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ABSTRACT

Breast cancer risk prediction using genotype data is a critical task in personalized
medicine. However, the high dimensionality and potential redundancy of genetic
features pose challenges for accurate risk prediction. We present a graph-based
representation learning pipeline for breast cancer risk prediction. Our method ad-
dresses the issue of feature redundancy by developing an ensemble-based feature
selection approach. We evaluated the performance of the graph-based approach
in a breast cancer risk prediction task using a dataset of 644,585 genetic variants
from Biobank of Eastern Finland, consisting of 168 cases and 1558 controls and
compared it with the classical machine learning models. Using 200 top-ranked ge-
netic variants selected by the ensemble approach, the graph convolutional network
(GCN) achieved area under the ROC curve (AUC) of 0.986 + 0.001 in discrim-
inating cases and controls, which is better than an XGBoost model with AUC of
0.955 £ 0.0034.

1 INTRODUCTION

Breast cancer is a significant global health concern with 2.3 million new diagnoses and 685,000
deaths reported in 2020. Estimating breast cancer risk involves considering a range of factors that
contribute to an individual’s likelihood of developing the disease. Traditional methods for estimating
breast cancer risk often encompass known factors related to personal and family medical history,
genetics, lifestyle choices, and hormonal influences. However, such models use a significant amount
of time and have varied limitations |Gail et al. (1989)); [Tice et al.| (2008)).

Recent advancements in breast cancer risk prediction models have incorporated genetic information,
specifically single nucleotide polymorphisms (SNPs) to distinguish between individuals affected by
breast cancer and those who are healthy [Tao et al.|(2023)); Behravan et al.| (2018)); |Gao et al.| (2022));
Ahearn et al.| (2022); |Ho et al.| (2020). SNPs are the most common type of genetic variation, oc-
curring when a single nucleotide at a specific location in the genome differs among individuals.
Each SNP typically has two alleles, like A or T, defining the genetic variation at that position. In a
person’s genome, there are approximately 4 to 5 million SNPs. In genome-wide association studies
(GWAS), researchers have found genetic variants strongly linked to breast cancer [Jia et al.| (2022);
The BioBank Japan Project et al.| (2022). The typical approach involves testing each single genetic
variant’s association with the disease by comparing the frequencies of alleles/genotypes between
affected individuals and healthy controls. However, this method overlooks potential correlations or
interactions among multiple genetic variants (SNPs) as it focuses on one SNP at a time. Consid-
ering all SNPs together becomes challenging due to the large number of genetic variants, complex
interactions among them, and often limited sample size in the study.

There is a scarcity of existing research in the field of utilizing machine and deep learning models
for predicting the disease risk through SNP data modeling. This scarcity arises from both the com-
plex characteristics of the high-dimensional SNPs data and the challenges associated with acquiring
sensitive genomics information. To tackle the challenge of high dimensionality, current methodolo-
gies often suggest employing feature selection techniques as a preliminary step. These methods aim
to first reduce the dimensionality of SNP data before utilizing the resulting lower-dimensional fea-
tures for subsequent tasks [Pudjihartono et al.| (2022). For instance/Alzoubi et al.| (2023 employed
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a multilayer perceptron (MLP) to sequentially identify hundreds of relevant SNPs. This was done
to forecast the disease status of individuals within a case and control cohort. [Ta1 & Dhaliwal| (2022)
conducted a comparison between an MLP and several conventional machine learning models. This
comparison was based on the utilization of 104 malaria-related SNPs collected from the existing
literature. Meanwhile, Behravan et al.| (2018) introduced an iterative strategy based on a gradient
boosting algorithm. They employed this approach to filter out SNPs linked to breast cancer risk,
followed by the use of a support vector machine (SVM) classifier for breast cancer risk prediction.
Despite achieving promising results, these models are challenging to interpret. The majority of these
techniques utilize linear feature selection approaches. They select representative features by rank-
ing their corresponding feature weight vectors. However, these operations often treat each feature
in isolation and overlook the intricate higher-order SNP relationships that exist among the original
features. Consequently, such approaches often lead to redundancy among the selected features.

