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ABSTRACT

Recent studies indicate that effectively utilizing inference-time compute is crucial
for attaining good performance from large language models (LLMs). Specifi-
cally, the Best-of-N (BoN) inference strategy, where an LLM generates multiple
responses and a verifier selects the best, has shown strong empirical performance.
Motivated by this, we develop a novel inference-aware fine-tuning paradigm,
which encompasses the BoN-aware inference framework as a special case. We de-
vise the first imitation learning and reinforcement learning (RL) methods for fine-
tuning LLMs using BoN, overcoming the challenging, non-differentiable argmax
operator within BoN. We empirically demonstrate that our BoN-aware models im-
plicitly learn a meta-strategy, which interleaves best responses with more diverse
responses that might be better suited to a test-time input—a process reminiscent
of the exploration-exploitation trade-off in RL. Our experiments demonstrate the
effectiveness of BoN-aware fine-tuning in terms of improved performance and
inference-time compute. In particular, we show that our methods improve the
BoN performance of Gemma 2B on Hendrycks MATH from 26.8% to 30.8%,
and Pass@N from 60% to 67%.

1 INTRODUCTION

Recent advances in enhancing reasoning capabilities of large language models (LLMs) highlight the
potential for improvements using inference-time computation: several independent threads (Light-
man et al., 2023; Wu et al., 2024; Kumar et al., 2024; Hosseini et al., 2024) show that by using
search, re-ranking, multi-turn revision, and more generally, any approach that makes use of more
tokens and computation at inference time, the performance of LLMs on various tasks can be sig-
nificantly improved—so much that investing in improving inference-time computation might prove
more beneficial than increasing model pre-training compute (Snell et al., 2024).

Despite this promise, existing work largely considers using inference-time computation as an op-
tional post hoc design choice, after conventional pre-training and fine-tuning. However, decoupling
training and inference-time compute is not optimal; for example, if we knew that an LLM can pro-
duce more than one candidate solution to a math problem, then it may be better to explore diverse
problem-solving strategies, rather than produce all candidates that represent the model’s best strat-
egy at solving the problem. Within the context of reasoning problems, these performance gains
may be significant, as LLMs often fail in reasoning problems due to their inability to draw complex
inferences about the input and their internal knowledge.

In this work, we introduce a new paradigm named inference-aware fine-tuning, which explicitly con-
siders the inference procedure used at inference time, during training. We particularly focus on the
Best-of-N (BoN) inference strategy, where the LLM generates multiple candidate responses, and a
verifier selects the best one according to some scoring function (Cobbe et al., 2021). Our inference-
aware (or BoN-aware) methodology contrasts traditional fine-tuning methods, which overlooks the
specific inference strategy. Particularly, BoN-aware fine-tuning incorporates the BoN inference
mechanism into the training process itself.

Our contributions are as follows. (1) We formulate the inference-aware and BoN-aware problem,
which accounts for an inference strategy during training; (2) We develop a BoN-aware supervised
fine-tuning algorithm which aligns a target distribution with the BoN policy distribution; (3) We
extend our method to the general BoN-aware reinforcement learning (RL) setup, allowing the pol-
icy to learn to solve a downstream task under the BoN inference strategy. We devise specialized
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algorithms for scenarios where the environment reward function can be used as the verifier. These
algorithms, inspired by methods that optimize Pass@N accuracy, promote implicit exploration and
connect with established self-supervised learning algorithms, further enhancing the effectiveness
of BoN-aware fine-tuning; (4) We establish a co-scaling behavior for BoN, which quantifies the
exploitation-exploration trade-off of BoN with respect to temperature T and number of samples N .

Empirically, we show that BoN-aware fine-tuning significantly improves the performance of LLMs
on Hendrycks MATH (Hendrycks et al., 2021) compared to standard fine-tuning (26.8% to 30.8%
increase in BoN accuracy, and 60% to 67% increase for Pass@N ). We first illustrate how the
number of samples N and temperature T in BoN impact performance and provide insights for their
optimization. Then, we show that our BoN-aware methods lead to substantial gains across a range of
N and T values, highlighting the robustness and generalizability of the learned “meta-strategy” for
diversification. Finally, our results suggest that BoN-aware fine-tuning enables the model to solve
problems that are beyond the capabilities of standard fine-tuned models, further demonstrating the
benefits of aligning training with the inference-time compute strategy.

2 INFERENCE-AWARE FINE-TUNING: A CASE STUDY WITH BEST-OF-N
Standard fine-tuning methods typically train LLMs to produce the best response for a given prompt.
In LLM fine-tuning, a model (or policy) is trained via supervised fine-tuning (SFT), by maximizing
the likelihood w.r.t. ground-truth data. Formally, we search for a policy π : X 7→ ∆Y that maxi-
mizes the likelihood Ex∼P,y∼π∗(y|x)[log π (y|x)], where here, X and Y are the space of prompts
and outputs of an LLM, P is the prompt distribution, and π∗ is a distribution of expert responses.
Alternatively, the policy can be fine-tuned via reinforcement learning (RL) (Schulman et al., 2017):
maxπ∈Π Ex∼P,y∼π(x)[R(x, y)], to align the LLM’s behaviors with the reward function R(x, y).
While popular, these methods have not taken the LLM’s inference-time strategies into the account.

Inference-Aware Fine-Tuning. To address the gap between how LLMs are trained and how they
are used at inference time, we develop inference-aware fine-tuning. During inference, the learned
policy π is often not directly used; rather some inference strategy I : Π × X 7→ ∆Y is applied to
it. For example, I can be the BoN strategy, which samples multiple candidate responses, and selects
the best using the score function of some verifier; or I might be a search mechanism (Lightman
et al., 2023) or self-correction (Kumar et al., 2024). To account for this inference strategy I , we alter
the objective SFT and RL objectives to be “aware” of the inference strategy:

max
π∈Π

Ex∼P,y∼π∗(y|x)[log I(π, x) (y)], and (Inference-Aware SFT)

max
π∈Π

J(π) := Ex∼P,y∼I(π,x)[R(x, y)], (Inference-Aware RL)

Indeed, Inference-Aware SFT and Inference-Aware RL are aware of the strategy I . In what follows,
we focus on the case where the inference strategy is BoN (i.e., I ≡ BoN), in both the SFT and RL
setups. As we will later see, this brings about new algorithms for training the policy.

BoN-Aware Problem Formulation. We begin by formulating the BoN strategy. This inference
strategy samples N resposnes from a model with some temperature T , and then selects the best one,
based on some verifier score. Formally, the BoN inference policy can be written as:

I(π, x)(y) = πbon(y|x;π, r,N, T ) := arg max
y′∈{y1,...,yN}

r(x, y′), s.t. yi
T∼ π(·|x), x ∈ X , (1)

where T∼ is a sample with temperature T , and r : X × Y 7→ R is a verifier score1. In what
follows, when r,N, T are clear from context, we write πbon(y|x;π). We see that the above strategy
defines a class of BoN policies that is different from the learned policy π, demonstrating the gap
between training and inference. We inject this class of BoN polices into the Inference-Aware SFT
and Inference-Aware RL frameworks to derive the instantiation of inference-aware fine-tuning.

Besides closing the gap between training and inference and mitigating potential discrepancies be-
tween the verifier score r and the true reward R, BoN policies provide further benefits. The BoN
mechanism introduces implicit exploration during training, bypassing the computational burden of

1The verifier score r and the true reward R can be related, or even equal, yet we do not make that assumption
here. Usually, r is a model trained to predict R, and therefore serves as a proxy of the true reward.
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explicit exploration (Cen et al., 2024). Selecting the best of N samples allows the base policy to
explore output variations, inducing a controlled exploration that can lead to more robust and gener-
alizable policies, particularly in scaling behavior w.r.t. temperature T and number of samples N .

Optimizing the BoN policy class is notoriously difficult due to the non-differentiability of the
argmax operator. Although several differentiable top-k operators (Cuturi et al., 2019; Xie et al.,
2020) might be exploited in πbon, they induce approximation error, and more importantly, increase
the computational cost dramatically. In our work, we derive a variational formulation of the learning
problem w.r.t. πbon without top-k operators, allowing us to construct novel algorithms for inference-
aware BoN, using both standard supervised imitation learning (Section 3) and RL (Section 4).

Figure 1: The relationship between the op-
timal number of samples (N∗) and optimal
temperature (T ∗) in BoN. The size of each
marker at a given (T,N ) coordinate indi-
cates the empirical frequency of problems
for which that (T,N ) pair resulted in the
best BoN performance. The plot reveals a
trade-off: “easier” problems have small T ∗

and N∗, while “harder” problems require a
larger T ∗ for exploration and consequently
often a larger N∗.

