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Abstract

Large Language Models (LLMs), such as001
LLaMA and T5, have shown exceptional per-002
formance across various tasks through fine-003
tuning. Although low-rank adaption (LoRA)004
has emerged to cheaply fine-tune these LLMs005
on downstream tasks, their deployment is still006
hindered by the vast model scale and computa-007
tional costs. Post-training model pruning offers008
a way to compress LLMs. However, the cur-009
rent pruning methods designed for LLMs are010
not compatible with LoRA. This is due to their011
utilization of unstructured pruning on LLMs,012
impeding the merging of LoRA weights, or013
their dependence on the gradients of pre-trained014
weights to guide pruning, which can impose015
significant memory overhead. To this end, we016
propose LoRAPrune, a new framework that017
delivers an accurate structured pruned model018
in a highly memory-efficient manner. Specif-019
ically, we first design a LoRA-guided prun-020
ing criterion, which uses the weights and gra-021
dients of LoRA, rather than the gradients of022
pre-trained weights for importance estimation.023
We subsequently integrate this criterion into024
an iterative pruning process, effectively remov-025
ing redundant channels and heads. Extensive026
experimental results demonstrate the superior027
performance of our LoRAPrune over existing028
approaches on the LLaMA series models. At029
a 50% compression rate, LoRAPrune demon-030
strates superior performance over LLM-Pruner,031
achieving a reduction in perplexity by 4.81 on032
WikiText2 and 3.46 on PTB, while also de-033
creasing memory usage by 52.6%. Besides,034
LoRAPrune also matches semi-structural prun-035
ing across multiple LLMs, proving its wide036
applicability.037

1 Introduction038

Large Language Models (LLMs) (Touvron et al.,039

2023; Du et al., 2022; Frantar et al., 2022) have040

showcased remarkable prowess, exhibiting out-041

standing performance across numerous tasks. To042

enable LLMs to perform specific tasks, such as043

Table 1: The memory costs for pruning LLaMA-65B.
“Iter.” indicates whether the method supports iterative
pruning and “#GPU" indicates the number of NVIDIA
A100 (80G) GPUs required.

Method Iter. #GPU Mem.(G)
PST (Li et al., 2022) ✓ 3 234

LLM-Pruner (Ma et al., 2023) × 2 154
LoRAPrune ✓ 1 72

chat-bots (Du et al., 2022; Zeng et al., 2022), 044

they are often efficiently fine-tuned on downstream 045

datasets (Taori et al., 2023; Chenghao Fan and Tian, 046

2023) by parameter-efficient fine-tuning (PEFT) 047

methods (Jia et al., 2022; Hu et al., 2022; Chen 048

et al., 2022), among which LoRA-based fine-tuning 049

methods (Hu et al., 2022; Luo et al., 2023; He et al., 050

2023) have gained widespread use. However, the 051

remarkable success of LLMs is accompanied by 052

obstacles from their vast scale and substantial com- 053

putational costs, making deployment exceedingly 054

arduous (Frantar and Alistarh, 2023). 055

Neural network pruning (Li et al., 2017; Molchanov 056

et al., 2017), a prevailing technique for model com- 057

pression, can significantly reduce the model size 058

and complexity. Recently, the post-training prun- 059

ing literature, such as SparseGPT (Frantar and Al- 060

istarh, 2023) and WANDA (Sun et al., 2023), have 061

achieved high-performance unstructured sparse 062

LLMs. However, unstructured sparse models face 063

two critical issues: 1) Unstructured sparse mod- 064

els are hard to obtain direct inference speedup. 065

They often require specialized hardware support 066

to achieve satisfying acceleration benefits, which 067

leads to unstructured pruning not benefiting legacy 068

off-the-shelf platforms, e.g., CPUs, DSPs, and 069

GPUs (Fang et al., 2023; You et al., 2023; Zhou 070

et al., 2022). 2) Unstructured sparse models are 071

not compatible with LoRA. As shown in Figure 1 072

(a), since the weights BA produced by LoRA are 073

dense, it poses challenges when trying to merge 074

BA into the unstructured sparse weights. For in- 075

stance, LoRA without merging increases inference 076

time by nearly 54% (see Table 3), diminishing the 077
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Figure 1: Comparing LoRAPrune with other pruning methods: (a) Unstructured sparse model cannot directly
merge LoRA weights, which is computationally inefficient. (b) Gradient-guided pruning requires the gradients of
the pre-trained weights, which is memory-intensive. (c) LoRAPrune only needs the gradients of LoRA weights and
can seamlessly merge LoRA weights into pre-trained weights, which is efficient in both memory and computation.

