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Abstract

Choosing a suitable filtering function for the Mapper algorithm can be difficult due
to its arbitrariness and domain-specific requirements. Finding a general filtering
function that can be applied across domains is therefore of interest, since it would
improve the representation of manifolds in higher dimensions. In this extended
abstract, we propose that topological autoencoders is a suitable candidate for
this and report initial results strengthening this hypothesis for one set of high-
dimensional manifolds. The results indicate a potential for an easier choice of
filtering function when using the Mapper algorithm, allowing for a more general
and descriptive representation of high-dimensional data.

1 Introduction

Topological Data Analysis (TDA) has recently gained a great amount of popularity in the machine
learning community. Apart from Persistent Homology, one of the more prominent methods has been
the Mapper, originally proposed by |Singh et al.|[2007] due to its ability to provide a visualization of
high-dimensional data. In short, the Mapper algorithm, as explained in the original paper (see|Singh
et al. [2007]) consists of a few steps. Given a point cloud X € R, one uses a filtration function
f:RY — R™, where m < d. This function, as stated by [Singh et al.| [2007]], "can be a function
which reflects geometric properties of the data". Once reduced using the filtrations, the points are
clustered using a clustering method of choice and mapped into overlapping bins forming vertices
connected if they have common points, producing a graph that serves as an approximation of the
Reeb graph (see Munch and Wang| [2015])).

One of the difficulties with the Mapper is however the choice of parameters such as deciding on
the overlap between the bins and design of the filtering function f. These choices determine the
construction of the resulting graph, and which filtering function that best captures the topology is
not always entirely clear. While the choice of function allows for certain freedom, it might also pose
as a barrier of entry for the regular practitioner and a difficulty in generating useful representations
when using the Mapper algorithm. The optimal is of course to reduce the dimensionality in a way
such that the local and the global topology of the data is preserved, while the summarization of the
data lose the minimum amount of information. However, as [Kumari et al.| [2020]] points out, different
filtering functions capture different things. |Carriere et al.|[2018] mention that the two most common
choices are the eccentricity, i.e., the maximum distance to any other point in the point cloud, and the
eigenfunctions of the covariance matrix as used in PCA. Other methods such as SVD (Lum et al.
[2013]]) as well as the kernel density estimation (Singh et al.|[2007]) have been extensively used.
These do however all come with their drawbacks. SVD and PCA do not capture non-linear relations
very well and might miss important non-linear properties of the data, although they preserve distance.
Non-linear techniques such as t-SNE (Maaten and Hinton| [2008]]) and IsoMAP (Tenenbaum et al.
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[2000]) are better at preserving local distances but lose the global perspective as pointed out by
Kumari et al.|[2020]]. The kernel density estimator relies on a bandwidth e, set by the user, introducing
another parameter to tune. The choice of filtering function is therefore a choice for the user where
trade-offs have to be made. Finding a filtering function without the aforementioned drawbacks and
which could simultaneously capture both the global and local topologies would therefore be highly
beneficial, since it would produce Mapper graphs representing the shape of the data more accurately.

2 Topological Autoencoders as a filtering function

We propose the idea that a candidate for a filtering function preserving global and local topology is
the topological autoencoder (TAE), introduced by Moor et al.[[2019]. These are autoencoders (AEs)
regularized with a Persistent Homology loss to preserve the topology. As seen in their paper (see
Moor et al.| [2019]), the TAEs manage to preserve the shape and form of the data in lower dimensions
to a certain extent, and manages to capture the global as well as local topology apart from other
methods. As they also note, the TAE can learn multiple manifolds, which is a difficult task for many
methods. When this topology is preserved for a distance metric of choice, we can derive a compact
representation in lower dimensions that better represents the data’s shape. TAEs do of course come
with a longer training time, a risk of overfitting, neural architecture choices and a need for larger
datasets. It does however provide a bridge between topology and deep learning.

3 Initial experiments

To evaluate whether TAEs result in more representative graphs than other filtering functions, we are
looking at how the Mapper maps data belonging to different manifolds into vertices with different
filtering functions. As a start, we use the synthetic data constructed by Moor et al.|[2019]], consisting of
ten 100-dimensional hyperspheres inside one larger 100-dimensional hypersphere in 101 dimensions.
We scale the data and use DBSCAN (see Ram et al.|[2010]) as clustering method and set its € to 4 for
all comparisons and the euclidean distance as the distance metric. For the TAE, we reproduce the
experiments from Moor et al.| [2019]], with the exact same parameter choices as in their best runs. We
use the same training data to train the representations and construct the Mapper graph, to then map
the test data into the Mapper graph.

