment of SentEOD =

0.98. This progression is also visually evident in the flow
diagram (Figure7), where transition colors shift from red to
green, reflecting the underlying change in emotional tone
throughout the dialogue.

Approximately a quarter of the dialogues begin with
the user expressing dissatisfaction with their current job,
a situation typically labeled as Job Search Assistance.
In about a third of the cases (35%), the dialogues open
with more general expressions of negative sentiment, often
reflecting frustration or emotional distress—categorized as
Emotional Venting.

This pattern is illustrated in the second generated dialogue
of Table 5, where the user begins by expressing frustration
about being unable to find suitable restaurants. In 48%
of similar cases, the system responds with a Restaurant
Recommendation, aiming to improve sentiment by offering
a practical solution. As the dialogue progresses, a typical
closing sequence emerges: the user proceeds with a Booking
Confirmation, the system provides Empathetic Support, the
user offers Expressions of Gratitude, and the system con-
cludes with Thanks and Greetings. This complete trajectory,
from initial frustration to resolution and mutual appreciation,
is a recurring flow observed in multiple dialogues, including
the example in Table 5.

The user states C2 and C4 exhibit a higher number
of utterances (|Uc|), as they correspond to frequently
occurring actions in the source data, specifically, booking
confirmations and travel planning. In contrast, user state C1
and system state C3 contain fewer tokens per utterance
(|W |/|U |), as they represent brief interactions such as
expressions of gratitude, which typically occur at the end
of the dialogue and are marked by high values of 1TSOD.
Notably, these final states also have the highest sentiment
scores, reflecting the consistently positive tone of concluding
interactions.

VI. CONCLUSION AND FUTURE WORK
UnHIDE is an unsupervised framework for dialogue analysis
that facilitates human interpretation of large-scale conversa-
tional data. It operates in two stages: first, by discovering
dialogue flows through utterance clustering and graph-
based flow construction; and second, by computing a
comprehensive set of interpretable metrics that reflect key
properties of the dialogues at different levels, utterance,
transition, state, and graph. This dual focus allows UnHIDE
to reveal structural and emotional patterns in dialogue data
without the need for supervision or manual labeling.

To evaluate the framework’s capabilities, we applied it to
MultiSynthiment,5 a novel, synthetically generated dataset
inspired by MultiWOZ. Dialogues were systematically
varied on three dimensions: sentiment progression, response
time, and number of utterances. These variables served as
controlled factors for evaluating whether and how UnHIDE
captures relevant dialogue properties through flow structures
and metric outputs.

Our evaluation was guided by four hypotheses. First,
we expected that basic dialogue characteristics, such as total
utterances and response pacing, would be reflected in high-
level metrics like |U | and 1T/|D|, providing foundational
insight into dialogue length and intensity. Second, we hypoth-
esized that dialogue structure would impact flow complexity,
with simpler dialogues yielding more linear flows and longer
ones resulting in richer, more branched graphs, observable
through metrics like the number of states (|C|), transitions
(|E|), and graph density (FD). Third, we anticipated that the
quality and coherence of the discovered flows would vary
with dialogue diversity, and that metrics such as Silhouette
Score (SS), Transition Coverage (EC), and Flow F1-Score
(FF1) would reflect this relationship. Finally, we expected
that sentiment dynamics would be evident both visually,
through color-coded transitions, and quantitatively, through
trajectory metrics such as SentSOD, SentEOD, EOD_, and
1Sent , helping to characterize emotional progression within
conversations.

The results largely confirmed these hypotheses. UnHIDE
successfully surfaced the variation in dialogue length, pacing,
and sentiment progression through both its flow represen-
tations and computed metrics. However, some limitations
emerged. Flow complexity did not always scale with dialogue
length, mainly due to constraints on the maximum number
of clusters and the pruning of low-probability transitions.
Without this pruning, the resulting flows became cluttered
and difficult to interpret. This trade-off, while improving
interpretability and ensuring comparability across subsets,
also introduced limits on flow expressiveness. Similarly,
while transition-level quality metrics such as EC and
FF1 were informative, their sensitivity to dialogue length
highlighted challenges in generalizing across more complex

5The source code and synthetic dataset are available at:
https://github.com/NLP-CISUC/FlowDisco/tree/main
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interactions. Sentiment trends were robustly captured and
closely aligned with the controlled generation settings,
further supporting the framework’s analytical value.

Despite its reliance on synthetic data, this study provides
strong evidence that UnHIDE can uncover meaningful
insights from dialogue flows and metrics. The framework’s
components, clustering, flow construction, and metric com-
putation, are computationally efficient and can be run locally.
Moreover, LLM-based steps, like labeling and sentiment
classification, can be substituted with lighter alternatives
where necessary.

In addition to integrating UnHIDE in the analysis of
real-world dialogues, in the future, we aim to simulate
more diverse conversational scenarios, including diverse user
personas and LLM temperature adjustments, to increase
generative diversity. We also plan to expand the metric suite
to capture other dialogue qualities such as engagement or
politeness. Finally, we envision applying UnHIDE not only
to analyze dialogue, but also to support the interpretability of
LLMs themselves, offering a broader contribution to model
transparency and responsible AI deployment.

LIMITATIONS
The main limitations of this work arise from the use of
synthetic data. Although synthetic data provided an efficient
and controlled environment for validating UnHIDE, it may
not fully reflect the variability and nuance of real-world
conversations. This choice was partially motivated by the
fact that the real dialogue data available to us is proprietary
and cannot be publicly released. As an alternative, generation
via prompting allowed us to vary specific dialogue attributes
systematically, such as sentiment, utterance count, and
response time, offering valuable ground truth for evaluating
the framework.

Additionally, while the analysis includes temporal features,
that is, response times, these were also synthetically assigned
and are not grounded in actual human timing behaviors.
As such, their representativeness in practical settings may be
limited. Nevertheless, the structure-oriented evaluation based
on clustering and flow metrics still offers a meaningful lens
into the framework’s interpretability and performance.

Some limitations are also related to specific implemen-
tation choices. Utterances were embedded using generic
sentence transformers, which may not be optimal for
capturing dialogue-specific nuances, like turns, context,
or intentions. The number of clusters was selected using the
Silhouette Score, with an upper limit imposed to maintain
interpretability, potentially constraining flow complexity.
Furthermore, LLMs (Llama3-8B) were used in a zero-shot
setting to assign cluster labels and classify sentiment. These
models are known to be susceptible to inconsistency and
hallucination, and their outputs may not always align with
human judgment. Still, we found that dominant sentiment
trends were consistently captured and that the resulting flows
remained interpretable, which we view as the central success
of this validation.

Lastly, we emphasize that the core components of
UnHIDE, including utterance clustering, flow discovery, and
metric computation, are fully self-contained and can be
run locally without specialized hardware. Additionally, the
reliance on LLMs for cluster labeling and sentiment analysis
is optional: these components can be replaced by simpler,
more traditional methods such as keyword-based approaches
or lightweight classifiers, depending on the application
context.
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