benefits of pruning. One potential solution is to078

perform fine-tuning using LoRA on downstream079

tasks first and then carry out post-training pruning.080

However, separating tuning and pruning can lead to081

sub-optimal results (Molchanov et al., 2019; Sanh082

et al., 2020). To tackle this challenge, PST (Li et al.,083

2022) combines unstructured pruning with efficient084

fine-tuning, which simultaneously prunes LoRA085

and pre-trained weights. This method ensures a086

seamless merge of LoRA weights and avoids ad-087

ditional computational overhead that comes from088

LoRA. However, unstructured pruning of LoRA089

necessitates computing BA first and then doing090

Hadamard product with a binary mask M, which091

results in significant memory overhead (see Table092

1) since BA and M share the same shape with093

pre-trained weights. For instance, when pruning094

LLaMA-65b, the intermediate variables necessitate095

the storage capacity of three NVIDIA A100 (80G)096

GPUs. This poses a significant memory challenge097

when adapting PST to LLMs. Instead, structured098

pruning can mitigate this issue since we can di-099

rectly prune the structured weights of A in LoRA100

without storing BA. Therefore, it is significant to101

combine LoRA with structured pruning to achieve102

simultaneous PEFT and direct acceleration on gen-103

eral hardware platforms with high performance.104

To this end, we propose a unified framework for105

LoRA and structured pruning, named LoRAPrune.106

As shown in Figure 1 (c), LoRAPrune not only107

prunes the structured weights (e.g., heads, chan-108

nels) from the pre-trained model weights W0 but109

also trims the corresponding weights in LoRA110

weight A without computing BA first. Conse-111

quently, after pruning and fine-tuning, the weights 112

of LoRA can be seamlessly merged with the pre- 113

trained weights, ensuring that no additional com- 114

putations are needed during inference. To identify 115

weight connections of structural importance, the 116

criterion used in the structured pruning methods 117

(Ma et al., 2023; Molchanov et al., 2019, 2017) 118

is often estimated by gradients or its variants, as 119

shown in Figure 1 (b). However, LoRA typically 120

requires frozen pre-trained weights without com- 121

puting their gradients, thus pruning approaches 122

that rely on gradients of the pre-trained weights 123

cannot be directly applied. To efficiently esti- 124

mate the importance of pre-trained weights, Lo- 125

RAPrune introduces a novel criterion that exclu- 126

sively utilizes the gradients of LoRA. In contrast 127

to the vanilla gradient-guided pruning method, Lo- 128

RAPrune leverages LoRA’s gradients as the ap- 129

proximation for the gradients of the pre-trained 130

weights. Based on the presented criterion, we can 131

iteratively perform pruning while simultaneously 132

conducting efficient fine-tuning to restore the per- 133

formance of the pruned LLMs, requiring only a 134

small calibration set. Specifically, we compute the 135

importance of every batch of data and update the 136

importance using a moving average. Every few it- 137

erations, we remove a portion of unimportant struc- 138

tured weights until the desired sparsity is achieved. 139

Through extensive experiments on diverse bench- 140

mark datasets and various scales of LLMs, we 141

demonstrate that LoRAPrune consistently outper- 142

forms other structured pruning techniques tailored 143

for LLMs. Furthermore, compared to the vanilla 144

gradient-guided pruning, LoRAPrune significantly 145
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Figure 2: The pruning process for the LoRA-guided criterion involves utilizing the LoRA matrices A, B and their
respective gradients∇A,∇B to compute the importance I. Subsequently, weight importance (gray number) with
the same group are aggregated to the group importance (black number) and the groups with low scores are removed.

diminishes memory and computational overhead,146

facilitating efficient pruning and fine-tuning of147

LLaMA-65b on a single GPU concurrently. This148

paper has the following key contributions:149

• We introduce a novel memory-efficient pruning150

criterion tailored for LLMs, termed the LoRA-151

guided criterion, which seamlessly integrates152

with LoRA. Leveraging the gradients of LoRA,153

we can efficiently approximate the importance of154

pre-trained weights without needing to compute155

their gradients.156

• As we can efficiently approximate gradients and157

update weights using LoRA, LoRAPrune facil-158

itates iterative structured pruning, resulting in159

precise small models. Our framework ensures160

both high memory efficiency during pruning and161

incurs efficient inference.162

• Pruning experiments conducted on the LLaMA163

models demonstrate that LoRAPrune can effi-164

ciently perform structured pruning with up to 65165

billion weights on a single GPU. Furthermore,166

the pruning results achieved by LoRAPrune sig-167

nificantly surpass other pruning methods. For168

example, against LLM-Pruner, LoRAPrune uses169

only 52.6% of the memory yet scores lower per-170

plexities by 4.81 on WikiText2 and 3.46 on PTB.171

LoRAPrune also matches semi-structural prun-172

ing performance across various LLMs, proving173

its broad applicability.174

2 Related Work175

Parameter-efficient fine-tuning. PEFT methods176

(Jia et al., 2022; Wu et al., 2022; Chen et al.,177

2022; Hu et al., 2022; Luo et al., 2023; He et al.,178

2023) have received increasing attention from both179

academia and industry. Among them, LoRA (Hu 180

et al., 2022) proposes injecting trainable low-rank 181

decomposition matrices into each layer which can 182

be merged into the pre-trained weights, avoiding 183

extra computation in inference. Since inference 184

efficiency, many methods based on LoRA have 185

emerged. For instance, LongLoRA (Chen et al., 186

2023) improves upon LoRA, enabling efficient fine- 187

tuning of LLMs on long contexts. AnimateDiff 188

(Guo et al., 2023b) obtains a personalized genera- 189

tor by inserting LoRA into the frozen text-to-image 190

model. Quantizing the pre-trained weights into 4- 191

bit, QLoRA (Dettmers et al., 2023) employs LoRA 192

for fine-tuning LLMs in downstream tasks while 193

maintaining efficient memory usage. Therefore, 194

LoRA is indispensable for fine-tuning LLMs. Our 195

method seamlessly integrates LoRA and pruning, 196

making it easily extensible to other PEFT methods 197

based on LoRA. 198

Neural network pruning. Removing unimpor- 199

tant weights from LLMs to reduce memory and 200

the computational cost of deployment has become 201

a common approach for model compression. Un- 202

structured pruning (Dong et al., 2017; Lee et al., 203

2019; Wang et al., 2020; Sun et al., 2023; Fran- 204

tar and Alistarh, 2023; Li et al., 2022) can ob- 205

tain highly compressed models by directly pruning 206

neurons, which also causes unstructured sparsity 207

and hard deployment. In contrast, structured prun- 208

ing (Ma et al., 2023; Xia et al., 2023; Guo et al., 209

2023a) directly discards the whole grouped param- 210

eters (e.g.heads, channels) and leaves a model with 211

deploy-friendly structures. However, structured 212

pruning models require extensive finetuning to re- 213

gain their performance levels. For example, Xia 214

et al. (2023) utilized 50B tokens sampled for con- 215

tinued pretraining of their pruned model, a process 216
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that proves to be prohibitively expensive in terms217

