
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENERALIZATION OF NOISY SGD UNDER ISOPERIME-
TRY

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the generalization of iterative noisy gradient schemes on smooth non-
convex losses. Formally, we establish time-independent information theoretic
generalization bounds for Stochastic Gradient Langevin Dynamics (SGLD) that
do not diverge as the iteration count increases. Our bounds are obtained through a
stability argument: we analyze the difference between two SGLD sequences ran
in parallel on two datasets sampled from the same distribution. Our result only
requires an isoperimetric inequality to hold, which is merely a restriction on the
tails of the loss. We relax the assumptions of prior work to establish that the iter-
ates stay within a bounded KL divergence from each other. Under an additional
dissipativity assumption, we show that the stronger Renyi divergence also stays
bounded by establishing a uniform log-Sobolev constant of the iterates. Without
dissipativity, we sidestep the need for local log-Sobolev inequalities and instead
exploit the regularizing properties of Gaussian convolution. These techniques al-
low us to show that strong convexity is not necessary for finite stability bounds
and thus for finite generalization and differential privacy bounds.

1 INTRODUCTION

Learning algorithms whose outputs are not highly sensitive to the specifics of their training data are
likely to generalize well. This is the intuitive idea that undergirds the framework of information-
theoretic generalization. The seminal contributions of Russo & Zou (2016) and Xu & Raginsky
(2017) establish that the expected generalization gap of an algorithm A can be controlled by the
amount of information the algorithm extracts from its training dataset D of size n. Formally, they
show under reasonable assumptions that

|generalization gap(A,D)| ≤ O

(√
I(A(D),D)

n

)
where the input-output mutual information I(A(D),D) measures the dependence of the algo-
rithm’s output on the observed samples D. Unlike uniform-convergence-based bounds, information-
theoretic bounds depend on the algorithm and the data distribution. This makes them well
suited to assess the performance of models whose complexity renders vacuous all classic uniform-
convergence bounds. More importantly, they align with the practical observations that generaliza-
tion is data distribution dependent, as observed in experiments contrasting random versus real labels
Zhang et al. (2021).

For them to be useful however a major difficulty remains in controlling this input-output mutual
information for specific algorithms. Of particular interest for machine learning are algorithms ob-
tained as iterative noisy gradient schemes. A standard template that these possess is the following.
For a given dataset D, a set of weights are randomly initialized X0 ∈ Rd then updated following the
recursion

Xk+1 = Noise(Gradient step(Xk,D)) (1)

The information-theoretic analysis of these algorithms was initiated in Pensia et al. (2018) where
the gradient step is assumed to be bounded. Their results, as well as several follow-ups, are derived
by viewing the algorithm as composition of individual steps analyzed separately. As a consequence,
after T iterations of the algorithm, the bounds obtained on I(XT ,D) scale as O(T ) or O(

√
T )
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for fixed or non-vanishing step-sizes. The introduction of well-chosen analytical tools like data-
dependent priors Haghifam et al. (2020), or the clever refinements of Bu et al. (2020) improve the
bounds but still fall short of improving the time dependence.

The step-wise analysis leads to vacuous generalization bounds as iterations increase even if the
recursion in equation 1 converges to a limit. Even more curious is the fact that this limit approxi-
mates the Gibbs distribution e−Fn , where Fn is the optimized training loss, which has been shown
to achieve a finite information-theoretic bound Xu & Raginsky (2017); Pensia et al. (2018). We
are faced with the strange situation where the iterates have an exploding bound but converge close
to a distribution that has a finite one. Our aim in this work amend this strange gap to answer the
following question:

Do noisy iterative schemes in non-convex settings admit generalization bounds that go to zero as
n → ∞ without becoming vacuous as the number of iterations increases?

Our main motivation for tackling this question is to understand whether early-stopping is necessary
for generalization. If generalization gaps indeed diverge as iterations increase, then long training
runs with non-vanishing step sizes are proscribed, by theory. If the divergence is merely the result of
a loose analysis, then we should be able to establish better bounds that are more faithful to practice,
where long training runs are common Power et al. (2022); Nakkiran et al. (2019).