Exploration-Exploitation with BoN. Before con-
structing our BoN-aware methods, we empirically ver-
ify the implicit exploration and exploitation properties of
BoN. We do this by revealing optimal co-scaling w.r.t.
temperature T and number of samples N . Specifically,
for a fixed base policy π, at any prompt x ∈ X there is an
optimal temperature T ∗(x) and optimal number of sam-
ples N∗(x) which maximize performance of BoN:

N∗(x;π),T ∗(x;π)∈argmax
N,T

Ey∼πbon(y|x;π,r,N,T )[R(x, y].

To understand the connection betweenN∗(x) and T ∗(x),
we assess the performance of Gemma 2B (Team et al.,
2024) on the MATH benchmark (Hendrycks et al., 2021),
when applying the BoN inference strategy. Figure 1
shows empirical frequencies of problems, when varying
T ∗(x) andN∗(x) (larger marker size signifies higher fre-
quency). The figure depicts a tradeoff between T and
N , reminiscent of the exploration-expoitation trade-off.
When T ∗(x) is small, any N is optimal (and particularly
also a small N ). These “easier” problems do not require
heavy exploration (small T ∗) and can therefore be more
exploitative (small N∗). On the other hand, as T ∗ in-
creases, the base policy π becomes more stochastic, re-
sulting in more diversity and exploration. These more “difficult” problems, require more exploration
(larger T ∗), hence less exploitation (larger N∗). Indeed, in such cases, the distribution of N∗ shifts
to high values. Our results suggest a tradeoff between exploration and exploitation, and further
motivates the BoN-aware setup, which can account for this tradeoff uniformly across all samples.

Figure 1 also uncovers a cost-effective recipe for adjusting T and N for optimal BoN performance:
we can learn how to fine-tune the model for better inference by simply adjusting these accessible
parameters. However, it is important to note that relying solely on model selection has limitations.
While this approach offers a computationally inexpensive way to improve BoN’s inference-time per-
formance, it may not fully capture the nuances of the LLM’s behavior. With sufficient computational
resources, general BoN-aware fine-tuning can further unlock performance gains by directly training
the LLM to optimize for the exploration-exploitation trade-off of the BoN inference process.

3 SUPERVISED BON-AWARE FINE-TUNING

We begin by developing the BoN-aware SFT framework. Under this setting we assume we do not
have access to the true reward, and only wish to maximize the likelihood of a dataset of expert
examples. Recall the definition of the BoN policy πbon in Equation (1). The Inference-Aware SFT
version of BoN becomes:

max
π∈Π

E(x,y)∼D[ log πbon(y | x;π) ], (2)

A major difficulty in solving Equation (2) is the non-differentiability of the argmax operator in the
BoN procedure. To address this, we can use the variational approximation of πbon (see Section A.1)
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argmaxVerifier

Update

Environment
Reward

Figure 2: A schematic of BoN-Aware RL fine-tuning. A BoN strategy samples N independent samples from
π. A verifier scores each sample, and the best sample is selected. We train the BoN policy using the environment
reward, according to Lemma 2

πbon(y|x) ∝ [π(y|x) · exp (λNQπ(x, y))], (3)

where Qπ (x, y) = Ey′∼π(·|x)
[
1r(x,y)⩾r(x,y′)

]
is the expected win-rate over base policy π, charac-

terizing the probability for which a response y outperforms the responses generated by the base over
the verifier score r. The constant λN > 0 is a solution of a 1D-search problem (Gui et al., 2024) (see
details in Appendix A.1). It can be shown that λN is monotonically increasing in N , and λN ∝ N
approximately for large N . Plugging the variational form of Equation (3) into Equation (2) yields:

max
π∈Π

E(x,y)∼D [log πbon(y|x)] := E(x,y)∼D

log π (y|x)︸ ︷︷ ︸
Likelihood

+ λN ·Qπ (x, y)−logZπ(x)︸ ︷︷ ︸
Inference-Awareness

 , (4)

where Zπ(x) = Eπ(y|x) [exp (λN ·Qπ (x, y))] is the partition function.

The above optimization problem reveals two term. While the first term tries to push the base policy
π into maximizing the likelihood of the data, the second term regularizes the policy to be more
exploratory by increasing the data win rate over the policy. This in turn accounts for the sampling in
BoN. For data efficiency when estimating the win rate Qπ (x, y) we leverage a common practice in
modeling pairwise preferences (Rafailov et al., 2023) to approximate the win rate with its “softened”
counterpart: Qπ (x, y) ≈ Ey′∼π(·|x) [σ (r(x, y)− r(x, y′))], where σ is the sigmoid function.
Next, we exploit properties of policy gradient (Sutton et al., 1999) and the gradient of energy-based
policies (Rafailov et al., 2024) to derive the gradient for Equation (4) (see Appendix A.2 for proof):
Lemma 1 (BoN-SFT). The gradient of Equation (4) w.r.t. LLM parameters θ ∈ Θ of π is given by
E(x,y)∼D [∇θf (x, y; θ)]− Ex∼D,y∼πbon(·|x) [∇θf (x, y; θ)], where

∇θf (x, y; θ) :=∇θ log πθ (y|x) + λN · Ey′∼πθ
[∇θ log πθ (y′|x)·σ (r(x, y)− r(x, y′))] . (5)

Our formulation circumvents the non-differentiability of the BoN distribution, allowing solution of
BoN-SFT via standard gradient-ascent algorithms. The individual terms of the gradient imply the
following: (1) π clones the expert behavior by maximizing its likelihood over D; (2) it aligns with
the verifier score ranking, which assigns a high win-rate to the expert over the base; (3) it avoids
over-fitting by limiting its likelihood over the BoN sample; and (4) it maintains overall response
quality by reducing the win rate between its best and average samples.

4 BON-AWARE FINE-TUNING USING REINFORCEMENT LEARNING

Training LLMs that are amenable to BoN sampling can be framed within the RL paradigm, which
trains an agent (LLM) that optimizes its actions within an environment. In this context, the LLM
generates N responses (candidates actions) for a given prompt (contexts). A separate macro agent
(verifier) selects the candidate deemed most suitable according to a predefined criterion (e.g., prob-
ability of success). This action is then deployed to the environment, yielding a reward (e.g., task
completion). The key challenge in training this agent lies in achieving two objectives simultane-
ously: (i) Enhancing agent’s exploration capabilities to generate diverse candidates that cover the
space of potential solutions and align with the verifier’s preferences; (ii) Maximizing the environ-
ment reward of the final response. Motivated by this observation, we utilize RL for BoN-aware
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fine-tuning, enabling the development of more robust and adaptable LLMs. A schematic of the
BoN-Aware RL framework is shown in Figure 2.

The BoN-Aware RL problem takes the following form:
max
π∈Π

J(π) := Ex∼P,y∼πbon(·|x;π,r,N,T )[R(x, y)]. (6)

We train the BoN policy πbon (paramterized by π) to attain a high environment reward. Apart from
enabling better exploration, using the environment rewardR(x, y) in BoN-RL allows the base policy
to tolerate potential errors in the verifier r(x, y). We first develop a general algorithm for solving
the BoN-aware RL problem. We then study an important subclass which assumes a binary reward,
a common feature of many reasoning problems (e.g., math, code).

We begin with deriving a gradient estimator to the objective in Equation (6). Exploiting the con-
nection between the BoN policy and its energy-based policy counterpart in Equation (10), and using
derivations analogous to those in Lemma 1, we compute the gradient of J(θ), which leads to a
REINFORCE-style algorithm (Williams, 1992) (see Appendix A.3 for proof):
Lemma 2 (BoN-RL). The gradient of Equation (6) w.r.t. LLM parameters θ ∈ Θ of π is given by

∇θJ(θ) = Ex∼D,y∼πbon(·|x) [∇θ log πθ (x, y) · (R(x, y)− b(x))] , (7)

where b(x) = Ey∼πbon(·|x)[R(x, y)] is a baseline for variance reduction (Schulman et al., 2015).

This formulation resembles the standard REINFORCE gradient with the main difference of drawing
samples from the BoN policy (instead from the base policy π). This allows one to solve BoN-RL
via actor-critic methods (Sutton et al., 2009a). In practice, one can replace b(x) with a learned value
baseline bψ(x) parameterized by ψ, for which ψ is updated by gradient descent w.r.t. the critic value
loss. While BoN-RL inherits the benefits of verifier alignment from BoN-SFT, and can be viewed
as a reward-weighted variant of the popular STaR method (Zelikman et al., 2022), generally it can
be rather sample inefficient (especially when N is large), as estimating both the value function b(x)
and the policy gradient in BoN-RL require samples from the BoN distribution. See Appendix C for
a discussion on alleviation using BoN distillation (Sessa et al., 2024).