of hardware resources. In contrast, our approach218

leverages structured pruning alongside a signifi-219

cantly smaller dataset, enabling direct inference220

acceleration while maintaining training expenses221

at an acceptable level.222

Pruning criterion. Determining the importance223

of weights in a network is still an open question224

(Blalock et al., 2020). A common approach to225

model pruning is to use parameter magnitude (Li226

et al., 2018; Lee et al., 2020; Elesedy et al., 2020;227

Han et al., 2015; Li et al., 2017) as a criterion.228

However, the small weights can still have a sig-229

nificant impact on the model output due to the230

complex structure of neural networks, while large231

weights may not be as important. Many methods232

(Sanh et al., 2020; Yu et al., 2022a; Zhang et al.,233

2022; Lee et al., 2019; Yu et al., 2022b; Wang et al.,234

2020; LeCun et al., 1989; Hassibi et al., 1993) em-235

ploy Taylor expansion to approximate the errors236

introduced by pruning and use this as the criterion237

for importance estimation. To avoid computing238

the Hessian matrix (Hassibi et al., 1993) or Hes-239

sian inverse (LeCun et al., 1989) in Taylor expan-240

sion, (Molchanov et al., 2017, 2019) only use the241

first-order term in Taylor expansion. Furthermore,242

LLM-Pruner (Ma et al., 2023) similarly utilizes the243

first-order expansion for pruning and extends the244

pruning technique to LLMs. However, the first-245

order term in Taylor expansion still requires gra-246

dients of the pre-trained weights. As shown in247

Table 1, computing and storing the gradients of pre-248

trained weights significantly increases the pruning249

cost. To avoid computing gradients of pre-trained250

weights, PST (Li et al., 2022) learns the gradients251

of pre-trained weights by an extra low-rank matrix,252

which is motivated by LoRA. Nevertheless, PST253

conducts unstructured pruning and needs to com-254

pute a substantial mask with the equivalent shape of255

pre-trained weights in each forward pass, which is256

memory-intensive and hard to be adapted to LLMs.257

Different from LLM-Pruner (Ma et al., 2023) and258

PST (Li et al., 2022), our criterion only relies on259

LoRA’s gradients and does not require expensive260

mask computation, making it memory-efficient.261

3 Method262

3.1 Preliminary263

Initially, we define the notation used in the formula.264

"Bold" letters represent matrices and vectors, while265

"non-bold" letters indicate scalars. "Subscripts"266

identify the index of elements within a matrix, and 267

"superscripts" indicate the layer index in a network. 268

Low-rank adaptation. To efficiently fine-tune 269

LLMs, low-rank adapter LoRA (Hu et al., 2022) 270

constrains the update of model parameters to main- 271

tain a low intrinsic rank. During fine-tuning, the 272

pre-trained weights remain frozen, abstaining from 273

gradient computation, while the inserted LoRA 274

is kept trainable. Given two low-rank matrices 275

A ∈ Rr×k and B ∈ Rd×r (r ≪ min(d, k)), the 276

update of a linear module can be written as 277

z = xW0 + xBA, (1) 278

where W0 ∈ Rd×k, z ∈ Rn×k and x ∈ Rn×d 279

denote the pre-trained weights, outputs and inputs, 280

respectively. After adaption, the new weights W 281

can be re-parameterized as W = W0 +BA. 282

Pruning with Taylor expansion. In vanilla prun- 283

ing approaches (Molchanov et al., 2017, 2019), the 284

importance of a weight Wi,j ∈W0 can be quanti- 285

fied by measuring the impact of its removal on the 286

loss. For an input x and the ground-truth prediction 287

y, the induced error of Wi,j can be given as: 288

Ii,j = [L(x,y,W0)−L(x,y,W0|Wi,j = 0)]2.
(2) 289

Computing Ii,j for each weight is computationally 290

expensive. Following (Molchanov et al., 2019), we 291

can use first-order Taylor expansion to approximate 292

the importance Îi,j by: 293

Îi,j = (
∂L

∂Wi,j
Wi,j)

2. (3) 294

Dependency-aware structured pruning. In struc- 295

tured pruning, it is crucial to consider that pruned 296

neurons can exhibit dependencies with other neu- 297

rons due to their interconnected nature. The de- 298

pendencies of weights are illustrated in Figure 5. 299

We organize the connected weights as a group and 300

estimate the group importance by accumulating the 301

weight importance within the same group. For- 302

mally, the importance for the g-th group can be 303

expressed as 304

Ĝg =
∑

Wi,j∈G
Îi,j , (4) 305

where Ĝ ∈ R1×G represents the importance of 306

groups, G denotes a set of weights within a group 307

and G is the candidate group number in a layer. 308
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Algorithm 1: Progressive pruning with
LoRA-guided criterion
Require :Calibration data D; Pre-trained

weights W0; Randomly
initialized low-rank matrices A
and B; Loss function L; Target
sparsity level S; Fine-tuning
iterations T .

Output :Trained low-rank adaption A and
B; Binary mask M.

