
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FROM INTENTS TO ACTIONS: AGENTIC AI IN
AUTONOMOUS NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Telecommunication networks are increasingly expected to operate autonomously
while supporting heterogeneous services with diverse and often conflicting in-
tents—that is, performance objectives, constraints, and requirements specific to
each service. However, transforming high-level intents—such as ultra-low latency,
high throughput, or energy efficiency—into concrete control actions (i.e., low-level
actuator commands) remains beyond the capability of existing heuristic approaches.
This work introduces an Agentic AI system for intent-driven autonomous networks,
structured around three specialized agents. A supervisory interpreter agent, pow-
ered by language models, performs both lexical parsing of intents into executable
optimization templates and cognitive refinement based on feedback, constraint
feasibility, and evolving network conditions. An optimizer agent converts these
templates into tractable optimization problems, analyzes trade-offs, and derives
preferences across objectives. Lastly, a preference-driven controller agent, based
on multi-objective reinforcement learning, leverages these preferences to operate
near the Pareto frontier of network performance that best satisfies the original intent.
Collectively, these agents enable networks to autonomously interpret, reason over,
adapt to, and act upon diverse intents and network conditions in a scalable manner.

1 INTRODUCTION

Radio access networks (RANs) are large-scale, real-time distributed systems that must operate reliably
in highly dynamic and uncertain radio environments, while serving a broad range of connectivity
services and applications. Currently, these systems rely heavily on manual intervention for configura-
tion optimization and functional fine-tuning. This dependence on human expertise limits scalability,
slows adaptation to environmental changes, and increases operational costs.

The next generation of communication networks is expected to address these limitations by be-
coming increasingly autonomous. This evolution—already underway in 5G-Advanced through
standardized intent management frameworks, e.g., 3GPP (2025c) and TMForum (2021)—envisions
self-configuring, self-optimizing, and self-healing systems guided by high-level network intents.
Intents specify performance objectives, requirements, and constraints for a connectivity service or
management workflow 3GPP (2025c), allowing operators to express what the network should achieve
rather than how. For example, an operator may specify a goal as “maximize user coverage while
minimizing energy consumption,” leaving the network to autonomously determine the appropriate
actions, such as antenna tilt adjustments to improve coverage or carrier deactivation to save energy.
In this context, intents act as directives, while the network abstracts away the implementation details,
much like a compiler translates high-level code into machine-executable instructions.

Converting intents into network actions is fundamentally a problem of planning and reasoning across
multiple abstraction layers—from natural-language specifications to optimization formulations, and
ultimately to control policies executed at the RAN. These requirements exceed the capabilities of
current heuristic and rule-based approaches. Bridging this gap calls for a new class of artificial
intelligence (AI) systems that move beyond perception and prediction, linking abstract objectives
with dynamic decision-making through iterative reasoning and planning.

Agentic AI has recently emerged as a promising paradigm for building autonomous, goal-driven
systems capable of interpreting objectives, planning multi-step actions, and adapting to dynamic envi-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ronments with minimal human oversight. Unlike traditional AI approaches based on fixed heuristics
or monolithic models, Agentic AI structures intelligence into specialized agents that interact and co-
operate through well-defined workflows Sapkota et al. (2025). Central to this paradigm are large-scale
generative models—particularly large language models (LLMs)—which enable agents to understand
and generate natural language, decompose goals, generalize across tasks, invoke specialized tools, and
reason in open-ended contexts Liu et al. (2024). As such, Agentic AI offers a compelling architectural
foundation for autonomous and intent-driven network management and optimization.

This paper takes a step toward realizing this vision by introducing an Agentic AI system comprising
an interpreter, an optimizer, and a controller. Our contributions are:

1. Cognitive intent processing. The interpreter is a supervisory cognitive agent with two core
functions: converting high-level intents into structured templates and recursively refining them
on a slow timescale by reasoning over network observations and feedback on intent fulfillment.
To meet RAN compute and memory constraints, we adopt a dual-SLM architecture that separates
intent translation and in-context reasoning among two small language models (SLMs).

2. Preference optimization. The optimizer agent transforms optimization template models (OTMs)
into constrained optimization problems over a preference space, performs preference planning
via Bayesian optimization to dynamically adapt preferences to network conditions, and steers
the controller policy to satisfy the service intents expressed by the OTM.

3. Multi-objective control. The controller leverages multi-objective reinforcement learning
(MORL) to realize adaptive policies that operate near the Pareto front of network performance. A
central technical contribution is distributed envelope Q-learning (D-EQL), a scalable distributed
variant of envelope Q-learning (EQL) Yang et al. (2019) that: (i) decouples learner–actors with
sharded prioritized replay for high-throughput training; (ii) distributes the exploration of the
preference simplex across actors while learning a single preference-conditioned network; (iii)
uses envelope updates with vector TD targets plus a cosine-stability loss; and (iv) refreshes
priorities with hindsight preference relabeling. Together, these extensions improve scalability,
accuracy and exploration over established MORL art Yang et al. (2019); Basaklar et al. (2023).

4. Proof of concept. We showcase the agentic system through an intent-aware radio resource
management (RRM) use case combining interpreter and optimizer agents with a novel MORL-
based link adaptation (LA), and adapt its policy on the fly to diverse connectivity service goals.
Our approach outperforms traditional reinforcement learning (RL)—which cannot adapt a single
policy across goals—and exceeds the state-of-the-art LA baseline of 5G/5G-A systems.

Results from high-fidelity system-level simulations of a 5G-compliant network suggest that Agen-
tic AI can transform high-level human intents into self-optimizing control mechanisms for next-
generation networks, thereby paving the way toward scalable network autonomy.

2 RELATED WORK

Agentic AI: Agentic AI is an emerging paradigm that structures intelligence as a modular network
of specialized agents collaborating to achieve complex, high-level goals (Hughes et al., 2025). Recent
surveys highlight recurring design patterns and challenges related to reliability and evaluation (Guo
et al., 2024; Li et al., 2024). A central mechanism is goal decomposition, whereby broad objectives
are divided into subtasks handled by agents with distinct functions. Prior work has demonstrated that
agents can integrate reasoning and action in recursive loops (Yao et al., 2023), improve performance
through reflective memory (Shinn et al., 2023), and operate collectively via structured communica-
tion (Wu et al., 2024). To coordinate distributed intelligence, orchestration layers or meta-agents
assign roles, manage life cycles and task dependencies, and resolve conflicts using centralized or
decentralized mechanisms (Qian et al., 2024). Furthermore, persistent goals and memory enable
adaptation over long time horizons (Wang et al., 2024; Agashe et al., 2025). Domain-specific systems,
such as MAGIS (Tao et al., 2024), illustrate how these principles scale to collaborative workflows.

Bayesian optimization: Zhan & Xing (2020) reviews the evolution of expected improvement (EI)
as an acquisition function for surrogate-based optimization, detailing its extensions to parallel, multi-
objective, constrained, noisy, multi-fidelity, and high-dimensional settings, analyzing their theoretical
properties, and highlighting future research directions. Zhao et al. (2024) shows that the performance

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

of high-dimensional Bayesian optimization is strongly limited by poor random initialization of
acquisition function maximizers and proposes AIBO, a simple framework that uses past evaluations
and heuristic search to generate better starting points, significantly boosting optimization efficiency.

Multi-objective reinforcement learning: MORL addresses control problems in which optimality
is defined by a Pareto front of policies, each capturing different trade-offs among multiple objectives.

Early approaches to multi-objective optimization (Kim & de Weck, 2005; Konak et al., 2006; Yoon
et al., 2009) reduced the problem to scalar optimization—typically via utility functions with fixed
weights across objectives—followed by standard RL. These methods are tied to a single preference
setting and cannot adapt when goals or constraints change (Liu et al., 2015), thereby necessitating
retraining. To improve generality, subsequent work sought to approximate the entire Pareto front by
learning multiple optimal policies over the preference space (Natarajan & Tadepalli, 2005; Barrett &
Narayanan, 2008; Mossalam et al., 2016). However, training a separate policy for each preference
combination quickly becomes computationally infeasible in large domains.

A more scalable approach is to learn a single universal policy conditioned on preferences (Yang et al.,
2019; Xu et al., 2020; Abdolmaleki et al., 2020), enabling adaptation across tasks without retraining.
For instance, Yang et al. (2019) proposed envelope Q-learning, which generalizes the Bellman
equation to optimize the convex envelope of multi-objective Q-values under linear preferences
using deep networks. Extensions such as those in Basaklar et al. (2023) introduced parallelization
to improve sample efficiency and Pareto approximation. Nonetheless, efficiently exploring the
preference space and learning universal MORL policies remain open challenges (Hayes et al., 2022).

Agentic AI in Communication Systems: Intent-based management is already part of modern
5G-Advanced systems 3GPP (2025c), and its extension toward 6G is strongly supported in current
standardization efforts 3GPP (2025g). Concurrently, academic and industrial interest in Agentic
AI is rapidly growing, positioning it as a key enabler of next-generation autonomous networks,
particularly for intent-driven operations Bimo et al. (2025); ZTE (2025); Intel & NEC (2025). Recent
work on agent-based and LLM-guided control frameworks for network optimization and service
management Qayyum et al. (2025); Jolicoeur-Martineau (2025); Bimo et al. (2025) highlights a
shift toward systems capable of reasoning, adaptation, and collaboration. This trajectory is reflected
across 3GPP, Open RAN, and TM Forum. For example, 3GPP TR 22.870 3GPP (2025a) identifies
AI-agent–enabled service coordination, LLM-assisted interactions, and agent-supported UE–network
cooperation as 6G use cases, while IETF (2025) defines protocols for AI-agent communication.
Furthermore, the 3GPP SA5 workgroup has identified intent-driven agentic autonomous management
as a priority areas for 6G 3GPP (2025i;h) while SA2 is examining agentic mechanisms for the 6G
core network 3GPP (2025f). Together, these developments indicate that agentic and intent-based
paradigms are increasingly viewed as foundational elements of future 6G architectures.

Differentiation from Prior Agentic AI Work: Existing Agentic AI systems have largely been
applied to reasoning, planning, and tool use, where control loops operate over long timescales in
relatively stable environments. By contrast, we integrate agentic AI into the fast control loops of
RRM, where sub-millisecond decisions must adapt to fading channels, mobility, and heterogeneous
service requirements. To our knowledge, this is among the first applications of Agentic AI in highly
dynamic, stochastic environments, extending its reach to performance-critical autonomous networks.

We demonstrate the workflow with an end-to-end, cognitively guided intent-aware RRM design
for supporting different connectivity services, where control policies adapted by reasoning over
individual service goals and network observations are then executed in time-varying, frequency-
selective environments to meet the goals. Our results show superior performance compared to
traditional RL and the state-of-the-art LA algorithm adopted in 5G/5G-A systems.

3 AGENTIC AI SYSTEM FOR RAN CONTROL

At its core, the proposed Agentic AI system comprises three specialized agents—interpreter, optimizer,
and controller—whose interactions form an agentic workflow consisting of two loops: an intent
management loop, executed by the interpreter–optimizer pair, and an intent fulfillment loop, executed
by the optimizer–controller pair. Each loop operates on a distinct timescale, forming a two-timescale
control architecture analogous to Kahneman’s dual-process theory (Kahneman, 2011), with a slower,
deliberative outer System 2 and a faster, reactive inner System 1.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

PreferenceOTM

Performance

statistics

Performance

reports
𝑡!𝑡"

ControllerOptimizerInterpreter

Intent Management Function

Radio Access Network (RAN)

ResponseIntent

𝑡#

Intent

fulfillment

Intent

management

𝑡# > 𝑡" > 𝑡!

RAN Control Function

Figure 1: Agentic AI system for intent and resource management in autonomous networks.

The interpreter is a supervisory cognitive agent that converts high-level intents into structured
templates and adaptively refines them on a slow timescale using network states and fulfillment
feedback. The optimizer recursively plans and adjusts the downstream controller configurations to
satisfy the intent, aggregating controller feedback into slower-timescale statistical summaries returned
to the interpreter. The controller executes real-time decision-making, collects observations, and
provides periodic performance reports to the optimizer.

This triadic workflow provides a blueprint for a broader Agentic AI system for autonomous man-
agement and optimization of communication networks. Its realization, however, requires a twofold
extension. Horizontally, the interpreter may coordinate with multiple optimizer–controller pairs
supporting different RAN functions within a single architectural layer. Vertically, the workflow can
be embedded across different layers of the RAN protocol stack, whose operational timescales range
from slow (for network management at higher layers) to very fast (for RRM at lower layers).

3.1 TIMESCALES SEPARATION

The workflow separates responsibilities across three timescales. The controller handles real-time
decisions and thereby establishes the system’s reference timescale tc. Because this agent replaces an
existing RAN control function, it inherits that function’s native latency budget, which may range from
sub-millisecond operation for RRM functions (e.g., link adaptation) to minutes or hours for network
optimization tasks (e.g., cell shaping). The optimizer adjusts the controller’s policy at a deliberately
slower timescale to, spanning hundreds of milliseconds to seconds for fast RRM functions and up to
hours for RAN management functions, ensuring that its decisions do not interfere with the primary
control loop. The interpreter operates on the slowest supervisory cadence ti, which spans seconds
to minutes for RRM supervision and up to hours for RAN-wide management. At this timescale,
the interpreter evaluates intent feasibility, reasons over observed key performance indicator (KPI)
deviations, and generates refined intents without imposing timing constraints on downstream agents.

Decoupling long-term reasoning and intermediate adaptation from real-time control ensures that (a)
the interpreter supervisory role is non-latency-critical; (b) latency-critical operations are confined to
the controller—for any RAN control function involved; and (c) the fast control loop remains stable.

4 LANGUAGE-GUIDED INTENT MANAGEMENT

4.1 INTERPRETER AGENT

The interpreter is a language-guided supervisory agent aligned with the scope of an intent management
function (IMF) (TMForum, 2024). It performs two complementary functions: (a) transforming intents
into structured OTMs, and (b) cognitive reasoning for recursive intent adaptation.

The interpreter agent must integrate domain awareness, intent stabilization, and adherence to the
computational and memory constraints of the RAN system. Domain awareness includes understanding
which control agents operate within each sub-domain, their capabilities, parameters, and timescales,
as well as the KPIs they influence. This knowledge enables the interpreter to produce feasible OTM
formulations for a given intent, route each intent to the appropriate RAN control agent, and ensure
intent stabilization by reasoning over system observations, optimizer feedback, and network dynamics
to perform safe, explainable OTM refinements when required.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Model Schema accuracy OTM accuracy
Objectives Constraints Overall

Qwen-2.5-7B-Instruct (Before fine-tuning) 100.0% 45.00% 21.50% 11.30%
Qwen-2.5-7B-Instruct (After fine-tuning) 100.0% 100.0% 98.00% 98.00%

Table 1: Schema and OTM accuracy for interpreters using the Qwen-2.5-7B-Instruct model.

Meeting these requirements within current 5G/5G-A RAN hardware necessitates a design that is both
computationally efficient and functionally modular. Deploying a single large general-purpose LLM
is impractical due to compute and memory constraints in current RAN platforms, and integrating
dedicated accelerators is neither scalable nor cost-effective. To address this, we adopt a dual-SLM
architecture that separates the interpreter’s two core functions—intent translation and cognitive
reasoning—across two lightweight, complementary SLMs, as detailed in Appendix A.

Intent translation. This module is the workflow entry point. It interprets the intent, decomposes it
into sub-intents, selects the appropriate downstream control agent, and initiates the intent-fulfillment
loop. A fine-tuned SLM renders the intent as a structured, schema-compliant OTM by disambiguating
objectives, constraints, requirements, and metadata. This step extends beyond lexical parsing: the
model must map high-level intents into optimization structures grounded in domain knowledge.
Using a fine-tuned SLM ensures low-complexity generation of machine-readable OTMs that reflect
RAN semantics and remain robust to linguistic variability. Appendix B discusses the generality of
the OTM schema, while Appendix C outlines the fine-tuning of a Qwen-2.5-7B-Instruct model Qwen
et al. (2025), which achieves the high schema validity and OTM accuracy shown in Table 1.

Cognitive reasoning and adaptation. Complementing the translator, a lightweight general-purpose
SLM performs supervisory reasoning via in-context learning. It evaluates feasibility, diagnoses
constraint violations, and refines OTMs when strict requirements cannot be met, proposing alternative
trade-offs or adapting objectives to evolving network conditions. Intent stabilization is achieved
through structured monitoring, advisory evaluation, and guarded execution (see Appendix A). This
supervisory closed-loop reasoning extends beyond static templates or rule-based logic and is essential
for autonomous, intent-driven, network management under real-world network dynamics.

This division of labor preserves contextual knowledge and ensures adaptability for intent handling,
while remaining compatible with practical constraints of contemporary RAN deployments. The
dual-SLM interpreter—built from small-scale models—and the infrequent, non-latency-critical nature
of SLM inference within the agents’ timescale separation allow the system to maintain low compute
and energy overhead. As a result, the overall design is feasible on current 5G/5G-Advanced hardware.

4.2 OPTIMIZER AGENT

The optimizer agent performs three key tasks: (i) decoding the OTM received from the interpreter,
(ii) recursively solving the associated optimization problem to align the controller’s policy with the
intent, and (iii) coordinating the two feedback loops within the workflow. Upon receiving an OTM,
the optimizer formulates a constrained optimization problem aligned with the specified intent, such as

minimize
ω∈Ω

f(ω)

subject to gi(ω) ≤ bi, i = 1, . . . , p,
(1)

where f(ω) quantifies the system performance (e.g., energy, latency, throughput), and the decision
variable ω belongs to a feasible set Ω ⊆ Rm. The inequality constraints gi(ω) ≤ bi capture
operational limitations—e.g., bandwidth, latency, or power—or service requirements. Since both
objective and constraints are often non-convex, the solution landscape may contain multiple local
optima, making the identification of feasible or optimal solutions challenging.

The decision variables ω link the optimizer to the controller by representing hyperparameters that
tune the controller’s policy. In our framework, the controller follows a MORL approach (Section 5),
so ω corresponds directly to the preference weights in its multi-dimensional reward function.

Since the explicit forms of f and gi are unknown and their evaluations are computationally expensive,
the optimizer employs Bayesian optimization (BO), leveraging surrogate models trained on RAN
performance data (e.g., throughput, spectral efficiency, block error rate (BLER)) relevant to the intent.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

These models guide the exploration of preference weights ω (i.e., decision variables), which steer the
controller’s actions. Additional details of the BO design are provided in Appendix D.

4.2.1 PAX-BO: PREFERENCE-ALIGNED EXPLORATION BAYESIAN OPTIMIZATION

We next address the preference-based constrained BO problem (1) in the multi-service case, where S
connectivity services must be jointly optimized under p constraints that capture requirements such as
data rate, latency, and reliability. The optimization problem (1) becomes

minimize
W∈ΩS

f(W)

subject to gi(W) ≤ bi, i = 1, . . . , p,
(2)

where W = [ω(1), . . . ,ω(S)] collects the service-specific preference vectors ω(s) ∈ Ω (Ω = ∆m−1)
on the probability simplex. The objective f(W) quantifies system-wide performance, while the
constraints gi(W) ≤ bi enforce joint service requirements. Problem (2) reduces to (1) when S = 1.

PAX-BO, shown in Algorithm 2, solves Problem (2) by optimizing preference vectors on the
simplex through BO in an unconstrained internal space. Let U = [u(1), . . . , u(S)] ∈ Rm×S and
ū = vec(U). Each service s has a projected simplex weight ω(s) = Π∆(u

(s)) ∈ ∆m−1, and
W(U) = [ω(1), . . . ,ω(S)] ∈ (∆m−1)S . At each iteration, we fit surrogate models that approximate
the system objective and constraints as F(ū) ≈ f(W(U)) and Gi(ū) ≈ gi(W(U)), and build a
constraint-aware acquisition α(ū) (e.g., Log-EI times a feasibility probability).

A trust region (TR)—an ℓ∞ box with center sc and radius L ∈ [Lmin, Lmax]—constrains local
exploration. At each iteration, the acquisition function is maximized within the TR, and the solution
is projected back onto the simplex:

ūt = arg max
∥v̄−sc∥∞≤L

α(v̄), Ut = mat(ūt), Wt = Π∆(Ut).

After evaluating ot = f(Wt−1) and c
(i)
t = gi(Wt−1), we declare success if c(i)t ≤ 0 for all i and

ot ≥ f⋆
t−1 + ϵ, with ϵ ≪ 1. On success, we set f⋆

t ← ot, sc ← ūt−1, and expand L after sth
consecutive successes; otherwise, L is shrunk after fth failures, clamped to [Lmin, Lmax]. If the TR
stalls at Lmin for w rounds, a reset is triggered: n candidates are sampled from (∆m−1)S , scored by
(acquisition)×(feasibility)×(novelty), and the best candidate reinitializes sc with L← L0.

Overall, PAX-BO is a lift-and-project BO method with TR safeguards and reset mechanisms, tailored
to simplex-valued preferences that jointly influence a constrained system objective.

5 PREFERENCE-GUIDED INTENT FULFILLMENT

The optimizer and controller agents operate in a closed loop to achieve intent fulfillment. The
optimizer recursively adapts the preference vector ω based on performance feedback from the
controller. The optimal (or near-optimal) vector ω⋆, obtained by solving (1), is then passed to the
controller, which aligns network actions with the original intent.

5.1 CONTROLLER AGENT

The controller implements a policy trained via D-EQL, a distributed extension of EQL (Yang et al.,
2019). D-EQL learns a single policy/value network conditioned on a linear preference vector ω ∈ Ω
(the probability simplex) and scales exploration through a learner–actor architecture with prioritized
replay (cf. Horgan et al. (2018)).

During training, actors are assigned to distinct strata of the simplex defined by a simplex-lattice
partition. Each actor samples preferences uniformly within its stratum using barycentric sampling,
executes an ε-greedy policy with the scalarization

Qω(s, a;θ) = ω⊤Q(s, a,ω;θ),

and initializes replay priorities by drawing an independent preference ω̃ to compute a scalar temporal-
difference error. Transitions and priorities are batched locally and sent to sharded replay buffers.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm Partition Replay memory Actor CFR1 Hypervol.
Hindsight Sampling Update Sharded Distrib. Comm. Improv. Improv.

Yang et al. (2019) No Yes Prioritized No No No – – –
Basaklar et al. (2023) Yes Yes Uniform No No Yes Synch. 12.33% 78.56%
D-EQL (ours) Yes Yes Prioritized Yes Yes Yes Asynch. 22.10% 89.37%

Table 2: Comparison of D-EQL with Yang et al. (2019) and Basaklar et al. (2023) in terms of design
features and achieved CFR1 performance in Fruit Tree Navigation with depth 7.

The learner assigns strata of the simplex to actors for distributed exploration, retrieves prioritized
minibatches from all shards, samples preferences from a Dirichlet distribution, and forms a Cartesian
product so that each transition is evaluated under every sampled preference. The learner performs
envelope backups by maximizing over actions and supporting preferences, updates parameters
using a regression loss with an optional cosine-alignment term, refreshes priorities, and periodically
synchronizes the target network. Updated weights are then broadcast to all actors.