BoN-RL with Binary Reward and Verifier. While Lemma 2 provides a general method for BoN-
aware RL, the policy gradient estimator in Equation (7) is sample ineffiecient for a general rewards
and verifiers. However, many domains admit binary success/failure metrics (e.g., reasoning tasks,
math, coding) which allow an efficient gradient estimator, obviating the need for value estimation.
Specifically, with a binary reward known to the verifier, i.e., R(x, y) = r(x, y) ∈ {0, 1}, Theorem 1
of Sessa et al. (2024) implies the following closed-form solution of the BoN policy πbon:

πbon(y|x) =

{
π(y|x) · Pfail(x)

N−1 if R(x, y) = 0
π(y|x)

1−Pfail(x)
·
(
1− Pfail(x)

N
)

if R(x, y) = 1
, (8)

where Pfail(x) := Ey′∼π(·|x)
[
1R(x,y′)=0

]
is the fraction of problems on which the base policy π is

incorrect. Under the binary assumption, πbon is a weighted distribution of the base policy π, whose
importance sampling ratio depends on the its failure probability Pfail(x). Introducing this closed
form of πbon to Lemma 2, we obtain the following policy gradient (see Appendix A.4 for proof):
Lemma 3 (BoN-RLB). Assume R(x, y) ∈ {0, 1}. The gradient of Equation (6) w.r.t. LLM param-
eters θ ∈ Θ of π is given by

Ex∼D

[
Ey∼πbon,R=1 [∇θ log πθ(y|x)] · g+N (Pfail(x))− Ey∼πbon,R=0 [∇θ log πθ(y|x)] · g−(Pfail(x))

]
,

where the positive and negative sample-dependent weights are given by

g+N (p) =
N · pN−1

1− pN
, g−(p) =

N · p
1− p

. (9)

This result not only reveals an efficient policy gradient estimator for binary reward, but more impor-
tantly demonstrates how BoN-RLB balances positive and negative examples in its gradient update,
weighted by factors g+(Pfail(x), N) and g−(Pfail(x)), respectively. When Pfail(x) is closer to 1
(“harder” problems), the weight g+(p,N) is significantly larger and is amplified by N . By contrast,
though g−(p) also increases as p reaches 1, it is not dependent onN . Conversely, when Pfail is small
(“easier” problems), g+(p,N) ⩽ p ⩽ g−(p), and this inequality becomes more apparent as N in-
creases. Intuitively, for harder problems, more focus is put on (fewer) correct solutions by sampling
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from the current BoN policy, whereas for easier problem, more entropy is introduced, encouraging
the base policy to make more exploratory attempts to solve the problem. This is in line with our
earlier motivation for BoN-aware fine-tuning: as long as the base policy can produce correct solu-
tions given an input, it need not devote most of its sampling budgetN to generating correct answers;
instead, it can use it generate more exploratory solutions.

Lemma 3 proposes a novel way to re-weigh BoN-RLB’s training examples, which prioritizes harder
examples by giving their positive samples exponentially more influence and aggressively redistribut-
ing log likelihood away from incorrect responses. This allows the model to ”exploit” both positive
and negative samples to enhance learning of the harder example. The significance of this asymmet-
ric weighting scheme is that it infuses implicit exploration capabilities to the base policy. As Tajwar
et al. (2024) observed, when the model reduces the likelihood of negative responses, it shifts that
probability mass towards a mode of the learned policy – essentially reinforcing existing successful
strategies (exploitation). However, if these high-likelihood regions later produce errors, the resulting
negative gradient redistributes this mass again, pushing the model to explore other potential solu-
tions. This iterative process of concentrating probability mass and subsequent redistribution through
negative gradients drives a form of exploration, encouraging the model to sample from a diverse
range of responses yet maintaining high-likelihood of generating correct solutions.

Positive-only Weighting. Although we have illustrated the benefits of an asymmetric weighting
scheme in BoN-RLB for exploration, training with both positive and negative examples may be
infeasible (e.g., in a data-limited online RL system that only records positive examples). To tackle
this, we apply a change of measure to Lemma 3 with the BoN distribution to derive a policy gradient
that only involves positive examples (see Appendix A.5 for proof):
Corollary 4 (BoN-RLB(P)). Assume R(x, y) ∈ {0, 1}. The gradient of Equation (6) w.r.t. LLM
parameters θ ∈ Θ of π is given by Ex∼D[Ey∼πbon,R=1[∇θ log πθ(y|x)] · g+N (Pfail(x))], where

g+N (p) := N ·pN−1·(1−p)
(1−pN )

.

Notice that the weighting g+(p,N) is monotonically increasing in p ∈ [0, 1] and lies within [0, 1]
for any N . Using this gradient update, BoN-RLB(P) resembles a weighted version of BoN-STaR
(see Remark C.3 in the appendix), where it clones positive examples generated by the current BoN
policy and up-weights the more difficult ones, where Pfail(x) is close to 1.

5 EXPERIMENTS

In this section we address the following questions: (1) Can we quantify the relationship between the
BoN number of samples N and temperature T , enabling joint optimization of these parameters? (2)
Do inference-aware fine-tuning methods (SFT and RL) enhance the effectiveness of BoN sampling?
(3) Do these improvements generalize across values of N and T ?

5.1 CO-SCALING ANALYSIS OF SAMPLE SIZE N AND TEMPERATURE T IN BON
In Figure 3, we outline the BoN and Pass@N 2 performance of a pre-trained Gemma 2B model
on MATH over varying N and T . Pass@N consistently increases with higher K, as commonly
observed (Brown et al., 2024). As illustrated in Figure 3, our analysis suggests that this relationship
can be captured by a function of the following form: Pass@N(T ) ≈ exp(a(T )K−b(T )), where
the parameters a(T ) and b(T ) are temperature-dependent and derived by fitting the model to data
at a specific temperature T . Further analysis of this scaling behavior (detailed in Appendix D.1)
indicates that there is a strong positive correlation between the optimal temperature and K, which
aligns with the intuition that largerN benefits from broader exploration (higher T ), while smallerN
favors focused exploitation (constant T ). This relationship is straightforward, as there are no verifier
errors confounding the selection of best responses.

Our experiments demonstrate an intriguing relationship between BoN accuracy, T , and N . We find
that lower temperatures generally yield better BoN accuracy. Furthermore, BoN accuracy generally
decreases as N increases, but degrades more rapidly with higher temperatures.With larger N and
T , the increased randomness in the base policy inherently generates more “bad” samples (with poor
accuracy). This phenomenon suggests that the verifier is sensitive to noise and may mistakenly
select random outputs generated at higher temperatures as the best responses due to misalignment

2Pass@N is standard terminology; here K and N both denote the number of samples generated.
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Figure 3: BoN and Pass@N performance of Gemma 2B policy and reward models w.r.t. varying N and T .
Pass@N monotonically improves with N ; BoN shows inflection points as N increases. Colored dashed lines
denote predictions of scaling functions; black dashed lines in BoN plot denote the last inflection points.
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Figure 4: BoN Accuracy and Pass@N Accuracy for BoN-SFT Models.

with the true reward (Type II error). Conversely, at very low temperatures, BoN accuracy improves
withN , indicating the algorithm remains in an exploitation phase. Optimal performance is observed
at moderate N values, striking a balance between exploration and exploitation.

5.2 INFERENCE-AWARE FINE-TUNING WITH BON

Experimental Setup We fine-tune Gemma 2B and 9B (Team et al., 2024) models and evaluate
on the Hendrycks MATH benchmark (Hendrycks et al., 2021), (2) two held-out math benchmarks
(Functional MATH (Srivastava et al., 2024) and MathOdyssey (Fang et al., 2024)), and (3) the
HumanEval coding (Chen et al., 2021) benchmark. Our main evaluation metrics are the accuracy
achieved by BoN sampling under a learned verifier (only for the MATH benchmarks in (1) and (2),
for which the 2B and 9B models are trained to do point-wise correctness prediction of responses, and
they have 69% and 76% accuracy on the MATH500 test set, respectively), and the Pass@N accuracy
(i.e. BoN which directly uses the environment reward). To analyze the behavior of BoN sampling,
we examine the relationship between N and T by running BoN inference on the evaluation sets
with different (N,T ) pairs, establishing scaling relationships that correlate these parameters. For
BoN-aware fine-tuning, we test both SFT and RL.