Ḡ
l
g ← 0, Ml

g ← 1 for ∀l,∀g;
// Initialization for masks and
group importance

s← 0; // Initialize sparsity level
for t ∈ [1, . . . , T ] do

Clear gradient;
Forward and backward via Eq. (12);
Update A and B via AdamW;
Calculate Î|t via Eq. (9);
Calculate Ĝ|t via Eq. (4);
Calculate Ḡ|t via Eq. (10);
for l ∈ [1, . . . , L] do

p← SortDescending(Ḡ)s; // Set
threshold

Ml
g ← 0 where Ḡ

l
g ≤ p, and

g ∈ {1, . . . , G}
end
// Remove unimportant groups
Progressively increase s until
||M||0 > S;

end

3.2 Pruning with Low-rank Adaption309

Motivation. To achieve highly-compressed LLMs,310

it is essential to accurately evaluate the importance311

of pre-trained weights. A key approach is to utilize312

the criteria in Eq. (3) for this evaluation. How-313

ever, obtaining the gradient of W0 in a LLM is314

difficult since it requires a lot of computing power315

and storage space. Fine-tuning LLMs with LoRA316

is becoming prevalent (Taori et al., 2023; Cheng-317

hao Fan and Tian, 2023). During LoRA fine-tuning,318

only the gradients of LoRA’s weights are com-319

puted, yielding remarkable computation and mem-320

ory efficiency. Therefore, can we rely solely on321

the weights and gradients of LoRA to accurately322

estimate the importance of pre-trained weights?323

LoRA-guided criterion. In this work, we discuss324

how to estimate the importance of W0 by inserting325

the learnable matrices A and B in the downstream326

task adaption. 327

The core idea lies in setting the element (BA)ij = 328

−Wij if the element Wij ∈W0 is removed. The 329

importance of each parameter in Eq. (2) can be 330

reformulated as follows 331

Ii,j = [L(x,y,W)−L(x,y,W|(BA)i,j = −Wi,j ]
2.

(5) 332

Exploiting the first-order Taylor expansion with 333

(BA)i,j = −Wi,j to approximate Eq. (5), the es- 334

timated importance Îi,j of parameter Wi,j can be 335

represented by 336

Îi,j = [
∂L

∂(BA)i,j
((BA)i,j +Wi,j)]

2. (6) 337

However, as shown in Eq. (1), the LoRA compu- 338

tation sequence involves first multiplying by B 339

and then by A, which means that BA cannot be 340

obtained during the forward and backward pass. 341

Besides, preserving ∂L
∂(BA)i,j

still entails the same 342

level of complexity as ∂L
∂Wi,j

since BA shares the 343

same shape of W0. 344

Here, we only save and use the gradients of 345

two low-rank matrices A and B to approximate 346
∂L

∂(BA) . We can rely on the gradient update that 347

(BA)i,j |t = (BA)i,j |t−1 − η ∂L
∂(BA)i,j

to estimate 348

the gradient, where (BA)i,j |t and (BA)i,j |t−1 rep- 349

resents the (BA)i,j in t-th and (t− 1)-th step, re- 350

spectively. For simplicity, we ignore the learning 351

rate η since it has no influence on the importance 352

criterion. Apparently, ∂L
∂(BA)i,j

is proportional to 353

the change of BA, which can be written as 354

∂L

∂(BA)i,j
∝ [(BA)i,j |t−1 − (BA)i,j |t]. (7) 355

Here, (BA)i,j |t = Bi,:|tA:,j |t is generated by the 356

multiplication of the i-th row of B|t with the j- 357

th column of A|t. Using the above assumption, 358

we can also estimate ∂L
∂A:,j

∝ A:,j |t−1 − A:,j |t 359

and ∂L
∂Bi,:

∝ Bi,:|t−1 − Bi,:|t, respectively. Sub- 360

sequently, we substitute (BA)i,j to Eq. (7) and 361

obtain 362

∂L

∂(BA)i,j
∝ [

∂L

∂Bi,:
A:,j+Bi,:

∂L

∂A:,j
− ∂L

∂Bi,:

∂L

∂A:,j
].

(8) 363

Substitute Eq. (8) to Eq. (6), we can estimate the 364

importance in a gradient-based manner 365

Îi,j =[(
∂L

∂Bi,:
A:,j +Bi,:

∂L

∂A:,j
− ∂L

∂Bi,:

∂L

∂A:,j
)

(Wi,j + (BA)i,j)]
2.

(9)

366
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Table 2: Zero-shot performance of the compressed LLaMA models fine-tuned on the LaMini dataset. We evaluate
WikiText2 and PTB on perplexity with 2048-token segments. The average accuracy is calculated among seven
classification datasets. Bold denotes the best performance at the same compression rate. ⋆ denotes the results
obtained by our reproduction.

Pruning Ratio Method WikiText2↓ PTB↓ MMLU (5-shot) OBQA ARC-e WinoGrande ARC-c PIQA HellaSwag Average↑
Ratio = 0% LLaMA-7B (Touvron et al., 2023) 5.69 8.93 37.10 42.40 67.45 67.01 67.45 78.35 72.99 65.34

Ratio = 20%

Magnitude ⋆ 9.06 13.80 27.84 35.80 65.36 61.33 38.74 74.87 63.90 56.67
WANDA⋆ (Sun et al., 2023) 8.64 12.66 28.35 35.26 68.96 64.01 38.46 74.80 52.63 58.68
LLM-Pruner⋆ (Ma et al., 2023) 8.14 12.38 33.67 38.8 70.62 65.82 40.7 77.37 66.6 62.36
Compresso (Guo et al., 2023a) - - 31.90 36.4 68.64 67.80 37.97 75.46 53.44 59.82
LoRAPrune-8bit (Ours) 7.70 11.91 36.45 38.1 70.25 65.93 41.43 77.10 68.90 60.29
LoRAPrune (Ours) 7.63 11.87 36.81 38.6 70.20 66.77 41.89 77.48 68.64 62.70