The envelope backup is expressed as

y = r + γ(1− d)Q(s′, a⋆, ω̃⋆;θ−), (a⋆, ω̃⋆) = argmax
a′,ω′∈Ω

ω⊤Q(s′, a′,ω′;θ).

Compared with state-of-the-art MORL algorithms such as Yang et al. (2019) and Basaklar et al.
(2023), D-EQL introduces (i) a hindsight replay memory with prioritized sampling and priority
updates, (ii) partitioned exploration of the preference space across distributed asynchronous actors,
and (iii) a sharded replay memory. This architecture improves scalability in environments with
large state–action–preference spaces by enabling systematic simplex exploration, dense preference
supervision, and high-throughput stable learning. As shown in Table 2, D-EQL achieves a 22.1%
performance CFR1 improvement over Yang et al. (2019) and an additional 8% gain over Basaklar
et al. (2023) in the Fruit Tree Navigation environment with depth 7, as well as 89.37% hypervolume
improvement over Yang et al. (2019) and an extra 6.05% gain over Basaklar et al. (2023). Additional
design details and extended comparisons are provided in Appendix F.

6 CASE STUDY: AGENTIC RADIO RESOURCE MANAGEMENT

RRM encompasses some of the most demanding and dynamic control functions in RANs, including
user scheduling, resource allocation, link adaptation, power control, and beamforming. These
mechanisms operate on sub-millisecond timescales and must continuously adapt to the stochastic
nature of the wireless channel to maintain reliable and efficient over-the-air communications.

As proof of concept, we apply our Agentic AI system to support differentiated connectivity services
using a MORL-based controller agent for LA—a key function that tunes modulation and coding
scheme (MCS) parameters to the radio link capacity. The detailed description of the MORL LA
controller agent is provided in Appendix G. Here, we note that the reward is a vector r = [r1, r2]

⊤ ∈
R2 with two competing components: r1 measures the number of information bits successfully
delivered per packet, and r2 captures the time–frequency resources consumed per packet transmission.

In our agentic system, the MORL LA controller agent defines the fastest operational timescale,
running on a sub-millisecond cadence. This cadence sets the reference timescale for dimensioning
the optimizer and interpreter. The optimizer updates the preference weights of the MORL controller
once per second, based on performance reports and observed network conditions. This update rate
is fast enough to steer the controller toward MCS selections aligned with the intent goals, yet slow
enough not to interfere with the stability of the LA decision loop.

At the same cadence, the optimizer agent provides feedback to the interpreter agent for supervisory
monitoring of intent fulfillment. However, the interpreter’s cognitive loop is triggered only on an
event-driven basis. Upon receiving an alert message from the optimizer, the interpreter leverages its
general-purpose SLM to perform cognitive reasoning over KPIs deviations, intent-fulfillment, and
evolving network conditions to determine whether the intent must be refined. In our case study, such
intervention occurs when changing network conditions render the service requirements temporarily
infeasible.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

12500 15000 17500 20000 22500 25000 27500 30000
Total Number of Resource Elements

20000

30000

40000

50000

60000

70000

Tr
an

sp
or

t B
lo

ck
 S

iz
e

0.00 0.25 0.50 0.75 1.00
Preference ( )

(a) Pareto frontier illustrating the trade-off between
transport block size and resource utilization.

0.00 0.20 0.34 0.50 0.60 0.80 1.00
Preference ( )

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ec

tr
al

 E
ff

ic
ie

nc
y 

[b
ps

/H
z]

Spectral Efficiency
Throughput

15

20

25

30

35

Th
ro

ug
hp

ut
 [M

bp
s]

0.00 0.15 0.30 0.45 0.60
Block Error Rate (BLER)

(b) Joint characterization of connectivity service KPIs
dependence on preference weights ω.

Figure 2: Characterization of preference-guided LA using MORL to satisfy service intents.

7 EXPERIMENT

This section evaluates the empirical performance of our Agentic AI system for intent-aware RRM
using a 5G-compliant event-driven network simulator. We validate our approach in three steps using
a multi-cell setup described in Appendix H: First we validate the MORL controller agent design;
secondly, we evaluate the optimizer-controller loop; and lastly we benchmark the overall workflow.

7.1 MORL CONTROLLER AGENT FOR LINK ADAPTATION

Figure 2 illustrates how the preference-guided MORL controller for LA steers trade-offs among
service KPIs, like spectral efficiency, throughput, and BLER, assuming long communication sessions
(e.g., streaming services). Figure 2a shows the Pareto frontier for the two reward components,
while Figure 2b maps each point on the frontier to link-level KPIs. When ω ≈ 0, the controller
selects conservative MCS values, resulting in resource efficient and high-reliable transmissions (with
near-zero BLER), but at the cost of low throughput (i.e., due to small transport block sizes (TBSs))
and spectral efficiency. At the other extreme, ω ≈ 1 drives aggressive MCS choices that exploit
retransmissions to target a spectral efficiency beyond the channel capacity, inducing resource-hungry
and unreliable transmissions (with BLER ≈ 60%). The best operating points emerge for intermediate
preferences, with ω ≈ 0.34 maximizing throughput and ω ≈ 0.5 maximizing spectral efficiency.
Appendix H extends the analysis to examples with multiple connectivity services.

7.2 INTENT-FULFILLMENT LOOP VALIDATION

Next, we evaluate only the optimizer–controller loop, assuming a single forward interaction with the
interpreter to obtain an OTM. That is, when stochastic changes in the RAN environment render the
OTM specifications infeasible, the interpreter’s cognitive refinement loop is not triggered. While the
optimizer–controller pair cannot resolve temporary infeasibility caused by evolving RAN conditions.

We illustrate this by considering an intent that combines two contrasting connectivity services:

Maximize cell throughput while serving mobile broadband users on a best-effort basis, and
guaranteeing 99.99% reliability for a ultra-reliable traffic.

This intent reflects quality of service (QoS) requirements for streaming and reliable services. In the
agentic workflow, the interpreter constructs an OTM that (a) identifies the two services, (b) defines
an overall objective based on their achieved throughput, and (c) formulates a reliability constraint
for the reliable service. The optimizer then instantiates an optimization problem to adapt the two
vectors, ωmbb = [ωmbb, 1 − ωmbb]

⊤ and ωrel = [ωrel, 1 − ωrel]
⊤, each aligned to a service, by

maximizing the aggregate throughput f(ωmbb,ωrel) = fmbb(ωmbb,ωrel)+frel(ωmbb,ωrel) subject
to the reliability constraint grel(ωmbb,ωrel) ≥ 0.9999.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0

50

100

150

Ce
ll 

Tp
ut

 [M
bp

s]

Warm-up Phase f( mbb, rel) fmbb( mbb, rel) frel( mbb, rel)

0.996

0.998

1.000
Re

lia
bi

lit
y

99.99% target

0 30 60 90 120
Time [seconds]

0.0

0.5

1.0

Pr
ef

er
en

ce

mbb

rel

(a) Time series of services KPIs.

0 5 10 15 20 25 30 35
BLER (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Agentic system
RL = 0.5
RL = 2.0
OLLA 10%
OLLA 1%

(b) BLER for reliable service.

0 20 40 60 80 100 120
UE avg. throughput [Mbps]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Agentic system
RL = 0.5
RL = 2.0
OLLA 10%
OLLA 1%

(c) Streaming users throughput.

Figure 3: Validation of the intent fulfillment loop between optimizer-controller for two examples.

Figure 3a shows the optimizer–controller dynamics over a two-minute simulation. After an initial
warm-up phase, the PAX-BO optimizer steers ωmbb and ωrel so that the D-EQL controller applies
Pareto-optimal policies matched to each service’s requirements under varying network conditions.
For reliable services, the optimizer converges to ωrel ≈ 0 (consistent with Figure 2b), driving the
controller toward conservative MCS selections that deliver ultra-reliable performance throughout
the simulation—exceeding 99.99% reliability in 94% of the run. Only a few packets are lost during
isolated deep-fading episodes; under persistent fading, the interpreter could be invoked to relax
the reliability target. For enhanced-streaming traffic, the optimizer converges to ωmbb ≈ 0.45,
prioritizing higher mean user throughput. Appendix H provides additional analysis and results.

Figure 3b and Figure 3c show that our agentic system outperforms both the state-of-the-art outer-
loop link adaptation (OLLA) used in 5G systems and the traditional RL-based LA of Demirel
et al. (2025). Unlike our approach—which adapts a single D-EQL model on-the-fly to different
connectivity requirements and radio conditions—both OLLA and traditional RL require separate
configurations optimized for each service type. For OLLA, we consider a standard target BLER
of 10% for maximizing throughput in streaming services and 1% for highly reliable transmissions.
Traditional RL similarly requires distinct models with reward functions tailored to each service;
following Demirel et al. (2025), we use robustness parameters α = 0.5 for throughput and α = 2 for
reliability. Figure 3b shows that our agentic system achieves substantially lower BLER for reliable
services than both OLLA and the RL baseline with α = 2, yielding more reliable transmissions.
Figure 3c further shows that the same D-EQL model also attains throughput comparable to an RL
model explicitly trained for throughput optimization. While D-EQL handles both services with a
single model, using multiple RL models is impractical: inference must complete within a few hundred
microseconds for all users, making rapid model switching across services infeasible.

7.3 TRIADIC AGENT WORKFLOW VALIDATION

We next evaluate the complete agentic AI system, with both intent management and intent fulfillment
loops working in unison to provide a continuous solution to an intent formulation that combines a
primary system objective (i.e., cell throughput) with QoS requirements of a connectivity service:

Maximize cell throughput and serve streaming users with a minimum average data rate of
7Mbps whenever possible.

The peculiarity of this problem stems from the highly likelihood of the QoS requirements to become
infeasible for users with poor channel conditions (such as cell-edge and high mobility users). When
such an event occurs, persisting with a rigid QoS requirement would induce the system to over-
provision users with poor channel regardless of their inability to meet the QoS goal, at the expense of
users with a better channel quality. In turns, this may induce users with better channel to achieve
lower throughput (due to less resources) and therefore compromise the primary intent objective.

Figure 4 compares the agentic AI system with two settings: (a) a formulation with rigid QoS
requirements; and (b) a formulation with flexible QoS requirements. In the latter case, when the
optimizer agent alerts the interpreter agent of a consistent violation of the service constraint, the
interpreter reasons over the cause of the problem and plans a solution to relax the QoS requirements.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

70

140

210

Ce
ll 

Tp
ut

 [M
bp

s]

Warm-up Phase f( ) f( )

0

10

20

30

M
in

 T
pu

t [
M

bp
s]

g( )
g( ) c [Mbps]

0 30 60 90 120 150 180
Time [seconds]

0.0

0.5

1.0

Pr
ef

er
en

ce

(a) Agentic system with/without OTM refinement. (b) Intent management loop signaling.

Figure 4: Validation of the full agentic workflow, with intent management loop and intent fulfillment
loop working in unison. We compare two formulations with rigid and flexible service requirements.

Figure 4b shows an instance of this intent management loop between the interpreter-optimizer agents,
where the latter reacts to the constraint violation by relaxing the service threshold, in an attempt to
improve the primary objective, and providing a revised OTM. This choice allows the optimizer agent
to choose an ω setting that guides the MORL controller towards a less aggressive MCS selection
policy for LA, making packets transmissions more reliable for users with poor channel conditions.

Despite the interpreter’s recursive adaptation of QoS requirements, infeasibility may still persist. This
occurs because (a) the adaptor module includes guardrails that prevent abrupt QoS changes during
OTM refinement (cf. Appendix A); and (b) prolonged poor channel conditions—such as deep fading,
high pathloss, or shadowing—may yield spectral efficiencies too low to satisfy the QoS constraints,
regardless of how the interpreter adjusts them. Nonetheless, adapting the OTM still yields tangible
system-level benefits. By relaxing QoS targets for users in persistently poor channel conditions, the
system frees radio resources that can be reallocated to users with better channel quality, thus with
higher spectral efficiency. This redistribution increases the primary intent objective (cell throughput),
even if some individual QoS constraints remain infeasible. As illustrated in Figure 4a, once OTM
adaptation begins in the second half of the simulation, the cell throughput improves by a 4.79%.

8 CONCLUSIONS

We presented an Agentic AI system for intent-driven control in autonomous networks, structured
around three cooperating agents: interpreter, optimizer, and controller. Their coordinated interaction
links high-level service intents to concrete network actions, enabling continuous reasoning, trade-off
resolution, and real-time adaptation across multiple timescales of autonomous network control.

Our contributions span the full intent-to-control pipeline. The interpreter uses a lightweight dual-
SLM architecture to convert natural-language intents into structured optimization templates, assess
feasibility, diagnose constraint violations, and refine templates using optimizer feedback. The
optimizer performs preference planning via BO, dynamically adjusting the downstream controller’s
policy to meet the service requirements encoded in the template. The controller builds on MORL to
execute fast-timescale actions and adapt policies to evolving network conditions. To support this role,
we introduce a distributed MORL algorithm that integrates envelope Q-learning with actor–learner
decoupling, preference-space exploration, and prioritized hindsight replay, improving scalability,
exploration coverage, and performance over state-of-the-art MORL approaches.

Proof-of-concept experiments in a high-fidelity, 5G-compliant RAN simulator demonstrate that
the proposed system reconciles heterogeneous service requirements—including throughput and
reliability—while operating near the Pareto front of network performance and adapting effectively to
dynamic conditions, exceeding traditional RL and state-of-the-art functions of in 5G/5G-A systems.

Looking ahead, a key challenge is scaling this workflow across hierarchical layers of the RAN—from
cell-level control to cluster-level coordination and end-to-end service orchestration—while ensuring
intent consistency, agent interoperability, and robustness to uncertainty at each level.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

9 LLM USAGE STATEMENT

In this paper, the authors used LLMs to check grammar, spelling, punctuation, and style compliance.

REFERENCES

3GPP. Technical report (TR) 22.870. technical specification group tsg sa; study on 6Guse cases
and service requirements. stage 1 (release 20) v0.4.1 (2025-10). Technical report, 3rd Generation
Partnership Project (3GPP), October 2025a.

3GPP. Technical specification (TS) 23.501. System architecture for the 5G system (5GS), v19.4.0,
June 2025b.

3GPP. Technical specification (TS) 28.312. Management and orchestration; intent driven management
services for mobile networks, v19.2.1, June 2025c.

3GPP. Technical specification (TS) 38.211. NR; Physical channels and modulation, v18.7.0, June
2025d.

3GPP. Technical specification (TS) 38.214. NR; Physical layer procedures for data, v19.0.0, June
2025e.

3GPP. S2-2507223 [wt3, network ai agent] agentic core network for 6g, October 2025f.

3GPP. S5-250861 - Study on intent driven management services for mobile network phase 4. In
3GPP TSG SA Meeting 108, June 2025g. URL https://www.3gpp.org/ftp/tsg_sa/
TSG_SA/TSGS_108_Prague_2025-06/Docs/SP-250861.zip.

3GPP. S5-255123 - Study on 6G management and orchestration, October 2025h.

3GPP. SA5 NWM discussion for rel-20 6G OAM work areas, August 2025i. URL
https://www.3gpp.org/ftp/Email_Discussions/SA5/OAM%20rapporteur%
20calls/Rapporteur%20call%20%23161/SA5_NWM_Discussion_for_
Rel-20_6G_OAM_Work_Areas-v0.0.7.pdf.

Abbas Abdolmaleki, Sandy H. Huang, Leonard Hasenclever, Michael Neunert, H. Francis Song,
Martina Zambelli, Murilo F. Martins, Nicolas Heess, Raia Hadsell, and Martin Riedmiller. A
distributional view on multi-objective policy optimization. In Proceedings of the 37th International
Conference on Machine Learning, ICML’20. JMLR.org, 2020.

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s:
An open agentic framework that uses computers like a human. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=lIVRgt4nLv.

Leon Barrett and Srini Narayanan. Learning all optimal policies with multiple criteria. In International
Conference on Machine Learning, 2008. URL https://api.semanticscholar.org/
CorpusID:14572936.

Toygun Basaklar, Suat Gumussoy, and Ümit Y. Ogras. PD-MORL: preference-driven multi-objective
reinforcement learning algorithm. International Conference on Learning Representations (ICLR),
2023. doi: 10.48550/ARXIV.2208.07914. URL https://doi.org/10.48550/arXiv.
2208.07914.

Fransiscus Asisi Bimo, Maria Amparo Canaveras Galdon, Chun-Kai Lai, Ray-Guang Cheng, and
Edwin K. P. Chong. Intent-based network for ran management with large language models, 2025.
URL https://arxiv.org/abs/2507.14230.

Burak Demirel, Yu Wang, Cristian Tatino, and Pablo Soldati. Generalization in reinforcement learning
for radio access networks, 2025. URL https://arxiv.org/abs/2507.06602.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Networks, 107:3–11, November 2018.

11

https://www.3gpp.org/ftp/tsg_sa/TSG_SA/TSGS_108_Prague_2025-06/Docs/SP-250861.zip
https://www.3gpp.org/ftp/tsg_sa/TSG_SA/TSGS_108_Prague_2025-06/Docs/SP-250861.zip
https://www.3gpp.org/ftp/Email_Discussions/SA5/OAM%20rapporteur%20calls/Rapporteur%20call%20%23161/SA5_NWM_Discussion_for_Rel-20_6G_OAM_Work_Areas-v0.0.7.pdf
https://www.3gpp.org/ftp/Email_Discussions/SA5/OAM%20rapporteur%20calls/Rapporteur%20call%20%23161/SA5_NWM_Discussion_for_Rel-20_6G_OAM_Work_Areas-v0.0.7.pdf
https://www.3gpp.org/ftp/Email_Discussions/SA5/OAM%20rapporteur%20calls/Rapporteur%20call%20%23161/SA5_NWM_Discussion_for_Rel-20_6G_OAM_Work_Areas-v0.0.7.pdf
https://openreview.net/forum?id=lIVRgt4nLv
https://openreview.net/forum?id=lIVRgt4nLv
https://api.semanticscholar.org/CorpusID:14572936
https://api.semanticscholar.org/CorpusID:14572936
https://doi.org/10.48550/arXiv.2208.07914
https://doi.org/10.48550/arXiv.2208.07914
https://arxiv.org/abs/2507.14230
https://arxiv.org/abs/2507.06602


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. In Kate Larson (ed.), Proceedings of the Thirty-Third International Joint Conference
on Artificial Intelligence, IJCAI-24, pp. 8048–8057. International Joint Conferences on Artificial
Intelligence Organization, 8 2024. doi: 10.24963/ijcai.2024/890. URL https://doi.org/
10.24963/ijcai.2024/890.

Conor F. Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfarlane,
Mathieu Reymond, Timothy Verstraeten, Luisa M. Zintgraf, Richard Dazeley, Fredrik Heintz, Enda
Howley, Athirai A. Irissappane, Patrick Mannion, Ann Nowé, Gabriel Ramos, Marcello Restelli,
Peter Vamplew, and Diederik M. Roijers. A practical guide to multi-objective reinforcement
learning and planning. Autonomous Agents and Multi-Agent Systems, 36(1), April 2022. ISSN
1573-7454. doi: 10.1007/s10458-022-09552-y. URL http://dx.doi.org/10.1007/
s10458-022-09552-y.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt, and
David Silver. Distributed prioritized experience replay. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=H1Dy---0Z.

Laurie Hughes, Yogesh K. Dwivedi, Tegwen Malik, Mazen Shawosh, Mousa Ahmed Albashrawi,
Il Jeon, Vincent Dutot, Mandanna Appanderanda, Tom Crick, Rahul De’, Mark Fenwick,
Senali Madugoda Gunaratnege, Paulius Jurcys, Arpan Kumar Kar, Nir Kshetri, Keyao Li, Sashah
Mutasa, Spyridon Samothrakis, Michael Wade, and Paul Walton. AI agents and agentic systems:
A multi-expert analysis. Journal of Computer Information Systems, 65(4):489–517, 2025. doi:
10.1080/08874417.2025.2483832. URL https://doi.org/10.1080/08874417.2025.
2483832.

IETF. Ai agent protocols for 6g systems, October 2025. URL https://datatracker.ietf.
org/doc/draft-stephan-ai-agent-6g/.

Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam Devlin,
and Katja Hofmann. Generalization in reinforcement learning with selective noise injection and
information bottleneck. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Intel and NEC. Our views on ai/ml management enhancements for 6g system. In 3GPP TSG SA5
6G workshop, June 2025. URL https://www.3gpp.org/ftp/Email_Discussions/
SA5/SA5-level%20discussions/SA5_Workshop_on_6G_Rel20/Rel-20%
206G%20workshop%20Our%20views%20on%20AIML%20Management%
20enhancement%20for%206G%20system%20(updated%20version).pdf.

Alexia Jolicoeur-Martineau. Less is more: Recursive reasoning with tiny networks, 2025. URL
https://arxiv.org/abs/2510.04871.

Daniel Kahneman. Thinking, Fast and Slow. Farrar, Straus and Giroux, 2011.

I. Y. Kim and O. L. de Weck. Adaptive weighted sum method for multiobjective optimization: a new
method for pareto front generation. Structural and multidisciplinary optimization, 31(2), 2005.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Abdullah Konak, David W. Coit, and Alice E. Smith. Multi-objective optimization using genetic
algorithms: A tutorial. Reliability Engineering & System Safety, 91(9):992–1007, 2006. ISSN 0951-
8320. doi: https://doi.org/10.1016/j.ress.2005.11.018. URL https://www.sciencedirect.
com/science/article/pii/S0951832005002012. Special Issue - Genetic Algorithms
and Reliability.

Xinyi Li, Sai Wang, Siqi Zeng, Yu Wu, and Yi Yang. A survey on llm-based multi-agent
systems: Workflow, infrastructure, and challenges. Vicinagearth, 1(9), 2024. doi: 10.
1007/s44336-024-00009-2. URL https://link.springer.com/article/10.1007/
s44336-024-00009-2.

12

https://doi.org/10.24963/ijcai.2024/890
https://doi.org/10.24963/ijcai.2024/890
http://dx.doi.org/10.1007/s10458-022-09552-y
http://dx.doi.org/10.1007/s10458-022-09552-y
https://openreview.net/forum?id=H1Dy---0Z
https://doi.org/10.1080/08874417.2025.2483832
https://doi.org/10.1080/08874417.2025.2483832
https://datatracker.ietf.org/doc/draft-stephan-ai-agent-6g/
https://datatracker.ietf.org/doc/draft-stephan-ai-agent-6g/
https://www.3gpp.org/ftp/Email_Discussions/SA5/SA5-level%20discussions/SA5_Workshop_on_6G_Rel20/Rel-20%206G%20workshop%20Our%20views%20on%20AIML%20Management%20enhancement%20for%206G%20system%20(updated%20version).pdf
https://www.3gpp.org/ftp/Email_Discussions/SA5/SA5-level%20discussions/SA5_Workshop_on_6G_Rel20/Rel-20%206G%20workshop%20Our%20views%20on%20AIML%20Management%20enhancement%20for%206G%20system%20(updated%20version).pdf
https://www.3gpp.org/ftp/Email_Discussions/SA5/SA5-level%20discussions/SA5_Workshop_on_6G_Rel20/Rel-20%206G%20workshop%20Our%20views%20on%20AIML%20Management%20enhancement%20for%206G%20system%20(updated%20version).pdf
https://www.3gpp.org/ftp/Email_Discussions/SA5/SA5-level%20discussions/SA5_Workshop_on_6G_Rel20/Rel-20%206G%20workshop%20Our%20views%20on%20AIML%20Management%20enhancement%20for%206G%20system%20(updated%20version).pdf
https://arxiv.org/abs/2510.04871
https://arxiv.org/abs/1412.6980
https://www.sciencedirect.com/science/article/pii/S0951832005002012
https://www.sciencedirect.com/science/article/pii/S0951832005002012
https://link.springer.com/article/10.1007/s44336-024-00009-2
https://link.springer.com/article/10.1007/s44336-024-00009-2


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chunming Liu, Xin Xu, and Dewen Hu. Multiobjective reinforcement learning: A comprehensive
overview. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(3):385–398, 2015.
doi: 10.1109/TSMC.2014.2358639.