In this study, we advance the breast cancer case-control prediction using graph-based deep learning
architectures. We address the challenge of SNPs filtering by employing an ensemble-based feature
selection approach to efficiently capture non-linear and high-dimensional SNP-SNP interactions.
We have used three distinct graph neural networks: GCN Morris et al|(2019), graph attention net-
work (GAT) |Velickovi¢ et al.| (2017), and graph sample and aggregation network (GraphSAGE)
Hamilton et al.| (2017) for the classification of breast cancer case-control using the top K SNPs fil-
tered using our proposed feature selection approach. To demonstrate the efficacy of the graph-based
models, we conducted comparative experiments with widely-used machine learning classifiers such
as XGBoost, random forest, SVM classifier, and logistic regression.

2 MATERIALS

We used genotype data from 168 breast cancer cases and 1558 controls from the Biobank of Eastern
Finland. Detailed procedures for genotyping, allele calling, and quality control were followed as
outlined in [Kurki et al.| (2022)). All samples were collected with informed written consent based
on the Finnish Biobank Act. For quality control, we filtered the SNPs using PLINK [Purcell et al.
(2007) software. SNPs with missing variants lower than 5%, minor allele frequency of < 0.005,
and Hardy-Weinberg equilibrium (HWE) with log p-values < 5 were excluded. Finally, we kept
the SNPs with linkage disequilibrium of 2 < 0.6, leading to 644,585 total SNPs for the breast
cancer risk prediction task, in this study. For the original encoding of SNPs, an additive scheme
was employed |Mittag et al.| (2015). This entails representing each SNP based on the count of minor
alleles, where homozygous major, heterozygous, and homozygous minor genotypes are encoded as
0, 1, and 2, respectively.

3 METHODS

3.1 ENSEMBLE-BASED SNPS SELECTION

We trained an ensemble-based neural network (ENN) to aggregate multiple feature selection meth-
ods. Figure [T illustrates the proposed ENN model. For every individual SNP ¢, an independent
feature selection method computes its importance score .S;. Consider four distinct feature selec-
tion methods, labeled as m,n,p, and q, the normalized importance score array for the SNP ¢ is
presented as Z; = [S!™, S, S, S7]. Then, the ground truth score S;"""? is generated by taking
the harmonic mean of the score array elements as: S; """ = = +¢ii +—5- The harmonic
SmTSE TP T se
mean balances the contributions of each feature selection method by giving more weights to smaller
scores. This balance is pivotal in scenarios where one method produces significantly larger im-
portance scores than the others, preventing any method from overshadowing the overall aggregated
score. Additionally, the harmonic mean is robust against outliers |Xu| (2009)).

Using Optuna |Akiba et al.| (2019)), we fine-tuned a three layer neural network for a regression task
with the ground truth scores to find the optimal hyper-parameters, including optimizer, learning rate,
and dropout. We optimized the network using the mean square error loss function. Then, from the
model with the lowest validation loss, the aggregated SNP scores in the output were sorted and the
top K SNPs, with K = (100, 200, 500, 1000), were selected. The list of hyper-parameters tuned for
the feature selection task are listed in appendix
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Figure 1: Ensemble-based neural network architecture for combining the output of multiple feature
selection methods. In this study, we used Chi-square, ANNOVA, decision tree, and Lasso regression
as the feature selection methods.

3.2 GRAPH-BASED GENOTYPE DATA REPRESENTATION

Representation learning seeks to transform the initial high-dimensional features into a different fea-
ture space, typically composed of non-linear combinations of the original features. To investigate
intricate relationships between SNPs, we employ a graph-based representation approach. Graphs
offer a valuable advantage by encoding relationships between variables.

Construction of a graph forms the basis of our approach to predict the breast cancer risk. At its core,
we construct a graph denoted as G, with nodes representing the individuals as cases or controls,
while the filtered K-top SNPs, derived from the ENN approach, as the node features. To quantify
the similarity between two individuals (nodes), we compute the hamming distance between the two
node features. Specifically, the hamming distance D; ; between the two nodes 7 and j is computed
as follows:

K
D;; = Z(%k =2 k). (D

k=1

Here, x; ;, and x; , represent the actual values of the k—th SNP for nodes 7 and j, respectively.