We thus want to establish properties of noisy iterative schemes in their most realistic setting, i.e.,
when they are run for thousands of iterations with non-vanishing stepsizes. The algorithm we
study as a representative of such schemes is noisy SGD, or Stochastic Gradient Langevin Dynamics
(SGLD)Welling & Teh (2011). To study its generalization, we show that characterizing its stability
is sufficient. Informally speaking, if SGLD outputs weights that are close (in a well-defined sense)
when ran on two, different, independently-sampled datasets then it must not be overfitting. The
difference between the outputs of SGLD measured using the KL and a stronger Rényi divergence
relates to the expected generalization of the algorithm. Rényi stability goes further and also relates
to differential privacy, a notion closely related to generalization. Through these techniques, we will
show that noisy iterative schemes can have finite generalization and privacy bounds in unbounded
non-convex settings, even when run for a large number of iterations. We make the following precise
contributions.

Contributions:

• Under a structural assumption on the optimized loss, namely dissipativity, we show that
uniform-in-time bounds can be established for both generalization and (ϵ, δ)-differential
privacy of noisy SGD. Our bound only involves stability-related quantities and does not
rely on ergodicity. We thus improve over the prior work in this setting namely Farghly &
Rebeschini (2021); Futami & Fujisawa (2024); Zhu et al. (2024) who either rely on ergod-
icity (thus involving non-stability related constants) or obtain bounds that do not decay to
zero as n → ∞.

• To achieve our result, we resolve in passing an open question of Vempala & Wibisono
(2019) on the isoperimetric properties of the biased limit of discrete Langevin iterates. We
show that under dissipativity, all the iterates verify a uniform log-Sobolev inequality, a
result which, to date, was only shown under strong convexity.

• As dissipativity is a crude assumption used control the log-Sobolev constant that often
introduces constants exponential in dimension, we establish a secondary result that removes
the dissipativity assumption but exploits ergodicity. Our bound in this case is polynomial
in dimension and in the Gibbs’ distribution’s log-Sobolev constant. Unlike the analysis of
Futami & Fujisawa (2024) who use dissipativity and rely on an involved extension of the
parametrix method to unbounded drifts Bally & Kohatsu-Higa (2015), our analysis relaxes
dissipativity and only exploits the regularizing properties of Gaussian convolution.

2 SETUP

In this section, we set up the notation, the definitions and the quantities we will analyze in the rest
of the paper.

2
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2.1 NOTATION

A central object in our analysis will be probability distributions over Rd. All considered distri-
butions are absolutely continuous with respect to the Lebesgue measure and admit a continuously
differentiable density. For a distribution a over Rd, we will conflate the distribution and its density
and denote ∇ log a as the gradient of its log-density and Ea the expectation under a. For q > 0,
the q-Rényi divergence of a with respect to b is given by Dq (a||b) = 1

q−1 log
(
Eb

[(
a
b

)q])
. It is a

generalization of the Kullback-Leibler divergence (or relative entropy) which is recovered by taking
the limit DKL (a||b) := D (a||b) := limq→1 Dq (a||b) . For random variables X,Y with distribution
a, b, we will denote, with a slight abuse of notation Dq (X||Y ) := Dq (a||b).

2.2 EMPIRICAL LOSS MINIMIZATION WITH SGLD

In supervised learning, the aim is to minimize a population risk of the form F (x) := Eν [f(x, Z)]
with respect to x ∈ Rd, where Z ∼ ν is some unknown probability measure over some set Z . Given
access to a dataset D of n independent, identically distributed samples D = Z1, . . . , Zn from ν,
we optimize the empirical approximation Fn given by Fn(x,D) = 1

n

∑n
i=1 f(x, Zi). We perform

this minimization by assuming access to unbiased estimates of the gradient of ∇Fn of through
minibatches of the form g(x,B) = 1

|B|
∑

i∈B ∇f(x, Zi) where B = i1, . . . , ib ⊂ {1, . . . , n} are
i.i.d uniform indices chosen from [n]. We have that EB [g(x,B)] = ∇Fn(x,D). With this in hand,
the recursion we study to minimize Fn is the following. An initial set of weights X0 ∈ Rd is
randomly sampled, then updated as follows

Xk+1 = Xk − ηg(Xk, Bk) +

√
2η

β
Nk+1 (SGLD)

where η > 0 is the stepsize, (Bk)k is a (conditionally) independent sequences of batches, (Nk)k are
independent N (0, I) random variables, and β > 0 is a temperature parameter that scales the amount
of noise injected. We refer to this recursion as noisy SGD as it corresponds to the SGD iterates with
additional Gaussian noise added on top.