Zuxin Liu, Thai Quoc Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan,
Weiran Yao, Zhiwei Liu, Yihao Feng, Rithesh R N, Liangwei Yang, Silvio Savarese, Juan Carlos
Niebles, Huan Wang, Shelby Heinecke, and Caiming Xiong. APIGen: Automated PIpeline for
generating verifiable and diverse function-calling datasets. In The Thirty-eight Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2024. URL https:
//openreview.net/forum?id=Jfg3vw2bjx.

Kurt Van Moffaert and Ann Nowé. Multi-objective reinforcement learning using sets of pareto
dominating policies. Journal of Machine Learning Research, 15:3483–3512, 2014. URL https:
//jmlr.org/papers/volume15/vanmoffaert14a/vanmoffaert14a.pdf.

Hossam Mossalam, Yannis M. Assael, Diederik M. Roijers, and Shimon Whiteson. Multi-objective
deep reinforcement learning. CoRR, abs/1610.02707, 2016. URL http://arxiv.org/abs/
1610.02707.

Sriraam Natarajan and Prasad Tadepalli. Dynamic preferences in multi-criteria reinforcement learning.
In Proceedings of the 22nd International Conference on Machine Learning, ICML ’05, pp. 601–608,
New York, NY, USA, 2005. Association for Computing Machinery. ISBN 1595931805. doi:
10.1145/1102351.1102427. URL https://doi.org/10.1145/1102351.1102427.

Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. A multi-objective deep reinforcement
learning framework. In Proceedings of the 2018 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8, 2018. URL https://arxiv.org/pdf/1803.02965.

Klaus I. Pedersen, Guillaume Monghal, Istvan Z. Kovacs, Troels E. Kolding, Akhilesh Pokhariyal,
Frank Frederiksen, and Preben Mogensen. Frequency domain scheduling for OFDMA with limited
and noisy channel feedback. In IEEE 66th Vehicular Technology Conference, pp. 1792–1796,
2007.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley,
New York, 1994.

Adnan Qayyum, Abdullatif Albaseer, Junaid Qadir, Ala Al-Fuqaha, and Mohamed Abdallah. LLM-
driven multi-agent architectures for intelligent self-organizing networks. IEEE Networks, 2025.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chatdev:
Communicative agents for software development, 2024. URL https://arxiv.org/abs/
2307.07924.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Diederik M. Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-
objective sequential decision-making. Journal of Artificial Intelligence Research, 48(1):67–113,
October 2013. URL https://arxiv.org/abs/1402.0590.

Diederik M. Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. Computing convex
coverage sets for faster multi-objective coordination. Journal of Artificial Intelligence Research, 52:
399–443, 2015. URL https://www.jair.org/index.php/jair/article/view/
10933.

13

https://openreview.net/forum?id=Jfg3vw2bjx
https://openreview.net/forum?id=Jfg3vw2bjx
https://jmlr.org/papers/volume15/vanmoffaert14a/vanmoffaert14a.pdf
https://jmlr.org/papers/volume15/vanmoffaert14a/vanmoffaert14a.pdf
http://arxiv.org/abs/1610.02707
http://arxiv.org/abs/1610.02707
https://doi.org/10.1145/1102351.1102427
https://arxiv.org/pdf/1803.02965
https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/1402.0590
https://www.jair.org/index.php/jair/article/view/10933
https://www.jair.org/index.php/jair/article/view/10933


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Ranjan Sapkota, Konstantinos I. Roumeliotis, and Manoj Karkee. AI agents vs. agentic AI: A
conceptual taxonomy, applications and challenges. Information Fusion, 126:103599, feb 2025.
ISSN 1566-2535. doi: 10.1016/j.inffus.2025.103599. URL http://dx.doi.org/10.1016/
j.inffus.2025.103599.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2nd
edition, 2018. URL https://incompleteideas.net/book/the-book-2nd.html.

Wei Tao, Yucheng Zhou, Yanlin Wang, Wenqiang Zhang, Hongyu Zhang, and Yu Cheng. MAGIS:
LLM-based multi-agent framework for github issue resolution. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.
net/forum?id=qevq3FZ63J.

TMForum. Ig1251x autonomous networks – reference architecture v1.0.0, 2021.

TMForum. Tr292a intent management elements v3.6.0, 2024.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi
Fan, and Anima Anandkumar. Voyager: An open-ended embodied agent with large lan-
guage models. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=ehfRiF0R3a.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen LLM applications via multi-agent conversations. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
BAakY1hNKS.

Jie Xu, Yunsheng Tian, Pingchuan Ma, Daniela Rus, Shinjiro Sueda, and Wojciech Matusik.
Prediction-guided multi-objective reinforcement learning for continuous robot control. In Proceed-
ings of the 37th International Conference on Machine Learning, ICML’20. JMLR.org, 2020.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective
reinforcement learning and policy adaptation. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023. URL https://arxiv.org/abs/2210.03629.

Min Yoon, Yeboon Yun, and Hirotaka Nakayama. Sequential approximate multiobjective op-
timization using computational intelligence. In Vector Optimization, 2009. URL https:
//api.semanticscholar.org/CorpusID:2036814.

Dawei Zhan and Huanlai Xing. Expected improvement for expensive optimization: a review. J.
of Global Optimization, 78(3):507–544, November 2020. ISSN 0925-5001. doi: 10.1007/
s10898-020-00923-x. URL https://doi.org/10.1007/s10898-020-00923-x.

Jiayu Zhao, Renyu Yang, Shenghao Qiu, and Zheng Wang. Unleashing the potential of acquisition
functions in high-dimensional bayesian optimization, 2024. URL https://arxiv.org/abs/
2302.08298.

ZTE. R3-256538 - initial discussion on airan for 6g network. In 3GPP TSG-RAN WG3 Meeting
129bis, October 2025. URL https://www.3gpp.org/ftp/TSG_RAN/WG3_Iu/TSGR3_
129-bis/Docs/R3-256538.zip.

14

http://dx.doi.org/10.1016/j.inffus.2025.103599
http://dx.doi.org/10.1016/j.inffus.2025.103599
https://arxiv.org/abs/2303.11366
https://incompleteideas.net/book/the-book-2nd.html
https://openreview.net/forum?id=qevq3FZ63J
https://openreview.net/forum?id=qevq3FZ63J
https://openreview.net/forum?id=ehfRiF0R3a
https://openreview.net/forum?id=BAakY1hNKS
https://openreview.net/forum?id=BAakY1hNKS
https://arxiv.org/abs/2210.03629
https://api.semanticscholar.org/CorpusID:2036814
https://api.semanticscholar.org/CorpusID:2036814
https://doi.org/10.1007/s10898-020-00923-x
https://arxiv.org/abs/2302.08298
https://arxiv.org/abs/2302.08298
https://www.3gpp.org/ftp/TSG_RAN/WG3_Iu/TSGR3_129-bis/Docs/R3-256538.zip
https://www.3gpp.org/ftp/TSG_RAN/WG3_Iu/TSGR3_129-bis/Docs/R3-256538.zip


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

CONTENTS OF APPENDIX

1 Introduction 1

2 Related Work 2

3 Agentic AI System for RAN Control 3

3.1 Timescales Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Language-Guided Intent Management 4

4.1 Interpreter Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4.2 Optimizer Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2.1 PAX-BO: Preference-Aligned eXploration Bayesian Optimization . . . . . 6

5 Preference-Guided Intent Fulfillment 6

5.1 Controller Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

6 Case Study: Agentic Radio Resource Management 7

7 Experiment 8

7.1 MORL Controller Agent for Link Adaptation . . . . . . . . . . . . . . . . . . . . 8

7.2 Intent-fulfillment loop validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

7.3 Triadic Agent Workflow Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 9

8 Conclusions 10

9 LLM Usage Statement 11

A Interpreter Agent: Responsibilities, Design, Implementation 18

A.1 Scope and Responsibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.2 Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.2.1 Translator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.2.2 Sliding-Window Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.2.3 Advisor (Advisory Layer) . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A.2.4 Adaptor (Magnitude, Safety, Persistence) . . . . . . . . . . . . . . . . . . 21

A.3 Algorithmic Summary and Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 21

A.3.1 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A.4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A.5 Stability, Safety, and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A.6 Failure Modes and Mitigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

B Optimization Template Model 24

B.1 OTM Schema and Domain Semantics . . . . . . . . . . . . . . . . . . . . . . . . 24

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.2 Example of OTM adaptation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

C Translator SLM Fine-Tuning 28

C.1 Dataset Curation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

C.2 Training Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

C.3 Comparative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

D Optimizer Agent Design 32

D.1 Bayesian Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

D.1.1 Gaussian Process Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

D.1.2 Acquisition Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

D.2 PAX-BO: Preference-Aligned eXploration Bayesian Optimization . . . . . . . . . 33

E Multi-Objective Reinforcement Learning 36

E.1 Multi-Objective Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . 36

E.2 Convex Coverage Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

E.3 Envelope Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

F Distributed Envelope Q-Learning 40

F.1 D-EQL Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

F.2 Distributed Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

F.3 Centralized Learner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

F.4 Stratified Sampling on the Probability Simplex . . . . . . . . . . . . . . . . . . . 44

F.4.1 Deterministic Equal-Volume Strata via a Simplex Lattice . . . . . . . . . . 44

F.4.2 Uniform Sampling Within a Stratum . . . . . . . . . . . . . . . . . . . . . 45

F.4.3 Assigning Strata to Actors . . . . . . . . . . . . . . . . . . . . . . . . . . 45

F.4.4 Discussion and alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . 45

F.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

F.5.1 Environments and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

F.5.2 Metrics and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

F.5.3 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

G Case Study 48

G.1 Link adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

G.2 MOMDP Design for Link Adaptation . . . . . . . . . . . . . . . . . . . . . . . . 48

G.3 Action space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

G.4 Reward vector and preference space . . . . . . . . . . . . . . . . . . . . . . . . . 49

G.5 State Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

H Extended Experimental Evaluation 51

H.1 Network Simulator Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

H.2 Training Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

H.3 Testing the MORL LA Controller Agent . . . . . . . . . . . . . . . . . . . . . . . 52

H.3.1 Single Connectivity Service . . . . . . . . . . . . . . . . . . . . . . . . . 52

H.3.2 Multi Connectivity Services with QoS Differentiation . . . . . . . . . . . . 54

H.4 Online Preference Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

I Compute resources and Hyperparameters 61

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A INTERPRETER AGENT: RESPONSIBILITIES, DESIGN, IMPLEMENTATION

A.1 SCOPE AND RESPONSIBILITIES

The interpreter agent is the gateway from high-level intent to optimization-ready control. It fulfills
two primary responsibilities: (1) translating intents expressed in natural language into an initial
structured OTM; and (2) recursively reasoning over system observations and optimizer feedback
to stabilize intent fulfillment by revising the OTM when required (e.g., when constraints become
infeasible).

Division of Labour (Dual-SLM). To address these responsibilities under tight computational
budgets, we employ two complementary SLMs: (1) a fine-tuned SLM for intent-to-OTM translation;
and (2) an in-context learning (ICL) based SLM for adaptive intent management, which reasons
over structured prompts and windowed KPI statistics, refines intent requirements when needed, and
provides an explicit textual rationale.

While alternative realizations of an interpreter agent are possible, our design enables the use of
lightweight SLMs that adhere to the compute and memory constraints of 4G/5G RAN systems
(see Appendix A.5).

A.2 ARCHITECTURAL OVERVIEW

The interpreter agent architecture, showed in Figure 5, consists of four tightly coupled modules:

• Translator (Appendix A.2.1) uses a fine-tuned SLM to convert an incoming intent into a
structured, machine-readable OTM that specifies objectives, constraints, aggregation units, and
provenance for different connectivity services and operational goals.

• Monitor (Appendix A.2.2) subscribes to optimizer telemetry, aligns the telemetry stream to the
OTM-defined intent-management timescale, extracts per-window summaries, and bridges short
gaps.

• ICL-based Advisor (Appendix A.2.3) uses an ICL-based SLM to reason over window sum-
maries and active policy thresholds, selects an advisory direction

a ∈ {increase,decrease,no_change}

and generates a compact rationale R grounded in RRM. It proposes only a direction, not a
magnitude.

• Adaptor (Appendix A.2.4) converts the advisory action a into a bounded threshold update
∆b under guardrails (e.g., caps, lifetime budget, floor/ceiling, cooldown), persists the updated
threshold atomically into the OTM, and emits an audit record.

During the intent-management loop, the OTM is treated as a living document jointly maintained
by the interpreter and optimizer agents. The optimizer continuously solves against the current
OTM snapshot and reports telemetry (e.g., windowed KPI statistics) to the monitor. Guided by this
feedback, the ICL-based advisor recommends adjustments when intent requirements become overly
tight or infeasible under the current network state. The adaptor then applies bounded updates to the
corresponding OTM constraints, yielding a refreshed OTM for the optimizer.

A.2.1 TRANSLATOR

The translator employs a fine-tuned SLM to convert intents into deterministic, schema-compliant
OTM instances. Its role extends well beyond lexical parsing: it must interpret natural-language
intents into meaningful optimization structures grounded in domain knowledge, and identify the
appropriate downstream control agent to execute them. For example, a service intent requesting high
reliability—such as the case in Section 7.2—may translate into a non-obvious constraint formulated
in terms of BLER.

Further details on the translator design are provided in Appendix B and Appendix C, which discuss
the OTM schema and the supervised fine-tuning and evaluation of the translator SLM, respectively.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Interpreter

OTM

Preference

Performance
reports

Updated
OTM

Performance
statistics

Intent

Response

Adjustment
direction

Alert & performance stat.

Figure 5: Dual-SLM interpreter agent. A (supervised) fine-tuned SLM generates the OTM; an
intent monitor aligns telemetry; an ICL-based advisory module outputs discrete adjustment directions
with rationale; and an adaptor applies bounded updates and persists them atomically. The optimizer
then solves against the latest OTM snapshot, with telemetry closing the loop.

A.2.2 SLIDING-WINDOW MONITOR

Consider a single constraint kA=⟨kpi, ⊙, b, A, unit⟩ of an OTM, where ⊙ ∈ {≤,≥} and A is
the per-step aggregation operator declared in the OTM (e.g., mean, min, max, p95). To simplify
notation, we refer to the constraint function kA(·) as y(·), and let yt denote the KPI value at step t
after applying A over the telemetry bin of length ∆ (e.g., 10 s). With window length W , the monitor
maintains a ring buffer over {yi}ti=t−W+1 and computes a signed margin:

mi = s(y)
(
yi − b

)
where s(y) =

{
+1, ⊙ ∈ {≥} (lower bound)
−1, ⊙ ∈ {≤} (upper bound).

A step i is a violation if and only if mi < 0 (negative margin). The window statistics are then

violation_ratio(t) =
1

W

t∑
i=t−W+1

1[mi < 0],

ȳ =
1

W

t∑
i=t−W+1

yi, ymin = min
i

yi, ymax = max
i

yi,

and the average shortfall/slack (useful for controllers and prompts):

shortfall_avg =
1

W

t∑
i=t−W+1

max{0,−mi},

slack_avg =
1

W

t∑
i=t−W+1

max{0,mi}.

Hysteresis and alerting. Hysteresis prevents chattering: An ALERT_START event is declared
when VR > ρon and an ALERT_END event when VR < ρoff with ρon > ρoff. At each window end
(the decision point), if an alert is active, the monitor produces a compact, constraint-centric context:

{
window : {W, t−W+1 . . . t, VR},
constraint_metric : {ȳ, ymin, ymax, b, shortfall_avg, slack_avg, unit},
constraint_id : id,

}
Optionally, the context may be augmented with domain-specific auxiliaries (e.g., aux_kpis) if
available.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 3: Key hyperparameters of the interpreter agent.

Symbol Name Description

W Window size Number of samples used to compute moving
averages and the violation ratio.

b Threshold Current target value for the monitored KPI.
ρon Alert-on ratio Violation ratio above which an alert episode is

initiated.
ρoff Alert-off ratio Violation ratio below which an alert episode is

terminated.
d Step size Base increment or decrement applied to thresh-

old updates.
g↑, g↓ Guardrail gains Maximum upward or downward adjustment per-

mitted per update.
smax Smoothing cap Maximum smoothing applied across consecutive

updates.
B Budget Maximum number of updates allowed within a

single alert episode.
bmin, bmax Bounds Minimum and maximum permissible threshold

values.
C Cooldown Minimum number of steps that must elapse be-

fore another update can be applied.

Complexity. The monitor executes in O(1) time per step through the use of a fixed-size ring buffer
and incremental summary updates, with no rescans required. Memory usage grows linearly with the
window size, i.e., O(W ).

A.2.3 ADVISOR (ADVISORY LAYER)

The advisory layer determines the direction of adaptation and supplies a textual justificationR. It
does not specify the magnitude of change. Two modes are supported:

(a) Rule-based. Thresholds on summary statistics (e.g., violation ratio, mean deviation from
the target, minimum deviation from the target, auxiliary posture indicators) determine an
advisory action a.

(b) ICL-based SLM A structured prompt encodes (i) the set of allowed actions, (ii) the decision
policy, (iii) domain-specific guardrails, and (iv) a strict JSON output schema. The SLM
produces an advisory adjustment

{"action": "...", "justification": "..."}

conditioned on the parsed telemetry payload from the intent monitor.

Guardrails in Prompting. Schema fidelity and reproducibility are enforced through:

(a) JSON-only outputs;
(b) end-of-sentence token fences;
(c) banned tokens (e.g., URLs, markdown code fences); and
(d) near-deterministic decoding with low-variance sampling to avoid verbatim repetition while

maintaining stability.

The justification must cite explicit numerical values extracted from the payload (e.g., target b, mean ȳ,
minimum ymin, violation ratio VR) and must classify posture relative to a domain-specific auxiliary
metric (e.g., “aggressive” vs. “conservative”).

Prompt Contract (Abridged). Allowed actions are {increase,decrease,no_change}.
The required output format is strictly JSON:

{"action":"...", "justification":"..."}.

The justification must reference the relevant statistics and the auxiliary posture label. Domain-specific
instantiations (e.g., using BLER as the auxiliary metric) appear in examples in Section 7.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.2.4 ADAPTOR (MAGNITUDE, SAFETY, PERSISTENCE)

Given an advisory action a ∈ {increase,decrease,no_change}, the adaptor computes a
candidate step size ∆b using a deadband d and asymmetric gains (g↑, g↓):

∆b =


g↓ max

(
0, (b− x̄)− d

)
, a = decrease,

g↑ max
(
0, (x̄− b)− d

)
, a = increase,

0, a = no_change.

Safety guardrails limit the actuation:

∆b← min{∆b, smax, Bleft, b− bmin, bmax − b}, b← clip(b±∆b, bmin, bmax).

Budgets and cooldown counters are updated after each actuation. Final thresholds are written
atomically to the OTM, ensuring that the optimizer and monitor operate on consistent snapshots.
Section 7 illustrates with concrete examples (e.g., throughput maximization with minimum guarantees
per user, or bounds on BLER) how this generic mechanism applies across KPIs.

A.3 ALGORITHMIC SUMMARY AND INTERFACES

The closed-loop operation of the interpreter agent—integrating monitoring, advisory, and adapta-
tion—is summarized in Algorithm 1. The procedure shows how the agent detects constraint violations,
issues advisory actions, and applies bounded adaptations under guardrails.

Algorithm 1 Interpreter Agent (Monitor→ Advisor→ Adaptor)

1: Input: window size W ; thresholds (b, ρon, ρoff); guardrails (d, g↑, g↓, smax, B, bmin, bmax, C)
2: for each step t do
3: Push observation yt into ring buffer; update (ȳ, ymin,VR)
4: if VR > ρon and not in alert then
5: Start episode; reset budget and cooldown
6: end if
7: if in alert then
8: Build parsed telemetry payload; select action a via rules or ICL SLM; log rationaleR
9: if a ̸= no_change and cooldown expired and Bleft > 0 then

10: Compute ∆b; apply guardrails; update b; persist OTM; decrement budget; reset
cooldown C

11: end if
12: if VR < ρoff then
13: End episode; log summary
14: end if
15: end if
16: end for

A.3.1 INTERFACES

(i) From Monitor to Advisor. Upon receiving telemetry from the optimizer, the intent monitor
produces a compact summary aligned to the OTM timescale. This parsed payload becomes the sole
input to the ICL-based advisory module. An example summary from our experiments is:

1 {
2 "window": {
3 "start": 1020, "end": 1139, "W": 12, "violation_ratio": 0.60
4 },
5 "constraint_metric": {
6 "name":"throughput",
7 "avg": 6.92,
8 "min": 3.08,
9 "monitor_threshold": 7.00,

10 "unit":"Mbps"
11 },
12 "radio_kpis": {"bler": {"avg":0.14, "target_hint":0.10}}
13 }

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(ii) From Advisor to Adaptor. The advisory module returns only an adjustment direction along
with a textual justification, both constrained by the current OTM used by the optimizer. It never
proposes numeric magnitudes. Example output:

1 {
2 "action": "decrease",
3 "justification": "relax to reduce MCS pressure and HARQ overhead."
4 }

(iii) From Adaptor to OTM (atomic). The adaptor converts the advisory direction into a bounded
step ∆b, applies guardrails (e.g., clipping to [bmin, bmax]), persists the updated threshold atomically,
and records the rationale:

1 {
2 "kpi": "throughput",
3 "aggregation": "min"
4 "old_threshold": 7.00,
5 "new_threshold": 6.92,
6 "delta": -0.08,
7 "episode": "alert_002",
8 "rationale": "VR=0.60; BLER aggressive"
9 }

A.4 MODELS

Fine-tuned SLM (Intent-to-OTM). A domain-specialized causal SLM is fine-tuned to generate
OTM JSON directly from natural-language intents. Training uses instruction-style pairs of the form
(intent, OTM) that adhere to domain schemas (objective, KPI, operator, threshold). The model is
evaluated using exact-match accuracy and schema validity. This component is implemented using the
Qwen-2.5-7B-Instruct model (Qwen et al., 2025) with supervised fine-tuning; additional details are
provided in Appendix C.

