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Abstract

Real-world streams of data are characterised
by the continuous occurrence of new and old
classes, possibly on novel domains. Bayesian
non-parametric mixture models provide a natu-
ral solution for continual learning due to their
ability to create new components on the fly when
new data are observed. However, popular class-
based and time-based mixtures are often tested
on simplified streams (e.g. class-incremental),
where shortcuts can be exploited to infer drifts.
We hypothesise that domain-based mixtures are
more effective on natural streams. Our proposed
method, the CD-IMM, exemplifies this approach
by learning an infinite mixture of domains for
each class. We experiment on a natural scenario
with a mix of class repetitions and novel domains
to validate our hypothesis. The experimental re-
sults confirm our hypothesis and we find that
CD-IMM beats state-of-the-art bayesian contin-
ual learning methods.

1 Introduction

Continual learning (CL) is the ability to learn from a non-
stationary stream of data. CL is fundamental in many real-
life systems that are subject to concept drift, and whenever
new data is collected over time [24]. The main challenge of
continual learning is the stability-plasticity tradeoff, that is
the tradeoff between the stability of the old knowledge and
the plasticity necessary to learn from new data [14].

Recent results in the literature suggest that generative mod-
els may be more robust than discriminative models [34, 23,
16]. In this paper, we argue that one of the main benefits
of generative models is their ability to factorize the data
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distribution as a mixture of smaller distributions. Mixtures
allow to protect old components unrelated to new data from
changes, while inferred probability of new data can be used
to detect drifts and create new components. However, pop-
ular solutions in the literature often exploit class labels [34,
16] or assume strong time coherence [23] to detect drifts
(Section 2.4), simple mechanisms that may fail in most re-
alistic settings. For example, in an object detection task, it
is hard to assume that an object (or its appearance, such as
the color) will never appear again (as in class-incremental
or domain-incremental scenario, see Figure 1,2).

In this paper, we hypothesize that existing class-based or
time-based generative methods will fail in a simple setting
where new domains are discovered over time and classes
are revisited (H1-H3 in Section 3.2).

We propose the Class-Domain Infinite Mixture Model
(CD-IMM), a new domain-based generative model which
we expect to be more robust to class repetitions and novel
domains (H4). CD-IMM lies on the Dirichlet Process Mix-
ture Model (DPMM), a non-parametric model that adapts
over time to the complexity of the data by adding more
clusters when necessary. The method is general and it can
work in online [27], task-free [2], or even unsupervised set-
tings [30]. Furthermore, we expect that the clusters found
by the CD-IMM will have a better correspondence with the
natural clusters in the data distributions (H4.1).

We will test our assumptions on three different bench-
marks. First, we propose Incremental Moons benchmark,
a toy domain-incremental scenario based on the popu-
lar Moons dataset that we designed to showcase the ad-
vantages of Bayesian non-parametric classifiers and their
robustness to domain drifts (H1). Then, we will use
two different image classification benchmarks: Alphabet-
Omniglot, where the class target for each character is its
alphabet, and CIFAR100-Superclasses. The CD-IMM and
the baseline methods will be tested on a simple scenario
with class repetitions (H1-H3). Both datasets provide
natural clusters (characters for Omniglot, classes for CI-
FAR100) that will be used to verify whether the clusters
learned by the CD-IMM correspond to the natural clusters
(H4.1).
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Figure 1: In real-world data, different classes (colors) may
be unbalanced and structured into subgroups (shapes). We
hypothesize that learning the latent structure of the proba-
bility distribution is helpful for continual learning.
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Figure 2: Bayesian CL methods exploit the structure of toy
benchmarks (first two arrows), such as the lack of repeti-
tions of classes and domains, to implicitly detect distribu-
tion drifts. We hypothesize that these methods will fail in
real-world settings (last arrow) where new and old classes
(or domains) are continuously encountered.

The experimental results confirm our hypothesis, confirm-
ing that the CD-IMM is a better solution for natural con-
tinual learning streams with class and domain repetitions.
The source code to reproduce the experiments is publicly
available1.