2.3 INFORMATION THEORETIC GENERALIZATION

A quantity of interest is how well optimizing the empirical proxy Fn transfers to F . The SGLD
algorithm ran for k iterations is a randomized algorithm that outputs a random variable Xk with
distribution PXk|D and the gap

gen(PXk|D, ν) := |ED,Xk
[F (Xk)− Fn(Xk,D)] |

where the expectations is taken with respect to D ∼ ν⊗n and Xk ∼ PXk|D measures how well
the algorithm generalizes through the discrepancy between the loss achieved on the empirical loss
versus the population one. Using a change of measure argument, Xu & Raginsky (2017) show that
the following assumption is sufficient to control the generalization gap.
Assumption 1 (Sub-Gaussian loss). There exists csg > 0 such that for any w ∈ Rd, the random
variable f(w,Z) is sub-Gaussian with variance proxy c when Z ∼ ν 1.

For losses verifying the assumption above, Xu & Raginsky (2017)’s work shows that KL stability of
the algorithm controls the expected generalization gap (see Appendix G for a short proof).
Lemma 2 (From KL-stability to generalization). Let D,D′ be two independent samples from ν⊗n.
It holds under Assumption 1 that

gen(PXk|D, ν) ≤

√
2csgED,D′

[
DKL

(
PXk|D||PXk|D′

)]
n

.

To control the generalization gap, it therefore suffices to control distance between two sets of SGLD
iterates ran on two datasets D and D′ (see figure 1). Formally, by considering the KL divergence
between iterates of

Xk+1 = Xk − ηg(Xk, Bk) +

√
2η

β
Nk+1 and X ′

k+1 = X ′
k − ηg′(X ′

k, B
′
k) +

√
2η

β
N ′

k+1 (2)

1A random variable X is sub-Gaussian with proxy c if for λ ∈ R, logE [exp(λ(X − E(X))] ≤ λ2c2/2
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which are two sequences SGLD iterates on two different independent datasets D and D′, we can
obtain upper bounds on the generalization gap.

2.4 DIFFERENTIAL PRIVACY

A closely related notion to generalization is differential privacy. For ϵ, δ > 0, (ϵ, δ)-Differential pri-
vacy Dwork (2008) is a standardized formalization of the notion of privacy. A useful interpretation
of it is given by Wasserman & Zhou (2010) who show that an (ϵ, δ)-differential privacy guarantee on
an algorithm PX|D outputting weights X given a dataset D, equates to a guarantee that no statistical
test (or null-hypothesis test) on the output can reliably determine if a specific data point was part of
the training set D. The false-positive and false-negative rates of any such test will be controlled by
ϵ and δ. Algorithms with small ϵ and δ are those for which no powerful test exists. Remarkably,
as shown below, stability in terms of the stronger Rényi divergence implies that an algorithm is
(ϵ, δ)-differential private.

Lemma 3 (From Rényi stability to (ϵ, δ)-DP (Thm.21 Balle et al. (2020))). Let PXk|D be a random-
ized algorithm outputting weights given a dataset D. Let q > 1, ϵ > 0. If Dq

(
PXk|D||PXk|D′

)
≤ ϵ

for D,D′ adjacent datasets, then PXk|D is (ϵ+ log 1/δ−log(q)
q−1 + log q−1

q , δ)-differentially private for
any δ > 0.

The study of the privacy properties of noisy iterative schemes appears in Minami et al. (2016). A
comprehensive treatment from a perspective of privacy amplification by iteration in convex setting is
provided in Feldman et al. (2018) using Rényi differential privacy Mironov (2017). Fundamentally,
the technical problem of showing stability is identical for generalization and privacy, which is why
we mention differential privacy here. The analysis of Ganesh & Talwar (2020); Chourasia et al.
(2021); Ye & Shokri (2022) establishes time-independent privacy bound for strongly convex settings
with deterministic and stochastic gradients. Going beyond convexity as noted in Ganesh et al. (2023)
remained an open question.

2.5 ISOPERIMETRY

In our work, we relax the strong-convexity requirements to assumptions of dissipativity and
isoperimetry. The inequality below is referred to as an isoperimetric inequality since it implies
Gaussian (or uniform on the unit sphere) like concentration properties on the distribution Gozlan
(2009).

Definition 4 (LSI). A distribution b is said to verify the log-Sobolev inequality (LSI) with constant
cb if for any a ≪ b,

DKL (a||b) ≤
cb
2
Ea

[
∥∇ log a−∇ log b∥2

]
.