ICL-based SLM (Constraint Adaptation). A general-purpose SLM—also based on Qwen-2.5-
7B-Instruct (Qwen et al., 2025) but without task-specific weight updates—is prompted with: (i)
the allowed actions and guardrails, (ii) policy rules governing the violation ratio (VR) and KPI
slack/shortfall, (iii) BLER posture rules with target hints, and (iv) a strict JSON schema. Outputs are
assessed for schema validity, internal consistency (e.g., adherence to policy rules), and justification
quality.

A.5 STABILITY, SAFETY, AND COMPLEXITY

Guardrails constrain actuation by ensuring that the target parameter b remains within the safe interval
[bmin, bmax]. A hysteresis mechanism further prevents rapid oscillations caused by frequent threshold
updates. The computational overhead of the method is minimal: each control step requires constant
time O(1), and memory usage grows linearly with the window size O(W ). This design minimizes
the impact on RAN compute and memory resources.

To evaluate the practical performance of the agentic AI system for intent management, we report the
following metrics: (i) reduction in violation ratio relative to baseline operation; (ii) percentage of
observation windows that request a change; (iii) percentage of updates clipped by guardrails; (iv)
validity rate of JSON payloads against the schema; (v) observed episode lengths; and (vi) adaptation
latency per update.

A.6 FAILURE MODES AND MITIGATIONS

Despite these safeguards, the system remains susceptible to several failure modes. The corresponding
mitigation strategies are:

• Prompt sensitivity: Malformed or ambiguous payloads may arise from language model outputs.
This risk is mitigated through strict schema enforcement, exclusion of unsafe tokens, and
regression testing on canonical telemetry payloads.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

• Distribution shift: Variations in traffic or channel conditions can create discrepancies between
training and deployment distributions. The system addresses this through window normalization
and by providing BLER posture hints to the model. In extreme cases, the controller can revert to
a rules-only mode to preserve stability.

• Over-actuation: Excessive threshold adjustments may cause oscillations or instability. To
prevent this, the system enforces lifetime update budgets, per-step update caps, cooldown
intervals, and explicit floor/ceiling bounds on b.

• Explainability drift: Generated rationales may deviate from the underlying numerical evidence.
The advisory moduleR must cite explicit numerical values, and all rationale cards are logged
and checked against policy expectations to ensure traceability and consistency.

This appendix outlines how the interpreter agent determines when to act, how to act and why, and to
what extent to act. These behaviors are realized through dual SLMs, classical control guardrails, and
auditable OTM persistence.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B OPTIMIZATION TEMPLATE MODEL

Purpose. The OTM defines the contract between the interpreter agent and the downstream optimizer.
It (i) specifies the optimization objective and the associated constraints, including explicit units and
aggregation semantics; (ii) records provenance for auditability (origin, modified_by); and (iii)
serves as a living document that can be safely updated by the adaptor during execution.

Formal view. Let X denote the optimizer’s decision space, and let k(·) be a network KPI evaluated
under an aggregation operator A (e.g., mean, min, p95). We define an OTM instance as

max
x∈X

k
Aobj
obj (x) s.t. ∀i ∈ {1, · · · ,m} :

{
kAi
i (x) ≤ bi if operator ∈ {lt,le}

kAi
i (x) ≥ bi if operator ∈ {gt,ge} (3)

where each constraint i specifies service, kpi, operator, threshold bi, aggregation Ai, units,
and scope. In essence, this formulation revisits the optimization (1) by rewriting the objective f(·)
and the constraints gi(·) in terms of a more generic KPI construct k(·) used in the OTM schema.

B.1 OTM SCHEMA AND DOMAIN SEMANTICS

The OTM schema is a minimal versioned JSON contract comprising four blocks, objective,
constraints, and metadata, version, characterizing the OTM formalism in equation 3.

Listing 1: Generic OTM schema applicable to different RAN control problems.
1
2 {
3 "objective": {
4 "service": <service_name>, // {"mbb", "urllc", "gaming", "streaming", slice, ...},
5 "kpi": <kpi_name>, // {"throughput", "reliability", "latency", ...}
6 "scope": <scope_name>, // {"per_user","per_cell", "per_slice", ...}
7 "aggregation": <aggr_name>, // {"mean","min","max","p95","sum", ...}
8 "unit": <unit_name>, // {"Mbps","Gbps","ms","s","%", ...}
9 "maximize": <value>, // boolean value {true, false}

10 },
11 "constraints": [
12 { "id": <value> // string value (e.g., "C1", "C2")
13 "service": <service_name>, // {"mbb", "urllc", "gaming", "streaming", ...},
14 "kpi": <kpi_name>, // {"throughput", "reliability", "latency", ...}
15 "scope": <scope_name>, // {"per_user","per_cell", "per_slice", ...}
16 "aggregation": <aggr_name>, // {"mean","min","max","p95","sum", ...}
17 "unit": <unit_name>, // {"Mbps","Gbps","ms","s","%", ...}
18 "operator": <operator_type>, // {"lt","le","ge","gt"}
19 "threshold": <value>, // float expressed in "unit"
20 "modified": <value>, // boolean value {true, false}
21 },
22 {
23 ...
24 }
25 ],
26 "metadata": {
27 "otm"{
28 "id": <value> // string value (e.g., "O1", "O2")
29 "created_by": <model_id>, // string value {"SFT_LLM", ...}
30 "timestamp": <value>, // formatted as iso-8601
31 "timescale": <value> // string with window value (e.g., "10s_window")
32 }
33 "episode: {
34 "id": <value> // string value (e.g., "E1", "E2")
35 "episode_type: <type_name> // {"alert", "alert_resolved", ...}
36 "modified_by": <model_id>, // string value {"ICL_LLM", ...}
37 "timestamp": <value> // formatted as iso-8601
38 }
39 "adaptation_log": []
40 },
41 "version": "1.0",
42 }

Note: Listings include // comments for readability; they are illustrative and not strict JSON.

This structure is simple, yet generic enough to accommodate a wide range of problems, from simple
single-service policies and more complex multi-service optimization directives spanning typical

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

mobile traffic types—e.g., URLLC, mMTC, streaming, web, gaming, and voice—each associated
with domain-appropriate KPIs (e.g., reliability and latency for URLLC, throughput and jitter for
gaming and streaming). Specifically, the OTM blocks define:

• objective: This block specifies the primary goal to optimize for a plurality of ser-
vices, including KPIs, their aggregation level (mean/min/max/p95/sum), scope, unit, and
optimization sense (i.e., maximize or minimize).

• constraints: This block encodes optional service-specific KPI bounds, each expressed
as an inequality kA ⊙ b. To this end, it shares the same fields of the objective block,
and additionally includes an operator (lt/le/ge/gt) the specifies the relation to a
threshold b expressed in the stated unit. Optionally, it includes fields indicating
modification to a service constraint (modified, modified_by, id).

• metadata: This block records OTM static in formation, such as provenance, time of
origination, etc. and dynamic information related to the last epsode event that triggered
a modification of the OTM to the and the aggregation timescale, a timestamp, an
episode identifier, and an append-only adaptation_log.

• version: specifies the OTM version.

OTM fields semantics. The OTM schema currently requires only 15 fields, some of which are
common across the schema blocks:

• service: Specifies a service class (e.g., mbb, urllc, gaming, streaming, slice).
• kpi: Indicates canonical KPIs key resolvable by both the telemetry layer and the optimizer

(e.g., throughput, reliability, latency, bler).
• scope: Indicates a spatial or logical domain related to a KPI scope (e.g., per_user,
per_user, per_slice, per_user_group, per_cell_group, etc.)

• aggregation: Indicates an operator defining how raw samples are aggregated to optimize,
evaluate or compare a KPI (e.g., mean, min, max, sum, p95, etc.).

• unit: Indicats the type of unit used for KPI or a threshold value (e.g., Mbps, Gbps, ms,
s, %, etc.).

• operator: Defines relational semantics in a constraint like ≥, ≤, = etc. (e.g., le, ge,
ge, gt, eq etc).

• threshold: Defines the threshold value bi associated to a constraint stated unit; for
modified constraints, the value is updated atomically by the adaptor.

• maximize: Defines the direction of an optimization (can be true or false)
• id: Indicate an identifies associated with OTM, a constraint, an event, etc.
• episode_type: Indicate the type of event that caused a revision of the OTM.
• created_by: Identifies the model or module that originated the OTM
• modified/modified_by: Indicate whether an OTM has been modified and by which

model or module
• timestamp: Records events times, such as OTM creation and modification...
• timescale: Indicates monitoring window

The field metadata.adaptation_log is append-only and used to trace updates with ⟨old, new,
∆, rationale, episode, time⟩. Table 4 exemplifies how typical lexical descriptions of service goals or
requirements are mapped into the OTM schema fiels:

Lifecycle and updates. The fine-tuned LLM creates the initial OTM combining connectivity service
intents and network operational intents. This includes verifying the OTM schema validity prior to
hand-off to the optimizer through a set of rules: (i) All KPIs must declare units and aggregation; (ii)
the operator must be consistent with KPI directionality; (iii) thresholds must lie within domain
bounds. During the execution, the ICL-based advisor may propose an update direction with rationale
based on telemetry data. The adaptor then computes thresholds adjustments ∆b under guardrails,
updates the target threshold, and persists the new OTM snapshot atomically. Each episode produces a
versioned OTM with a growing adaptation_log.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Lexical description OTM schema field values
KPI Unit Aggregation Scope Maximize Operator Threshold

Maximize mean cell throughput throughput Mbps mean per_cell true - -
Minimum user rate above 7Mbps throughput Mbps min per_user – ge 7
Mean users BLER smaller than 10% bler % mean per_user – le 10
95%-tile users latency less than 10ms latency ms p95 per_user – le 10

Table 4: Examples of OTM schema values for typical service definitions.

B.2 EXAMPLE OF OTM ADAPTATION.

Listing 2 illustrates an OTM produced by the fine-tuned LLM. The objective is to maximise
mean throughput (Mbps). Three constraints are active: C1 enforces mean BLER ≤ 0.10 over
a per-cell window (unitless ratio); C2 caps user-level latency at 20ms using the p95 aggregator;
and C3 requires a per-cell minimum user throughput of at least b = 7.00Mbps. Provenance
marks C3 as modified_by: ICL_LLM, indicating that its threshold may be adjusted online.
The metadata block specifies the aggregation timescale (10s_window) and records a snapshot
timestamp/episode.

Listing 2: Illustrative OTM with multiple constraints, before adaptation.
1 {
2 "version": "1.0",
3 "objective": {
4 "service": "mbb",
5 "kpi": "throughput",
6 "aggregation": "mean",
7 "unit": "Mbps",
8 "maximize": true
9 },

10 "constraints": [
11 {
12 "id": "C1",
13 "service": "mbb",
14 "kpi": "bler",
15 "operator": "le",
16 "threshold": 0.10,
17 "aggregation": "mean",
18 "unit": "",
19 "scope": "per_cell_window",
20 "origin": "fine_tuned_LLM"
21 },
22 {
23 "id": "C2",
24 "service": "mbb",
25 "kpi": "latency_ms",
26 "operator": "le",
27 "threshold": 20,
28 "aggregation": "p95",
29 "unit": "ms",
30 "scope": "per_user_window",
31 "origin": "fine_tuned_LLM"
32 },
33 {
34 "id": "C3",
35 "service": "mbb",
36 "kpi": "tpt_min_mbps",
37 "operator": "ge",
38 "threshold": 7.00,
39 "aggregation": "min",
40 "unit": "Mbps",
41 "scope": "per_cell_window",
42 "origin": "fine_tuned_LLM",
43 "adapted_by": "ICL_LLM"
44 }
45 ],
46 "metadata": {
47 "timescale": "10s_window",
48 "timestamp": "2025-09-22T10:20:00Z",
49 "episode": "alert_001",
50 "adaptation_log": []
51 }
52 }

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

At runtime, the sliding-window monitor observes a violation ratio VR = 0.60 for tpt_min_mbps,
together with BLER = 0.14 (classified as aggressive relative to the 0.10 target). The ICL-
based advisory selects action decrease; the adaptor computes a clipped update ∆b =
−0.08 (subject to caps, budgets, and bounds) and persists the new threshold. Listing 3
shows the resulting living OTM: only C3 changes (b : 7.00 → 6.92Mbps), while
C1 and C2 remain unchanged. An adaptation_log entry documents the update with
⟨old_threshold,new_threshold,∆b,rationale,episode,timestamp⟩.

Listing 3: Same OTM after one adaptation of constraint C3.
1 {
2 "version": "1.0",
3 "objective": {
4 "service": "mbb",
5 "kpi": "throughput",
6 "aggregation": "mean",
7 "unit": "Mbps",
8 "maximize": true
9 },

10 "constraints": [
11 {
12 "id": "C1",
13 "service": "mbb",
14 "kpi": "bler",
15 "operator": "le",
16 "threshold": 0.10,
17 "aggregation": "mean",
18 "unit": "",
19 "scope": "per_cell_window",
20 "origin": "fine_tuned_LLM"
21 },
22 {
23 "id": "C2",
24 "service": "mbb",
25 "kpi": "latency_ms",
26 "operator": "le",
27 "threshold": 20,
28 "aggregation": "p95",
29 "unit": "ms",
30 "scope": "per_user_window",
31 "origin": "fine_tuned_LLM"
32 },
33 {
34 "id": "C3",
35 "service": "mbb",
36 "kpi": "tpt_min_mbps",
37 "operator": "ge",
38 "threshold": 6.92,
39 "aggregation": "min",
40 "unit": "Mbps",
41 "scope": "per_cell_window",
42 "origin": "fine_tuned_LLM",
43 "adapted_by": "ICL_LLM"
44 }
45 ],
46 "metadata": {
47 "timescale": "10s_window",
48 "timestamp": "2025-09-22T10:28:00Z",
49 "episode": "alert_002",
50 "adaptation_log": [
51 {
52 "id": "C3",
53 "old_threshold": 7.00,
54 "new_threshold": 6.92,
55 "delta": -0.08,
56 "rationale": "VR=0.60; avg=6.92<b=7.00; BLER posture aggressive; relax b to stabilize

HARQ."
57 }
58 ]
59 }
60 }

Design rationale. The OTM is deliberately minimal (objective, constraints, metadata) yet extensible
(aggregation, scope, provenance). This ensures interface stability across RAN domains while enabling
adaptive operation and full auditability of constraint updates.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

C TRANSLATOR SLM FINE-TUNING

C.1 DATASET CURATION

This section describes the methodology used to construct the supervised corpus for training the Intent-
to-OTM translator, together with a statistical characterization of the resulting dataset. The objective
of the curation process is to create a corpus that captures the semantic breadth of natural-language
QoS intents encountered in operational networks while ensuring strict adherence to the OTM schema
required for structured policy generation. The design integrates domain knowledge from 5G/6G
communication systems, QoS-engineering practice, service semantics, and the linguistic variability
typical of operator-to-system interactions. The final dataset comprises 90,000 samples derived from
30,000 distinct OTM structures, each paired with three three paraphrased intent utterances.

The construction process is guided by four principles: schema consistency, domain realism, linguistic
diversity, and multi-service generality. Every instance conforms to the prescribed OTM JSON
structure to eliminate structural ambiguity. Services, KPIs, thresholds, aggregation functions, and
operator semantics are selected to reflect realistic RAN-engineering practice rather than arbitrary
sampling. Multiple paraphrases express the same underlying intent using different linguistic styles,
while both single-service and multi-service formulations are included to reflect realistic optimization
scenarios such as cross-slice coordination or heterogeneous multi-tenant workloads. Together, these
principles ensure that the model learns not only syntactically correct outputs but also semantically
grounded mappings aligned with operational decision-making.

Seven KPIs central to QoS and quality of experience (QoE) optimization are represented: latency,
packet delay budget, jitter, packet error rate, block error rate, throughput, and spectral efficiency.
Each KPI is characterized by its physical unit, optimization orientation (minimize or maximize),
and a plausible operational range. Service-specific threshold distributions are used to maintain
realism. URLLC thresholds, for example, are drawn from tight low-delay intervals consistent with
ultra-reliable low-latency requirements; gaming jitter values are sampled from moderate-sensitivity
ranges; and streaming throughput thresholds reflect bandwidth levels typical of video services. These
calibrated ranges ensure that the model encounters thresholds reflective of actual RAN-optimization
tasks rather than arbitrary numeric values.

Real-world QoS requirements frequently rely on percentile-based performance metrics, and the
dataset reflects this by including mean, minimum, maximum, and percentile aggregations from p25
to p99. Sampling is intentionally biased toward domain-appropriate usage: reliability-sensitive KPIs
such as latency, jitter, and error rates predominantly use high percentiles (p95 or p99), whereas
throughput-oriented KPIs typically rely on mean values. This probabilistic, domain-aware selection
encourages the model to internalize the relationship between service reliability expectations and
suitable aggregation choices. Constraint operators are chosen in accordance with KPI orientation,
with minimization KPIs paired with “ ≤ ” constraints and maximization KPIs paired with “ ≥ ”.
Semantically invalid combinations, such as lower bounds on error rates, are excluded to prevent the
model from learning physically implausible relations.

Each OTM instance is paired with three natural-language paraphrases produced from four stylistic
registers: operator-style technical phrasing, 3GPP-inspired formal language, casual expressions,
and terse imperative commands. These stylistic variants emulate the diverse ways in which human
operators, analysts, and automated systems articulate QoS intents. The paraphrases incorporate
synonyms for KPIs and services, linguistic variations in percentile expressions, and syntactic diversity
ranging from multi-sentence descriptions to compact directives. This controlled diversity promotes
robustness to real-world phrasing while preserving semantic consistency across paraphrases.

To reflect realistic optimization scenarios in multi-slice and multi-tenant RAN deployments, a
controlled fraction of OTMs include multi-service dependencies in which the optimization objective
applies to one service while constraints reference another. These cases emulate common operational
patterns such as managing cross-service interference or guaranteeing simultaneous user-experience
requirements across heterogeneous traffic types. Their presence strengthens the model’s ability to
process complex interdependencies and to generate coherent, jointly feasible policies.

All generated samples include metadata fields such as an ISO-8601 timestamp and an episode
identifier. The episode field is fixed to “unspecified” to avoid introducing unintended temporal

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

semantics while maintaining compatibility with future policy-orchestration workflows requiring
contextual metadata.

The statistical structure of the corpus reflects these design choices. Each OTM specifies one opti-
mization objective and between zero and three constraints consistent with QoS-engineering practices
in 5G and 6G networks. Because each template is associated with three paraphrases, the full cor-
pus contains 90,000 samples. Constraint cardinality follows a non-uniform distribution chosen to
represent operator practice: approximately 10% of OTMs contain no constraints, 45% contain one,
30% contain two, and 15% contain three. Consequently, roughly 90% of the corpus includes at least
one constraint, and nearly half include multiple constraints. This distribution exposes the model to a
broad range of multi-constraint optimization scenarios rather than biasing it toward oversimplified
workflows.

Service representation spans eight canonical categories—gaming, streaming, web, messaging,
URLLC, mMTC, VoLTE, and VoIP. Sampling is intentionally skewed toward services with stringent
QoS requirements. URLLC and gaming each account for approximately 20–25% of OTMs, streaming
contributes about 15%, voice (VoLTE and VoIP combined) contributes roughly another 15%, and the
remainder corresponds to web, messaging, and mMTC use cases. This distribution ensures adequate
coverage across both throughput-oriented and latency-critical traffic classes.

KPI coverage is similarly broad: all seven KPIs appear throughout the dataset following the service-
specific domain profiles described above. Over 95% of reliability-related constraints use high-
percentile aggregations (p90–p99), preserving realism in statistical QoS modeling. Approximately
12–18% of OTM instances include multi-service dependencies, providing inductive signals for joint
optimization patterns common in next-generation RAN automation. Finally, linguistic variation
reflects the stylistic sampling weights: operator style (40%), 3GPP-inspired formal expressions
(30%), casual phrasing (20%), and terse directives (10%). This variation enhances generalization to
heterogeneous real-world intent expressions while maintaining semantic consistency across samples.

Collectively, the dataset provides extensive coverage of service semantics, KPI behavior, constraint
types, and linguistic variation. Its strict structural consistency, calibrated numerical modeling, and
broad paraphrastic diversity make it well suited for supervised fine-tuning of models tasked with
translating diverse natural-language intents into precise, schema-compliant OTM structures aligned
with RAN-optimization practice.

C.2 TRAINING METHODOLOGY

The Intent-to-OTM translator is trained using supervised fine-tuning on the curated corpus described
in Section C. The task is formulated as a conditional sequence-generation problem: given a natural-
language intent and a fixed system prompt, the model must produce a complete and structurally
valid OTM in JSON format. Since the mapping between intents and OTMs is deterministic and
schema-constrained, the training objective emphasizes exact reproduction of field names, values,
ordering, and hierarchical structure.

A transformer-based, instruction-tuned model (Qwen-2.5-7B-Instruct Qwen et al. (2025)) serves as
the underlying architecture. Fine-tuning proceeds in a left-to-right autoregressive manner in which
each token is generated conditioned on both the input intent and the previously generated output. This
preserves the strengths of the pre-trained model while enabling specialization toward domain-specific
reasoning over services, KPIs, and QoS constraints.

The optimization pipeline follows established practices for adapting large language models. Stability
and parameter-efficiency mechanisms are incorporated, and the specific optimizer settings, learning-
rate schedule, and adaptation configuration are reported in Table 13 of Appendix I. These components
ensure reliable convergence when generating long, nested JSON structures that are sensitive to
single-token variations.

Fine-tuning is performed for a small number of epochs, as the deterministic target format and internal
consistency of the dataset enable rapid convergence without significant risk of overfitting. A held-out
validation set is used to monitor generalization performance and to detect potential memorization of
stylistic artifacts present in the synthetic paraphrases.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Model evaluation combines syntactic and semantic criteria. Token-level accuracy measures fidelity
to the target JSON sequence, while a schema-validity check verifies exact compliance with the
required OTM specification. In addition, semantic alignment metrics assess whether the model
correctly identifies the optimization objective, reproduces the appropriate constraints, and matches
the complete ground-truth OTM. Together, these metrics provide a comprehensive assessment of
structured intent translation accuracy.

Table 5: Comparison of Evaluation Metrics Between the Fine-Tuned and Baseline Models

Metric Fine-Tuned Model Baseline Model
Total evaluation examples 1000 1000
JSON valid rate 1.000 1.000
Objective match rate 1.000 0.450
Constraints match rate 0.98 0.215
Full OTM match rate 0.98 0.113
Number of constraint mismatches 20 785
Number of objective mismatches 0 550
Full-match examples 980 113

C.3 COMPARATIVE EVALUATION

This section presents a comparative evaluation of two models for translating natural-language QoS
intents into structured OTM representations. The fine-tuned model is a supervised LoRA-adapted
Qwen-2.5-7B-Instruct trained on a curated corpus of 90,000 intent–OTM pairs (see Section C.2),
whereas the baseline model is the unmodified Qwen-2.5-7B-Instruct. Both models were evaluated on
a held-out test set of 1,000 examples under a strict schema-constrained matching protocol.