2 Background and Related Works

2.1 Generative Models

Let us consider a learning task where we would like to
learn a distribution f(s) from a set of samples D =
{s1, . . . , sN} which are independently drawn from an un-
known true distribution p(s). The goal of generative mod-
els is to learn an approximated distribution f(s,θ) of p(s),
where θ are the model parameters which are adapted dur-
ing the training.

For the purpose of our work, we focus on a specific type of
generative model: the mixture model.

Finite Mixture Models assume that the data distribution
can be decomposed into a set of simpler distributions called
components [28]:

f(s,θ) =

K∑
z=1

p(s | z,θz)p(z | β). (1)

Each component p(s | z,θz) has a set of parameters θz ,
while the prior distribution p(z) is parameterized by the
vector β; both β and θz are learned from data by using the
Expectation-Maximisation (EM) procedure [10].

1https://github.com/AntonioCarta/
continual_cd_imm

The generative process for the sample si can be sketched
as follows:

zi | β ∼ Cat(β), si | zi, (θc)Kc=1 ∼ F (θzi). (2)

At first, the random variable zi is sampled using the cat-
egorical distribution p(z) = Cat(β). The value zi indi-
cates which component we should use to obtain the data
si. Hence, si is generated by sampling the distribution
p(s | zi,θzi) = F (θzi); F is the family of the compo-
nent distributions (e.g., a Gaussian) and θ are its parame-
ters (e.g., mean and variance for the Gaussian).

A common drawback in mixture models is the choice of
the number of components K. In fact, since the true dis-
tribution is unknown, it is hard to determine in how many
components it can be decomposed

Infinite Mixture Models overcome this limitation by al-
lowing to adapt the number of components directly on the
observed data. They are also known as Dirichlet Pro-
cess Mixture Models (DPMM) [3] since they are based on
Dirichlet Process (DP) [12].

For our purpose, it is convenient to define the DPMM
generative process using the "stick-breaking" construction
[32]:

β | α ∼ Stick(α) zi | β ∼ Cat(β)
θ | H ∼ H, si | zi, (θc)∞c=1 ∼ F (θzi),

(3)

where Stick(α) and H are the prior of p(z) and p(s |
z,θz), respectively. Thanks to the prior specification, we
can sample new components on the fly during the training,
making the model infinite (i.e. zi ∈ [1,∞]). The genera-
tive process of each sample is equal to the finite mixture
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case: at first, a component zi is selected; then, the selected
component is used to sample the data.

Due to the infinite capacity of the model, the posterior
becomes intractable and the training cannot be performed
with the EM algorithm anymore. Typically, approximated
strategies are employed such as sampling [29] and varia-
tional inference [5]. It is worth highlighting that during the
training the number of components K is always finite.

2.2 Continual Learning

A continual learning stream is a sequence of datasets
D1, . . . ,DT , where Dt = {si | si ∼ pt(s)} and pt(s) may
change over time. While our method also works in unsu-
pervised settings, we focus on supervised problems where
s = ⟨x, y⟩, i.e. both the input x ∈ RD, and the class
y ∈ [1, C] are observed. Most methods in deep contin-
ual learning assume virtual drift [15], which means that the
underlying data distribution, which we call the real distri-
bution of samples p(x, y), exists and is constant over time.
Therefore, at each step, only a subset of this distribution is
available for training. For example, in a class-incremental
setting, we have pt(x, y) = p(x, y | y ∈ Yt), where Yt

is the set of classes visible at time t. Instead, in a domain-
incremental setting pt(x, y) = p(x, y | z ∈ Zt), where Zt

is the set of subdomains visible at time t. Note that while
class labels are often visible during training, the domain z
is a hidden variable.

2.3 Continual Mixture Models

In the continual learning setting, the objective of generative
models is to learn a parametric approximation f(x, y | θ)
of the joint distribution p(x, y) from a stream of datasets
D1, . . . ,DT without storing old data. As stated before, the
data Dt observed at time t is obtained from a portion of the
whole joint distribution, i.e. Dt ∼ pt(x, y).