Ratio = 30%

Magnitude ⋆ 11.38 16.90 26.38 33.67 65.58 60.79 37.47 73.15 60.35 55.16
WANDA⋆ (Sun et al., 2023) 10.10 15.83 27.90 34.90 65.06 61.16 39.44 74.38 60.84 55.96
LLM-Pruner⋆ (Ma et al., 2023) 9.36 13.82 30.67 34.86 66.2 63.85 40.55 75.60 65.12 57.70
Compresso (Guo et al., 2023a) - - 27.68 29.8 66.23 64.80 37.2 75.63 49.16 53.79
LoRAPrune-8bit (Ours) 8.83 13.30 33.36 36.40 69.48 62.31 41.93 77.40 65.91 58.90
LoRAPrune (Ours) 8.79 13.33 33.60 36.20 69.61 62.75 41.21 77.48 66.68 58.98

Ratio = 50%

Magnitude ⋆ 18.36 23.88 21.84 30.26 53.61 55.86 36.98 67.10 53.10 49.48
WANDA⋆ (Sun et al., 2023) 17.38 21.34 24.15 28.78 52.68 55.98 34.20 70.38 54.12 49.35
LLM-Pruner⋆ (Ma et al., 2023) 16.41 20.85 25.60 33.12 55.36 56.12 34.98 73.25 58.60 51.90
LoRAPrune-8bit (Ours) 11.65 17.41 27.71 35.30 60.54 56.13 40.58 74.89 59.86 54.55
LoRAPrune (Ours) 11.60 17.39 27.84 35.80 60.38 56.97 40.12 75.39 60.21 54.81

Table 3: Runtime results of the structured pruned LLMs.
Model Unmerged time (s) ↓ Merged time (s) ↓ Perplexity ↓ Ratio (%)

LLaMA-
7B

0.184(+0.0%) 0.105(+0.0%) 5.69 0
0.120(-34.8%) 0.079(-24.7%) 7.63 20
0.089(-51.6%) 0.053(-49.5%) 11.60 50

As shown in Figure 2, the LoRA-guided criterion367

only needs to compute the gradients of A and B368

with the approximation in Eq. (9), which saves369

memory and computation compared with the gradi-370

ents of pre-trained weights W0.371

Progressive pruning. To efficiently obtain group372

importance for structured pruning, we can substi-373

tute Eq. (9) into Eq. (4). However, estimating im-374

portance and pruning weights with a single batch375

of data can lead to significant bias and performance376

loss. To mitigate this, we apply moving average377

to evaluate group importance G and incrementally378

prune less critical groups. Specifically, the group379

importance at t-th iteration is computed as follows:380

Ḡ|t = λḠ|t−1 + (1− λ)Ĝ|t. (10)381

Here, Ḡ|t denotes the group importance scores cal-382

culated by Eq. (9) and Eq. (4) at the t-th iteration,383

and λ ∈ [0, 1] balances the importance between384

historical and current statistics.385

To this end, we can efficiently and accurately esti-386

mate the importance of each group. We then prune387

the unimportant groups by setting a binary mask388

M ∈ {0, 1}1×G for each pruned layer. The binary389

mask M is obtained by390

Mg =

{
1 Ḡg > p
0 Ḡg ≤ p

, (11)391

where the index g ∈ {1, . . . , G} denotes the g-th392

group in the layer, and p represents the threshold393

of importance. Groups falling below this threshold394

will be pruned. After setting the mask, the forward 395

process of each pruned layer can be written as 396

z = (xW0 + xBA)⊙M, (12) 397

where ⊙ denotes Hardamard product and can be 398

calculated by broadcast. The complete algorithm 399

of LoRAPrune is given in Algorithm 1. 400

4 Experiments 401

4.1 Experimental Setup 402

Models and metrics. Our method is applied 403

to the LLaMA-1 model family (Touvron et al., 404

2023), which comprises LLaMA-7B, LLaMA-13B, 405

LLaMA-30B and LLaMA-65B. Following (Frantar 406

and Alistarh, 2023), we evaluate models on the per- 407

plexity metric with WikiText (Merity et al., 2016) 408

and PTB (Marcus et al., 1993) dataset. To assess 409

the zero-shot ability of LLMs, we follow LLaMA 410

to perform zero-shot task classification on common 411

sense reasoning datasets: PIQA (Bisk et al., 2020), 412

HellaSwag (Zellers et al., 2019), WinoGrande (Sak- 413

aguchi et al., 2021), ARC-easy (Clark et al., 2018), 414

ARC-challenge (Clark et al., 2018), OpenbookQA 415

(Mihaylov et al., 2018). We evaluate the in-context 416

learning ability under a 5-shot setting on MMLU 417

(Hendrycks et al., 2020). 418

Implementation details. We provide results for 419

LoRAPrune as a single-shot method and with post- 420

training recovery fine-tuning. We iteratively prune 421

models on LaMini instruction dataset (Wu et al., 422

2023) for LLaMA-7b and 20k sampled C4 dataset 423

(Raffel et al., 2020) for LLaMA-13b, LLaMA-30B 424

and LLaMA-65B. Our training configuration in- 425

cludes a batch size of 128, a learning rate set to 426
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Figure 3: Pruning results on large-scale LLMs: (a) LLaMA-13B, (b) LLaMA-30B, (c) LLaMA-65B.
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Figure 4: Similarity between LoRA gradient and vanilla criterion on (a) Attention, (b) MLP layers.