As summarized in Table 5, the fine-tuned model demonstrates near-perfect structural and semantic
adherence to the OTM schema, achieving 100% JSON validity, 100% objective correctness, and a
98% full OTM match rate. In contrast, the baseline model—although also producing syntactically
valid JSON in every case—achieves only 45% objective match and 11.3% full OTM match. These
results indicate that prompt-only use of a generic instruction-tuned model is insufficient for reliable
schema-grounded semantic parsing.

The most pronounced disparity appears in the reconstruction of constraint sets. The fine-tuned
model correctly predicts the complete constraint set—including KPI type, operator, aggregation
level, threshold, and service scope—in 98% of cases. The baseline model succeeds in only 21.5%
of examples, frequently selecting incorrect KPIs, operators, or units despite emitting valid JSON.
As shown in Table 6, the baseline model exhibits severe error inflation, particularly in the “missing
constraint” (724 occurrences) and “extra constraint” (737 occurrences) categories. It is worth
noting that a single erroneous sample may contribute to multiple error categories simultaneously.
In contrast, the fine-tuned model’s residual errors remain modest and are concentrated primarily in
scope mismatches (50% of erroneous samples), with all other categories occurring infrequently.

Two complementary mechanisms explain the fine-tuned model’s performance advantage. First,
supervised adaptation aligns the model’s internal representation with the deterministic structure of
the OTM schema. Although the baseline model possesses broad linguistic and domain knowledge, it
lacks incentives to prioritize schema-specific conventions such as canonical KPI naming, service–KPI
associations, valid threshold ranges, and operator semantics (e.g., ≤ for reliability-oriented KPIs).
Fine-tuning effectively anchors the model’s output distribution to the OTM schema.

Second, the curated dataset encodes domain priors that are internalized during training. For example,
URLLC latency values cluster in the 1–10 ms range; gaming intents commonly include jitter con-
straints with p95 aggregation; streaming intents typically optimize for throughput; and error-rate KPIs
almost always appear with ≤ operators. Lacking these priors, the baseline model frequently produces
semantically plausible but non-canonical KPI selections, percentile aggregations, or threshold values.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 6: Comparison of Error Categories Between the Fine-Tuned and Baseline Models

Error Category Fine-Tuned Model Baseline Model

Count Percentage Count Percentage

Scope mismatch 10 50% 76 9.7%
Missing constraint 4 25% 724 92.2%
Extra constraint 5 20% 737 93.9%
Threshold mismatch 2 10% 60 7.6%
Operator mismatch 2 10% 68 8.7%
Aggregation mismatch 2 10% 20 2.5%
Count mismatch 1 5% 72 9.2%

Importantly, the fine-tuned model produces no objective-field errors (0 occurrences in Table 6),
indicating complete mastery of service–objective alignment. Its remaining errors occur almost
exclusively within the constraint block and are typically minor: substituting p90 for p95, small
numerical deviations around thresholds, or occasional variations in service scope. These contrast
sharply with the baseline model’s structurally inconsistent outputs, which reflect a lack of grounding
in the semantics encoded by the OTM schema.

Taken together, Tables 5–6 show that supervised, domain-specific fine-tuning is essential for this task.
Although both models generate syntactically valid JSON, only the fine-tuned model functions as
a high-precision compiler from natural-language intents to machine-interpretable OTM structures.
For practical deployment in autonomous RAN-optimization pipelines, relying solely on prompting a
pretrained instruction-tuned model is insufficient; structured domain adaptation is required to ensure
correctness, robustness, and operational safety.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

D OPTIMIZER AGENT DESIGN

D.1 BAYESIAN OPTIMIZATION

We consider the problem of minimizing an unknown objective function f : X → R, over a domain
X ⊆ Rd. The goal is to identify

x⋆ = argmin
x∈X

f(x).

In classical numerical optimization, one distinguishes between global optimization, where the absolute
minimum of f is sought, and local optimization, where the search is restricted to neighborhoods of
an initial point. If f is convex and X is a convex set, the problem reduces to convex optimization, for
which efficient algorithms exist.

However, in many modern applications, f is a black-box function, meaning that its closed-form
expression is unavailable and evaluations are costly (e.g., expensive simulations or training machine
learning models). In such cases, Bayesian optimization (BO) provides an efficient framework for
global optimization by maintaining a probabilistic model of f and selecting query points via a
surrogate criterion known as an acquisition function.

D.1.1 GAUSSIAN PROCESS PRIORS

Bayesian optimization typically employs a Gaussian process (GP) prior to model the unknown
function f . A GP is defined by a mean function µ(x) and covariance function K(x, x′):

p(f) = GP(f ;µ,K).

Given a set of noiseless observations

D = {(xi, f(xi))}ni=1,

the posterior distribution over f is again a GP with updated mean and covariance functions µf |D(x)
and Kf |D(x, x

′). This posterior provides both a predictive mean (exploitation) and predictive
uncertainty (exploration), which form the basis of acquisition functions.

D.1.2 ACQUISITION FUNCTIONS

An acquisition function a(x) encodes the utility of evaluating f at a candidate point x. Since
acquisition functions are cheap to evaluate, the optimization problem is reduced to

xt+1 = argmax
x∈X

a(x),

or its minimization equivalent. Common acquisition functions include:

Probability of improvement (PI): Selects points with the highest probability of improving upon
the best observed value f ′:

aPI(x) = Φ

(
f ′ − µ(x)

σ(x)

)
,

where Φ is the Gaussian cumulative distribution function (CDF).

Expected improvement (EI): Accounts for the magnitude of improvement:

aEI(x) = (f ′ − µ(x)) Φ

(
f ′ − µ(x)

σ(x)

)
+ σ(x)ϕ

(
f ′ − µ(x)

σ(x)

)
,

where ϕ is the Gaussian probability density function (PDF). This criterion naturally balances
exploration (σ(x)) and exploitation (µ(x)).

Entropy search (ES) Reduces uncertainty about the optimizer’s location by minimizing the entropy
of the distribution p(x∗|D). While analytically intractable, approximations make this approach
feasible.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Upper confidence bound (UCB): Promotes exploration via an optimism-in-the-face-of-uncertainty
principle:

aUCB(x;β) = µ(x)− βσ(x),

where β > 0 is a tunable trade-off parameter. Despite lacking an expected-utility interpretation, UCB
has strong theoretical guarantees for asymptotic convergence to the global optimum.

This Bayesian decision-theoretic framework provides a principled way to trade off exploration and
exploitation, making BO a powerful tool for solving expensive black-box optimization problems.

D.2 PAX-BO: PREFERENCE-ALIGNED EXPLORATION BAYESIAN OPTIMIZATION

We have

∆d−1 = {ω ∈ Rd
≥0 : 1⊤ω = 1}

Decision space and projection. We have S services S = {1, . . . , S} and preference dimension d.
The internal (unconstrained) variable is

U =
[
u(1), . . . , u(S)

]
∈ Rd×S , ū = vec(U) ∈ RdS .

Each service s uses a probability-simplex preference

w(s) ∈ ∆d−1 with ∆d−1 = {w ∈ Rd
≥0 : 1⊤w = 1},

obtained by the columnwise Euclidean simplex projection

w(s) = Π∆

(
u(s)

)
, W(U) =

[
w(1), . . . ,w(S)

]
∈ (∆d−1)S .

Closed form for Π∆: sort u in descending order, find the threshold θ, and set Π∆(u) = max(u−θ1, 0)
with 1⊤Π∆(u) = 1.

Objective, constraints, and data. We optimize a single objective f : (∆d−1)S → R subject to
scalar constraints {gi : (∆d−1)S → R}pi=1. A configuration U is feasible iff

gi
(
W(U)

)
≤ 0, i = 1, . . . , p.

At iteration t, we evaluate at Ut−1 and observe

ot = f
(
W(Ut−1)

)
, c

(i)
t = gi

(
W(Ut−1)

)
(i = 1, . . . , p),

forming the dataset

Dt =
{
(ūk, ok, c

(1)
k , . . . , c

(p)
k )

}t

k=1
.

Surrogates and acquisition in U -space. Fit surrogates for the compositions

F(ū) ≈ f
(
W(U)

)
, Gi(ū) ≈ gi

(
W(U)

)
(i = 1, . . . , p).

Let the incumbent best feasible value be

f⋆
t−1 = max{ ok : c

(i)
k ≤ 0 ∀i, k ≤ t− 1 } (use −∞ if none).

Define the acquisition on ū (e.g., constrained Log-EI) by

α(ū) = ACQ
(
F , {Gi}; ū, f⋆

t−1

)
≈ LogEI

(
µF (ū), σF (ū); f

⋆
t−1

)
×

p∏
i=1

Φ
(
− µGi

(ū)/σGi
(ū)

)
.

Single trust region (TR) in U -space. Maintain center sc ∈ RdS and radius L > 0 (half side-length
in ℓ∞), giving the box

Bt =
{
v̄ ∈ RdS : ∥v̄ − sc∥∞ ≤ L

}
.

Let κs, κf , κℓ be the success, failure, and “stuck-at-floor” counters. Parameters: L0 (initial), Lmin

(floor), Lmax (cap); thresholds sth (expand), fth (shrink); tolerance ϵ > 0.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Local proposal (inner step). Choose the next internal point by maximizing α within the TR:

ūt ∈ argmax
v̄∈Bt

α(v̄), Ut = mat(ūt), Wt = W(Ut) = Π∆(Ut).

Success test and TR adaptation. After executing ūt−1, define the success flag

SFt =
(
∀i : c

(i)
t ≤ 0

)
∧

(
ot ≥ f⋆

t−1 + ϵ
)
.

If SFt:
f⋆
t ← ot, sc ← ūt−1, κs ← κs + 1, κf ← 0, κℓ ← 0,

and if κs ≥ sth then
L← min(2L,Lmax), κs ← 0, κf ← 0.

Else (failure):
f⋆
t ← f⋆

t−1, κf ← κf + 1, κs ← 0,

and if κf ≥ fth then

L← max(L/2, Lmin), κs ← 0, κf ← 0, κℓ ← κℓ + 1{L = Lmin}.

Smart reset (escape when stuck). If L = Lmin and κℓ ≥ w, draw n candidates on the product
simplex: {W(j) ∈ (∆d−1)S}nj=1 (e.g., Dirichlet/QMC per column), and set ū(j) = vec(W(j)). For
each j compute

α(j) = α(ū(j)), P
(j)
feas =

p∏
i=1

Φ
(
− µGi

(ū(j))/σGi
(ū(j))

)
, d(j) = min

k≤t

∥∥W(j) −W(Uk)
∥∥
F
.

Normalize z ∈ {α, Pfeas, d} to z̃(j) ∈ [0, 1] and score

score(j) = α̃(j) P̃
(j)
feas

(
d̃(j)

)β
.

Choose j⋆ = argmaxj score
(j) and reset

sc ← ū(j⋆), L← L0, κs, κf , κℓ ← 0.

Action selection (vector-valued Q). Given state st and requested service σt, act by preference-
aligned scalarization:

at ∈ argmax
a∈A
⟨Q(st, a), w

(σt)
t ⟩, w

(σt)
t = Π∆

(
u
(σt)
t

)
.

Remarks. (i) All modeling and optimization happens in the unconstrained ū-space; feasibility
is enforced by the projection W(U) = Π∆(U). (ii) The single TR stabilizes steps; expand/shrink
is governed by (sth, fth) and improvement tolerance ϵ. (iii) The smart reset proposes diverse,
high-acquisition, high-feasibility candidates directly on (∆d−1)S .

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Algorithm 2 PAX-BO — Preference-Aligned eXploration Bayesian Optimization
Objects.

• Services S ≜ {1, . . . , S}, preference dimension d.

• Internal (unconstrained) variables U = [u(1), . . . , u(S)] ∈ Rd×S ; vectorization ū = vec(U) ∈ RdS .

• Columnwise simplex projection: p(s) = Π∆(u(s)) ∈ ∆d−1; stack P (U) = [p(1), . . . , p(S)] ∈
(∆d−1)S .

• Single objective f : (∆d−1)S→R; constraints are scalar functions {gi : (∆d−1)S→R}pi=1; feasible
iff gi(P ) ≤ 0 ∀i.

• Surrogates (e.g., GPs) model compositions F(ū) ≈ f(P (U)) and Gi(ū) ≈ gi(P (U)) for i =
1, . . . , p.

• Best feasible value f⋆
t = max{oj : gi(Pj) ≤ 0 ∀i} (use −∞ if none).

• Acquisition on U : α(ū) = ACQ
(
F , {Gi}pi=1; ū, f

⋆
t

)
(e.g., constrained Log-EI).

Projection. For u ∈ Rd: Π∆(u) = argminp∈∆d−1 ∥p−u∥2, closed form: sort/threshold; p = max(u−θ1, 0)

with 1⊤p = 1.
Single trust region in u-space. Center sc ∈ RdS , radius L > 0, box B ≜ {v̄ : ∥v̄ − sc∥∞ ≤ L}. Counters:
successes κs, failures κf , stuck-at-Lmin κℓ.
1: Given: window W ; trust–region radii L0 (initial), Lmin (shrink floor), Lmax (expansion cap); thresholds

sth (successes to expand), fth (failures to shrink); tolerance ϵ; reset window w; candidate count n; diversity
exponent β

2: Init: choose U0; P0 = Π∆(U0); sc ← vec(U0); L← L0; κs ← 0; κf ← 0; κℓ ← 0; D0 ← ∅
3: for t = 1, 2, . . . do
4: Evaluate at ūt−1: Pt−1 = Π∆(Ut−1); observe ot = f(Pt−1) and c

(i)
t = gi(Pt−1) for i = 1, . . . , p

5: Update dataDt = Dt−1∪{(ūt−1, ot, (c
(i)
t )pi=1)}; keep last W ; refitF , {Gi} on (ū, o, (c(i))); compute

f⋆
t−1

6: Suggest next U (local TR maximization)

ūt ∈ argmax
v̄∈B

α(v̄), Ut = mat(ūt), Pt = Π∆(Ut).

7: TR update with success flag SF←
(
∀i : c

(i)
t ≤ 0

)
∧

(
ot ≥ f⋆

t−1 + ϵ
)

8: if SF then
9: f⋆

t ← ot; sc ← ūt−1; κs ← κs + 1; κf ← 0; κℓ ← 0
10: if κs ≥ sth then L← min(2L,Lmax); κs ← 0; κf ← 0
11: end if
12: else
13: κf ← κf + 1; κs ← 0
14: if κf ≥ fth then
15: L← max

(
L/2, Lmin

)
; κs ← 0; κf ← 0;

16: if L = Lmin then κℓ ← κℓ + 1
17: end if
18: end if
19: end if
20: Smart reset (if stuck). If L = Lmin and κℓ ≥ w:
21: Sample n candidates P (j) ∈ (∆d−1)S (Dirichlet/QMC per service); set ū(j) = vec(P (j))

22: For each j: compute α(ū(j)); P
(j)
feas =

∏p
i=1 Φ

(
− µGi(ū

(j))/σGi(ū
(j))

)
; d(j) =

min(ūk,·,·)∈Dt ∥P
(j) − Pk∥F

23: Normalize z̃ =
z −min z

max z −min z + ε
for z ∈ {α, Pfeas, d}; score(j) = α̃(j) P̃

(j)
feas

(
d̃(j)

)β
24: Set sc ← ū(j⋆) where j⋆ = argmaxj score

(j); L← L0; κs ← 0; κf ← 0; κℓ ← 0
25: Action (vector-valued Q). For state st and requested service σt:

at ∈ argmax
a∈A
⟨Q(st, a, p

(σt)
t ), p

(σt)
t ⟩ with p

(σt)
t = Π∆

(
u
(σt)
t

)
.

26: end for

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

E MULTI-OBJECTIVE REINFORCEMENT LEARNING

E.1 MULTI-OBJECTIVE MARKOV DECISION PROCESS

A multi-objective Markov decision process (MOMDP) extends the traditional Markov decision
process (MDP) framework (Puterman, 1994; Sutton & Barto, 2018) by considering not just one,
but multiple objectives, which may conflict with each other (Roijers et al., 2013; Yang et al., 2019).
Within this framework, an agent seeks to optimize several reward functions simultaneously, each
corresponding to a different objective. These objectives can either conflict or complement each other;
thus, improvements in one may adversely affect another or contribute positively to shared goals. The
primary goal of an MOMDP is to derive a policy that achieves an optimal balance among multiple
objectives. This trade-off is typically represented by a Pareto front comprising a set of optimal
policies such that no policy can outperform another across all objectives simultaneously, thereby
making them non-dominated (Roijers et al., 2013; Moffaert & Nowé, 2014).

Formally, an MOMDP is defined by the tuple ⟨S,A,P, r,Ω, fω, γ⟩, where S denotes the state
space, A the action space, P(s′ | s, a) the transition probabilities, and γ ∈ [0, 1) a discount factor.
The vector r = [r1, r2, · · · , rm]⊤ represents the m-dimensional reward vector, and we assume the
preference space Ω to be the standard (m− 1)-dimensional simplex (probability simplex), defined as

∆m−1 =

{
ω ∈ Rm :

m∑
i=1

ωi = 1 and ωi ≥ 0 for i = 1, · · · ,m

}
. (4)

Here, each preference vector ω ∈ Ω assigns a normalized non-negative weight to each objective,
reflecting its relative importance. We focus on a class of MOMDPs with a linear preference function,
in which a scalarization function fω(r) = ω⊤r converts the reward vector into a scalar return using
the preference vector ω (Roijers et al., 2013; Hayes et al., 2022). The cumulative expected return
under a policy π is then given by

r̂π = E

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣∣ π
]
.

Observation 1 When the preference vector ω ∈ Ω is fixed, an MOMDP reduces to a standard MDP
with scalar rewards.

Remark 1 (Interpretation of Linear Scalarization) The scalarization function fω(r) = ω⊤r
can be interpreted as an expectation. If r = [r1, r2, . . . , rm]⊤ is the reward vector and ω =
[w1, w2, . . . , wm]⊤ is a weight vector with

∑m
i=1 wi = 1 and wi ≥ 0, then

rs = ω⊤r =

m∑
i=1

wiri = Ei∼ω[ri].

Thus, ω can be interpreted as a probability distribution over objectives, and the function fω corre-
sponds to the expected reward under this distribution (Roijers et al., 2013).

Example 1 (Multi-Objective Q-Learning) In traditional single-objective Q-learning, the agent
estimates a scalar Q-value for each state–action pair,

Q(s, a) = E

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣∣ s0 = s, a0 = a

]
.

In contrast, in multi-objective reinforcement learning, each action may yield a vector of rewards
corresponding to different objectives (Roijers et al., 2013; Nguyen et al., 2018).

For example, in a self-driving car scenario, the agent may consider:

• rspeed: how fast the car goes,

• rfuel: fuel efficiency,

• rsafety: safety score.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Thus, the Q-value function becomes vector-valued:

Q(s, a) =

[
Qspeed(s, a)
Qfuel(s, a)
Qsafety(s, a)

]
∈ R3.

Each decision-maker may have different trade-offs between these objectives, expressed as a preference
vector ω ∈ Ω = ∆2. For instance, ω = [0.7, 0.2, 0.1]⊤ indicates 70% priority on speed, 20% on
fuel efficiency, and 10% on safety. The corresponding scalarized utility is given by ω⊤Q(s, a).

E.2 CONVEX COVERAGE SET

In multi-objective optimization, the Pareto front F⋆ contains all Pareto optimal solutions (Roijers
et al., 2013; Moffaert & Nowé, 2014), defined as

F⋆ ≜
{
r ∈ Rm : ∄r′ ∈ Rm such that r′i ≥ ri for all i and r′j > rj for at least one j

}
.

However, not all Pareto-optimal points are relevant when preferences are restricted to linear scalariza-
tions. In this case, only a subset of the Pareto front—the convex coverage set (CCS)—is sufficient
(Roijers et al., 2015).

The CCS is a subset of F⋆ consisting of non-dominated solutions that are optimal under some linear
preference vector. Mathematically, it is defined as

C ≜
{
r̂ ∈ F⋆ : ∃ω ∈ ∆m−1 such that ω⊤r̂ ≥ ω⊤r̂′ for all r̂′ ∈ F⋆

}
.

Thus, the CCS comprises those points on the outer convex boundary of F⋆ that maximize utility for
at least one preference vector ω (with Ω = ∆m−1 as defined above) (Roijers et al., 2015).

Example 2 Consider a bi-objective optimization problem with the objectives of maximizing accuracy
and maximizing interpretability. The CCS would include those points on the Pareto front that
maximize a weighted sum of the two objectives for some given trade-off between them; these points
lie on the convex outer boundary of the feasible set in the objective space.

Therefore, the CCS represents the minimal subset of the Pareto front that guarantees optimality under
some linear preference. It is particularly valuable in decision-making scenarios where preferences
may vary, since it identifies exactly those solutions that are relevant for all possible linear trade-offs
(Roijers et al., 2013).

E.3 ENVELOPE Q-LEARNING

Scope. Learn a single preference-conditioned action-value function Q : S ×A×∆m−1 → Rm such
that, for any linear preference ω ∈ ∆m−1, the scalar projection ω⊤Q(s, a,ω) equals the optimal
scalarized value for acting under ω (Yang et al., 2019). The induced policy is

πω(s) = argmax
a∈A

ω⊤Q(s, a,ω;θ). (5)

Envelope maximizer selection (double DQN (DDQN) style). Given a transition (s, a, r, s′) with
reward vector r(s, a) ∈ Rm, EQL (Yang et al., 2019) bootstraps from the envelope at the next state
by selecting the action–preference pair that maximizes the ω-projection using the online network
(parameters θ):

(a⋆, ω⋆) = arg max
a′∈A, ω′∈∆m−1

ω⊤Q(s′, a′,ω′; θ). (6)

This couples preferences because ω⋆ is not necessarily equal to the current ω.