Time-based Mixture. Since the joint distribution is dis-
covered one portion at a time, it could be reasonable to
partition the parametric approximation of the generative
model. To this end, mixture models can be leveraged:

f(x, y | θ) =
∑
t

ft(x, y | θt)p(t), (4)

where ft(x, y | θt) is the parametric approximation
learned using the data Dt. The variable t represents the
partition we are considering: when the distribution shift is
known at training time, the variable t is visible; otherwise,
the value of t is hidden.

The main advantage of this formulation is that we decom-
pose the learning problem into T independent sub-tasks:
once we have learned the approximation ft for the parti-
tion pt(x, y), we do not have to change it anymore (i.e. ft

is learned only on Dt). However, such a decomposition can
be difficult to learn since, in general, each portion pt(x, y)
can be as complex as the whole distribution p(x, y).

Class-based Mixture. Another approach is to decom-
pose the approximation f according to the class label of
the samples:

f(x, y | θ) =
∑
y

fy(x, y | θy)p(y), (5)

where fc(x, c | θc) is the parametric approximation of the
distribution of samples with class c, i.e. p(x, y = c).

While this decomposition is reasonable from the task point
of view, learning each approximation fc is difficult in the
continual setting. In fact, to learn fc we need all the sam-
ples with class c, i.e. the set {(x, y) | y = c}. However, the
elements in this set can be scattered into D1, . . . , DT .

Domain-based Mixture. The last approach decomposes
the approximation f according to the domain of the sam-
ples:

f(x, y | θ) =
∑
z

fz(x, y | θz)p(z), (6)

where fz(x, z | θz) is the parametric approximation of the
distribution of samples with domain z.

While class and task information is usually known (if we
focus on supervised tasks with visible task boundaries), the
domain of a sample is usually unknown. This worsens the
training procedure of domain-based mixture models since
they should also estimate the sample domain. We believe
that this is the main reason why, as far as we know, such
mixture models have been not used in the literature.

2.4 Assumptions and Limitations of Generative
Models for CL in the Literature

In a realistic setting, we do not expect to know when or
how many times each domain occurs. In general, we expect
to see both new domains and classes over time, possibly
with repetitions. While this setup seems natural, methods
in the literature make some restrictive assumptions about
the types of drifts that are allowed.

Simple input distribution: some methods assume that
there exists a pre-trained feature extractor that can be
frozen and returns linearly separable features. For
example, Deep SLDA [16] uses this assumption to
model each class as a single Gaussian distribution.

Knowledge about task boundaries : more sophisticated
methods either assume that drifts are known or that
they are easily predictable. Many class-incremental
methods, such as Ven, Li, and Tolias [34], use the
presence of new class labels to determine drifts. This
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assumes that all the examples of a particular class are
observed at the same time.

No repetitions: domains and classes are never repeated
during training. More formally, many methods as-
sume Yt∩Yt′ = ∅,∀t ̸= t′ and Zt∩Zt′ = ∅,∀t ̸= t′.
Many methods that freeze previous components make
this assumption [34, 31].

Balancing: data is balanced and uniformly complex. This
assumption is used by architectural methods that cre-
ate separate components for each class or domain [34,
31].

These assumptions are difficult to satisfy with real-world
data. Furthermore, methods exploiting these assumptions
either fail to learn incrementally or become very inefficient.

We focus on three methods, which we briefly summarize
below, to show the general strategies adopted by generative
methods for continual learning scenarios.

Simple input distribution: Deep SLDA [16] is a class-
based finite mixture model and it assumes that each class
can be modelled as a Gaussian distribution learned by a
linear discriminant analysis (LDA) classifier. Since the
raw input space is not Gaussian in most nontrivial appli-
cations, Deep SLDA uses a frozen pre-trained feature ex-
tractor. Still, the Gaussianity is a strong assumption if we
consider that the feature extractor is frozen and it was never
trained on the data from the real distribution p(x, y). The
advantage of this approach is that it doesn’t suffer from for-
getting since the online LDA algorithm is equivalent to of-
fline training.