Instead of assuming strong convexity of the optimized loss Fn, we assume in the following that the
Gibbs distribution with density proportional to e−Fn satisfies the LSI. A precise discussion on which
conditions of Fn yield the LSI is provided in section 5. Moreover, our main technical tool will rely
on showing that the outputs Xk of equation SGLD all satisfy the LSI with a constant that is uniform
in k. It was unknown if such a uniform bound held without strong convexity. Vempala & Wibisono
(2019) include a proof under strong-convexity in their last arxiv modification and Altschuler &
Talwar (2022) specifically study this question under convexity. The lack of uniform LSI was the
bottleneck that prevented analyses from capturing non-convex settings and required Vempala &
Wibisono (2019) to state the uniform LSI as assumption(Assumption 2).

3 RELATED WORK

Time-independent information-theoretic generalization Several authors have considered the
question of time dependence of generalization bounds of noisy iterative schemes. The work of Mou
et al. (2018) was the first to notice that each step includes a decay factor that can compensate for
step-wise increases derived in previous analyses. Unfortunately, only a degrading decay factor is
established, making vanishing step-sizes mandatory. Li et al. (2019) build on their result to show
a time-independent bound for non-convex losses obtained as bounded perturbations of a strongly
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convex loss. Unfortunately, their bounds do not go to 0 as n → ∞. In bounded settings, where a
projection step follows each noisy gradient update, the work of Wang et al. (2023) and Chien et al.
(2024) establish that a uniform decay factor can be established. They show that if each iteration of
SGLD is followed by a projection on a convex set C, then a constant decay factor that depends on
exp (diam(C)/η) can be established.

Fewer papers tackle the unbounded setting. Using coupling techniques, Farghly & Rebeschini
(2021) establish a time-uniform bound but incur inelegant step size dependences and do not ob-
tain a bound going to 0 as n → ∞ for fixed stepsizes. The recent work Zhu et al. (2024) considers
the same dissipative setting and exploits Markov chain perturbation results but their Wassertein anal-
ysis requires that Lipschitz losses be used to measure the generalization gap. The work most closely
related to ours is Futami & Fujisawa (2024). For dissipative losses, their result involves dimension-
dependent quantities unrelated to stability. We show that the dissipative setting is friendly enough
to not require such constants, and we improve their analysis to remove the dissipativity assumption
under ergodicity. We include a table for ease of comparison in Appendix A.

4 ANALYSIS TEMPLATE

Xk

X ′
k

Grad
ien

tSt
ep(

Xk
, D)

GradientStep(X ′
k , D ′

)

Xk + 1/2

X ′
k + 1/2

Xk+1

X ′
k+1

Noise

Noise

Expansion Contraction

Figure 1: Analysis template

In this section, we describe the analysis template de-
picted in Figure 1 which will allow us to establish
KL and Rényi stability through a step-wise analysis
of each iteration k. Earlier versions of this template
appear in Chourasia et al. (2021) and Ye & Shokri
(2022)(appendix D.7), who refined the Rényi anal-
ysis of Vempala & Wibisono (2019). Our analysis
relies on showing that, at each iteration, there is an
expansion followed by a contraction.

Before diving into the analysis, we ease the com-
putations by assuming that the sequences of batches
are chosen before the start of the recursion. In
other words, we conduct the analysis conditioned on
B = (Bk)k by using the fact that conditioning in-
creases Dq (see 7.11 in Polyanskiy (2019)). That is, for any distributions a, b,

Dq (a||b) ≤ EB [Dq (a|B||b|B)]

when q ≥ 1. Consequently, we can conduct the analysis for a fixed non-random sequence of batches,
and then take the expectation of the final result with respect to the batch selection. This is the
standard simplification for analyzing stochastic gradients Wang et al. (2023); Ye & Shokri (2022).

The first step of our method consists of decomposing the noise term as follows

Xk+1 = Xk − ηg(Xk, Bk) +

√
2η

β
Nk+1

= Xk − ηg(Xk, Bk) +

√
η

β
N

(1)
k+1︸ ︷︷ ︸

Expansion term

+

√
η

β
N

(2)
k+1︸ ︷︷ ︸

Contraction term

=: Xk+1/2 +

√
η

β
N

(2)
k+1

(3)

where we have split the random variable Nk+1 into two independent N (0, I) variables N
(1)
k+1 and

N
(2)
k+1. A single update therefore corresponds to two consecutive half steps, the first going from Xk

to Xk+1/2 (the gradient update half-step) and a second going from Xk+1/2 to Xk+1 (the noise step).
We analyze these half-steps in what follows for the iterates (Xk)k, (X ′

k)k defined in equation 2.