Vector temporal difference (TD) target (envelope bootstrap). Evaluate the selected pair with the
target network θ− to obtain a vector target

y = r(s, a) + γ Q
(
s′, a⋆, ω⋆; θ−

)
∈ Rm, (7)

where the expectation over s′∼ P(· | s, a) is approximated by sampling s′ from the replay buffer.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Algorithm 3 Envelope Q-learning (EQL) with Preference-Guided Replay

Require: Discount factor γ, prioritized buffer B, target period C, Dirichlet prior α, preferences-per-
sample K, minibatch size B

1: Initialize θ; set θ− ← θ
▷ Interaction (Figure 6, steps 1–5)

2: for each environment step do
3: observe s ▷ (1)
4: sample ω ∼ Dir(α) ▷ (2)
5: choose a by ε-greedy on ω⊤Q(s, a, ω; θ) ▷ (3)
6: execute a; observe r, s′ ▷ (4)
7: push (s, a, r, s′) into B with initial priority pmax ▷ (5)
8: end for

▷ Learning (Figure 6, steps 6–11)
9: for each gradient step do

10: sample {(si, ai, ri, s′i)}Bi=1 ∼ B by priority ▷ (7)
11: for i = 1 to B do
12: sampleWi = {ω′

ij}Kj=1 ▷ (6), (8)
13: (a⋆i , ω

⋆
i )← argmaxa′, ω′∈Wi

ω⊤
i Q(s′i, a

′, ω′; θ)
14: Vector target: yi ← ri + γ Q(s′i, a

⋆
i , ω

⋆
i ; θ

−) ▷ Equation (7)
15: δAi ← yi −Q(si, ai, ωi; θ) ▷ vector TD
16: δBi ← ω⊤

i yi − ω⊤
i Q(si, ai, ωi; θ) ▷ scalarized TD

17: end for
18: minimize L(θ) = 1

B

∑
i

[
(1− λ)|δBi |+ λ∥δAi ∥22

]
▷ Equations (8) to (10)

19: update priorities in B using ∥δAi ∥1 or |δBi | ▷ Equation (12)
20: if step mod C = 0 then
21: θ− ← θ
22: end if
23: end for

Losses. The primary objective regresses the full vector target (cf. Eq. (6) in (Yang et al., 2019)):

LA(θ) = E(s,a,r,s′), ω

[∥∥y −Q(s, a, ω; θ)
∥∥2
2

]
. (8)

Because the optimal frontier contains many discrete extreme points (a nonsmooth landscape), an
auxiliary scalarized loss improves optimization stability (cf. Eq. (7) in (Yang et al., 2019)):

LB(θ) = E(s,a,r,s′), ω

[∥∥ω⊤y − ω⊤Q(s, a, ω; θ)
∥∥
2

]
. (9)

The neural network is trained by employing a simple homotopy:

L(θ) = (1− λ)LB(θ) + λLA(θ), λ ∈ [0, 1], λ ↑ 1. (10)

Approximating the inner maximization. The maximization over ω′ ∈ ∆m−1 in Equation (6)
is approximated by sampling a small candidate setW = {ω′

j}Kj=1 ⊂ ∆m−1 (e.g., from a Dirichlet
distribution) and computing

(a⋆, ω⋆) ≈ arg max
a′∈A, ω′∈W

ω⊤Q(s′, a′, ω′; θ). (11)

Each transition is relabeled with multiple sampled preferences (hindsight preference relabeling),
which couples learning across the preference space and greatly improves sample efficiency. The
complete training loop—with preference sampling, hindsight relabeling, prioritized replay, and the
envelope bootstrap—is summarized in Figure 6 and Algorithm 3.

Replay priority. Priorities can be derived from vector or scalarized TD errors, e.g.,

p ∝
∥∥y −Q(s, a, ω; θ)

∥∥
1

or p ∝
∣∣ω⊤y − ω⊤Q(s, a, ω; θ)

∣∣. (12)

Theory and intuition. The envelope Bellman operator (induced by Equation (7)) has a unique fixed
point and is a γ-contraction under a suitable metric; hence EQL converges in tabular settings (Yang
et al., 2019).

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Geometric interpretation. The selection of the envelope maximizer, seen in Equation (6), backs
up from the upper convex hull of the next state returns. Define

V(s′) ≜
{
Q(s′, a′, ω′) : a′∈A, ω′∈Ω

}
⊂ Rm.

Since ω⊤(·) is linear, maximizing it over a set equals maximizing it over that set’s convex hull
(support-function invariance):

max
a′, ω′

ω⊤Q(s′, a′, ω′) = max
v∈convV(s′)

ω⊤v. (13)

Consequently, Equation (6) selects a supporting extreme point of convV(s′), and the target vector
in Equation (7) bootstraps from this convex envelope of the solution frontier; hence dominated
trade-offs are not reinforced and EQL effectively targets the convex coverage set (CCS).1

Adaptation. At runtime, the trained policy πω can be executed with any desired preference vector
ω without retraining.

3. Action

Replay Memory

11. Update network parameters 2. Preference

1. Observation

5. Collect experience 
(observation, action, reward)

8. Batch of  preferences

9. Optimize

Network

NACK ACK

BS

UE

New 
packet

Environment

Network

7. Batch of experiences

6. Sample a preference and compute 
priority associated to experience

Optimizer

4. Reward

10. Update priorities

Figure 6: Multi-objective RL with preference-guided optimization (EQL training loop). (1)
Observe state; (2) sample preference ω; (3) act; (4) receive vector reward r; (5) store (s, a, r, s′); (6)
memory samples auxiliary preferences and computes envelope-based priorities; (7) return prioritized
batch; (8) return batch of preferences; (9) optimize using the vector target in Equation (7) and
losses Equations (8) to (10); (10) update priorities; (11) update network parameters.

EQL shortcomings: Two design aspects limit the scalability of EQL Yang et al. (2019) in large
state–action spaces. First, EQL relies on a singleton architecture Algorithm 3, where a single actor
must explore the full joint state–action–preference space, leading to poor coverage and inefficient
learning. Second, sample priorities are assigned only once at generation and never updated during
training (unlike, e.g., (Horgan et al., 2018)), which slows convergence. Since RAN control problems
involve vast state–action spaces, we propose a distributed EQL variant where multiple actors share
the exploration load that leads to improved coverage and performance appendix F.5.

1With finite A (and discretized Ω in practice), V(s′) is finite, so convV(s′) is a polytope and the maximum
in equation 13 is attained at a vertex.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

F DISTRIBUTED ENVELOPE Q-LEARNING

We propose D-EQL, a distributed MORL algorithm that extends EQL (Yang et al., 2019) with an
APE-X–style distributed architecture (Horgan et al., 2018) for faster and more efficient exploration of
the preference space. As in vanilla EQL, our method optimizes a single policy/value network over
preferences for multiple competing objectives. Unlike the original setting, we employ learner–actor
decoupling (Horgan et al., 2018) and distribute exploration over the preference space across multiple
parallel actors. Specifically, we partition the preference simplex into subspaces and allocate different
actors to explore different subspaces in parallel. While the partitioning of the preference space is
inspired by (Xu et al., 2020), distributing exploration across actors improves coverage and exploration
efficiency. Furthermore, we employ distributed prioritized experience replay with hindsight to
improve sample efficiency: prioritized replay selects the most informative experiences at each training
step, while hindsight relabeling increases reuse by updating priorities under multiple preferences ω.

F.1 D-EQL ARCHITECTURE

Our framework follows a scalable distributed (multi-objective) reinforcement learning architecture
that decouples data collection, storage, and learning; see Figure 7. A set of CPU-based actors, each
running a replica of the policy network, interact in parallel with multiple simulation environments
to generate trajectories of state, action, reward, and next state tuples. Actors generate experiences
by exploring only a partition the preference simplex. These experiences are first stored locally and
then pushed to a sharded replay memory, where data is distributed either via load-balancing or fixed
actor-to-shard mappings. Each shard operates as an independent replay buffer, enabling parallel
writes and prioritized sampling. A GPU-based learner initially allocates a subspaces of the preference
simplex to each actor for distributed exploration. The learner then periodically samples mini-batches
from all shards, performs gradient updates on the policy network, and returns updated priorities
to maintain efficient replay. Updated network weights are then broadcast to all actors, ensuring
consistent synchronization across distributed processes. This design allows the system to scale
efficiently with the number of actors and environments, achieving high-throughput of experience
collection while preserving stability in training.

Broadcast model weights

Collected experiences

SHARDED REPLAY
MEMORY

Updated priorities

Sampled minibatches

ACTORS

LEARNER

SIMULATION GROUPS

Figure 7: Overview of the distributed (multi-objective) reinforcement learning architecture.
CPU-based actors interact in parallel with multiple simulation groups to generate trajectories, which
are stored in a sharded replay memory, while exploring different subspaces of the preference simplex.
A GPU-based learner samples mini-batches from the shards, updates the policy network, and broad-
casts the updated weights back to the actors while sending updated priorities to the replay memory.
This design enables scalable experience collection and stable policy learning.

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

F.2 DISTRIBUTED ACTORS

We consider a MOMDP with state space S, action set A, transition kernel P(s′ | s, a), discount
factor γ ∈ [0, 1), and vectorial reward r(s, a) ∈ Rm. Preferences lie on the probability simplex
Ω = ∆m−1. The learner maintains vectorial action-value functions Q(s, a,ω;θ)∈Rm (online) and
Q(s, a,ω;θ−)∈Rm (target) and periodically shares them with all actors. For any ω∈Ω, we define
the scalarization as

Qω(s, a;θ) ≜ ω⊤Q(s, a,ω;θ) ∈ R. (14)

Each actor (i) generates experiences under an ε-greedy policy conditioned on a preference ω, (ii)
computes a scalarized DDQN TD error to initialize prioritized experience replay priorities, and (iii)
sends batched transitions and priorities to its assigned replay memory shard. Each actor is assigned
to a stratum Ω

(u)
L from a simplex lattice (see Algorithm 6) and samples ω uniformly in that simplex

via barycentric weights (see Algorithm 7).

BEHAVIOR POLICY AND DATA GENERATION

At the beginning of episode e, the actor draws a preference with support on the actor’s stratum Ω
(u)
L

(see Appendix F.4) and keeps it fixed:

ω(e) ∼ pu(·), ωt ≡ ω(e) for all t in episode e.

At the environment step t∈N, the exploration rate is linearly annealed from εmax to εmin over Tdecay

steps:

εt = max

{
εmin, εmax −

εmax − εmin

Tdecay
t

}
. (15)

Here, εmax∈ (0, 1] is the initial exploration rate, εmin∈ [0, εmax) is the floor, and Tdecay∈N is the
annealing horizon (after which εt is clamped).

We define the greedy action under the fixed preference (using Equation 14) as
a⋆ω(s) = argmax

a∈A
Qω(s, a;θ). (16)

Let ξt ∼ Unif(0, 1) and let UnifAct(A) denote a single uniform draw from A used only when
exploring. As a result, the executed action becomes:

at =

{
UnifAct(A), if ξt < εt,

a⋆ω(st), otherwise.
(17)

Applying at yields a transition (st, at, rt, st+1, dt) with a terminal flag dt∈{0, 1}.

INITIAL PRIORITY COMPUTATION

To initialize prioritized replay, the actor computes a scalar DDQN TD error using a fresh preference
ω̃ ∼ pu(·) (independent of the behavior preference) to diversify the priorities:

a⋆ω̃(st+1) = argmax
a′∈A

ω̃⊤Q(st+1, a
′, ω̃;θ), (18)

δact = ω̃⊤rt︸ ︷︷ ︸
rω̃

+γ(1− dt) ω̃
⊤Q(st+1, a

⋆
ω̃(st+1), ω̃;θ−)− ω̃⊤Q(st, at, ω̃;θ), (19)

pinit = |δact|+ ϵ0, ϵ0 ≪ 1. (20)

The pair
(
(st, at, rt, st+1, dt), pinit

)
is buffered locally and flushed to the assigned replay shard.

LOCAL BATCHING AND BATCHED COMMUNICATION

Let u ∈ {0, . . . , U − 1} denote the actor id and K be the number of replay shards. The actor accumu-
lates transitions in a local circular buffer of capacity C and, when full, sends the batch to a designated
shard via a single remote procedure call (RPC). Shard selection uses the deterministic mapping

k(u) = u mod K. (21)
The actor u then transmits the batch {(sn, an, rn, s′n, dn), pinit,n}Cn=1 to shard k(u).

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Algorithm 4 D-EQL Actor

Require: actor id u, shards {SHARDk}K−1
k=0 , local buffer capacity C, discount factor γ, schedule

params (εmax, εmin, Tdecay), stratum Ω
(u)
L with sampler pu(·), online Q(·;θ), target Q(·;θ−)

1: k ← u mod K ▷ assigned shard, cf. Equation 21
2: B ← ∅, P ← ∅, t← 0
3: for episode e = 1, 2, . . . do
4: Sample episodic preference: ω(e) ∼ pu(·); set ωt ≡ ω(e) for this episode
5: while episode not terminated do
6: observe st
7: compute εt via the linear schedule Equation 15
8: draw ξt ∼ Unif(0, 1)
9: if ξt < εt then

10: at ← UnifAct(A)
11: else
12: at ← argmaxa∈A Qωt

(st, a;θ) ▷ greedy map Equation 16
13: end if
14: execute at; observe (rt, st+1, dt)
15: Sample priority preference: ω̃ ∼ pu(·)
16: a⋆ ← argmaxa′∈A ω̃⊤Q(st+1, a

′, ω̃;θ) ▷ selection Equation 18
17: δact ← ω̃⊤rt + γ(1− dt)ω̃

⊤Q(st+1, a
⋆, ω̃;θ−)− ω̃⊤Q(st, at, ω̃;θ) ▷ TD error

Equation 19
18: pinit ← |δact|+ ϵ0 ▷ priority Equation 20
19: append

(
(st, at, rt, st+1, dt), pinit

)
to (B,P)

20: if |B| = C then
21: ADDEXPERIENCES

(
SHARDk,B,P

)
; reset B,P ← ∅

22: end if
23: PERIODICALLY(θ ←LEARNER.PARAMETERS())
24: t← t+ 1
25: end while
26: end for

F.3 CENTRALIZED LEARNER

The learner (i) assembles prioritized mini-batches from K replay shards, (ii) samples a mini-batch
of preferences from a Dirichlet and forms a Cartesian product with the transitions, (iii) for each
(transition, preference) pair computes an envelope DDQN target by maximizing over both actions and
a finite set of supporting preferences, (iv) updates the online parameters θ using a vector regression
objective plus a cosine similarity term, (v) refreshes per-transition priorities on the shards, and (vi)
periodically synchronizes the target network θ− and publishes the latest online parameters to actors.

MINI-BATCH ASSEMBLY FROM REPLAY SHARDS

Let assume shard k ∈ {0, . . . ,K − 1} stores Nk items with priorities {pk,i}, with a total running
value Zk ≜

∑Nk

i=1 p
α
k,i, where α∈ [0, 1]. A pair (k, i) is sampled with probability

Pr
(
(k, i)

)
=

Zk∑K−1
ℓ=0 Zℓ

·
pαk,i
Zk

=
pαk,i∑

ℓ

∑
j p

α
ℓ,j

. (22)

Given N ≜
∑

k Nk, experience replay importance weights wk,i (with exponent β∈ [0, 1]) are

wk,i =

(
1

N
· 1

Pr((k, i))

)β /
max
k′,i′

(
1

N
· 1

Pr((k′, i′))

)β

. (23)

The learner queries the shards values {Zk}Kk=1, allocates per-shard batch sizes proportionally, fetches
tuples (transition, index, wk,i, shard id), and aggregates them into a transition batch of size B.

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

PREFERENCE SAMPLING

For each training step, we draw an i.i.d. mini-batch of preferences from a Dirichlet distribution:

{ωj}Pj=1 ⊂ Ω = ∆m−1, ωj
i.i.d.∼ Dir(α), α ∈ (0,∞)m. (24)

The choice α = 1m yields the uniform distribution on the simplex; α<1 emphasizes corners, while
α>1 emphasizes the interior. To couple transitions and preferences, we form the Cartesian product
index set

I = {1, . . . , B} × {1, . . . , P},
so every transition is paired with every preference. For (i, j) ∈ I, we write (si, ai, ri, s′i, di,ωj) and
define the scalarization Qωj (s, a;θ) = ω⊤

j Q(s, a,ωj ;θ).

ENVELOPE DDQN SELECTION AND VECTOR TARGET

The EQL’s envelope backup requires maximizing over both actions and supporting preferences.
Directly optimizing over Ω is intractable, so we approximate the inner maximization by searching
over a sampled setW={ωj}Pj=1. For each pair (i, j) ∈ I, we get:

(a⋆i,j , ω̃
⋆
i,j) = argmax

a′∈A, ω′∈W
ω⊤

j Q(s′i, a
′,ω′;θ), (25)

yi,j = ri + γ(1− di)Q
(
s′i, a

⋆
i,j , ω̃

⋆
i,j ;θ

−) ∈ Rm. (26)

Thus each query preference ωj selects a supporting preference ω̃⋆
i,j ∈W and action a⋆i,j that together

realize the envelope along direction ωj . The online prediction is Qpred,i,j = Q(si, ai,ωj ;θ) ∈ Rm.

TRAINING LOSS

For each (i, j) ∈ I, we define:

Lmmse(i, j;θ) =
∥∥yi,j −Q(si, ai,ωj ;θ)

∥∥2
2
, (27)

Lcos(i, j;θ) = 1−
ω⊤

j Q(si, ai,ωj ;θ)

∥ωj∥2 ∥Q(si, ai,ωj ;θ)∥2
. (28)

With tradeoff λ≥ 0 and PER weights wk,i tied to the transition (replicated over its P preference
copies), the learner minimizes

L(θ) =
1

BP

B∑
i=1

P∑
j=1

wk(i), idx(i)

(
Lmmse(i, j;θ) + λLcos(i, j;θ)

)
, (29)

where k(i) and idx(i) are the shard id and local index of transition i.

PRIORITY REFRESH (LEARNER SIDE)

To refresh priority weights, we first compute scalarized residuals per pair (i, j),

δi,j = ω⊤
j

(
yi,j −Q(si, ai,ωj ;θ)

)
, (30)

then aggregate to a single priority per original transition i,

pnew(i) = max
1≤j≤P

|δi,j | + ϵ0, ϵ0 > 0, (31)

and return
(
indices(i), pnew(i)

)
to the corresponding shards to update PER totals.

TARGET UPDATES AND PARAMETER BROADCAST

Every Ctgt steps, the learner updates the target network either by a hard copy

θ− ← θ (32)

or a soft update with factor τ ∈(0, 1]:
θ− ← (1− τ)θ− + τ θ. (33)

Every Cpush steps, the latest online parameters are published to the shared model used by all actors.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Algorithm 5 D-EQL Learner

Require: shards k ∈ {0, . . . ,K − 1}, discount γ, PER exponents (α, β), target period Ctgt, push
period Cpush, preference batch size P , tradeoff λ, Dirichlet parameter α

1: Initialize online θ; set target θ−←θ
2: while training do
3: Query {Zk}; allocate per-shard batch sizes; fetch prioritized transitions with

(indices(i), wk(i), idx(i)) ▷ Equation 22–Equation 23

4: Sample preferences {ωj}Pj=1
i.i.d.∼ Dir(α) ▷ Equation 24

5: Form Cartesian product I = {1..B} × {1..P} (replicate transitions across all ωj)
6: for all (i, j) ∈ I do
7: (a⋆i,j , ω̃

⋆
i,j)←argmaxa′∈A, ω̃∈{ω1,...,ωP } ω⊤

j Q(s′i, a
′, ω̃;θ) ▷ Equation 25

8: yi,j←ri + γ(1− di)Q(s′i, a
⋆
i,j , ω̃

⋆
i,j ;θ

−) ▷ Equation 26
9: end for

10: Compute L(θ) via Equation 29; take a gradient step on θ
11: For each i ∈ {1..B}, compute pnew(i) via Equation 30–Equation 31; send updates to shards
12: if step mod Ctgt = 0 then
13: Update θ− via Equation 32 or Equation 33
14: end if
15: if step mod Cpush = 0 then
16: Publish θ to actors
17: end if
18: end while

Notes. (i) The envelope selection (Equation 25) is the finite-set approximation of the bi-level inner
maximization over preferences; letting P ↑∞ densifies the approximation. (ii) The Cartesian product
ensures that every transition is trained under every sampled preference each step (dense supervision).
(iii) Priorities are defined per transition by aggregating scalarized TD residuals over P preference
replicas.

Communication summary. The learner pulls batches proportional to Zk, pushes refreshed priori-
ties pnew (updating shard totals), and periodically broadcasts the latest online parameters. Preference
expansion couples updates across Ω, while DDQN selection/evaluation preserves stability.

F.4 STRATIFIED SAMPLING ON THE PROBABILITY SIMPLEX

We want to sample preferences ω∈Ω := ∆m−1 so that all regions of the simplex are adequately
covered during data generation, thereby reducing variance and avoiding mode collapse toward a few
scalarizations.

Baseline (no stratification). When no partition is imposed, we draw independent and identically
distributed (i.i.d.) preferences from a Dirichlet distribution,

ω ∼ Dir(α), α ∈ (0,∞)m. (34)

Choosing α = 1m yields the uniform distribution on Ω.

F.4.1 DETERMINISTIC EQUAL-VOLUME STRATA VIA A SIMPLEX LATTICE

We partition Ω into congruent (m−1)-simplices by using a barycentric lattice with resolution L∈N.
We define the lattice vertices as:

VL :=

{
k

L
∈ Ω : k = (k1, . . . , km) ∈ Nm,

m∑
i=1

ki = L

}
, (35)

and we consider a fixed permutation π of {1, . . . ,m}. For each base point k ∈ Nm with
∑

i ki =
L− 1, we form the m lattice points as:

v0 =
k

L
, vr =

k + eπ(1) + · · ·+ eπ(r)

L
, r = 1, . . . ,m− 1, (36)

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Algorithm 6 Simplex–Lattice Stratification (build strata at resolution L)

Require: dimension m, resolution L, a fixed permutation π of {1, . . . ,m}
1: S ← ∅ ▷ list of strata (each as m vertices in Rm)
2: for all k ∈ Nm with

∑m
i=1 ki = L− 1 do

3: v0 ← (k)/L
4: for r = 1 to m− 1 do
5: vr ← (k + eπ(1) + · · ·+ eπ(r))/L
6: end for
7: append conv{v0, . . . ,vm−1} to S
8: end for
9: return S ▷ |S| = Lm−1 equal-volume strata

Algorithm 7 Sample uniformly from a stratum ΩL(k)

Require: vertices {v0, . . . ,vm−1} of ΩL(k)
1: draw z ∼ Dir(1m)

2: return ω =
∑m−1

r=0 zr vr ▷ uniform in the stratum

and define the micro-simplex (stratum):

ΩL(k) := conv{v0,v1, . . . ,vm−1} ⊂ Ω. (37)

The collection {ΩL(k) : k ∈ Nm,
∑

i ki = L− 1} tiles Ω into Lm−1 equal-volume strata.

F.4.2 UNIFORM SAMPLING WITHIN A STRATUM

Let ΩL(k) = conv{v0, . . . ,vm−1} be any stratum. We draw barycentric weights z ∼ Dir(1m) and
map affinely:

ω =

m−1∑
r=0

zr vr ∈ ΩL(k). (38)

This yields a sample uniform in the stratum.

F.4.3 ASSIGNING STRATA TO ACTORS

Index the Lm−1 strata in a fixed order as {Ω(u)
L }

U−1
u=0 with U = Lm−1 (or group them when U

exceeds the number of actors). Actor u repeatedly samples ω ∈ Ω
(u)
L via Algorithm 7, ensuring

non-overlapping coverage across actors.

F.4.4 DISCUSSION AND ALTERNATIVES

Coverage and variance. Compared to i.i.d. Dirichlet sampling shown in Equation 34, the lattice
partition yields systematic coverage of the entire simplex and reduces estimator variance by ensuring
that each subregion is represented.

Resolution. Larger L gives finer strata (Lm−1 pieces) and smoother coverage at the cost of more
partitions to manage.

Clustering alternative. When equal-volume strata are unnecessary, a simple alternative is to draw
a large pilot set {ω(n)}N0

n=1 ∼ Dir(α) and run k-means on the (m−1)-dimensional simplex (with
cosine or Euclidean distance); the Voronoi cells of the cluster centers define strata. Sampling within a
cell can be done by re-running Dirichlet draws and accepting points whose nearest center matches
the cell (approximately uniform within each cell).