Class-based Mixture: Class-VAE. Ven, Li, and To-
lias [34] proposes an approach, which we call Class-
VAE in this paper, based on a class-based finite mix-
ture model where each component is a Variational Auto-
Encoder (VAE). In principle, the VAE can model any com-
plex distribution, therefore it does not need to model explic-
itly each subdomain. A disadvantage is that training VAEs
incrementally is still an unsolved problem [25]. Class-
VAE avoids this limitation by restricting to a pure class-
incremental setting without repetitions. The main limita-
tion of the class-VAE is that it cannot be updated if new
data for an old class becomes available.

Time-based Mixture: CN-DPM. Lee et al. [23] pro-
poses a time-based infinite mixture model which trains a
VAE and a classifier for each task. The VAE is trained to
approximate the pt(x) of the true distribution, while the
classifier models p(y|x). A new VAE is initialized and
trained whenever a new probability drift is automatically
detected by computing the probability of the new data given
the current model. In practice, CN-DPM has been tested

only on class or domain incremental tasks, where drift de-
tection is almost trivial. We hypothesize (H3) that CN-
DPM will either create too many VAEs or fail to recognize
drifts in a scenario with repetitions and multiple domains
occurring at the same time.

2.5 Related Work

Continual Learning Methods: Bayesian methods pro-
vide a natural solution for continual learning. Popular
methods such as EWC can be interpreted as Bayesian
methods that exploit an approximation of the posterior to
mitigate forgetting [19]. Building on the same intuition,
IMM [22] merges the new and old model using the first
two moments of the posterior distribution, approximated
by a Gaussian. The idea of factorizing the model, possi-
bly freezing old components, is exploited by architectural
methods [31], which can also use the same components for
task inference [1, 7] to remove the need for task labels.
Recently, it was shown that self-supervised objectives are
more robust to forgetting than supervised objectives [8, 13].
We expect Bayesian mixture models to behave similarly
due to their natural ability to recognize domains, tasks, or
classes.

Fair Evaluation and Realistic Benchmarks: Farquhar
and Gal [11] show how seemingly minor details in the eval-
uation can affect the performance of CL models and argue
for a fairer evaluation. In this paper, we follow the idea
that a fair evaluation should be based on realistic assump-
tions on the stream distribution, such as dropping the con-
straints of no class repetitions [9, 17, 6]. It is often ar-
gued that class-incremental [33] scenarios are more diffi-
cult than domain-incremental ones. In this paper, we argue
that class-incremental setting, as popularly used in the liter-
ature (no repetitions), trivializes many CL challenges such
as drift detection, and allows for simple solutions such as
freezing that do not generalize to more complex streams.

3 Hypotheses and Proposed Method

3.1 Our proposal: Class-Domain Infinite Mixture
Model (CD-IMM)

The main novelty of our proposal is to explicitly consider
the domains in the data generation process. Usually, dif-
ferent classes have different domains (Figure 1). Thus, we
assume that each class is composed of subgroups (i.e. do-
mains), which we model via the discrete latent variable
zy ∈ [1,Ky]. We use the subscript y to emphasise that
different classes have different domains; Ky indicates the
number of domains in the class y. We model the joint dis-
tribution as:

p(x, y) =
∑
zy

p(x | zy,θzy )p(zy | y,βy)p(y), (7)
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Figure 3: Graphical model of our proposal.

where x ∈ RD can be the input data or features extracted
from a frozen backbone.

The above decomposition is obtained by assuming that the
data x is independent of the class y given that we know
the domain zy . This conditional independence derives from
our assumption that each class has different domains. Thus,
if we know the domain zy we know also the class y. It
is worth highlighting that this assumption is not a limita-
tion since the domains are arbitrary: we can always split a
shared domain between two classes in two class-specified
domains.

The generative model we propose in Equation 7 can be in-
terpreted as a two-level mixture model. The first level is on
the class labels: for each class y, we define a model My

which is responsible for the generation of the data with la-
bel y. The second level is on the domains: each model My

is again a mixture model which has a component for each
domain zy ∈ [1,Ky]. While the number of classes C can
be assumed to be known, the number of domains Ky is usu-
ally unknown. Thus, we define each My as a Dirichlet Pro-
cess Mixture Model: for each class, the number of domains
Ky is theoretically infinite. The variables {β,θ1, . . . ,θ∞}
are the parameters of My where we removed the subscript
y to ease the notation. In Figure 3 we graphically represent
our proposal.