Our experiments on BoN-aware LLM fine-tuning test a variety of methods including: (1) BoN-SFT
from Lemma 1, (2) BoN-RL from Lemma 2 with a verifier, BoN-RL-V, (3) BoN-RL with envi-
ronment reward as verifier, BoN-RL-S, (4) BoN-RLB from Lemma 3, and (5) BoN-RLB(P) from
Corollary 4. These methods are designed to leverage the BoN selection strategy during model fine-
tuning, under different settings mentioned in Sections 3 and 4. We compare these methods to several
baselines: (1) STaR from Remark C.3, which uses self-training over correctly generated responses;
(2) RL (Lee et al., 2023) with verifier feedback (RL-V); (3) RL with environment feedback (RL-S);
(4) standard supervised finetuning of the base policy (SFT, N ′ = 1); and (5) BoN with the pre-
trained model (Base model). This evaluation allows us to assess the effectiveness of our proposed
methods relative to existing techniques. We denote by (N ′, T ′) and (N , T ) the number of samples
and temperature used in training and evaluation, respectively. In the following experiments, we set
T ′ to 1 in training, and all evaluations (except where specified) are run with T = 1.
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(a) BoN-RL-V with varying N ′ values.
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Figure 5: BoN accuracy on Various Training Runs of BoN-RL-V and Comparisons with Baselines

BoN-aware supervised fine-tuning. We first evaluate the BoN and Pass@N performance of of-
fline SFT methods, including BoN-SFT with various N ′, and base SFT (N ′ = 1), with results
shown in Figure 4. We find that base SFT significantly degrades upon the base model, indicating
that it causes overfitting or lack of generalization. BoN-SFT is able to improve the BoN accuracy
significantly, especially with increasing N ′. We find that BoN-SFT with N ′ = 32 achieves the best
performance for both BoN accuracy and Pass@N , suggesting that it is able to produce both high-
quality and exploratory responses. To improve substantively over the base model, we next turn to
RL, which should be more effective by virtue of being on-policy.

BoN-RL-V improves BoN Accuracy. We plot BoN accuracy evaluations in Figure 5 over differ-
ent training runs of BoN-RL-V and other baselines. Our RL-BoN-V method significantly enhances
BoN accuracy by effectively exploring a larger sample space during training (see Figure 5a). We
observed peak performance when training with 32 samples (N ′ = 32), also leading to consistent
improvements across all evaluation scenarios (N = 1 to N = 32). Notably, the gains were most
pronounced at larger N values, indicating that RL-BoN-V not only excels in the specific BoN sce-
nario it was trained on but also generalizes to other BoN configurations and even greatly improves
the base policy’s performance (N = 1) from 22% to 26%. This impressive performance can be
attributed to the enhanced exploration capabilities of RL-BoN-V. Training with a large N ′ allows
the base policy to explore a wider range of responses to generate higher-quality responses, similar to
how effective exploration in RL leads to better overall performance, and better generalization across
different (BoN inference) scenarios.

Our BoN RL algorithm, BoN-RL-V, with N ′ = 32, significantly outperforms several baselines
(Figure 5b). Specifically, it boosts the Bo-32 accuracy of our base model from 26.8% to 30.8%.
As expected, the inference-unaware RL-V method performs poorly, likely due to common reward
hacking issues (Jinnai et al., 2024). While our other proposed methods, BoN-RL-S and BoN-RLB,
show improvement over the base model, they still lag behind BoN-RL-V, indicating that training
with a different verifier can boost performance, but not as much as training with the actual veri-
fier used at test time. BoN-RL-V effectively learns to generate high-quality outputs that are easily
recognized by the verifier, leading to superior performance. Interestingly, BoN-RLB demonstrates
better generalization (w.r.t. BoN accuracy) to smaller N values despite being trained with N ′ = 32.
This contrasts with the trend observed in Figure 6b, where BoN-RLB’s Pass@N accuracy is worse
than that of BoN-RL-S. This could be because BoN-RL-S generates more diverse and higher-quality
samples, improving Pass@N , but may also be more susceptible to verifier errors.

BoN-RL-S, BoN-RLB, and BoN-RLB(P) improve Pass@N. Our BoN-RL-S, BoN-RLB, and
BoN-RLB(P) models demonstrate superior performance over the baseline STaR and RL-BoN-V
methods in Pass@N evaluations, as shown in Figure 6 with N ′ = 16 (Figure 6a) and N ′ = 32 (Fig-
ure 6b). The methods are explicitly trained to maximize BoN with binary environment reward (i.e.
Pass@N ), leading to better Pass@N scaling at test time. Notably BoN-RL-S improves Pass@32
from 60% (base Gemma 2B model) to 67%.

For N ′ = 32, RL with ground truth feedback performs the worst (59% Pass@32), which is unsur-
prising because it is trained to maximize Pass@1. Similarly, BoN-RL-V is trained to optimize BoN
with a noisy verifier selection, and as a result does not generalize to Pass@N well. By contrast,
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Figure 6: Pass@N results comparing the accuracy of various RL-BoN variants that are trained with binary
environment reward as verifier with baselines and the general RL-BoN method.
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Figure 7: BoN and Pass@N over non-training temperatures. BoN-RL with verifier and exact reward (solid
lines) are trained with fixed temperature 1.0. Dashed lines show the base model (Gemma 2B), and solid lines
show the finetuned model.

BoN-RL-S (67% Pass@32), BoN-RLB (63% Pass@32) methods focus directly on the Pass@N
metric, thus leading to more efficient optimization and improved performance.

ForN ′ = 16, STaR performs the worst (55% in Pass@32) as it fails to (i) utilize negative samples in
training for implicit exploration (unlike BoN-RLB, 60% Pass@32), (ii) re-weight samples based on
difficulty, prioritizing learning from challenging problems and avoiding overfitting to simpler ones
(unlike BoN-RLB(P), 60% Pass@32), and (iii) account for the importance sampling factor between
the base policy and the BoN policy (unlike BoN-RL-S, 58% Pass@32).

BoN-RL-S vs. BoN-RLB(P). Among the three proposed BoN-RL methods that optimize binary
environment reward, we observe that their performances differ depending on N ′. BoN-RLB and
BoN-RLB(P) are superior to BoN-RL-S on N ′ = 16 (Figure 6a), but worse on N ′ = 32 (Fig-
ure 6b), suggesting that they suffer from instability with increasing N ′. This is potentially due to
the following observations: (i) The asymmetry between the positive (g+) and negative (g−) weights
in BoN-RLB increases with N ′, destabilizing its learning at larger N ′ values; (ii) RL-BoN-S uti-
lizes the variational approximation of πbon in its gradient update, introducing approximation errors
that may cause its sub-optimal performance (relative to a stable instance of BoN-RLB trained at
N ′ = 16); BoN-RLB(P) only uses positive samples, which inherits the shortcomings of STaR (lack
of implicit exploration), yet it re-balances the examples with the difficulty of the problems. Overall,
it leads to consistent yet mild performance degradation over BoN-RLB.

Does BoN-aware fine-tuning generalize to different temperatures? Figure 7 shows that BoN-
RL-V models demonstrate superior performance over the base model across various evaluation
temperatures T ∈ {0.1, 1.0, 1.5}, despite being trained only with T ′ = 1.0, indicating that our
BoN-aware RL method generalizes to sampling configurations outside of its training distribution.
For Pass@N , BoN-RL-V outperforms the base model at each evaluation temperature, with wider
performance gaps as temperature increases. This observation aligns with our co-scaling behavior
studies, indicating the continued benefit of broader exploration even after BoN-aware RL training.
Conversely, for BoN-accuracy, lower temperatures favor both models, but BoN-RL-V consistently
outperforms the base model, with the performance gap widening at lower temperatures. This further
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underscores the generalizability of BoN-RL-V across different exploration-exploitation regimes.
Notably, BoN-RL-V demonstrates greater resilience to accuracy degradation at higher temperatures,
leading to a milder/negligible BoN accuracy degradation as the evaluation sample size N increases.
This also suggests BoN-RL-V’s enhanced ability to adapt to verifier failure modes and mitigate
Type-II errors stemming from misalignment with the environment reward.

6 RELATED WORK

Large language models (LLMs) can leverage inference-time computation to improve the quality
of their generated outputs (Welleck et al., 2024), particularly on reasoning tasks. One common
approach is to use chain-of-thought (Wei et al., 2022), where the model generates a step-by-step
rationale before generating the final output. Another useful approach that can be combined with
chain-of-thought is Best-of-N rejection sampling (Charniak & Johnson, 2005; Stiennon et al., 2020),
which is our focus in this work. In Best-of-N, we generate multiple candidate outputs from an LLM
and select the best output. BoN re-ranking can be done either using oracle information, such as
checking final answers for solving math problems, which is also known as Pass@N (Chen et al.,
2021), or learned verifiers (Cobbe et al., 2021; Lightman et al., 2023; Hosseini et al., 2024; Zhang
et al., 2024). Recent work also empirically analyzes strategies that optimally trade off additional
test-time compute for improved performance (Wu et al., 2024; Snell et al., 2024).