F.5 EXPERIMENTS

F.5.1 ENVIRONMENTS AND SETUP

We evaluate our approach using two well-established MORL benchmarks: deep sea treasure (DST)
and fruit tree navigation (FTN). Both environments are widely used in the literature (Yang et al.,

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

2019; Basaklar et al., 2023), providing standardized testbeds for assessing Pareto front coverage and
preference generalization.

The DST environment is a grid-world wherein an agent controls a submarine that must navigate from
the surface to collect one of several treasures placed at different depths. Each treasure yields a two-
dimensional reward: a positive value and a negative time penalty. The task is inherently multi-
objective, requiring the agent to balance collecting high-value treasures against minimizing travel time.
The Pareto front is well understood and serves as a reliable benchmark for coverage and accuracy.

The FTN environment generalizes this idea to a tree-structured setting. Starting from the root, the
agent makes sequential decisions until it reaches a leaf node, where it receives a multi-dimensional
reward corresponding to the chosen fruit. The tree depth controls task complexity. At depth five,
the agent makes five sequential decisions; at depth seven, the number of possible outcomes grows
exponentially, producing a much larger and more diverse Pareto front. This makes FTN with higher
depth a significantly more challenging benchmark, particularly for algorithms that must adapt to
unseen preferences or maintain wide coverage.

In all experiments, algorithms are trained across a range of randomly sampled linear preference
vectors, following the setup in Yang et al. (2019). At test time, additional preference vectors are
sampled to assess generalization. All results are averaged over multiple random seeds to account for
variance.

F.5.2 METRICS AND RESULTS

We evaluate performance using three widely adopted metrics in MORL:

1. Coverage Ratio F1 (CRF1): A harmonic mean of precision and recall that captures both
accuracy and coverage of the Pareto front.

2. Hypervolume: The volume dominated by the obtained solutions with respect to a reference
point, reflecting both the quality and diversity of the Pareto front.

3. Sparsity: The average distance between neighboring solutions, indicating how uniformly the
Pareto front is covered.

Table 7: We compare the performance of the proposed distributed Q-learning algorithm with the
original Q-learning approach Yang et al. (2019) and Basaklar et al. (2023) in terms of CFR1,
hypervolume and sparsity, showing superior performance in more complex scenarios.

Deep Sea Treasure Fruit Tree Nav. (d=5) Fruit Tree Nav. (d=7)

CRF1 Hyperv. Sparsity CRF1 Hyperv. CRF1 Hyperv.

Yang et al. (2019) 0.994 227.39 2.62 1.0 6920.58 0.819 6395.27
Basaklar et al. (2023) 1.0 241.73 1.14 1.0 6920.58 0.920 11 419.58
D-EQL (ours) 1.0 241.73 1.14 1.0 6920.58 1.0 12110.74

Table 7 compares D-EQL with prior approaches. On the simpler DST domain, all methods achieve
near-perfect coverage. Our method, on pair with Basaklar et al. (2023), attains CRF1 = 1.0 and
simultaneously achieves the highest hypervolume and lowest sparsity, indicating comprehensive and
well-distributed solutions along the Pareto front.

On FTN with depth five, performance saturates across all methods with perfect coverage and identical
hypervolume, reflecting the relative simplicity of this setting.

The advantage of D-EQL becomes evident in the more complex FTN with depth seven. Prior methods
show a notable drop in coverage (CRF1 = 0.819 for Yang et al. (2019) and 0.92 for Basaklar et al.
(2023)), whereas D-EQL maintains perfect coverage (CRF1 = 1.0). Moreover, D-EQL achieves the
highest hypervolume (12110.74), showing 22.1% and 8.69% improvements over Yang et al. (2019)
and Basaklar et al. (2023), respectively, and demonstrating broader Pareto front coverage and superior
solution diversity. These results show that our distributed training scheme preserves accuracy while
scaling effectively to environments with exponentially growing outcome spaces.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Overall, D-EQL achieves state-of-the-art performance: it matches existing methods on simpler tasks
and clearly outperforms them in complex scenarios, highlighting the benefits of distributed training
for multi-objective reinforcement learning. This makes D-EQL a more suitable for handling the vast
dimensions of state-action spaces in RAN control functions.

F.5.3 HYPERPARAMETERS

The hyperparameters used in D-EQL training for DST and FTN environment are listed in Table 8.

Table 8: Hyperparameters used for D-EQL on deep sea treasure and fruit tree navigation.

Hyperparameter DST FTN
Model
Hidden feature (units per layer) 256 512
Activation SiLU SiLU Elfwing et al. (2018)
Number of layers 3 3

Actor
Number of actors 10 10
ϵ-greedy (linear, start→ final) 0.8→ 0.1 0.8→ 0.1
Anneal timesteps 1× 106 1× 106

Local buffer capacity 125 125
Max environment step 1× 106 1× 106

Learner

Learning rate 3.5× 10−4 3.5× 10−4

Target update period (gradient step) 1 1
Model sync period (gradient step) 250 250
Discount factor γ 0.99 0.99
Prefetched batches 16 16
Transition batch size 128 128
Preference batch size 128 128

Replay Memory (PER)
Number of shards 1 1
Capacity 5× 105 5× 105

Priority exponent α 0.7 0.7
Importance sampling β (linear, start→ final) 0.4→ 1.0 0.4→ 1.0
β anneal timesteps 2× 104 2× 104

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

G CASE STUDY

We design a controller agent for LA, a crucial functionality of modern wireless communication
systems that employs adaptive coding and modulation to optimize the spectral efficiency of the radio
link between transmitter and receiver. By adopting a MORL approach, the LA controller agent can
adjust transmission parameters to meet connectivity service intents expressed in terms of data rate,
reliability, and latency requirements for individual users.

G.1 LINK ADAPTATION

LA adapts the modulation order and code rate of individual packet transmissions to match the capacity
of the radio link capacity, given the radio link state. The LA parameters are encoded into a unique
value, referred to as MCS index in 3GPP (2025e), that is provided to the receiver for packet decoding.

The 3GPP 5th Generation (5G) New Radio (NR) system, rely on an OLLA approach inspired
to Pedersen et al. (2007) to maximize the link spectral efficiency while adhering to a predefined
BLER target using receiver-side channel state information (CSI), such as channel quality indicator
(CQI) 3GPP (2025e), and hybrid automatic repeat request (HARQ) feedback– a 1-bit information
indicating whether a prior packet transmission was successful or not. While this approach suits
best-effort traffic, its reliance on long communication sessions to converge makes is suboptimal to
address connectivity service intents under more general conditions, such as short bursty traffic, fast
channel aging, medium-high user mobility, etc.

A MORL approach instead enables to dynamic LA toward selection transmission parameters that best
align with different service intents. For example, selecting MCS conservatively—e.g., lower modula-
tion orders such as Quadri-Phase Shift Keying (QPSK) or reduced code rates—favor robustness by
lowering the probability of decoding errors. This enables to achieve highly reliable transmissions at
the cost of throughput, since more time-frequency resource element (RE) are required per information
bit. Conversely, an aggressive MCS selection can push spectral efficiency closer to or even beyond
the instantaneous link capacity, exploiting retransmissions to increase data rate and reduce latency
for best-effort traffic. However, overly aggressive choices may lead to excessive retransmissions and
throughput degradation. By explicitly balancing these conflicting objectives, MORL allows LA to
adapt beyond fixed BLER-driven policies, supporting a wider range of connectivity intents.

G.2 MOMDP DESIGN FOR LINK ADAPTATION

Our goal is to train a single pareto efficient uniform model (PEUMO) for LA to learn the Pareto
frontier outlining the optimal trade-off between the utilization of radio resources and the amount of
information bits delivered by a packet transmission.

As LA and HARQ operate on a per-user equipment (UE) and per-packet transmission basis, we
formulate this problem as an episodic MOMDPM = ⟨S,A, p, r,Ω, γ, ρ0⟩, where S denotes the
state space, A the action space, p(s′ | s, a) the transition dynamics, r : S × A → RK a multi-
dimensional reward vector, Ω ⊆ RK the reward preference space, γ ∈ [0, 1) a discount factor, and ρ0
the initial state distribution.

An episode models the lifespan of a UE packet in the HARQ process—from its first transmission to
either a successful reception or the packet being dropped upon N transmission attempts, as illustrated
in Figure 8. This enables us to train a single RL policy from the collective experience generated
by any UEs across the network. A transition in the episode represents the duration of a packet
transmission in the HARQ process, from the selection of LA parameters (i.e., the action) to the
reception of the associated HARQ feedback, i.e., an positive acknowledgment (ACK) or negative
acknowledgment (NACK) for successful or failed transmission, respectively. For instance, the 3GPP
5G NR system, used in our evaluations, supports at most four packet retransmissions. Hence, the
episode length N may range from one to five steps. Each step is characterized by a state, an action,
and an associated reward and preference vectors, as presented next.

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Figure 8: Example of MOMDP episodes modelling the downlink LA and HARQ process. Here, the
notation Pi,n denotes the n-th transmission attempt of the i-th data packet.

G.3 ACTION SPACE

The action space consists of the set of MCS index values supported by a communication standard,
i.e., A = {am | am = m,m = 0, . . . ,M − 1}. Therefore, an action am ∈ A implicitly provides a
combination of modulation order, code rate, and spectral efficiency to be used to transmit a packet.
The 5G NR system used in our evaluations in Section 7 supports M = 28 MCS index values as
specified in Table 5.1.3.1-1 or Table 5.1.3.1-2 in 3GPP (2025e), corresponding to modulation orders
up to 64QAM and 256QAM, respectively.

For a new packet transmission, the selection of an MCS index, combined with the time-frequency
resources allocated by a scheduler, determines the amount of information bits, i.e., the TBS, to be
transmitted. Packet re-transmissions, however, reuse the TBS value of the original transmission, as
no new information is transmitted. A packet re-transmission, however, may occur with a different
MCS index therefore resulting in possibly a different amount of radio resources.

G.4 REWARD VECTOR AND PREFERENCE SPACE

We design a two-dimensional reward function r = [r1, r2]
⊤ ∈ S × A ∈ R2 with two competing

components: r1 representing the amount of information bits successfully carried by a packet; and r2
denoting the cost, in terms of time-frequency resource, incurred in each individual transmission of
the packet. Specifically, for each transmission attempt n of a packet, we define the reward function as

r(n)(s, a) =



[
0

− N
(n)
RE

Nmax
RE

]
if transmision fails at n−th attempt,

[ TBS
Nmax

RE

− N
(n)
RE

Nmax
RE

]
if transmision succeeds at n−th attempt,

(39)

where the TBS and N
(n)
RE denote the number of information bits carried by the packet and the number

of RE used for the n-th transmission attempt, respectively, and Nmax
RE is the maximum number

of REs available, given the system bandwidth. Scaling the reward components by Nmax
RE has a

twofold purpose: Firstly, it keeps each component within similar range of values, while preserving
the functional relation between the MCS index selected to transmit TBS information bits and the
required number of time-frequency RE. This relation is specified by communication standards, as
in the 3rd Generation Partnership Project (3GPP) technical specification (TS) 38.211 3GPP (2025d).
Secondly, it makes the reward design agnostic to the system bandwidth, with TBS

Nmax
RE

representing the
spectral efficiency for transmitting TBS bits using the entire system bandwidth. This allows us to
employ domain randomization in training (cf. appendix H.1) to improve model generalization over
the RAN environment.

Therefore, for each packet transmission attempt n, the first reward component takes value r
(n)
1 =

TBS
Nmax

RE
is the transmission is successful or r(n)1 = 0 otherwise. The second reward component, on the

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

other hand, always indicates the resource cost incurred at the current transmission attempt n, i.e.,

r
(n)
2 = − N

(n)
RE

Nmax
RE

, regardless of whether the transmission attempt succeeds or fails.

G.5 STATE DESIGN

A key goal of our design is to achieve model generalization across diverse RAN environments,
enabling a single MORL model to operate reliably under different deployments and radio conditions.
To this end, we construct a rich state space S ⊆ RK and apply domain randomization in training Igl
et al. (2019). To model the state space S for link adaptation, we follow Demirel et al. (2025)
which considers a deep Q-network (DQN) approach for LA with a single, fixed reward design based
on the link spectral efficiency. In particular, we model S using two types of features: (a) semi-
static information characterizing the network deployment surrounding the UE; (b) and information
describing observable link dynamics relevant to infer LA parameters.

Semi-static information characterizing the network deployment may include, for instance, deployment
type (e.g., rural, urban, dense urban, etc.), location, orientation, relationships among network sites
or radio cells, as well as technology configurations, such as whether the system operated in time-
duplex or full duplex mode, carrier frequency, system bandwidth, transmit power, antenna array
type, etc. On the other hand, information characterizing the dynamics of LA consist of real-time
observation (measured in a milliseconds timescale), such as channel state information, HARQ
feedback, measurement of path loss, data buffer state, historical actions, and more. We refer
to Demirel et al. (2025) for a complete description of the state features.

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

H EXTENDED EXPERIMENTAL EVALUATION

This Appendix extends the discussion and empirical evaluation presented in Section 7 with additional
results. We organized the material as follows: Appendix H.1 and H.2 describe the network simulator
environment and training setup for the MORL controller agent; Appendix H.3 extend the analysis of
the controller agent presented in Section 7.1, including an additional scenario with two communication
services. Finally, Appendix H.4 extends our analysis of the intent fulfillment loop.

H.1 NETWORK SIMULATOR ENVIRONMENT

We train and evaluate the MORL controller agent using a high-fidelity, event-driven system-level
simulator compliant with the 3GPP 5G NR specifications. Each rollout simulation models a heteroge-
neous multi-cell RAN operating in time division duplexing (TDD) mode with single-user multiple
input multiple output (SU-MIMO) transmission. The carrier frequency is set to 3.5 GHz, and the
physical layer follows the orthogonal frequency division multiplexing (OFDM) numerology µ = 0
specified in 3GPP TS 38.211 (cf. Table 4.2-1 3GPP (2025d)).

To improve model generalization across diverse RANdeployments and radio enviroments, we apply
domain randomization across multiple network characteristics, summarized in Table 9. Each sim-
ulation consists of three tri-sector radio sites, randomly configured as either conventional multiple
input multiple output (MIMO) or massive multiple input multiple output (mMIMO), with antenna
attributes defined in Table 9. Site-level parameters such as location, cell radius, system bandwidth,
and downlink transmit power are also randomized by sampling values from the same parameter set.

The training scenario is further diversified by randomizing cell load, traffic type, UEs, and receiver
configuration. UEs are generated with a mixture of full buffer (FB) and enhanced mobile broadband
(eMBB) traffic, randomly placed in the simulated area according to one of the indoor/outdoor
probability distributions in Table 9. Each eMBB UE generates traffic with variable packet size and
inter-arrival times, modeled using empirical distributions derived from field measurement campaigns.

Finally, individual UEs are randomized in terms of antenna configuration, mobility (speed), and
receiver implementation. The latter accounts for manufacturer-specific differences in hardware (e.g.,
antenna arrays and chipsets) and internal algorithms (e.g., CSI estimation), which influence perceived
radio conditions. This randomized environment ensures that the MORL controller agent is trained
under various realistic network conditions, thus improving its ability to generalize to unseen scenarios.

H.2 TRAINING SETUP

We train the MORL LA controller agent using our D-EQL algorithm, described in Appendix F,
with a single GPU and 560 CPU cores. The learner uses Adam optimizer (Kingma & Ba, 2017)
with a learning rate of 5× 10−5, weight decay of 0.02/512, and default momentum terms (β1, β2) =
(0.9, 0.999), and mean squared error (MSE) loss. He initialization is used for all network parameters.
A soft target update policy is applied with an update factor of 0.001 and a period of one timestep. The
model synchronization period is 200 gradient iterations, and training begins after 50,000 timesteps. To
reduce communication overhead between the learner and replay memory, 16 batches are prefetched
per cycle. Experience and preference batches contain 512 and 128 samples, respectively.

The actor subsystem consists of 40 CPU-based rollout workers, each interacting with 14 parallel
simulations (one CPU core per simulation), resulting in efficient experience generation. Each actor
collects about 112 samples per second, for a total of roughly 279 million over the training horizon.
The learner processes about 27,500 samples per second for gradient updates. Each actor maintains a
local buffer of 2,500 samples and follows a linear epsilon-greedy strategy, decaying ϵ from 0.8 to
0.05 over 5.5 million timesteps. The agent operates with a discount factor of 1.0. Training throughput
is about 53.8 batches per second, with each batch containing 65,536 samples.

Replay memory is organized as a single module with four independent shards, each capable of storing
four million samples. Each shard has a fixed communication path to a designated learner shard,
minimizing cross-shard delays. Prioritized experience replay is employed with parameters α = 0.6
and β = 0.4 to improve sample efficiency. In total, the system runs 11,200 simulations under different
random seeds to ensure reproducibility across diverse network conditions. Communication details of
the distributed system are further discussed in Appendix I.

51



2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

Table 9: RAN environment simulation parameters for domain randomization during training.

Parameter Value range Description

Duplexing type TDD Fixed
Carrier frequency 3.5 GHz Fixed
Deployment type 3-site 9-sector
Site type {MIMO, mMIMO} Randomized
Antenna array 1x2x2 MIMO (4) Fixed

8x4x2 mMIMO (64) Fixed
Cell radius {166, 300, 600, 900, 1200} m Randomized
Bandwidth {20, 40, 50, 80, 100} MHz Randomized
Number of sub-bands {20, 106, 133, 217, 273} Randomized
DL TX power {20, 40, 50, 80, 100} W Randomized
UE antennas {2, 4} Randomized
Maximum TX rank {2, 4} As per UE ant.
Maximum DL TX 5 Fixed
UE traffic type {FB, eMBB} Randomized
Number FB UEs {1, 5, 10} Randomized
Number eMBB UEs {0, 10, 25, 50, 100, 200, 300} Randomized
Speed UE FB {0.67, 10, 15, 30} m/s Randomized
Speed UE eMBB {0.67, 1.5, 3} m/s Randomized
UE receiver types {type0, type1, type2, type3} Randomized
Indoor probability {0.2, 0.4, 0.8} Randomized

Furthermore, we explore a preference space Ω = ∆1 ≜ {ω | ω = [ω, 1− ω]⊤, ω ∈ [0, 1]} defined
for the two-dimensional reward in (39). The preference space is partitioned into strata, and each
actor is assigned to explore a different stratum. Preferences are then sampled from the corresponding
strata following the procedure in Algorithm 6 (stratum construction) and Algorithm 7 (stratum-based
sampling). Further details on all hyperparameters used in training are summarized in Appendix I.

H.3 TESTING THE MORL LA CONTROLLER AGENT

H.3.1 SINGLE CONNECTIVITY SERVICE

We extend the analysis presented in Section 7.1 by further evaluating the MORL-based LA controller
for a single connectivity service: video streaming users. Focusing on a single user class simplifies the
analysis of the Pareto front achievable by the MORL controller agent.

Figure 9 shows the Pareto front defined by the two-dimensional reward function in Equation (39)
for a 3-cell deployment with 10 streaming users. Each point on the frontier is obtained from 480
independent simulations, where each radio cell employs the MORL-based LA controller with a fixed
preference value ω ∈ [0, 1]. The parameter ω determines the trade-off between minimizing radio
resources required for packet transmission and maximizing the transmitted payload size. Moving
along the frontier results in different performance trade-offs in network KPIs, as detailed in Figure 10.

At the top-right corner of Figure 9 and 10, large values of ω prioritize payload maximization (i.e.,
high TBS), but at the cost of excessive radio resource consumption. In this case, the controller agent
selects overly aggressive MCS values relative to the channel state (see Figure 11a), targeting spectral
efficiencies beyond channel capacity. This leads to frequent transmission failures (BLER ≈ 60%,
see Figure 11b) and numerous retransmissions, yielding suboptimal throughput and spectral efficiency.

In contrast, when ω ≈ 0 (bottom-left corner of Figure 9 and 10), the controller favors conservative
MCS choices (see Figure 11a), targeting spectral efficiencies well below channel capacity. Although
this results in low resource utilization and highly reliable transmissions (BLER≈ 0%, see Figure 11b),
it under-utilizes favorable channel conditions by employing low modulation orders and code rates.
Thus, the system fails to deliver higher payloads, limiting throughput and spectral efficiency.

Overall, throughput and spectral efficiency peak at ω ≈ 0.34 and ω ≈ 0.5, respectively. Beyond
these values, throughput declines more rapidly than spectral efficiency due to the rising BLER, which

52



2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

12500 15000 17500 20000 22500 25000 27500 30000
Total Number of Resource Elements

20000

30000

40000

50000

60000

70000

Tr
an

sp
or

t B
lo

ck
 S

iz
e

0.00 0.25 0.50 0.75 1.00
Preference ( )

Figure 9: Pareto front illustrating the trade-off between transport block size and resource
utilization. The Pareto front captures the relationship between the transport block size (vertical axis)
and the total number of resource elements (horizontal axis) across a range of system configurations.
Each point represents an outcome from 480 independent simulations, computed using distinct
preference vectors ω ∈ [0, 1], and is color-coded by the corresponding preference weight.

0.00 0.20 0.34 0.50 0.60 0.80 1.00
Preference ( )

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ec

tr
al

 E
ff

ic
ie

nc
y 

[b
ps

/H
z]

Spectral Efficiency
Throughput

15

20

25

30

35

Th
ro

ug
hp

ut
 [M

bp
s]

0.00 0.15 0.30 0.45 0.60
Block Error Rate (BLER)

Figure 10: Joint characterization of spectral efficiency and throughput under varying preference
weights ω, with BLER-encoded performance. The figure presents the trade-off between spectral
efficiency (squares, left axis) and throughput (circles, right axis) as a function of the preference weight
ω, which governs the optimization objective. Data points are color-coded based on BLER, with
cooler hues indicating lower error rates. Dashed vertical lines denote peaks in the performance trends.

reduces transmission reliability. These results highlight the intrinsic tension between maximizing
data rate and maintaining reliability in link adaptation, highlighting how a MORL controller agent
can be deployed to provide differentiated connectivity services.

Figure 11 further illustrates how the controller policy changes by selecting different preference values.
In particular, Figure 11a illustrate the action (i.e., MCS index) distribution induced by different
preference values ω. For example, it clearly highlights how small values of ω induce a link adaptation
policy that selects overly conservative MCS index values relative to the channel state, thus aiming
for transmissions with low spectral efficiency (i.e, characterized by low modulation order and code
rate). Although this makes the transmission very robust, as demonstrated by the corresponding BLER
distribution in Figure 11b, such policy leads to low data throughput.

53



2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 27
MCS Index

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al 

CD
F

baseline
= 0.0
= 0.1

= 0.2
= 0.3
= 0.4

= 0.5
= 0.6
= 0.7

= 0.8
= 0.9
= 1.0

(a) Action (MCS index) distributions for various ω.

0.0 0.2 0.4 0.6 0.8 1.0
Block Error Rate

0.0

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al 

CD
F

baseline
= 0.0
= 0.1

= 0.2
= 0.3
= 0.4

= 0.5
= 0.6
= 0.7

= 0.8
= 0.9
= 1.0

(b) Block error rate distributions for various ω.

Figure 11: Controller agent behavior for different preference values ω.