1e-4, and a total of 2 training epochs. As the pre-427

trained weights remain frozen, there is the option428

to quantize them into 8-bit values to save memory.429

All models are optimized by AdamW optimizer430

(He et al., 2020) with a cosine learning rate decay.431

Contenders. We compare LoRAPrune with the432

following pruning methods in both fine-tuning and433

without fine-tuning settings: 1) Magnitude Prun-434

ing: pruning based on the absolute values of model435

weights. 2) LLM-Pruner (Ma et al., 2023): prun-436

ing using criterion in Eq. (3). 3) WANDA (Sun437

et al., 2023): pruning based on the magnitude of438

input features and pre-trained weights. 4) Com-439

presso (Guo et al., 2023a): pruning based on a set440

of learnable masks.441

4.2 Main Results442

Zero-shot performance. Table 2 demonstrates443

the effectiveness of our proposed method. Our444

LoRAPrune far surpasses other large model prun-445

ing methods under structured sparsity. For in-446

stance, at a 50% compression rate, LoRAPrune447

achieves a perplexity of 11.60 on WikiText2, signif-448

icantly outperforming LLM-Pruner’s perplexity of449

16.41. We also replicate the experimental results of450

WANDA under structured pruning scenarios. Our451

findings reveal that the pruning outcomes achieved452

by WANDA fell short in comparison to gradient-453

based pruning methods such as LLM-Pruner and454

LoRAPrune. This observation underscores the su-455

perior performance and effectiveness of gradient-456

based pruning approaches in our experiments. 457

It’s worth noting that LoRAPrune’s efficient ap- 458

proximation for the gradients of the pre-trained 459

weights allows for 8-bit quantization of those 460

weights, greatly reducing the memory requirements 461

for pruning. Moreover, LoRAPrune demonstrates 462

superior pruning results even when models are 463

quantized to 8 bits. These findings underscore 464

the effectiveness and versatility of LoRAPrune in 465

achieving impressive pruning results across various 466

scenarios and compression rates. 467

Few-shot performance. To verify whether the 468

pruned LLMs retain the in context learning ca- 469

pability, we evaluate on the MMLU with 5-shot. 470

As shown in Table 2, LoRAPrune consistently 471

achieves a higher score than other pruning meth- 472

ods across all sparsity ratios. Notably, LoRAPrune 473

achieves performance on par with the unpruned 474

LLaMA-7B model at a 20% sparsity ratio. 475

Acceleration for pruned LLMs. Models with 476

structured pruning can be directly sped up in gen- 477

eral GPU devices. We conducted tests with 2048 478

tokens, averaging the results over 100 trials. We 479

specifically examined the inference time with and 480

without merging LoRA weights into the pre-trained 481

weights. As shown in Table 3, we observed that 482

when pruning 20% weights, LLM without merging 483

LoRA has an even slower inference speed than 484

LLM with LoRA merged without pruning. In 485

addition, through structured pruning, the model 486

achieves reductions in inference time of 24.7% and 487
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Table 4: Pruning resource required by different pruning criteria.

Model Pruning criteria Fine-tuning Throughput ↓ GPU Memory ↓ Total time ↓ Perplexity ↓

LLaMA-7B
(Ratio=50%)

Vanilla 38.87s/iter (+0.0%) 38.6G (+0.0%) 5.3 h (+0.0%) 11.48 (+0.0%)
Magnitude 13.08s/iter (-66.3%) 16.8G (-56.7%) 1.8 h (-66.04%) 17.38 (+52.9%)

LoRA-guided 14.13s/iter (-63.6%) 18.3G (-52.6%) 2.0 h (-62.26%) 11.60 (+1.0%)
LoRA-guided (8-bit) 15.63s/iter (-59.8%) 13.8G (-64.2%) 2.0 h (-62.26%) 12.38 (+9.0%)