Definition of My . Each My is modelled as a Gaussian
DPMM [3]. Thanks to the DPMM, each My can have an
infinite number of components (i.e. domains). Each com-
ponent k is a multivariate Gaussian distribution with pa-
rameters θk = {µk,Σk}, where µk ∈ RD is the mean and
Σk ∈ RD×D is the covariance matrix. If needed, we can
share the same variance across all the components obtain-
ing a tied model as done in Deep-SLDA [16]. Also, we
can constrain the covariance matrix to be diagonal, obtain-
ing an isotropic multivariate Gaussian distribution. Due to
the Bayesian fashion of DPMM, we must always define the
prior H of the parameters θk = {µk,Σk}. To ease the
computation, we define H as a Gaussian-Inverse-Wishart

distribution since it is the conjugate prior of θk. To be
more precise, the prior is factorised as H(θk) = p(µk |
Σk)p(Σk) where: p(Σk) = W−1(Ψ, n0) is the inverse
Wishart distribution, and p(µk | Σk) = N (µ0,Σk) is a
multivariate Gaussian distribution with mean µ0 and co-
variance Σk. Usually, µ0 is the zero vector; however, this
can lead to poor results (especially in the high-dimensional
case) since the input data can be far from all the compo-
nents that have means near zero. To overcome this issue,
we can initialise the mean of each component using the
kmeans++ algorithm [4] using the first B elements of the
stream.

It is worth highlighting that our proposal can reduce to
SLDA if My is defined as a single Gaussian (i.e. each class
has only one domain).

Learning Procedure. Since we observe the class labels,
each model My is trained separately. Let us consider a new
training sample si = (xi, yi), the input xi is considered
only to train the model Myi

.

The training of My is based on the computation of the
posterior p(z,β,θ), which is intractable due to the infi-
nite number of clusters. We rely on a variational truncated
approximation which defines a maximum number of com-
ponents. While this might seem the same as a finite model,
it is not [5]. The training can also be performed online
(i.e. one update for each sample) by applying the Stochas-
tic Variational Inference (SVI) framework [18].

3.2 Our Hypothesis

Our hypothesis is that domain-based mixture models are
a better solution for more realistic streams with class and
domain repetitions. The following hypothesis state how we
expect class-based (H1-H2) and time-based method (H3)
methods to fail, while domain-based mixture models learn
the natural domains (H4).

H1 - Simple class-based mixture models (Deep SLDA)
fail to model complex multi-domain distributions.
Simple models such as SLDA do not work when data is
not Gaussian.

H2 - Complex class-based mixture models (Class-VAE)
fail in settings with class repetitions. Training the
Class-VAE on a new domain for some old class will result
in catastrophic forgetting.

H3 - Time-based mixture models (CN-DPM) do not ac-
count for multiple domains appearing at the same time.
CN-DPM is unable to recognize small domain shifts or
multiple domains appearing at the same time. (H3.1) Since
the CN-DPM was tested on simple class-incremental set-
tings, we expect CN-DPM drift detection to heavily rely on
different class labels.
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H4 - Domain-based mixture models (CD-IMM) are able
to learn on general streams with new classes and do-
mains, even with repetitions CD-IMM learns domains,
independently from when they occur. (H4.1) The clusters
discovered by our proposal match some intrinsic properties
of the data.

4 Experimental Protocol

We experiment with three benchmarks in different con-
figurations: Incremental Moons, Omniglot-Alphabets,
CIFAR100-Superclasses. The chosen baselines are Deep
SLDA, Class VAE, and CN-DPM, which provide represen-
tative methods for the class-based and time-based mixture
models. We will test the batch setting, which allows for
multiple epochs on each batch, and the online setting with
a single pass on the data and without task boundaries.