The Hamming distance D; ; serves as a metric to quantify the difference between the genotypes of
two nodes (individuals). To transform D; ; into a measure of similarity rather than difference, we
used the inverse of D; ; as the edge weight in our graph. Specifically, an edge is established between
nodes ¢ and j if D; ; = 0.5 (See appendix @) The weighted graph representation effectively
captures the complex interplay of genetic variants, enhancing the ability to predict individual genetic
risk for breast cancer with improved accuracy and biological insight.

In this study, we considered three deep learning-based graph architectures, namely, GCN, GAT, and
GraphSAGE for a node classification task.
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Figure 2: Training and evaluation protocol.

4 IMPLEMENTATION DETAILS

Figure2]illustrates the data splitting protocol employed in this study to train and evaluate the models.
The SNPs dataset consists of 1726 individuals (cases: 168, controls:1558), which we divided it into
a model development set (80%) (cases: 134, controls:1246) and an internal evaluation test set (20%)
(cases:34, controls:312) using a stratified splitting protocol. For hyper-parameter optimization and
model training, we used nested cross-validation on the model development set. This involved an
outer loop (5-fold cross-validation) and inner loop (2-fold cross-validation). To address the class-
imbalance issue, we employed the synthetic minority oversampling technique (SMOTE) |Chawla
et al.| (2002) within each training fold, then filtered the SNPs using the ENN model. Within each
outer loop training fold, a 2-fold cross-validation was performed for hyper-parameter tuning with
Optuna [Akiba et al. (2019) (See appendix [A.3] and [A4] for list of hyperparameters used for graph
models and machine learning classifiers, respectively.). The optimal hyper-parameters found in
the inner-loop are used to train the outer loop. Finally, the graph and machine learning model
performance was assessed on the internal evaluation test set and metrics reported include precision,
recall, accuracy and AUC. We implemented all the graph models using PyTorch geometric (version
2.3.1)|Fey & Lenssen| (2019) enabled with CUDA (version 11.7), and trained on a NVIDIA Tesla
V100 GPU, provided by the CSC-IT Center for Science, Finland.

5 RESULTS

5.1 SUPERIORITY OF ENSEMBLE-BASED SNP FILTERING OVER ALTERNATIVE FEATURE
SELECTION APPROACHES

First, we initiate by evaluating the effectiveness of our newly proposed SNPs selection method,
comparing it against well-established statistical techniques such as Chi-squared and ANOVA, as
well as machine learning-driven approaches like decision trees and Lasso regression (L1 = 1). We
used the harmonic mean rank as a baseline for comparison against our proposed ensemble-based
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feature fusion method. For each SNP, we computed the ranks from all four methods and calculated
the harmonic mean rank, a statistical measure that emphasizes lower ranks, providing a balanced
representation of SNP importance across methods.

We chose the initial 100, 200, 500, and 1000 highest-ranked SNPs from each method and employed
them to conduct risk prediction on the internal evaluation test set. Increasing the number of SNPs
does not guarantee an improvement in prediction accuracy. Figure [3]shows that the optimal outcome
is attained using the ENN method, with the top 200 ranked SNPs, yielding an AUC value of 0.986.
Among the baseline methods, the Lasso method, employing the 100 top SNPs, achieved the highest
prediction accuracy with an AUC value of 0.945.
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Figure 3: Comparing the performance of multiple feature selection methods across various SNP
counts on the internal evaluation test set using the GCN model. An asterisk (***) denotes that the
distinction between the ensemble and baseline feature selection methods is statistically significant,
as determined by a t-test with a p-value < 0.001. ns: not significant.

5.2 GCN OUTPERFORMS OTHER GRAPH-BASED METHODS AND CONVENTIONAL MACHINE
LEARNING APPROACHES IN PREDICTING THE BREAST CANCER RISK USING THE
TOP-RANKED SNPS

Subsequently, employing the top 200 SNPs from the ensemble method, we assess the risk prediction
performance of three different graph architectures — namely, GCN, GAT, and GraphSAGE — on
the internal evaluation test set in Table[I] GCN demonstrates enhancement, with 1.23% and 2.28%
relative increases in AUC compared to GAT and GraphSAGE, respectively. Similarly, the GCN
model exhibits substantial improvements in accuracy, with relative increases of 3.79% and 8.24%
when compared to the GAT and GraphSAGE models, respectively.