49.5% at compression rates of 20% and 50%.488

Pruning on large-scale LLMs. Due to the ef-489

ficient approximation of the pre-trained weights’490

gradients, LoRAPrune enables iterative pruning on491

larger-scale LLMs. To ensure that all experiments492

can be conducted on one GPU, we quantize the493

pre-trained weights of LLaMA-30b and LLaMA-494

65b to 8 bits. The experimental results are shown495

in Figure 3. We observe that, in comparison to496

the magnitude-based method, LoRAPrune exhibits497

significant superiority across various scales. Fur-498

thermore, in comparison to the 2:4 sparsity model,499

LoRAPrune achieves comparable pruning results500

at a 50% sparsity rate. However, it is worth noting501

that the 2:4 sparsity model also faces challenges in502

direct weight merging with LoRA, resulting in ad-503

ditional computational overhead during inference.504

Besides, accelerating 2:4 sparsity models requires505

specialized hardware support, such as NVIDIA506

GPUs based on the Ampere architecture, which507

significantly increases the deployment constraints508

for 2:4 sparsity models.509

4.3 Ablation Study510

Efficiency of LoRA-guided criterion vs. vanilla511

criterion. We conduct a comparative analysis of512

different pruning criteria with respect to their re-513

source requirements and computational efficiency,514

including GPU memory and throughput. We adopt515

the vanilla criterion, as outlined in Eq. (3), as our516

baseline. For each forward pass, we set the batch517

size to 1, and we accumulate this process itera-518

tively until we reach a total of 128 accumulations.519

To ensure robustness and reliability, we compute520

and subsequently average the results obtained over521

a span of 100 steps. The comparison results can522

be found in Table 4. Compared to the vanilla cri-523

terion, LoRA-guided and LoRA-guided (8bit) cri-524

teria demonstrate a significant reduction in GPU525

memory usage, saving 52.6% and 64.2% of the526

memory, respectively. Moreover, as the LoRA-527

guided criterion does not require the computation528

of original gradients, it achieves a 64.6% increase529

in throughput compared to the vanilla criterion with530

comparable performance, greatly enhancing the531

speed of the pruning process.532

Efficacy of LoRA-guided criterion vs. vanilla 533

criterion. Since the LoRA-guided criterion in 534

Eq. (9) is an efficient approximation of the vanilla 535

criterion in Eq. (3), we evaluate the effectiveness 536

of the proposed LoRA-guided criterion by compar- 537

ing mask similarity with the vanilla criterion. We 538

randomly sample 128 data and then perform one- 539

shot pruning with both LoRA gradient and vanilla 540

criterion. Figure 4 illustrates that in the case of low 541

compression rates (Ratio=10%), the masks gener- 542

ated by these two criteria exhibit a high degree of 543

consistency. As the compression rates increase, the 544

mask similarity may decrease. However, it is cru- 545

cial to emphasize that LoRAPrune follows an itera- 546

tive pruning approach. In each pruning iteration, it 547

only needs to precisely identify the least important 548

weights (about top-5%), thus ensuring the accurate 549

approximation. Hence, the LoRA-guided criterion 550

can attain results that are on par with those of the 551

vanilla criterion while incurring reduced costs. 552

5 Conclusion 553

In this paper, we have proposed a method to effec- 554

tively prune and fine-tune LLMs simultaneously, 555

achieving state-of-the-art efficiency-accuracy trade- 556

offs. Specifically, we have proposed a novel LoRA- 557

guided criterion, for evaluating the parameter im- 558

portance by only computing the LoRA gradients, 559

which greatly reduces the computational resources 560

required for pruning LLMs. Building upon the pro- 561

posed criterion, we have presented LoRAPrune, a 562

technique that performs efficient joint pruning and 563

fine-tuning without the need for computing gradi- 564

ents of the pre-trained weights. Finally, comprehen- 565

sive experiments on various LLMs and benchmarks 566

have demonstrated the superiority of LoRAPrune 567

over other pruning methods. In terms of compar- 568

ison with the vanilla criterion, the LoRA-guided 569

criterion shows its efficiency and effectiveness. In 570

the future, we aim to further enhance the pruning 571

results of LoRAPrune at higher compression rates. 572

Limitation. LoRAPrune requires fine-tuning to 573

restore model performance. This limitation can 574

restrict the application of LoRAPrune in scenarios 575

where fine-tuning is unavailable. 576
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Appendix795

A Weight Dependency for LLaMA796

Here, we use LLaMA architecture as an example797

to explain the weight dependency. The dependency798

details are shown in Figure 5. In terms of the At-799

tention module, when we decide to prune a specific800

head of weights in the Query layer, it is impera-801

tive that the corresponding weights with the same802

index in the Key, Value and Out layers are also803

pruned. Similarly, for the Feed-Forward Network804

(FFN) module, when pruning a particular channel805

of weights in the Up layer, it is essential to prune806

the weights with matching indices in the Gate and807

Down layers. This meticulous coordination ensures808

that pruning maintains the structural integrity and809

functionality of the model. Following (Ma et al.,810

2023) and (Fang et al., 2023), we prune heads for811

Attention and channels for FFN, respectively. The812

dependency details are shown in Figure 5.813

B More Ablation Studies814

Pruning on 20k sampled C4 dataset. We also815

evaluate LoRAPrune on a tiny dataset that ran-816

domly samples 20k data from C4 dataset. As pre-817

sented in Table 5, LoRAPrune outperforms both818

LLM-Pruner and WANDA across the majority of819

zero-shot reasoning datasets, thereby securing the820

highest average score overall. Specifically, Lo-821

RAPrune exceeds the performance of LLM-Pruner822

by margins of 0.82% and 1.02%, respectively.823

Effectiveness of the moving average. We verify824

the rationale behind the moving average through825

the setting of different values for λ. These exper-826

iments were conducted on LLaMA-7b with 20k827

sampled C4 dataset. The experimental results, as828

shown in Figure 6 (a), reveal that as λ increases,829

the pruning results exhibit a significant reduction830

in perplexity. This effect is especially pronounced831

when λ = 0 where pruning is solely determined by832

the importance of the current batch, confirming the833

effectiveness of the moving average.834

Impact of iterations. To assess the impact of835

the pruning iterations on pruning results, we con-836

ducted experiments on the LLaMA-7b model with837

different iterations on 20k sampled C4 dataset. The838

results are shown in Figure 6 (b), which indicates839

that excessive iterations can lead to a decrease in840

the model’s zero-shot performance, potentially due841

to overfitting on the calibration dataset. Further-842

more, we observe that the model requires more843

iterations to regain its performance when pruning 844

with high compression (e.g., ratio=50%). 845

LoRAPrune vs. LLM-Pruner with gradients 846

off-loading. The gradient off-loading strategy can 847

partially mitigate LLM-Pruner’s memory demands, 848

such as transferring certain gradients to CPU mem- 849

ory. However, the memory access cost and com- 850

putational overhead are substantial. Table 6 shows 851

LoRAPrune outperforms LLM-Pruner in efficiency, 852

being 8.19× faster with CPU offloading and 2.75× 853

faster without it. This speed allows iterative prun- 854

ing to counteract the performance drop due to struc- 855

tured sparsity. 856

Joint vs. separate. To demonstrate the neces- 857

sity of integrating pruning and fine-tuning, we con- 858

ducted experiments that sequentially performed 859

pruning followed by fine-tuning, specifically ap- 860

plying one-shot pruning to the LLaMA-7b model 861

and then employing LoRA fine-tuning to recover 862

the model’s performance. The experimental results 863

presented in Table 7 indicate that joint pruning and 864

fine-tuning yields much better performance than 865

the separate counterpart, especially under the high 866

compression ratio. 867

Pruning frequency. We explore the impact of 868

different pruning frequencies, i.e., how many iter- 869

ations of fine-tuning before pruning, on the final 870

performance. The experimental results, as shown 871

in Table 8, indicate that our default frequency (fre- 872

quency=10) obtains the best pruning result. Addi- 873

tionally, we observe that if pruning is too frequent 874

(frequency=1), the model may not have enough 875

iterations to recover through fine-tuning, leading 876

to inaccurate importance estimation. Furthermore, 877

excessive fine-tuning between pruning iterations 878

(frequency=20) leads to overfitting on the calibra- 879

tion data. 880

C Generative Results 881

We show the generalization capability of the Lo- 882

RAPrune by some instructions encompass common 883

sense, translation, and coding tasks in Table 9. 884
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Figure 5: Weight dependency in (a) Attention layer, (b) FFN layer.