Closely related to our approach is prior work that fine-tunes LLMs to improve their self-correction
capabilities (Kumar et al., 2024; Snell et al., 2024) or search capabilities on planning tasks (Gandhi
et al., 2024; Lehnert et al., 2024), which allows for more efficient scaling with test-time compute.
By contrast, our work focuses on inference-aware fine-tuning that directly optimizes for Best-of-N
performance, instead of an intermediate capability that be used at test-time.

To make an LLM amenable to test-time scaling, techniques like STaR (Zelikman et al., 2022) or
ReSTEM (Singh et al., 2023) have been employed to fine-tune the model using on-policy data. This
process leverages BoN sampling to iteratively generate better responses, and fine-tunes on this cu-
rated data, for which the LLM learns to improve its proposal distribution, effectively increasing the
likelihood of generating high-quality outputs during inference.

Finally, our work is related to recent work on leveraging tree search to enhance decision-making in
reinforcement learning (Dalal et al., 2021). A key challenge in both BoN sampling and tree search
lies in mitigating the impact of imperfect value estimation. Dalal et al. (2021) address this in tree
search by penalizing actions leading to states with high Q-value error, effectively making inference
more pessimistic for out-of-distribution samples. In contrast, in this work we tackle verifier error in
BoN not by altering inference, but rather by incorporating it directly into training. Our BoN-aware
methods learn to generate responses robust to these errors, aligning training with BoN inference.
Furthermore, our BoN framework generalizes conceptually to tree search, with the verifier acting as
an approximate Q-function, and training optimizing policy robustness to its errors.

7 CONCLUSION

We introduced inference-aware fine-tuning, a novel paradigm that bridges the gap between training
and inference for LLMs. Specifically for the Best-of-N inference strategy, we discovered a co-
scaling law for BoN that guides the optimization of temperature and sample size, developed a gamut
of fine-tuning algorithms that handle various imitation learning and reinforcement learning settings,
training LLMs to generate diverse and high-quality outputs tailored for BoN inference, demonstrated
the efficacy of these methods by significantly improving on BoN accuracy and Pass@N on the
standard MATH reasoning benchmark over state-of-the-art baselines, highlighting the robustness
and generalizability of our approaches across various BoN configurations.

Our work exemplified how BoN-aware fine-tuning learns a meta-strategy, which interleaves best re-
sponses with more diverse responses that might be better suited for BoN sampling. These findings
underscore the potential of inference-aware fine-tuning to unlock previously undiscovered capa-
bilities in LLMs through aligning training methodologies with inference-time compute strategies.
Future work includes extending this framework to incorporate more complex, inference algorithms
(e.g., reasoning, critique-and-revise, MCTS), developing contextual BoN-aware algorithms that can
generalize to various tasks, investigating the interplay between the co-scaling of temperature, sample
size, and BoN-aware fine-tuning, and applying our algorithms to more larger-scale problems.
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Reproducibility Statement. We utilize the publicly available Gemma 2B and 9B language mod-
els, the Hendrycks MATH benchmark, and the HumanEval coding benchmark – all accessible to the
research community. Our experimental setup is described in detail in Section 5. Furthermore, the
appendix provides comprehensive pseudo-code (Algorithms 1 to 4) and implementation details for
our BoN-aware fine-tuning algorithms (BoN-SFT, BoN-RL, BoN-RLB, and BoN-RLB(P)). We also
delve into the theoretical underpinnings of our methods in the main text and the appendix, enabling
a thorough understanding of our approach.
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Pier Giuseppe Sessa, Robert Dadashi, Léonard Hussenot, Johan Ferret, Nino Vieillard, Alexandre
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Szepesvári, and Eric Wiewiora. Fast gradient-descent methods for temporal-difference learning
with linear function approximation. In International Conference on Machine Learning (ICML),
2009a.

Richard S. Sutton, Hamid Reza Maei, and Csaba Szepesvári. A convergent o(n) temporal-difference
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A THEORETICAL DERIVATIONS

A.1 VARIATIONAL APPROXIMATION OF BON

We assume that the verifier score r(x, y) is unique for all x, y, and the base model π has a finite set
of possible outcomes for each context (Beirami et al., 2024).

Proposition 5 (Theorem 2 in Gui et al. (2024)). With negligible error, one may effectively approxi-
mate πbon as the solution to the following optimization problem:

πbon (y|x)∈ argmax
µ(·|x)∈∆Y

Ey∼µ [Qπ (x, y)]−
1

λN
KL (µ||π) (x), (10)

where Qπ (x, y) = Ey′∼π(·|x)
[
1r(x,y)⩾r(x,y′)

]
is the expected win-rate over π, and

(λN − 1) exp (λN + 1)

exp (λN − 1)
− log

(
expλN − 1

λN

)
= logN − N − 1

N
, (11)

through λN scaling sub-linearly with BoN number of samples N .

We can show the optimal solution to Equation (10) has a closed form π∗
bon ∝ [π · exp (λNQπ)](y|x).

This can also be revealed by viewing Equation (10) as the variational form of Bayes’ rule (Williams,
1980; Zellner, 1988; Zhu et al., 2014; Dai et al., 2016), whose optimal solution is the posterior. This
implies πbon can be represented by an exponential-twisting policy (Gerber et al., 1993) over base pol-
icy π with energy function λN ·Qπ(y, x), partition functionZπ(x) = Eπ(y|x) [exp (λN ·Qπ (x, y))],
and an appropriate λN from Equation (11).

In this section we will provide proofs for the technical results in this paper.

A.2 PROOF OF LEMMA 1

Therorem 2 of Gui et al. (2024) shows that, with negligible error, one may effectively approximate
πbon as the solution to the following optimization problem:

πbon (y|x)∈ argmax
µ(·|x)∈∆Y

Ey∼µ [Qπ (x, y)]−
1

λN
KL (µ||π) (x), (12)

where Qπ (x, y) = Ey′∼π(·|x)
[
1r(x,y)⩾r(x,y′)

]
is the expected win-rate over π, and this yields the

variational form πbon ∝ [π · exp (λNQπ)](y|x). Plugging the variational form of πbon into (2) yields
the learning problem for π:

max
π∈Π

E(x,y)∼D [log πbon(y|x)] := E(x,y)∼D

log π (y|x)︸ ︷︷ ︸
Likelihood

+λN ·Qπ (x, y)−logZπ(x)︸ ︷︷ ︸
Inference-Awareness

 , (13)

Taking gradient of this objective function over θ ∈ Θ implies
∇θE(x,y)∼D [log πθ (y|x)+λN ·Qπθ

(x, y)−logZπθ
(x)]

=E(x,y)∼D [∇θ log πθ (y|x)]+λN · ∇θE(x,y)∼D [Qπθ
(x, y)]−∇θEx∼D [logZπθ

(x)]

=E(x,y)∼D [∇θ log πθ (y|x)]+λN · E(x,y)∼D [Ey′∼πθ
[∇θ log πθ(y′|x) · σ (r(x, y)− r(x, y′))]]

−Ex∼D
[
∇θ logEπθ(y|x) [exp (λN ·Qπθ

(x, y))]
]

=E(x,y)∼D [∇θ log πθ (y|x)]+λN · E(x,y)∼D [Ey′∼πθ
[∇θ log πθ(y′|x) · σ (r(x, y)− r(x, y′))]]

−Ex∼D

[Eπθ(y|x) [∇θ log πθ(y|x) · exp (λN ·Qπθ
(x, y))] + Eπθ(y|x) [∇θ exp (λN ·Qπθ

(x, y))]

Eπθ(y|x) [exp (λN ·Qπθ
(x, y))]

]
.

This further implies that
∇θ E(x,y)∼D [log πθ (y|x)+λN ·Qπθ

(x, y)−logZπθ
(x)]

=E(x,y)∼D [∇θf (x, y; θ)]− Ex∼D

[
Eπθ(y|x)

[
exp (λN ·Qπθ

(x, y))

Eπθ(y|x) [exp (λN ·Qπθ
(x, y))]

· ∇θf (x, y; θ)
]]
,

through collecting terms from the above expression and recalling the definition of∇θf (x, y; θ) as
∇θf (x, y; θ) :=∇θ log πθ (y|x) + λN · Ey′∼πθ

[∇θ log πθ (y′|x)·σ (r(x, y)− r(x, y′))] .
This further implies that

∇θ E(x,y)∼D [log πθ (y|x)+λN ·Qπθ
(x, y)−logZπθ

(x)]

=E(x,y)∼D [∇θf (x, y; θ)]− Ex∼D,y∼πbon [∇θf (x, y; θ)] ,
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completing the proof of this lemma.