Domain-Incremental Moons. In order to provide an in-
tuitive visualization of the CD-IMM, we propose Incre-
mental Moons, a toy stream which is an incremental ver-
sion of the Moons dataset2.

Each moon is shaped as an arc of a circle plus some small
Gaussian noise. Each moon is a different class, and the
stream provides different sections of the arc for each moon,
which are observed in a domain-incremental fashion. As a
result, clusters do not overlap each other, and they are well
separated. However, they are close enough to each other
that it is not possible to approximate each cluster with a
single Gaussian emission.

Class-Incremental with Repetitions. To experiment
with more realistic streams, we follow a setup similar
to [17]. We split each class by domain and we randomly
shuffle all the domains. Then, we group domains together
to form a batch of data. As a result, new domains for al-
ready known classes can occur over time. To split classes
into well-defined natural domains, we use datasets that pro-
vide coarse and fine labels. We use CIFAR100 [20] by us-
ing the 100 classes as (latent) domains and the 10 super-
classes as classes, which we call CIFAR100-Superclasses.
Similarly, we use Omniglot [21] with the alphabet as the
target class and the character as the domain, which we
call Omniglot-Alphabet. We will group class-domains ran-
domly to obtain 10 drifts.

Experimental Setup. Deep SLDA, Class VAE, and CD-
IMM need a fixed backbone as a feature extractor. We will
use raw features for Incremental Moons, a feature extractor
pre-trained on CIFAR10 for CIFAR100 (as done in [34]),
and a random MLP on Omniglot. If the random feature

2an implementation of the Moons dataset can be found
at https://scikit-learn.org/stable/modules/
generated/sklearn.datasets.make_moons.html

extractor for Omniglot is not powerful enough, causmak-
ing all the three methods to fail, we plan to document this
failure and use a subset of the data to pre-train a feature ex-
tractor. The remaining hyperparameters (α, µ0,Σ0 for the
CL-IMM) will be found via hyperparameter search evalu-
ated on a separate validation stream for all the methods.

Metrics, Evaluation, Reproducibility. We will use the
accuracy over the whole target distribution, estimated on a
separate test set, as the main evaluation metric. Given At,
the accuracy of the model at time t on the entire test set,
we will show the final accuracy AT , average accuracy over
time

∑T
i=1 Ai, and learning curves (H1-H4). We will also

show a confusion matrix split by subdomain, which will al-
low us to check if time-based and class-based models are
biased in the expected ways (H2-H3). For the CD-IMM,
we will use a domain confusion matrix, where DCM j

i is
the percentage of examples of data-domain i associated
with the model-domain j, to check how the natural domains
fit within the model’s domains (H4). Each method will be
run 5 times to compute the mean and standard deviations
for the metrics. We will release the source code for our ex-
periments using Avalanche [26] to ensure the reproducibil-
ity of our results.

5 Changes to Protocol

During the experimental evaluation of the methods we de-
cided to do some small modifications of the protocol, which
are documented below, along with their motivations.

In the original experimental protocol, we proposed to show
learning curves and a confusion matrix split by subdomain.
In the final version of the paper we decided to show the ac-
curacy of the final model for domains seen at each timestep
t separately (Figure 5). We found this figure more infor-
mative because it shows a clear picture of the stability-
plasticity tradeoff of the models. On the other hand, learn-
ing curves are not particularly meaningful for the models
we are studying since some of them don’t use backpropa-
gation or trained separate components for each class.

As discussed in the original plan, we experimented with a
random feature extractor for Omniglot. However, none of
the methods were able to solve the task with this configura-
tion. Therefore, we trained the backbone to classify charac-
ters. Qualitative results with tSNE showed that, even when
training on characters, the resulting embedding space was
highly overlapping among classes, which means that this is
still a non-trivial task to solve. As a result, Omniglot is the
most complex benchmark in this paper, as highlighted by
the failure of the baseline models.