Table 5: Zero-shot performance of the compressed LLaMA models fine-tuned on the 20k sampled C4 dataset. The
average accuracy is calculated among seven classification datasets. Bold/ denotes the best performance at the same
compression rate. ⋆ denotes the results obtained by our reproduction.

Pruning Ratio Method BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average↑

Ratio = 0% LLaMA-7B (Touvron et al., 2023) 73.18 78.35 72.99 67.01 67.45 41.38 42.40 63.25

Ratio = 20%

Magnitude ⋆ 61.89 70.81 58.34 56.87 54.87 34.02 38.40 53.59
WANDA⋆ (Sun et al., 2023) 65.75 74.70 64.52 59.35 60.65 36.26 39.40 57.23
LLM-Pruner (Ma et al., 2023) 64.62 77.20 68.80 63.14 64.31 36.77 39.80 59.23
LoRAPrune-8bit (Ours) 65.37 76.65 69.41 63.78 65.45 36.12 39.50 59.46
LoRAPrune (Ours) 65.62 79.31 70.00 62.76 65.87 37.69 39.14 60.05

Ratio = 50%

Magnitude ⋆ 47.40 54.36 33.49 53.10 37.88 26.60 30.12 40.42
WANDA ⋆ (Sun et al., 2023) 50.90 57.38 38.12 55.98 42.68 34.20 38.78 45.43
LLM-Pruner (Ma et al., 2023) 60.28 69.31 47.06 53.43 45.96 29.18 35.60 48.69
LoRAPrune-8bit (Ours) 61.43 70.88 47.65 55.12 45.78 30.50 35.62 49.56
LoRAPrune (Ours) 61.88 71.53 47.86 55.01 45.13 31.62 34.98 49.71
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Figure 6: More ablation studies for pruning hyper-parameters: (a) λ value in moving average, (b) fine-tuning
iterations.

Table 6: Efficiency comparison between LoRAPrune and LLM-Pruner with CPU off-loading.
Method Throughput (s/iter) GPU Memory (GB) FLOPs (G) Total time (h) Pruning time (h) Fine-tuning time (h)

LLM-Pruner 38.87 38.6 20298 5.3 3.5 1.8
LLM-Pruner + CPU offloading 115.67 19.5 20298 25.8 24 1.8

LoRAPrune (Ours) 14.13 18.3 12881 2.0 0.2 1.8

Table 7: Effect of the joint pruning and fine-tuning.
“Average” represents the average performance on seven
classification datasets.

Method WikiText2↓ PTB↓ Average↑

Ratio=20%
Joint 12.93 22.52 60.05

Separate 14.51 24.30 57.18

Ratio=50%
Joint 18.37 28.68 49.71

Separate 21.78 40.39 47.56

Table 8: Results under different pruning frequen-
cies. “Average” denotes the average performance
on seven classification datasets.

Frequency WikiText2↓ PTB↓ Average↑
1 18.57 29.02 49.37
5 18.63 28.73 49.16
10 18.21 28.68 49.59
20 18.47 28.70 49.71
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Table 9: Generated examples from the Pruned models

Model Generated Sentences

LLaMA-7b
(ratio=0%)

Instruction: Tell me about alpacas. Response: Alpacas are members of the camelid family and are native to the Andes
Mountains of South America. They are known for their soft, luxurious fleece, which is used to make clothing, blankets,
and other items. Alpacas are herd animals and live in groups of up to 20 individuals. They are generally docile and
easy to care for, making them popular as pets and livestock. Alpacas can live up to 20 years in captivity, and their
fleece can be sheared up to three times a year.

Instruction: Translate the sentence ’I have no mouth but I must scream’ into Spanish. Response: I no tengo boca pero
tengo que gritar.

Instruction: Write a Python program that prints the first 10 Fibonacci numbers. Response:
def fibonacci(n):

if n == 0:
return 1

if n == 1:
return 1

else:
return fibonacci(n - 1) + fibonacci(n - 2)

for n in range(1, 10):
print(fibonacci(n))

LLaMA-7b
(ratio=20%)

Instruction: Tell me about alpacas. Alpacas are a species of camelid native to South America. They are known for
their soft, luxurious wool, which is used to make clothing, blankets, and other textiles. Alpacas are also used for their
meat, which is considered a delicacy in some parts of the world. Alpacas are social animals that live in herds and are
known for their gentle demeanor. They are also known for their intelligence and ability to be trained for various tasks,
such as pulling carts or performing tricks for entertainment.

Instruction: Translate the sentence ’I have no mouth but I must scream’ into Spanish. Response: Yo no tengo la boca
pero tengo que gritar.

Instruction: Write a Python program that prints the first 10 Fibonacci numbers. Response:
def fibonacci(n):

if n == 0 or n == 1:
return 1

else:
return fibonacci(n - 1) + fibonacci(n - 2)

for n in range(1, 10):
print(fibonacci(n))
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