A.3 PROOF OF LEMMA 2

Recall the RL objective function
max
π∈Π

J(π) := Ex∼P,y∼πbon(·|x;π,r,N,T )[R(x, y)]. (14)

Applying the REINFORCE trick (Sutton et al., 2009b) to this problem over the BoN policy class
and using the analgous argument from the proof of Lemma 1, we have the following expression for
the policy gradient:
Ey∼πbon(·|x),x∼D [∇θ log πbon(y|x) ·R(x, y)]

=Ex∼D,y∼πbon(·|x) [∇θf (x, y; θ) ·R(x, y)]− Ex∼D,y∼πbon [∇θf (x, y; θ)] · Ey∼πbon(·|x),x∼D [R(x, y)]

=Ex∼D,y∼πbon(·|x) [∇θfθ (x, y) · (R(x, y)− b(x))]
=Ex∼D,y∼πbon(·|x) [∇θ log πθ (y|x) · (R(x, y)− b(x))] ,
the last equality is due to the fact that y ∼ πbon will always has a win-rate of 1, i.e., Qπθ

(x, y) = 1
almost surely, for y ∼ πbon(·|x). This completes the proof of this lemma.

A.4 PROOF OF LEMMA 3

Using the log-likelihood trick, and plugging in the BoN distribution from Equation (8), the gradient
of Equation (6) can be computed as
Ey∼πbon(·|x),x∼D [∇θ log πbon(y|x) ·R(x, y)] = Ey∼πbon(·|x),R(x,y)=1,x∼D [∇θ log πbon(y|x)]

=Ex∼D

[
Ey∼πbon(·|x),R(x,y)=1,

[
∇θ log πθ(y|x)

]
+ (1− Ey′∼π(·|x)

[
1R(x,y′)=0

]N
)∇θ log

1− Ey′∼π(·|x)
[
1R(x,y′)=0

]N
1− Ey′∼π(·|x)

[
1R(x,y′)=0

] ]
=Ex∼D

[
Ey∼πbon(·|x),R(x,y)=1

[
∇θ log πθ(y|x)

]
−

1− Ey′∼π(·|x)
[
1R(x,y′)=0

]N
1− Ey′∼π(·|x)

[
1R(x,y′)=0

] Ey′∼π
[
∇θ log πθ(y′|x) · 1R(x,y′)=1

]
+ Ey′∼π

[
∇θ log πθ(y′|x) · 1R(x,y′)=1

]
·N · Ey′∼π(·|x)

[
1R(x,y′)=0

]N−1
]

=Ex∼D

[
Ey∼πbon(·|x),R(x,y)=1 [∇θ log πθ(y|x)] ·

NIref(x)
N−1(1− Iref(x))

1− Iref(x)N

]
.

=Ex∼D

[
Ey∼πbon(·|x),R(x,y)=1 [∇θ log πθ(y|x)] ·

N · Iref(x)
N−1

1− Iref(x)N

− Ey∼πbon(·|x),R(x,y)=0 [∇θ log πθ(y|x)] ·
N · Iref(x)

1− Iref(x)

]
A.5 PROOF OF COROLLARY 4

Using the log-likelihood trick, and plugging in the BoN distribution from Equation (8), the gradient
of problem Equation (6) can be computed as

Ex∼D

[
Ey∼πbon(·|x),R(x,y)=1 [∇θ log πθ(y|x)] ·

N · Iref(x)
N−1

1− Iref(x)N

− Ey∼πbon(·|x),R(x,y)=0 [∇θ log πθ(y|x)] ·
N · Iref(x)

1− Iref(x)

=Ex∼D

[
Ey∼πbon(·|x),R(x,y)=1 [∇θ log πθ(y|x)] ·

NIref(x)
N−1(1− Iref(x))

1− Iref(x)N

]
.
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Algorithm 1 BoN-SFT
1: Input: Verifier score r, environment reward R, expert dataset D
2: for t = 1, 2, . . . do
3: Sample a batch of prompts and solutions {xi, yi}Bi=1 from the expert data D.
4: for i = 1, . . . , B do
5: Sample N responses {yi,j}Nj=1 from πθ(·|xi).
6: Select the BoN response y∗i = argmaxj r(xi, yi,j).
7: Compute the gradient∇θfθ(xi, yi) using Equation (5).
8: end for
9: Update θ by following the gradient in Theorem 1 at learning rate α > 0, i.e.,

θ ← θ + α

(
1

N

N∑
i=1

[∇θf (xi, yi; θ)]− [∇θf (xi, y∗i ; θ)]

)
10: end for

B PSEUDO-CODE AND IMPLEMENTATION DETAILS

Pseudo-code for all our SFT and RL methods is presented in Algorithms 1 to 4. Our implementation
follows the standard use of an anchor policy, updated using exponential moving average. The policy
is trained via BoN-aware losses, with additional KL divergence loss to the anchor policy. Table 1
shows the hyper-parameters used for all of our experiments.

We use linear annealing for the KL-coefficient. For all our RL experiments, we use a value baselines
to reduce variance of our reward estimates. We normalize our advantage estimates w.r.t. the batch.
For BoN-RLB the value network estimates Pfail(x). We add additional clipping of the coefficients
g+N , g

−
N by clipping the value estimates for Pfail.

Table 1: Hyperparameters used in experiments.

Hyperparameter Value
Base model Gemma 2b v2
Optimizer AdamW
Learning rate policy 3e-6
Policy warmup steps 100
Learning rate value 1e-5
Anchor EMA 0.01
Training steps 2500
Batch size 32
Sampling temperature 1.0
KL coefficient anneal steps 2500
KL coefficient anneal range 1.0→ 0.075
KL coefficient anneal delay 10
Clipping values for Pfail {0.01, 0.99}

B.1 ANALYSIS OF BON-RLB WEIGHTS

Recall the BoN-RLB weights of Lemma 3:

g+N (p) =
N · pN−1 · (1− p)

(1− pN )2
, g−(p) =

p

1− p
.

and g+N (p) := N ·pN−1·(1−p)
(1−pN )2

− pN

1−pN of Corollary 4.

Figure 8 analyzes these weights, illustrating their behavior concerning the base policy’s failure rate
(p) and the number of samples (N ). The left column shows how the weights evolve with increasing
N for various fixed p, representing different difficulty levels. The right column shows how weights
change with increasing failure probability p for fixed sample sizes N .
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Algorithm 2 BoN-RLB(P)
1: Input: Environment reward R, dataset D
2: for t = 1, 2, . . . do
3: Sample a batch of prompts {xi}Bi=1 from D.
4: for i = 1, . . . , B do
5: Sample N responses {yi,j}Nj=1 from πθ(·|xi).
6: Sample rewards for all candidate responses {R(xi, yi)}Ni=1 from environment.
7: Select the BoN response y∗i = argmaxj R(xi, yi,j).
8: Empirically estimate the base failure probability for each xi, i ∈ {1, . . . , B},

P̂fail(xi) :=
1

N

N∑
j=1

1R(xi,yi,j)=0.

9: end for
10: Update θ by following the gradient in Corollary 4 at learning rate α > 0, i.e.,

θ ← θ + α

(
1

B

B∑
i=1

∇θ log πθ(y∗,+i |xi) · g
+(Pfail(xi), N)

)
where y∗,+i represents the BoN sample that achieves a reward of 1.

11: end for

Algorithm 3 BoN-RLB
1: Input: Environment reward R, dataset D
2: for t = 1, 2, . . . do
3: Sample a batch of prompts {xi}Bi=1 from D.
4: for i = 1, . . . , B do
5: Sample N responses {yi,j}Nj=1 from πθ(·|xi).
6: Sample rewards for all candidate responses {R(xi, yi)}Ni=1 from environment.
7: Select the BoN response y∗i = argmaxj R(xi, yi,j).
8: Empirically estimate the base failure probability for each xi, i ∈ {1, . . . , B},

P̂fail(xi) :=
1

N

N∑
j=1

1R(xi,yi,j)=0.

9: end for
10: Update θ by following the gradient in Lemma 3 at learning rate α > 0, i.e.,

θ ← θ+α

(
1

B

B∑
i=1

∇θ log πθ(y∗,+i |xi) · g
+(Pfail(xi), N)−∇θ log πθ(y∗,−|xi) · g−(Pfail(xi))

)
where y∗,+i , y∗,−i represent the BoN samples that achieve rewards of 1 and 0 respectively.