Conversely, Figure 11a also shows how large preference values ω ≈ 1 induce a link adaptation
policy that selects overly aggressive MCS index values relative to the channel state, thus aiming for
transmissions with too high spectral efficiency (i.e, characterized by high modulation order and code
rates). This makes the transmissions over-the-air unreliable, as demonstrated by the corresponding
BLER distribution in Figure 11b.

H.3.2 MULTI CONNECTIVITY SERVICES WITH QOS DIFFERENTIATION

We consider a practical scenario with two service applications with distinct QoS profiles concurrently
sharing the resources of a radio cell: real-time gaming and web browsing users. Table 10 characterizes
their QoS profile in terms of purpose, service type, differentiated services code point (DSCP) value,
5G QoS identifier (5QI) value and QoS features.

Table 10: QoS Profile Comparison: Real-time gaming vs Web Browsing

Aspect Real-time gaming Web browsing

Purpose Real-time, delay-sensitive traffic Delay-tolerant, no bandwidth guarantees

Service type Expedited forwarding (EF) Best effort (BE)

DSCP value EF (46) BE (0)

5QI 3 9

QoS features Guaranteed bit rate (GBR)
Ultra-low latency
Low jitter
Packet delay budget (PDB) ≈ 50ms
packet error rate (PER) ≈ 1× 10−3

Non-guaranteed bit rate (non-GBR)
No strict latency
No strict jitter
PDB ≈ 300ms

Real-time gaming traffic consists of continuous, high-frequency bidirectional streams, often trans-
mitted over user datagram protocol (UDP) based protocols to support real-time video rendering and
user input feedback. This type of traffic demands substantially higher bitrates (ranging from 5 to
25 Mbps), ultra-low latency, and minimal jitter to maintain responsive and seamless game-play. As
such, real-time gaming is classified as GBR traffic and expedited forwarding service, necessitating
stringent QoS settings, including 5QI = 3 and DSCP values like EF (46), corresponding to a PDB of
≈ 50 ms and PER ≈ 10−3 (cf. Table 5.7.4-1, 3GPP (2025b)).

Web browsing traffic is instead elastic, delay-tolerant, and bursty, following a request-response model
(like the HyperText Transfer Protocol (HTTP)) over reliable transmission control protocol (TCP)
connections. It generally demands low to moderate bitrates (typically below 1 Mbps) and is relatively

54



2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

Table 11: RAN environment simulation parameters.

Load scenario Number of gaming users Web users arrival rate Performance KPIs
Indoor Outdoor Indoor Outdoor

Low 12 6 3.15 1.35 Figure 12
Medium 24 12 6.3 2.7 Figure 13
High 48 24 12.6 5.4 Figure 14
Very high 72 36 18.9 8.1 Figure 15

insensitive to latency and jitter, making it tolerant of network delays. Web browsing is typically
classified as non-GBR traffic, associated with 5QI = 9 and DSCP values such as BE (0), corresponding
to a PDB of ≈ 300 ms and PER ≈ 10−6.

The evaluation scenario consists of a dense-urban deployment comprising three 3-sector sites
operating at 3.5 GHz with a 100 MHz bandwidth with inter-site distance of 167 meters to ensure full
uplink coverage across the simulation area. Traffic is predominantly downlink-oriented, with minimal
uplink activity. Real-time gaming users remain active throughout the simulation duration, whereas
web browsing users follow a Poisson arrival process with a distribution modeled to fit realistic field
data patterns and depart the simulation upon completing their downloads (e.g., webpage, email, etc.).

Unlike the single-service application considered in Appendix H.3.1, the controller agent here applies a
different preference vector to each service application: ωg = [ωg, 1−ωg]

T and ωw = [ωw, 1−ωw]
T .

Like before, we analyze how shifting the MORL controller policy along Pareto front defined by the
two reward components in Equation (39), by tuning ωg or ωw, produces different trade-offs in various
performance KPIs. Under these settings, the values achievable for a performance KPI g(·) of each
service application depends on both preference vectors, i.e., gg = gg(ωg,ωw) gw = gw(ωg,ωw).

Figure 12 to Figure 15 present the achievable user experience for real-time gaming and web browsing
services in terms of three KPIs that closely relate to their QoS profile: user throughput, latency, and
BLER. Each figure refers to one of the four traffic load scenarios, with a mixture of indoor and
outdoor users, summarized in Table 11. Each figure also depicts the average MCS value selected by
the MORL controller, showing how the controller agent applies a different policy to each service
application for different combinations of preference vectors ωg or ωw and network load conditions.

For example, let us analyze the throughput distributions for real-time gaming uses (Figure 12a to
Figure 15a) and web browsing user (Figure 12b to Figure 15b) for the various scenarios. For low
and medium low load conditions, cf. Figure 12a-12b and Figure 13a-13b, respectively the mean
throughput distribution of the two services shows similarities due to the abundance of radio resources
compared to traffic load. The difference in mean throughput magnitude between the two type of
services (i.e., Mbps vs Kbps) can be explained by the difference in traffic: continuous video streaming
vs sporadic downloads of small packets.

At high and very high load conditions, cf. Figure 14a-14b and Figure 15a-15b, respectively, the two
distributions of throughput start showing significant differences, clearly revealing how each service
achieves the best mean throughput with different combinations of preference values (ωg,ωw). As the
traffic load becomes very high, the region of preference values (ωg,ωw) that optimizes the throughput
of each service shrinks into a smaller and well defined area. Furthermore, since in these scenarios
more users share the same amount of radio resources, both services achieve lower throughput.

Similar trends can be observed for latency (expressed as round-trip time (RTT) for real-time gaming
users and as webpage load time for web browsing users, respectively), and block error rate. The
conditions observed in different service KPI in Figure 12 to Figure 15 can be related to the constraints
gi(ω) ≤ bi that can be required to be fulfilled by a service intent in the optimization problem (1)
solved by the optimizer agent to dynamically adapt the preference vectors for each service applications.
For instance, in Section 7.3 we presented an example with a video streaming service requiring a
minimum of 7 Mbps per active user (i.e., gi,thr(ω) ≥ 7). This threshold is rated as good for most
real-time gaming applications at 720p and 1080p resolutions, and excellent for video streaming, given
that typical requirements range from 5 Mbps for HD to 15 Mbps for 4K content.

55



2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

16.534
16.552
16.570
16.588
16.606
16.624
16.642
16.660
16.678
16.696

PD
CP

 T
hr

ou
gh

pu
t (

m
ea

n)
 [M

bp
s]

(a) Real-time gaming: Mean PDCP Throughput

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

28.56
28.80
29.04
29.28
29.52
29.76
30.00
30.24
30.48

PD
CP

 T
hr

ou
gh

pu
t (

m
ea

n)
 [K

bp
s]

(b) Web browsing: Mean PDCP Throughput

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

16.30
16.36
16.42
16.48
16.54
16.60
16.66
16.72
16.78

PD
U 

RT
T 

p9
5 

(m
ea

n)
 [m

s]

(c) Real-time gaming: 95th Percentile PDU RTT

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

0.5770
0.5785
0.5800
0.5815
0.5830
0.5845
0.5860
0.5875
0.5890
0.5905

W
eb

pa
ge

 L
oa

d 
Ti

m
e (

m
ea

n)
 [s

ec
]

(d) Web Browsing: Loading time

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

0.1020
0.1065
0.1110
0.1155
0.1200
0.1245
0.1290
0.1335

BL
ER

 (m
ea

n)

(e) Real-time gaming: Mean BLER.

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

0.050
0.065
0.080
0.095
0.110
0.125
0.140
0.155
0.170
0.185

BL
ER

 (m
ea

n)
(f) Web browsing: Mean BLER

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

23.50
23.65
23.80
23.95
24.10
24.25
24.40
24.55
24.70
24.85

M
CS

 (m
ea

n)

(g) Real-time gaming: MCS selection

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

15.9
17.1
18.3
19.5
20.7
21.9
23.1
24.3

M
CS

 (m
ea

n)

(h) Web browsing: MCS selection

Figure 12: Impact of user preference weights on the performance of real-time gaming and
browsing users in low network load conditions. Each subplot shows a distinct QoS metric for
real-time gaming users (left column) and for web browsing users (right column) under varying
preference weights (ωg , ωw) reflecting resource allocation priorities for the two connectivity services.
Metrics include: (a)-(b) mean user throughput, (c)-(d) mean latency (defined according to the service),
(e)-(f) mean BLER. Furthermore, (g)-(h) show the action (mean MCS) distribution under (ωg , ωw).

56



3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

16.556
16.568
16.580
16.592
16.604
16.616
16.628
16.640
16.652
16.664

PD
CP

 T
hr

ou
gh

pu
t (

m
ea

n)
 [M

bp
s]

(a) Real-time gaming: Mean PDCP Throughput

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

27.60
27.75
27.90
28.05
28.20
28.35
28.50
28.65
28.80
28.95

PD
CP

 T
hr

ou
gh

pu
t (

m
ea

n)
 [K

bp
s]

(b) Web browsing: Mean PDCP Throughput

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

18.48
18.57
18.66
18.75
18.84
18.93
19.02
19.11
19.20
19.29

PD
U 

RT
T 

p9
5 

(m
ea

n)
 [m

s]

(c) Real-time gaming: 95th Percentile PDU RTT

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

0.624
0.627
0.630
0.633
0.636
0.639
0.642
0.645
0.648
0.651

W
eb

pa
ge

 L
oa

d 
Ti

m
e (

m
ea

n)
 [s

ec
]

(d) Web Browsing: Loading time

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

0.177
0.186
0.195
0.204
0.213
0.222
0.231
0.240
0.249
0.258

BL
ER

 (m
ea

n)

(e) Real-time gaming: Mean BLER.

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

0.07
0.10
0.13
0.16
0.19
0.22
0.25
0.28
0.31
0.34

BL
ER

 (m
ea

n)
(f) Web browsing: Mean BLER

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

17.85
18.45
19.05
19.65
20.25
20.85
21.45
22.05

M
CS

 (m
ea

n)

(g) Real-time gaming: MCS selection

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

11.5
13.0
14.5
16.0
17.5
19.0
20.5
22.0
23.5

M
CS

 (m
ea

n)

(h) Web browsing: MCS selection

Figure 13: Impact of user preference weights on the performance of real-time gaming and
browsing users in medium network load conditions. Each subplot shows a distinct QoS metric
for real-time gaming users (left column) and for web browsing users (right column) under varying
preference weights (ωg , ωw) reflecting resource allocation priorities for the two connectivity services.
Metrics include: (a)-(b) mean user throughput, (c)-(d) mean latency (defined according to the service),
(e)-(f) mean BLER. Furthermore, (g)-(h) show the action (mean MCS) distribution under (ωg , ωw).

57



3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

11.0
11.4
11.8
12.2
12.6
13.0
13.4
13.8

PD
CP

 T
hr

ou
gh

pu
t (

m
ea

n)
 [M

bp
s]

(a) Real-time gaming: Mean PDCP Throughput

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

17.1
18.0
18.9
19.8
20.7
21.6
22.5
23.4
24.3
25.2

PD
CP

 T
hr

ou
gh

pu
t (

m
ea

n)
 [K

bp
s]

(b) Web browsing: Mean PDCP Throughput

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

24.2
24.8
25.4
26.0
26.6
27.2
27.8
28.4
29.0
29.6

PD
U 

RT
T 

p9
5 

(m
ea

n)
 [m

s]

(c) Real-time gaming: 95th Percentile PDU RTT

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

0.775
0.850
0.925
1.000
1.075
1.150
1.225
1.300
1.375

W
eb

pa
ge

 L
oa

d 
Ti

m
e (

m
ea

n)
 [s

ec
]

(d) Web Browsing: Loading time

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

0.07
0.10
0.13
0.16
0.19
0.22
0.25
0.28
0.31
0.34

BL
ER

 (m
ea

n)

(e) Real-time gaming: Mean BLER.

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

0.02
0.08
0.14
0.20
0.26
0.32
0.38
0.44
0.50

BL
ER

 (m
ea

n)
(f) Web browsing: Mean BLER

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

10.0
10.6
11.2
11.8
12.4
13.0
13.6
14.2
14.8
15.4

M
CS

 (m
ea

n)

(g) Real-time gaming: MCS selection

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

6.5
8.5
10.5
12.5
14.5
16.5
18.5
20.5
22.5

M
CS

 (m
ea

n)

(h) Web browsing: MCS selection

Figure 14: Impact of user preference weights on the performance of real-time gaming and
browsing users in high network load conditions. Each subplot shows a distinct QoS metric for
real-time gaming users (left column) and for web browsing users (right column) under varying
preference weights (ωg , ωw) reflecting resource allocation priorities for the two connectivity services.
Metrics include: (a)-(b) mean user throughput, (c)-(d) mean latency (defined according to the service),
(e)-(f) mean BLER. Furthermore, (g)-(h) show the action (mean MCS) distribution under (ωg , ωw).

58



3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

5.55
6.00
6.45
6.90
7.35
7.80
8.25
8.70
9.15

PD
CP

 T
hr

ou
gh

pu
t (

m
ea

n)
 [M

bp
s]

(a) Real-time gaming: Mean PDCP Throughput

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

9.0
10.5
12.0
13.5
15.0
16.5
18.0
19.5
21.0
22.5

PD
CP

 T
hr

ou
gh

pu
t (

m
ea

n)
 [K

bp
s]

(b) Web browsing: Mean PDCP Throughput

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

31.8
32.6
33.4
34.2
35.0
35.8
36.6
37.4
38.2

PD
U 

RT
T 

p9
5 

(m
ea

n)
 [m

s]

(c) Real-time gaming: 95th Percentile PDU RTT

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

0.90
1.14
1.38
1.62
1.86
2.10
2.34
2.58

W
eb

pa
ge

 L
oa

d 
Ti

m
e (

m
ea

n)
 [s

ec
]

(d) Web Browsing: Loading time

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

0.045
0.090
0.135
0.180
0.225
0.270
0.315
0.360

BL
ER

 (m
ea

n)

(e) Real-time gaming: Mean BLER.

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

0.02
0.08
0.14
0.20
0.26
0.32
0.38
0.44
0.50

BL
ER

 (m
ea

n)
(f) Web browsing: Mean BLER

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

8.00
8.75
9.50
10.25
11.00
11.75
12.50
13.25
14.00
14.75

M
CS

 (m
ea

n)

(g) Real-time gaming: MCS selection

0.0 0.2 0.4 0.6 0.8 1.0
Preference w for Web Browsing

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

er
en

ce
 

g f
or

 G
am

in
g

5.4
7.2
9.0
10.8
12.6
14.4
16.2
18.0
19.8
21.6

M
CS

 (m
ea

n)

(h) Web browsing: MCS selection

Figure 15: Impact of user preference weights on the performance of real-time gaming and
browsing users in very high network load conditions. Each subplot shows a distinct QoS metric
for real-time gaming users (left column) and for web browsing users (right column) under varying
preference weights (ωg , ωw) reflecting resource allocation priorities for the two connectivity services.
Metrics include: (a)-(b) mean user throughput, (c)-(d) mean latency (defined according to the service),
(e)-(f) mean BLER. Furthermore, (g)-(h) show the action (mean MCS) distribution under (ωg , ωw).

59



3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

20

40

60

Th
ro

ug
hp

ut
 [M

bp
s]

Warm-up Phase f( )

0.0
0.1
0.2

0.4

0.6

BL
ER

g( )
g( ) 0.1

0 30 60 90 120 150 180
Time [seconds]

0.0

0.5

1.0

Pr
ef

er
en

ce

(a) Performance of BO without trust region

20

40

60

Th
ro

ug
hp

ut
 [M

bp
s]

Warm-up Phase f( )

0.0
0.1
0.2

0.4

0.6

BL
ER

g( )
g( ) 0.1

0 30 60 90 120 150 180
Time [seconds]

0.0

0.5

1.0

Pr
ef

er
en

ce

(b) Performance of BO with trust region

Figure 16: Performance comparison of optimizer agent when using the PAX-BO algorithm (a)
without trust region and (b) with trust region enabled.

H.4 ONLINE PREFERENCE OPTIMIZATION

Appendix D presented the Preference-Aligned eXploration Bayesian Optimization (PAX-BO) algo-
rithm for the optimizer agent (cf.Algorithm 2). A key design feature of PAX-BO is the integration of
trust regions to stabilize the selection of the preference values ω for the downstream controller agent.

Figure 16 compares the performance of PAX-BO considering an intent definition that requires to
maximize the aggregate system throughput while keeping the BLER of each user below 10% – which
corresponds to the typical configuration of link adaptation in 4G/5G RAN systems. Figure 16a
shows the performance of PAX-BO without trust region, whereas in Figure 16b we enabled the trust
region. The top panel of both figures shows the aggregate system throughput f(ω), the middle panel
shows BLER constraint evaluations g(ω) with threshold g(ω) ≤ 0.1, and the bottom panel shows
the evolution of the preference parameter ω. Compared to Figure 16a, the trust region stabilizes
the optimization, reducing constraint violations and leading to smoother preference adaptation and
improved system throughput (with smoother degradations).

60



3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

I COMPUTE RESOURCES AND HYPERPARAMETERS

All MORL training runs were performed on a high-performance computing (HPC) cluster. The main
training node was equipped with an NVIDIA A100-PCIE-40GB GPU and 48 CPU cores, which hosted
the learner, actors, and replay memory. The replay buffer was partitioned into four independently
prioritized shards, each pinned to a dedicated CPU core to support parallelized access. Co-locating
the learner, actors, and replay shards on the same node minimized intra-node communication latency.

We used 40 actors for each experiment, and each actor launched two threads that interacted with
14 simulator instances in parallel. The simulators were distributed across multiple compute nodes,
totaling 560 CPU cores. Each simulator ran in a separate process and communicated with its assigned
actor via ZeroMQ, enabling scalable multi-node environment interaction.

Cluster job scheduling and resource management were handled by the Load Sharing Facility (LSF),
which managed job queueing, monitoring, and node allocation according to the experiments’ resource
specifications.

Table 12: Hyperparameters Used for Adaptor in Interpreter.

Monitor

Window size (W) 12
Alert-on ratio (ρon) 0.55
Alert-off ratio (ρoff) 0.45

Adjust

Step (Mbps) 0.08
Lifetime (Mbps) 0.40
Floor 5.00
Ceiling 9.00
Cooldown steps 2
Deadband 0.05
Gain (up) 1.0
Gain (down) 1.0

Table 13: Hyperparameters Used for Supervised Fine-Tuning of the Intent-to-OTM Translator.

Component Setting

Base model Qwen2.5-7B-Instruct
Parameter-efficient tuning LoRA (rank 64, α = 16, dropout = 0.05)
LoRA target modules q_proj, k_proj, v_proj, o_proj
Precision bfloat16
Epochs 2
Batch size (per device) 2
Gradient accumulation steps 8
Optimizer AdamW (Torch fused)
Learning rate 2× 10−4

Scheduler Cosine decay
Warmup ratio 0.03
Weight decay 0.01
Gradient clipping 1.0
Gradient checkpointing Enabled
Max sequence format Qwen chat template (intent → OTM pair)
Evaluation frequency Every 200 steps
Checkpoint frequency Every 200 steps (max 5 checkpoints)

61



3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

Table 14: Bayesian Optimization Hyperparameters Used in the Actor.

Hyperparameter Value / Description

Acquisition function qLogEI
MC samples for acquisition 256
Raw samples for optimization 512
Number of restarts 10
Batch size (q) 1
GP refit frequency Every 1 observation
Training window size 60 most recent samples
Input scaling (normalize) Yes (Normalize transform)
Output scaling Standardize outcomes

Trust region initial radius 0.15
Minimum trust region radius 0.05
Trust region shrink factor 0.7
Infeasible patience 2 consecutive infeasible samples
No-improvement patience 5 evaluations

Initial preference samples 20 Sobol samples (fixed list)
Preference domain [0, 1]2

62



3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

Table 15: Hyperparameters used for Multi-Objective Reinforcement Learning (MORL).

Learner

Optimizer Adam Kingma & Ba (2017)
Learning rate 5× 10−5

β1 (Adam momentum term) 0.9
β2 (Adam second moment term) 0.999
ϵ (Adam numerical stability) 1.5× 10−4

Weight decay 0.02/512
Gradient norm 20
Target update period Every 1 gradient updates
Target update policy Soft
Target update factor 1.0× 10−3

Model update interval Every 200 gradient updates
Prefetched batches 16
Batch size (experience) 512
Batch size (preference) 128
Warm-up phase 50,000 samples
Loss function MSE

Actor

Number of actors 40
Local buffer capacity 2,500
Discount factor (γ) 1.0
ϵ-greedy (linear decay) 0.8→ 0.05
Timesteps 5,500,000

Replay Memory

Number of shards 4
Capacity of each shard 4,000,000
Prioritization exponent (α) 0.6
Importance sampling exponent (β) 0.4

Model

Activation function ReLU
Number of blocks 6
Number of layers per block 2
units per layer 128
Dropout probability 0.1
Layer normalization True

63


	Introduction
	Related Work
	Agentic AI System for RAN Control
	Timescales Separation

	Language-Guided Intent Management
	Interpreter Agent
	Optimizer Agent
	PAX-BO: Preference-Aligned eXploration Bayesian Optimization


	Preference-Guided Intent Fulfillment
	Controller Agent

	Case Study: Agentic Radio Resource Management
	Experiment
	MORL Controller Agent for Link Adaptation
	Intent-fulfillment loop validation
	Triadic Agent Workflow Validation

	Conclusions
	LLM Usage Statement
	Interpreter Agent: Responsibilities, Design, Implementation
	Scope and Responsibilities
	Architectural Overview
	Translator
	Sliding-Window Monitor
	Advisor (Advisory Layer)
	Adaptor (Magnitude, Safety, Persistence)

	Algorithmic Summary and Interfaces
	Interfaces

	Models
	Stability, Safety, and Complexity
	Failure Modes and Mitigations

	Optimization Template Model
	OTM Schema and Domain Semantics
	Example of OTM adaptation.

	Translator SLM Fine-Tuning
	Dataset Curation
	Training Methodology
	Comparative Evaluation

	Optimizer Agent Design
	Bayesian Optimization
	Gaussian Process Priors
	Acquisition Functions

	PAX-BO: Preference-Aligned eXploration Bayesian Optimization

	Multi-Objective Reinforcement Learning
	Multi-Objective Markov Decision Process
	Convex Coverage Set
	Envelope Q-Learning

	Distributed Envelope Q-Learning
	D-EQL Architecture
	Distributed Actors
	Centralized Learner
	Stratified Sampling on the Probability Simplex
	Deterministic Equal-Volume Strata via a Simplex Lattice
	Uniform Sampling Within a Stratum
	Assigning Strata to Actors
	Discussion and alternatives

	Experiments
	Environments and Setup
	Metrics and Results
	Hyperparameters


	Case Study
	Link adaptation
	MOMDP Design for Link Adaptation
	Action space
	Reward vector and preference space
	State Design

	Extended Experimental Evaluation
	Network Simulator Environment
	Training Setup
	Testing the MORL LA Controller Agent
	Single Connectivity Service
	Multi Connectivity Services with QoS Differentiation

	Online Preference Optimization

	Compute resources and Hyperparameters