Table 2] illustrates the predictive capabilities of different machine learning techniques, such as XG-
Boost, random forest, SVM classifier, logistic regression, and fully connected network (FCN), when
applied to the task of breast cancer risk prediction on the test set. These models employ the top-
ranked SNPs chosen by the ENN approach. The XGBoost classifier, when applied to the top 500
SNPs, demonstrates superior performance compared to the other machine learning and deep learn-
ing classifiers, with an AUC value of 0.955. In contrast to the GCN, machine learning classifiers
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Table 1:

The performance evaluation of GCN, GAT, and GraphSAGE models for a node-

classification task on the internal test dataset. Metrics such as precision, recall, accuracy, and AUC
are computed and reported for each model across various SNP counts.

Model SNPs count | Precision Recall Accuracy AUC
100 0.716 £ 0.006 | 0.835 +0.006 | 0.859 £0.021 | 0.917 £0.010
GCN 200 0.931 £0.006 | 0.946 = 0.006 | 0.958 +0.005 | 0.986 + 0.001
500 0.875+£0.008 | 0.934 £0.008 | 0.905+0.002 | 0.971 +0.004
1000 0.891 £0.002 | 0.912+£0.004 | 0.913 +0.012 | 0.975 £ 0.005
100 0.824 £ 0.009 | 0.939 £0.006 | 0.825+£0.103 | 0.963 +0.002
GAT 200 0.903 £ 0.006 | 0.852 +0.006 | 0.923 +0.010 | 0.974 £ 0.003
500 0.912 £0.005 | 0.827 £0.007 | 0.720 £ 0.214 | 0.954 £0.012
1000 0.816 £ 0.009 | 0.940 £ 0.007 | 0.580 £0.123 | 0.966 + 0.002
100 0.775 £0.010 | 0.951 £0.005 | 0.864 £0.004 | 0.931 £ 0.002
GraphSAGE 200 0.937 £ 0.006 | 0.897 £0.009 | 0.885+0.023 | 0.964 +0.002
500 0.927 £0.006 | 0.927 £0.005 | 0.928 +£0.002 | 0.971 +0.003
1000 0.918 £0.005 | 0.887 £0.003 | 0.914 £ 0.027 | 0.966 £+ 0.005

exhibited reduced predictive accuracy. The GCN, trained on 200 top-ranked SNPs, outperformed
the best XGBoost model with a 3.14% relative AUC improvement.

Table 2: The predictive performance of multiple machine learning classifiers on the test set across
various sets of top-ranked SNPs selected by the ENN approach.

Model SNPs count | Precision Recall Accuracy AUC
100 0.906 £ 0.008 | 0.905 +0.007 | 0.906 +0.008 | 0.948 + 0.003
XGBoost 200 0.899 + 0.007 | 0.915 £0.007 | 0.921 £0.010 | 0.953 +0.001
500 0.907 £ 0.008 | 0.939 + 0.008 | 0.929 + 0.004 | 0.955 £ 0.003
1000 0.922 £0.017 | 0.758 £0.012 | 0.914 £0.006 | 0.956 £ 0.002
100 0.877 £0.008 | 0.879 +£0.009 | 0.797 +£0.002 | 0.938 +0.003
Random forest 200 0.881 £0.007 | 0.911 £0.007 | 0.769 +0.015 | 0.944 + 0.005
500 0.838 £0.005 | 0.916 £0.005 | 0.750 £0.015 | 0.942 + 0.005
1000 0.821 £ 0.008 | 0.869 £ 0.006 | 0.742 +0.020 | 0.940 + 0.003
100 0.863 £ 0,010 | 0.622 £ 0.010 | 0.655 £ 0.009 | 0.720 + 0.008
SVM classifier 200 0.898 £0.013 | 0.310+£0.013 | 0.622 £ 0.005 | 0.768 £ 0.011
500 0.824 £ 0.010 | 0.912 £0.010 | 0.604 +0.001 | 0.740 = 0.005
1000 0.866 £ 0008 | 0.917 £0.005 | 0.591 £0.006 | 0.772 £ 0.013
100 0.828 £0.009 | 0.939 +0.007 | 0.543 +£0.011 | 0.587 £ 0.009
Logistic regression 200 0.824 £ 0.009 | 0.937 £0.006 | 0.569 +0.005 | 0.672 +£0.012
500 0.817 £0.006 | 0.938 +£0.006 | 0.566 +0.004 | 0.617 £ 0.004
1000 0.693 £0.012 | 0.631 £0.011 | 0.512+0.004 | 0.626 £ 0.006
100 0.714 £ 0.001 | 0.918 £ 0.006 | 0.784 £ 0.008 | 0.908 + 0.006
FCN 200 0.775 £ 0.010 | 0.931 £0.005 | 0.838 £0.006 | 0.844 + 0.004
500 0.913 £0.007 | 0.743 £0.011 | 0.836 £ 0.006 | 0.942 + 0.004
1000 0.822 £ 0009 | 0.938 +£0.006 | 0.867 +0.006 | 0.941 + 0.005
100 0.716 £ 0.006 | 0.835+0.006 | 0.859 £0.021 | 0.917 £0.010
GCN 200 0.931 £ 0.006 | 0.946 = 0.006 | 0.958 + 0.005 | 0.986 + 0.001
500 0.875 £ 0.008 | 0.934 £0.008 | 0.905+0.002 | 0.971 £ 0.004
1000 0.891 £0.002 | 0.912 £0.004 | 0.913 £0.012 | 0.975 + 0.005