11: end for

A key observation from the left column is the intersection point of g+N (p) and g−(p). The shifting
balance between g+N (p) and g−(p) with varying p directly reflects the exploration-exploitation trade-
off. On the right column we see how the weights evolve as the failure probability (p) increases for
fixed sample sizes. As p approaches 1, signifying very difficult problems, both g+N (p) and g−(p)
increase, but g+N (p) rises more dramatically, especially for larger values of N . This sharp increase
in g+N (p) highlights the algorithm’s increasing emphasis on learning from the few correct responses
that are available in challenging scenarios. The effect is amplified by larger sample sizes: the more
attempts are made, the more valuable the scarce successes become. The g+N (p) weight, used when
only positive feedback is available, exhibits a similar upward trend with p but with a less pronounced
increase. This more moderate behavior can be attributed to the subtraction term in its formula, which
tempers the influence of the positive samples and promotes a more balanced learning approach.

Finally, the potentially very large values of g+N (p) for hard problems and larger N introduce chal-
lenges for estimation. These high weights amplify the impact of individual positive samples, making
the training more vulnerable to noise and potentially hindering convergence to a stable optimal pol-
icy. This underscores the need for techniques like gradient clipping or regularization to mitigate the
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Algorithm 4 BoN-RL
1: Input: Verifier score r, environment reward R, dataset D
2: for t = 1, 2, . . . do
3: Sample a batch of prompts {xi}Bi=1 from D.
4: for i = 1, . . . , B do
5: Sample N responses {yi,j}Nj=1 from πθ(·|xi).
6: Select the BoN response y∗i = argmaxj r(xi, yi,j).
7: (If environment reward R is available to the BoN algorithm, we replace verifier r with

that.)
8: Sample the reward R(xi, y∗i ) from environment.
9: Compute the gradient∇θfθ(xi, yi) using Equation (5).

10: end for
11: Update θ by following the gradient in Lemma 2 at learning rate α > 0, i.e.,

θ ← θ + α

(
1

B

B∑
i=1

∇θfθ (xi, y∗i ) · (R(xi, y∗i )− b(xi))

)
where bψ(xi), i = 1, . . . , B is a learned baseline value function of πbon, i.e.,

ψ∗ ∈ argmin
ψ

1

B

B∑
i=1

[R(xi, y
∗
i )− bψ(xi)]2

12: Update value estimate ψ using the current environment reward target and BoN policy tra-
jectories.

13: end for

destabilizing effects of high weight values and ensure robust learning, or alternatively, using g+N (p)
with Corollary 4 to ensure boundness of the gradient weights.
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Figure 8: BoN-RLB weights g+N (p), g−(p), and g+N (p) as functions of p (failure probability) and N (number
of samples). The left column shows the behavior of the weights with respect to N for fixed values of p. The
right column shows the behavior of the weights with respect to p for fixed values of N .
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C ALGORITHMIC EXTENSIONS

C.1 ENTROPY-REGULARIZED RL

We would like to study an entropy-regularized RL problem for the πbon policy. Recall that generally
in entropy-regularized RL, we solve

max
π(·|x)∈∆

Ex∼D
[
Ey∼π(·|x) [R(x, y)]− β ·KL(π||πβ)(x)

]
, (15)

where R(x, y) is the environment reward (that is not necessarily identical to the verifier score
model), πβ is a baseline policy, and β > 0 is the weight for the KL regularization term. Using
the consistency condition of KL-regularized MDP, solving for the optimal policy of this problem is
equivalent to finding a solution pair of V and π ∈ ∆ of the following equation:

V (x) = R(x, y) + β log πβ(y|x)− β log π(y|x), ∀x ∈ D, ∀y (16)
Now, we further parameterize the policy variable π with the BoN policy πbon, then with the suffi-
ciency part of the consistency condition one can show that πbon is an optimal RL policy of Equa-
tion (15) if there exists a pair of V and π that satisfies the following equation
V (x) = R(x, y) + β log πβ(y|x)− β (log π(y|x) + λN ·Qπ (y, x)− logZπ(x)) , ∀x ∈ D, ∀y

(17)

There are two ways to approximately find the solution in Equation (17). The first way is to refor-
mulate the above equation with a condition that equates the values between any pairwise states and
outputs (x, y, y′):

R(x, y′)+β log
πβ(y

′|x)
π(y′|x)

+βλN ·Qπ (y′, x) = R(x, y)+β log
πβ(y|x)
π(y|x)

+βλN ·Qπ (y, x) , ∀x ∈ D, ∀y, y′.

(18)
Suppose one have access to pairwise labels in the data-set, then this formulation eliminates any
terms that are independent to y and circumvents the need of solving for the value function V . One
may approximately solve Equation (18) by minimizing the following ℓ2 loss:

min
π∈∆

E(x,y,y′)∈D
[
(g(x, y;π)− (g(x, y′;π))2

]
,

g(x, y;π) := R(x, y) + β log
πβ(y|x)
π(y|x)

+ βλN ·Qπ (y, x) .

This formulation is similar to that in IPO (Azar et al., 2024). However, unlike IPO, where the term
g(x, y;π) is linear in the logits of π and therefore one can show that its ℓ2 minimization problem
has a unique solution, in this case g(x, y;π) also depends on Qπ , which is a function of π (and
thus a nonlinear function of its logits), preventing us from drawing similar conclusions that the
ℓ2 minimization problem has a unique solution. Therefore, even if one can exactly solve this ℓ2
minimization problem (and make the loss zero), there is no guarantee that the solution policy π∗

corresponds to the base policy of an optimal πbon policy to the KL-regularized RL problem.

For the second approach, consider the following linear programming reformulation of Equation (17):
min
V,π∈∆

Ex∈D[V (x)]

s.t. V (x) ⩾ R(x, y) + β log πβ(y|x)− β (log π(y|x) + λN ·Qπ (y, x)− logZπ(x)) , ∀x ∈ D, ∀y
(19)

Since the inequality constraint is a convex function in π and an affine function in V , by strong duality
it has the following equivalent Lagrangian-dual formulation:

max
κ(·,·)⩾0

min
V,π∈∆

E(x,y)∈D

[
V (x) + κ(x, y) ·

(
R(x, y) + β

πβ(y|x)
π(y|x)

− β (λN ·Qπ (y, x)− logZπ(x)− V (x))

)]
= max
κ(·,·)⩾0

min
V

ED
[
(1− κ(x, y)) · V (x) + κ(x, y) · (R(x, y) + β · πβ(y|x))

]
−max

π∈∆
ED [κ(x, y) · log πbon(y|x;π)]

(20)
This formulation can be viewed as an weighted-SFT approach that iteratively updates (i) the base
policy π that maximizes the likelihood of πbon over data D, weighted with importance weights
κ(x, y), and (ii) the importance weight function κ itself. Here, the value function V (x) is simply an
auxiliary variable.
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Pass@N BoN MajorityVoting
Gemma-9B 0.986 0.989 0.89
Gemma-2B 0.998 0.998 0.784

Table 2: R-squared values for different language models and inference algorithms.

C.2 IMPROVED EFFICIENCY WITH BON DISTILLATION

While Lemma 1 provides a recipe for training a base policy to adapt to the BoN inference strategy,
a key challenge lies in the computational cost and data inefficiency associated with BoN sampling,
especially when N is large. Particularly, each gradient update requires generating N samples from
the current base policy, which can be prohibitively expensive. Furthermore, using these samples
solely for a single gradient update may deem wasteful.

To alleviate this issue, leveraging the recent advances in BoN Distillation (BoND) (Sessa et al.,
2024), an RLHF algorithm that distills BoN behaviors into a standard LLM, we approximate the
BoN distribution of the current π. This results in an iterative, two-step procedure. First, we
estimate a BoND policy πBoND (parameterized by weights ϕ) of π by solving the distribution-
matching problem: minϕ Ex∼D[KL(πϕ||πbon)(x)], where the backward-KL metric induces quantile-
based advantage and mode-seeking behaviors to πBoND. Utilizing the variational form πbon(y|x) ∝
π · exp (λNQπ) (y|x), this problem can be further reformulated as

πBoND(y|x) ∈ argmax
ϕ

Ex∼D[Ey∼πϕ(·|x)[Qπ(y, x)]−
1

λN
KL(πϕ||π)(x)]. (21)

Second, equipped with the BoND policy, we change the gradient of Lemma 1 with the approximate
gradient E(x,y)∼D [∇θf (x, y; θ)] − Ex∼D,y∼πBoND(·|x) [∇θf (x, y; θ)]. In general, this approach is
also well-connected with Contrastive Divergence (Carreira-Perpinan & Hinton, 2005) in energy-
based learning, which promotes the idea of approximately sample from the current target distribution
(πbon in our case). It shows that the learning algorithm can still converge to an optimum w.r.t. the
original objective function as long as the gradient estimated by the approximate samples still points
at an ascending direction.