4.1 EXPANSION HALF-STEP

The control of the divergence along the first half-step will result from the analog of the chain rule
for q-Rényi divergence. We can show that the following bounded expansion holds.

5
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Theorem 5 (Bounded expansion). Let Xk+1/2 and X ′
k+1/2 be the gradient update half-steps in

equation 3, then

Dq

(
Xk+1/2||X ′

k+1/2

)
≤ Dq (Xk||X ′

k) + q
βη

2
Ẽk,q[∥g(X ′

k, Bk)− g′(X̃ ′
k, B

′
k)∥22].

where the tilted expectation Ẽk,q is an expectation under a modified density defined in Definition 21.

The result above tells us that the expansion (or over-fitting) induced by the gradient step can be
controlled by the term

Sk := Ẽk,q[∥g(X ′
k, Bk)− g′(X ′

k, B
′
k)∥22] (4)

which is a quantity that measures how sensitive gradients are with respect to changes in the dataset.

4.2 CONTRACTION HALF-STEP

After the expansion half-step, the next iterates are obtained by simply adding the remaining half
of the Gaussian noise. In other words, the next iterates are obtained after simultaneous Gaussian
convolution (or diffusion along heat flow). This parallel addition of independent Gaussian noise
(or Additive Gaussian noise channels) has been well explored in the sampling literature Wibisono
& Jog (2018); Vempala & Wibisono (2019); Chewi et al. (2021). In particular Chen et al. (2022)
generalize a result of Vempala & Wibisono (2019) to derive the following contraction theorem.
Theorem 6 (Adapted from Chen et al. (2022) Theorem 3). Let Xk+1/2 and X ′

k+1/2 be the gradient
half-steps as defined in equation 3. If (X ′

k+1/2)k all verify the LSI with contant α, then after simul-

taneous heat flow Xk+1/2 +
√
η/βN and X ′

k+1/2 +
√

η/βN ′, with N,N ′ ∼ N (0, I), we have
that

Dq

(
Xk+1||X ′

k+1

)
≤ γDq

(
Xk+1/2||X ′

k+1/2

)
.

where γ =
(

βα
βα+η

)1/q
< 1.

If a uniform LSI can be established, the addition of noise after each gradient step corrects the over-
fitting and brings the distributions back to being closer as shown in Figure 1. The proofs for this
template can be found in B.

4.3 COMBINING THE STEPS

With the bounded expansion and approximate contraction results, it suffices to unroll the recurrence
to obtain time-independent bounds. By combining theorems 5 and 6, we obtain the following single-
step result.
Theorem 7 (Single step bound). Let k ∈ N, (Xk) and (X ′

k) the two sets of SGLD iterates defined
equation 2. If (X ′

k+1/2)k all verify the LSI with contant α, we have that

Dq

(
Xk+1||X ′

k+1

)
≤ γDq (Xk||X ′

k) + γq
βη

2
Sk

where Sk is the gradient sensitivity in equation 4 and γ =
(

βα
βα+η

)1/q
< 1.

Under bounded gradient sensitivity (equation 4), this geometric recurrence given above remains
bounded for k → ∞. Indeed a simple unrolling yields Dq (Xk||X ′

k) ≤ q βη
2

∑k
t=0 γ

k−tSt. The
results thus all hinge on finding a constant α such that all iterates of equation SGLD verify the LSI
inequality with constant α.