6 DISCUSSION

In this study, we have pioneered the application of graph-based learning techniques to the breast
cancer risk prediction task, introducing a pipeline for the representation of SNPs data. Our proposed
pipeline encompassed an ensemble-based feature selection approach for SNP filtering and the subse-
quent creation of a graph-based representation. The potential application of this study is to provide
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relevant knowledge of genetic data representation, which can enhance state-of-the-art methods or
as an alternative to predict individual’s breast cancer risk, conduct risk score analysis, and identify
contributing genetic variants.

One of the important points of this study is that we used genetic data from the Biobank of Eastern
Finland. This dataset helped us make predictions about breast cancer risk specifically for the Finnish
population. However, to make predictions that work well for a broader range of populations, we
typically need a lot more genetic data from different groups. In future research, we will test how
well our approach performs with other populations.

Regarding finding the optimal number of SNPs, we observed that the prediction accuracy did not
improve considerably when the number of SNPs increased or decreased using the graph models.
This observation is in line with the observation of the previous machine learning models, where
prediction accuracy was not affected by the number of SNPs used as features|Behravan et al.|(2018));
Ho et al.| (2020). The best prediction model was obtained using the GCN with 200 top-ranked SNPs
selected by our proposed ensemble-based feature selection approach.

Another noticeable observation is that there is a considerable improvement in breast cancer risk
prediction accuracy obtained by the GCN compared to the most classical machine learning models.
Thus, we can conclude that the graph-based learning can serve as a state-of-the-art approach for
predicting individual’s breast cancer risk based on genetic variation data.

7 CONCLUSION

We advanced the field of breast cancer case-control prediction through the application of graph-
based deep learning architectures. The approach we suggest in this study did not rely on picking
out specific cancer-related SNPs in advance. Instead, our approach addressed the challenge of SNP
filtering by employing an ensemble-based feature selection method, effectively capturing non-linear
and high-dimensional SNP-SNP interactions. We compared the power of three distinct graph neu-
ral networks, namely GCN, GAT, and GraphSAGE, for breast cancer case-control classification
using the top SNPs selected through our proposed feature selection approach. In comparison, we
conducted comprehensive experiments with well-established machine learning classifiers like XG-
Boost, random forest, SVM classifier, and logistic regression. The GCN, trained on 200 top-ranked
SNPs, outperformed the best XGBoost model with a 3.14% relative AUC improvement in predicting
the breast cancer risk.