C.3 CONNECTION TO STAR

Consider the popular STaR method (Zelikman et al., 2022) applied for training πbon, which updates
θ by following the reward-weighted gradient:

Ex∼D,y∼πbon(·|x) [∇θ log πθ(y|x) ·R(x, y)] . (22)

Notice that the policy gradient of BoN-RL is a sum of two terms: ∇θJ(θ) = g1(θ) + g2(θ), where
g1(θ) = Ex∼D,y∼πbon(·|x) [∇θ log πθ(y|x) ·R(x, y)] is equivalent to that of BoN-STaR, updating
π via weighted supervised fine-tuning over the responses and the rewards obtained by the cur-
rent BoN policy, and g2(θ) = Ex∼D,y∼πbon(·|x) [∇θ(λNQπ − logEπexp(λNQπ))(x, y) ·R(x, y)]
accounts for the gradient effect of the importance sampling term (expλNQπ/Zπ)(x, y) between π
and πbon, emphasizing on how much it can improve the reward. The additional g2(θ) component
makes BoN-RL amenable to the distributional shifts introduced by the BoN procedure, enabling the
base policy to be adept at utilizing the BoN exploration mechanism to optimize the reward.

D EXPERIMENTAL DETAILS

D.1 ADDITIONAL SCALING RESULTS WITH GEMMA 9B VERIFIER AND POLICY MODELS

Similar to Gemma2B co-scaling experiments, for Gemma 9B co-scaling, we present additional re-
sults in Figure 9. We analyze the optimal exponent b∗(T ) w.r.t different temperatures (see co-scaling
in

Generalization of scaling predictions. In Table 2, we compare various inference algorithms and
LLMs of different sizes. For MajorityVoting algorithm, we use MC estimation to simulate different
sample sizes. We use the same functional form used for co-scaling experiments in ????
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(a) Pass@N (b) BoN

Figure 9: Scaling of exponent w.r.t temperature in Pass@N and optimal N w.r.t. temperature in
BoN. Dashed curves denote in-training predictions, stars denote extrapolation values for the corre-
sponding temperatures.

Figure 10: Pass@N (left) and BoN (right) performance for Gemma-9B. While curves show similar
shape as Gemma-2B models, overall performance is globally improved and overoptimization is
reduced.

Gemma-9B Results. In Figure 10, we present results for Gemma-9B policy and reward models.
Using Gemma-9B improves both Pass@N and BoN significantly compared to Gemma-2B. We
observe that the gap between using large temperatures (0.7 or 1.0) and very small temperatures (0.1)
also increased. While Gemma-2B showed very strong reward model overoptimization for larger N
and temperatures, we see a lesser overoptimization for Gemma-9B models.

D.2 MODEL TRAINING DETAILS

For the MATH benchmark, we trained the Gemma 2B and 9B models with the Hendrycks MATH
dataset. Following Lightman et al. (2023), we augment the original 7500 MATH training problems
with 4500 problems from the test set, evaluating performance on the remaining 500 problems. In
the supervised setting, we leverage a larger Gemini 1.5 Flash model (Reid et al., 2024) to generate
MATH solutions with answers and steps (32 candidates for each of the MATH problems), sub-
sampling only the correct responses and distilling knowledge into the Gemma 2B model. In the
RL setting, we use a binary environment reward denoting whether the model’s answer matches the
ground truth answer. The verifier used in all BoN experiments is a separate pre-trained Gemma 2B
model that predicts the probability of a correct response given the prompt. The verifier is trained
with the data collected from the Gemini 1.5 Flash model.

Alternatively, to benchmark our models on code generation, we train on MBPP (Austin et al., 2021)
and evaluate on the HumanEval benchmark (Chen et al., 2021), following the standard procedures
delineated in Kumar et al. (2024).
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Figure 11: BoN Accuracy on MATH comparing Base Gemma 2B and BoN RL-V with other fine-
tuning techniques: (1) BoN-SFT: Distillation of BoN sample for N=16; (2) All-SFT: Distillation
of all N=16 samples (i.e., average sample); (3) Weighted-SFT: Distillation of all N=16 samples by
average re-sampling w.r.t. verifier scores; and (4) Maj-SFT: Distillation of majority voting strategy.

D.3 ADDITIONAL BON-AWARE FINE-TUNING RESULTS

We now present additional results on BoN-aware fine-tuning (both SFT and RL).

D.3.1 COMPARING BON-AWARE FINE-TUNING WITH BASE-BON DISTILLATION BASELINES

We consider various alternative methods to improve Gemma 2B BoN accuracy through various
data generation methods. We distill the Gemma 2B model using these datasets and compare to the
base Gemma 2B model and our BoN-RL-V method. We consider the following four distillation
benchmarks (all run over Hendrycks MATH):

1. Base-BoN-SFT: In this method we generate a dataset of the best of N = 16 samples for
each example in the dataset. We use the best sample as target to distill Gemma 2B.

2. Base-All-SFT: We use the full range of N = 16 samples as targets. This dataset is used to
distill Gemma 2B to the average effective sample of the base model.

3. Base-Weighted-SFT: Similar to Base-All-SFT, we sample N = 16 samples for each exam-
ple. We then re-sample N = 16 examples (from these samples, with repetition), weighted
according to verifier scores. This dataset is used to distill Gemma 2B to the average effec-
tive sample, weighted by verifier scores.

4. Base-Maj-SFT: We use majority voting over N = 16 samples to select a target. We distill
Gemma 2B to predict the majority voted target.

We show the BoN accuracy results of these methods in Figure 10. While the aforementioned base-
lines do improve BoN performance over the Base Gemma 2B model, they are still out-performed
by our BoN-RL-V method, indicating the value of utilizing the inference BoN strategy explicitly
during training.

D.3.2 GEMMA 9B HENDRYCKS MATH

We additionally benchmark a larger model, GemmaV2 9B, on Hendrycks MATH, with results shown
in Figure 13. We observe that, similar to the trends of the experiments run with the Gemma 2B coun-
terpart, BoN-RLV achieves the best BoN performance, while BoN-RL-S achieves the best Pass@N
performance, with both substantially improving over the base model.

D.3.3 GEMMA ON HELD-OUT MATH BENCHMARKS

To evaluate the generalization capabilities of our BoN-aware finetuned models, we additionally eval-
uate on two completely held-out and challenging benchmarks, Functional Math (Srivastava et al.,
2024) and MathOdyssey (Fang et al., 2024). We present the results of these held-out benchmarks
with Gemma 2B and 9B models in Figures 14,15,16,17, respectively, and observe that our fine-tuned
models improve on both BoN and Pass@N for these held-out benchmarks.
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Figure 12: Verifier Mismatch. Plots show BoN accuracy under verifier-reward mismatch using
Gemma 2B on MATH. During training verifier was used for BoN. On test, environment reward was
used as verifier of the BoN strategy, inducing a mismatch in verifiers.

0 5 10 15 20 25 30
N

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

Bo
N 

Ac
cu

ra
cy

Base-model
RL N=1
BoN-RLV N=8
BoN-RLS N=8

(a) BoN

0 5 10 15 20 25 30
N

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Pa
ss

@
N 

Ac
cu

ra
cy

Base-model
RL N=1
BoN-RLV N=8
BoN-RLS N=8
BoN-RLBP N=8

(b) Pass@N

Figure 13: BoN and Pass@N Accuracy Results on Hendrycks MATH with Gemma 9B.

D.3.4 GEMMA 2B ON CODING BENCHMARKS

In Figure 18, we illustrate the performance of various Pass@N-aware finetuning methods and base-
lines that are trained with the MBPP coding dataset on HumanEval. We see that these methods,
particularly BoN-RLBP, significantly improve upon the base model, increasing the pass@16 perfor-
mance of the base Gemma 2B model from 61.6% to 67.1%. By contrast, standard RL fine-tuning
(i.e with N ′ = 1) actually decreases the evaluation pass@16 to 59.8%.
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Figure 14: BoN and Pass@N Accuracy Results on Functional Math with Gemma 2B.
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Figure 15: BoN and Pass@N Accuracy Results on MathOdyssey with Gemma 2B.
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Figure 16: BoN and Pass@N Accuracy results on Functional Math with Gemma 9B.
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Figure 17: BoN and Pass@N Accuracy Results on MathOdyssey with Gemma 9b.
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Figure 18: Pass@N Accuracy Results for Gemma 2B on HumanEval Coding Benchmark.
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