Our initial experiment{] aim for a high separation of the spheres into different vertices as well
as separate simplicial complexes for them, working under the presumption that vertices should
contain points generated from only one sphere. We use the metric my ,; as seen in equation
where Vj, ,; is the set of vertices in the mapper graph Gy ,; ‘= (Vk,0.i; Ek,0,i) constructed
using filtering function k, overlap o and number of intervals .. C = {ci,...,c,} is the set of
different manifolds in the dataset to which each point can belong. In our initial experiments,
k € {T-SNE, TAE, Kernel Density, SVD, PCA, Eccentricity} and C = {c1,..,c11}, one for each
hypersphere. For the trainable filtering functions, we train our filtering functions on a training set
of data and visualize and build the graph on a test set. However, for TSNE, which is not made for
predicting mapping points to its latent space, we use as many points (9000) to train, but only produce
a graph on the test set points for a fair comparison. We use a covering with overlappings rangings
from 0.025 to 0.4 with a 0.025 step and an interval cardinality ranging between 5 and 45 with step of
5 and report the best and worst results in table In other words, o € O := {0.025,0.05, ...,0.4} and
1 € T :={5,10,...,45}. Running over many choices can bring insights into a filtering function’s
robustness to choices of the aforementioned parameters.
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The intuition behind our current metric my, is that fewer points belonging to different spheres in
a vertex in the graph indicates a preservation of local as well as global topology. With a perfect
separation of manifolds, every node will only contain points belonging to one (in our case, one
sphere).

'Code available at https://github.com/Filco306/Topo- AE-Mapper,
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Table 1: Best average number of spheres found in each node. Lower is better, 1 is optimal.

TAE | PCA | T-SNE | SVD | Kernel Density | Eccentricity
Best 1.000 | 1.1 1.026 1.119 | 1.0 1.0
Average | 1.021 | 1.206 | 1.130 1.205 | 1.621 1.137
Worst 1.115 | 1.311 | 1.259 1.311 | 2.25 1.3
4 Results

Table ] display our initial results, indicating that TAEs are better at allocating the different spheres
into separate parts than the other methods, capturing more of the topological properties of the data.
Although t-SNE is close, it does not completely separate the spheres like the TAE. In figure [T] we
provide visualizations of the best results from table[I] where we can see that the TAE forms a graph
in which somewhat of a circle can be distinguished for the larger sphere, and simultaneously separate
the smaller spheres to become separate. The kernel density and the eccentricity also achieves optimal
results according to the metric, but for these optimal results, they do not capture the inherent shape as
well as the TAE (bottom right).
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Figure 1: Examples of Mapper graphs for each filtration with the best results from table [T} Node
color indicate average label value of which sphere points in the node belong to - yellow is the large
sphere, others are the smaller.
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Figure 2: Distribution of the performance over the grid search for the different filtering functions. As
can be seen, the TAE is significantly more centered towards the optimal value of the metric used.

By looking at the distribution of the metric 7y, in figure 2] for the different filter functions, we can see
that the TAE has a distribution significantly closer to the optimal result (being 1) compared to the
other filtering functions. This shows that over a large range of parameters, the TAE outperforms the
rest in generating representations separating the different spheres into different nodes.



5 Discussion & future work

In this extended abstract, we have shown that topological autencoders are superior to other filtering
functions in terms of representing high-dimensional data when combined with the Mapper algorithm
on a set of manifolds. We plan to further extend the experiments to more simulated manifold datasets
as well as the other datasets applied in|[Moor et al.|[2019] to confirm whether this holds generally.
Furthermore, the metrics used to evaluate how a filtering function best captures the topology of
the data as well as its robustness will be refined, which could elaborate the way to benchmark
different filtering functions and their ability to better preserve the topology of higher-dimensional
data. In essence, it will be beneficial to aim for a method preserving global and local topology while
simultaneously gaining an empirical understanding of different filtering functions’ strengths and
shortcomings.

Acknowledgements

This work was partially supported by Wallenberg Autonomous Systems Program (WASP).

References

Gurjeet Singh, Facundo Mémoli, and Gunnar E Carlsson. Topological methods for the analysis of
high dimensional data sets and 3d object recognition. SPBG, 91:100, 2007.

Elizabeth Munch and Bei Wang. Convergence between categorical representations of reeb space and
mapper. arXiv preprint arXiv:1512.04108, 2015.

Nupur Kumari, Akash Rupela, Piyush Gupta, and Balaji Krishnamurthy. Shapevis: High-dimensional
data visualization at scale. In Proceedings of The Web Conference 2020, pages 2920-2926, 2020.

Mathieu Carriere, Bertrand Michel, and Steve Oudot. Statistical analysis and parameter selection for
mapper. The Journal of Machine Learning Research, 19(1):478-516, 2018.

P. Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson, M. Alagappan, J. Carlsson, and
G. Carlsson. Extracting insights from the shape of complex data using topology. Scientific Reports,
3(1), 2013. ISSN 2045-2322. doi: 10.1038/srep01236. URL https://dx.doi.org/10.1038/srep01236.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579-2605, 2008.

Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319-2323, 2000.

Michael Moor, Max Horn, Bastian Rieck, and Karsten Borgwardt. Topological autoencoders. arXiv
preprint arXiv:1906.00722, 2019.

Anant Ram, Sunita Jalal, Anand S Jalal, and Manoj Kumar. A density based algorithm for discovering
density varied clusters in large spatial databases. International Journal of Computer Applications,

3(6):1-4, 2010.


https://dx.doi.org/10.1038/srep01236

	Introduction
	Topological Autoencoders as a filtering function
	Initial experiments
	Results
	Discussion & future work