5 UNIFORM LSI UNDER DISSIPATIVITY

In this section, we show that the iterates of equation SGLD all verify the LSI under a dissipativity
assumption on f . For a target distribution π ∝ e−f , a set of increasingly relaxed structural assump-
tions can be made on f to guarantee that π admits an LSI constant. A hierarchy of the commonly

6
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Strongly
convex Convex

Dissipative
lower bounded Hessian

Log-Sobolev inequality

Poincare inequality Figure 2: A diagram of the commonly used
assumptions. A proof that strongly con-
vex functions are dissipative can be derived
from the quadratic lower bound at 0. Corol-
lary 2.1.(2) of Cattiaux et al. (2010) shows
that dissipativity and lower bounded Hes-
sians imply LSI. The fact that Poincaré in-
equalities hold for log-concave measures
is shown in Corollary 1.9 of Bakry et al.
(2008). The proof that LSI implies Poincaré
can be found in Bakry et al. (2014)(Propo-
sition 5.1.3).

used assumptions is given in Figure 2. The iterates of equation SGLD however are evolving distribu-
tions so establishing that the structural assumptions hold uniformly for the distribution of the iterates
Xk can be burdensome. Luckily the log-Sobolev constant is stable through Lipschitz mappings and
convolutions as shown below.
Theorem 8 (Operations preserving LSI Chafaı̈ (2004)). If the distribution of a random variable A
is LSI(ca), then the distribution of T (A) is LSI

(
Lip(T )2ca

)
and if B is independent from A and

LSI(cb), then A+B is LSI(ca + cb).

By leveraging these stability results, structural assumptions on the gradient mapping T : x 7→
x − η∇f(x) in SGLD can lead to uniform LSI constants. The following minimal assumption is
necessary to show that the gradient mapping is Lipschitz.
Assumption 9 (Smoothness). For any z ∈ Z , the function x 7→ f(x, z) is continuously twice
differentiable and there exists L > 0 such that for any z ∈ Z , ∥∇f(x, z)−∇f(y, z)∥ ≤ L∥x− y∥.

With the above, we can track the log-Sobolev constant throughout the iterations and additional
assumptions are then added to ensure boundedness of the constant.

5.1 STRONGLY CONVEX SETTING

In the literature, uniform LSI constants have only been established in strongly convex settings
Ganesh & Talwar (2020); Ye & Shokri (2022); Chourasia et al. (2021); Vempala & Wibisono (2019).
The uniform constants are obtained by noticing that if f(·, z) is m-strongly convex for all z, then
Xk+1 is obtained by applying a (1−ηm)-Lipschitz gradient mapping to Xk and adding independent
Gaussian noise. Using the stability properties of the LSI constant, it can be shown that

cLSI(Xk+1) ≤ (1− ηm)2cLSI(Xk) +
η

β
.

The geometric sequence stays bounded and yields the desired uniform bound on the LSI of Xk.
Without strong convexity, the gradient cannot have a Lipschitz constant less than 1 for all η ≤ 1

L .
Consequently, the geometric sequence derived by considering successive gradient updates and noise
gives cLSI(Xk+1) ≤ (1 + ηL)2cLS(Xk) +

η
β . which can only diverge exponentially as the iterate

count increases. We will show that using different techniques, a finite bound can be established
under a relaxation of strong convexity.

5.2 DISSIPATIVE FUNCTIONS

The standard way of relaxing strong convexity is by adding perturbations. A classic result estab-
lishes that bounded perturbations of strongly convex functions still satisfy the LSI, albeit with an
exponential degradation Holley & Stroock (1988). More recent results show that other types of per-
turbations can preserve the LSI. For instance, if V is strongly convex and H a Lipschtiz function,
then e−V+H still verifies the LSI Brigati & Pedrotti (2024). This setting corresponds precisely to
Lipschitz losses with weight decay analyzed by Farghly & Rebeschini (2021).

Another seemingly different relaxation is the requirement that f be strongly convex outside of a
bounded region. In other words, the gradient of f is strongly monotone outside of some ball. This

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

can be expressed by adding a slack b > 0 to the gradient monotonicity condition to yield

⟨x− y,∇f(x)−∇f(y)⟩ ≥ m∥x− y∥2 − b (5)

for all pairs x, y. The above condition is known as strong-dissipativity Erdogdu et al. (2022). We
note here that strongly dissipative functions are equivalent to bounded or Lipschitz perturbations of
strongly convex functions (see Lem.1 of Ma et al. (2019) or Lem.2.4 of Brigati & Pedrotti (2024)).

A step further can be achieved by only requiring one point strong convexity and dropping the y in
equation equation 5 . This is akin to the relaxations of strong convexity analyzed in Karimi et al.
(2016) (see their appendix A for a hierarchy). By relaxing equation 5, we obtain the set of dissipative
functions defined as below.
Definition 10 (Dissipativity). A function f is (m, b) dissipative if for any x ∈ Rd, we have that
⟨x,∇f(x)⟩ ≥ m∥x∥2 − b.