Finally, initially we planned to train the ClassVAE in two
different ways: fitting one VAE per class or one VAE per
domain. However, due to the high computational cost (Fig-
ure 6) we were unable to train the second options, which
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(a) Deep SLDA (b) CN-DPM (c) ClassVAE (d) CD-IMM

Figure 4: Decision boundaries on Incremental Moons for all the methods. Plot for Deep SLDA and CD-IMM also show
the learned gaussians.

would have been more computationally intensive than the
class-based one, which makes it unlikely to be applicable
in a realistic continual learning setting. It must be pointed
out that Figure 6 only shows the training cost of a single
run. However, we found the ClassVAE to be quite sen-
sitive to hyperparameters, and it required the largest grid
search among all the methods under study (54 configura-
tions), which made it even more expensive to train for our
experiments.

6 Experiments

6.1 Domain-Incremental Moons

In this experiment, we expected the following results:

• H1 SLDA will fit each moon with a single Gaussian
distribution, resulting in a low accuracy.

• H2 Class-VAE will remember only the final domain
(arc section) for each class due to catastrophic forget-
ting [25].

• H3 There are two possible failure modes for CN-
DPM: (1) it may not recognize new domains, resulting
in catastrophic forgetting as the Class-VAE, and (2) it
may not be able to learn the VAEs if too many drifts
are detected, resulting in underfitted components.

The average accuracy for each method is shown in Table
1. All the results confirm our hypothesis. CD-IMM fits the
two classes perfectly, while all the other methods have a
lower average accuracy. The issue with the baseline meth-
ods can be easily seen in Figure 4, which shows the Gaus-
sians learned by Deep SLDA and the decision boundaries
of CN-DPM and ClassVAE. First, we notice that all the
methods make all the errors roughly in the same area. How-
ever, the mistakes are a result of different failures. Deep
SLDA finds the optimal fit of the two gaussians. However,
even the optimal fit cannot discriminate between the region
where the two arcs are close to each other, which is the
area where the errors are located. Instead CN-DPM and
ClassVAE could fit arbitrary distributions. However, due to

forgetting they are unable to learn the classes distribution
incrementally.

Overall, we find that the experiments on Incremental
Moons confirm our hypothesis.

6.2 Class-Incremental with Repetition

Expected results: We expect the same failures detailed in
Section 6.1.

Results for CIFAR100 and Omniglot are shown in Table 1.
CD-IMM is confirmed the best approach on both bench-
marks, as expected by our theoretical arguments. More
specifically, on CIFAR100 the CD-IMM is better than
SLDA by 0.8 (although this difference is smaller than the
standard deviation), while on Omniglot the difference is
35.74. The difference between the two benchmarks is par-
tially due to their intrinsic difficulty, and partially due to
the power of the pretrained fixed feature extractors.

CN-DPM and ClassVAE have worse results than Deep
SLDA on both benchmarks. It must be pointed out that
Deep SLDA reaches these results with a single hyperpa-
rameter (the flag to allow the streaming update of covari-
ances), while CN-DPM and ClassVAE require careful tun-
ing. Overall, While the CD-IMM is more accurate, both
the Deep SLDA and CD-IMM are confirmed as very ro-
bust choices for incremental training.

Figure 5b and 5a show the accuracy of the final models split
by domains seen at time t. On Omniglot (left figure) we
find a clear sign of catastrophic forgetting for CN-DPM and
Class-VAE, with higher accuracies for the later timesteps
and lower accuracies at the beginning. Deep SLDA and
CD-IMM have a stable accuracy over time, and the fluctu-
ations can be mostly attributed to the inherent different in
complexities between data at different timesteps, which is
to be expected in a continual learning stream.

One results that was a bit suriprising and not in perfect
agreement with our hypothesis is that Deep SLDA does
not show much forgetting. While low amounts of forget-
ting are present (e.g. first 10 timesteps on Omniglot, time
4 for CIFAR100), Deep SLDA seems more robust than ex-
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Table 1: Average accuracy at the end of training. Mean and standard deviation are computed using 5 independent runs.
Best in bold.