In conclusion, our study introduced a new approach for genotype data representation that leverages
graph-based deep learning to enhance breast cancer risk prediction. Further refinements and appli-
cations of our approach hold promise for improved breast cancer risk assessment and personalized
healthcare.
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A APPENDIX

A.1 HYPER-PARAMETERS FOR FEATURE SELECTION METHODS

Task Algorithm Paramter Values [start, end, step] or options
maximum depth [2,32, 2]
Decision tree minimum samples split | [0.1, 1.0, 0.2]
minimum samples leaf | [0.1, 0.5, 0.1]
criterion [gini, entropy]
LASSO alpha [le-5, 10.0]
Feature selection learning rate le-5, le-1]
weight decay [le-5, le-1]
Ensemble Optimizer [Adam, SGD, AdamW]
number of epochs [10,1000,10]
dropout [0.0, 0.8, 0.2]
activation [relu, leaky relu, swish]

A.2 OPTIMIZING HAMMING DISTANCE FOR GRAPH NODE CONNECTIVITY
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Figure S1: Assessing the performance of GCN, GAT, and GraphSAGE with weighted edge hamming
distance across different thresholds. Notably, a D; ; value of 0.5 consistently delivers high accuracy
across all graph models.

Figure illustrates the comparative performance of GCN, GAT, and GraphSAGE, across various
D; ; thresholds used as a hyper-parameter during model tuning on the development set. The ham-
ming distance threshold serves as a criterion to construct an edge connecting two individuals with the
top filtered SNPs as node features. At a hamming distance threshold of 0.5, all the three graph mod-
els achieve an optimal accuracy. In specific, at hamming distance of 0.5, the GCN model achieves
an accuracy of 0.95, while the GAT and GraphSAGE models reach slightly lower accuracy’s of 0.92
and 0.88, respectively. This suggests that the threshold of 0.5 for hamming distance is most effective
for the GCN model.

10



Under review as a conference paper at ICLR 2023

A.3 HYPER-PARAMETERS FOR GRAPH MODELS

Algorithm Hyper parameter Values [start, end, step] or options
learning rate [1e-5, le-1]
weight decay [le-5, le-1]
optimizer [Adam, RMSProp, SGD, Adagrad, Adadelta, AdamW]
number of epochs [10,200, 10]
GCN dropout [0.1, 0.6]
number of layers [2,4,8]
fully connected hidden dimension | [8,16,32,64]
activation fucntions [relu, leaky relu, prelu, swish, softplus, sigmoid]
loss fcuntions [nll loss, cross entropy]
learning rate [1e-5, le-1]
weight decay [le-5, le-1]
optimizer [Adam, RMSProp, SGD, Adagrad, Adadelta, AdamW]
number of epochs [10,200, 10]
dropout [0.1, 0.6]
GAT number of layers [2,4,8]
fully connected hidden dimension | [8,16,32,64]
activation fucntions [relu, leaky relu, prelu, swish, softplus, sigmoid]
loss fcuntions [nll loss, cross entropy]
number of heads [1,12, 2]
learning rate [1e-5, le-1]
weight decay [le-5, le-1]
optimizer [Adam, RMSProp, SGD, Adagrad, Adadelta, AdamW]
number of epochs [10,200, 10]
dropout [0.1, 0.6]
GraphSAGE nun?ber of layers [2,4,8]
fully connected hidden dimension | [8,16,32,64]

activation fucntions

[relu, leaky relu, prelu, swish, softplus, sigmoid]

loss fcuntions

[nll loss, cross entropy]

aggregator

[mean, sum, max|
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A.4 HYPER-PARAMETERS FOR MACHINE LEARNING CLASSIFIERS

Algorithm Hyper parameter Values [start, end, step] or options
number of estimators [50,1000]
maximum depth [3,10]
XGBoost learning rate [0.01, 0.3]
lambda [1e-5, 10]
alpha [1e-5, 10]
number of estimators [50, 1000]
maximum depth [3, 20]
Random forest minimum samples split [0.1, 1.0]
minimum samples lead [0.1, 0.5]
bootstrap [True, False]
kernel [linear, poly, rbf, sigmoid]
Support vector classifier | gamma [scale, auto]
gamma value [1e-6, le-1]
. L. . enalit [L1,L2]
Logistic regression Eolver s [liblinear, Ibfgs, sage]

FCN

number of layers

[1.5]

activation fucntions

[relu, leaky relu, prelu, swish, softplus, sigmoid]

loss fcuntions

[nll loss, cross entropy]

learning rate

[le-5, le-1]

weight decay

[1e-5, Te-1]

optimizer

Adam, RMSProp, SGD, Adagrad, Adadelta, AdamW]

number of epochs

10,200, 10]

dropout

fully connected hidden dimension

[
[
[0.1,0.6]
[128, 64, 32, 16, 8, 4]
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