MOONS CIFAR100 Omniglot

ClassVAE 82.54± (0.50) 23.22± (1.17) 14.70± (0.26)
Deep SLDA 88.31± (0.03) 41.52± (0.05) 41.74± (0.11)
CN-DPM 86.79± (0.56) 18.53± (1.20) 26.60± (3.91)

CD-IMM (ours) 100.00± (0.00) 41.60± (0.14) 77.48± (0.36)
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Figure 5: Accuracy of the final model for the domains seen at time t on Omniglot (left) and CIFAR100 (right). Mean (solid
line) and standard deviation (shaded area) computed over 5 runs.

pected. It is possible that the pretrained feature extractors
tend to learn better features than we expected, resulting in
a milder forgetting. Of course, this is highly dependent on
the feature extractor and benchmark choice, and having a
more powerful model will always be helpful in practice, as
clearly exemplified by the results on Omniglot.

Figure 6 shows the training and inference times for all the
methods on CIFAR100. We use the original implementa-
tion for all the baseline models, which are based on py-
torch. Our method is around 3 times more expensive than
Deep SLDA, while CN-DPM is more than 5 times more
expensive, while ClassVAE is more than 12 times more ex-
pensive. Overall, the CD-IMM does not add a large over-
head compared to Deep SLDA, while being more accurate
in complex settings such as Omniglot.

Overall, the experiments confirm our hypothesis, showing
that the CD-IMM is an accurate method robust to forgetting
and natural class and domain drifts.

6.3 Latent Domains Analysis

Expected results: We expect that CD-IMM is able to
learn the natural subclasses in Alphabet-Omniglot and
CIFAR100-Superclasses (H4).

Deep SLDA CD-DIMM ClassVAE CN-DPM
Method
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Figure 6: Training and inference times for all the meth-
ods on CIFAR100. Mean (blue bar) and standard deviation
(black line) computed on 5 runs.

To assess the ability of CD-IMM to learn the natural sub-
classes in Omniglot, we compute the domain accuracy by
assigning to each component the label of the most repre-
sented domain. The overall domain accuracy is 68.95%,
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(a) (b)

Figure 7: The confusion matrix between true domains and CD-IMM components on the classes with the highest (on the
left) and lowest (on the right) accuracy in the Omniglot dataset.

only 9% lower than the class accuracy, showing a good
alignment between the label domains and the CD-IMM
components even if the former ones are never observed dur-
ing the training (we recall that only the class labels are ob-
served during the training). To further investigate this be-
haviour, in Figure 7 we plot the confusion matrix between
natural domains and CD-IMM components on two classes:
the one with the highest and lowest accuracy score obtained
by CD-IMM on the test set. We consider only the correct
classified examples to compute the confusion matrix. The
plot confirms our hypothesis since the confusion matrices
are almost diagonal.

On CIFAR-100, the hypothesis H4 is not confirmed since
CD-IMM learns a single component for each class with-
out capturing the natural partition of the data. We believe
that this behaviour could be caused by the features extrac-
tor which is not able to map different domains of the same
class into different areas of the latent space. We mean to
perform more experiments to shed light on this aspect.

7 Conclusion

In this paper, we argued that the current design of Bayesian
continual learning models is overfitted to the popular set-
tings such as class-incremental benchmarks. Via a formal
model of continual learning based on natural domain and
class drifts co-occurring over time, we showed that many
methods are unfit to handle even basic domain drifts. To
overcome this limitations, we proposed the CD-IMM a
bayesian non-parametric model that learn the natural clus-
ter in the data incrementally adapting over time. Experi-
mental results on streams with natural repetitions validate
that the CD-IMM is an accurate and robust model. We hope
these results will encourage researchers to carefully design
their models and experimental settings to deal with more

natural continual learning streams.
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Figure 8: Decision boundary of CD-IMM on Moons dataset with different hyperparameters configurations.

A Other Plots

In Figure 8, we plot the decision boundary learning by CD-IMM on Moons dataset with different hyperparamters configu-
rations. In particular, we consider the concentration α of the Dirichlet Process and the hyperparamter Ψ of the covariance
matrix prior since they most affect the number of components created. When the prior does not penalise components with
high variances, the CD-IMM uses a small number of components (right column of the figure). Viceversa, if the prior
prefers small variances, we obtain more components (left columns of the figure).