The condition appeared in Cattiaux et al. (2010) as a simple criterion to ensure existence of a finite
LSI constant. It has then become the standard relaxation of strong-convexity in the sampling and
noisy optimization literature Raginsky et al. (2017); Erdogdu et al. (2022). Indeed, when F is
dissipative, then e−βF can be shown to admit an LSI constant of the order O (exp(β + d)).

Our result hinges on the fact that, despite being the broadest relaxation of strong convexity, dissipa-
tive functions still admit well-behaved gradient updates.
Lemma 11 (Dissipative gradient updates are approximately contractive). Let f be an L-smooth,
(m, b)-dissipative function, then for any η ≤ m

2L2 ,

∥x− η∇f(x)∥2 ≤ ω∥x∥2 +
(
2η2L2R2 + 2ηb

)
with ω = (1− ηm) and R =

√
b
m .

This approximate contraction property gives control of the norms of the iterates of equation SGLD.
This allows to show that the gradient mapping under dissipativity ensures that the iterates remain
sub-Gaussian. A remarkable result of Chen et al. (2021) then allows us to upgrade this sub-
Gaussianity to a log-Sobolev inequality.

Theorem 12 (Uniform LSI). Let X0 ∼ N (0,
√

η
β I), and let f be (m, b)-dissipative, 31

32m < η ≤
m
2L2 the iterates of equation SGLD all verify a Poincare and log-Sobolev inequality with constants

CP ≤ 4η

β
exp

(
32
(
b+ d+ ηβ(LR)2

))
and CLSI ≤ 6CP

(
32
(
b+ d+ ηβ(LR)2

))
where R =

√
b/m.

The proof of this result can be found in appendix C. The bound on the log-Sobolev inequality of
the iterates is exponential in dimension, but is of the same order as the LSI constant of the target
distribution e−βf Raginsky et al. (2017). It is thus unlikely that the bound can be improved without
additional assumptions. The constant factors in bounds on η are loose and can be improved with
clever uses of Young’s inequality (see appendix D).

5.3 COROLLARIES UNDER DISSIPATIVITY

The results on dissipative functions allow us to derive the following immediate corollaries of Theo-
rem 7. We first state our assumptions.
Assumption 13 (Uniform dissipativity). For all z ∈ Z , the function x 7→ f(x, z) is (m, b)-
dissipative and L-smooth.

This ensures that the mini-batches are gradients of dissipative functions. The next assumption is a
mild requirement needed to ensure that the sensitivity terms Sk equation 4 can be controlled.
Assumption 14 (Pseudo-Lipschitz). There exists θ,D > 0 such that for any z, z′ ∈ Z , ∥∇f(x, z)−
∇f(x, z′)∥ ≤ θ∥x∥+D

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Corollary 14.1 (Bounded KL stability). For q = 1, under Assumptions 13 and 14, for any k ≥ 1
and 31

32m < η ≤ m
2L2 , we have that the iterates Xk and X ′

k of SGLD with stay within a bounded KL
divergence from each other given by

D (Xk||X ′
k) ≤

βη(θ2M +D2)

(1− γ)

(
1− γk+1

)
with γ =

(
βα

βα+η

)
, M = 2ηL2R2+2b

m + 2d
mβ and with α = (1 + ηL)2CLSI +

η
β , where CLSI is the

uniform LSI given in Theorem 12.

The pseudo-Lipschitz assumption which appears in Zhu et al. (2024) is merely an alternative way
of bounding the sensitivity terms Sk in equation 4, without requiring a uniform sensitivity bound
when q = 1. For other divergences, the pseudo-Lipschitz assumption is insufficient, we need a more
stringent L∞-bounded sensitivity assumption (which can be ensured by clipping gradients Ye &
Shokri (2022)).
Assumption 15 (L∞-bounded sensitivity). For any z, z′ ∈ Z , ∥∇f(x, z)−∇f(x, z′)∥2 ≤ S∞

Corollary 15.1 (Rényi-differential privacy under dissipativity). For q ≥ 1, under Assumptions 13
and 15, for any k ≥ 1 and 31

32m < η ≤ m
2L2 , we have that the iterates Xk and X ′

k of SGLD stay
within a bounded Rényi divergence from each other given by

Dq (Xk||X ′
k) ≤ q

βηS∞

2(1− γ)

(
1− γk+1

)
with γ =

(
βα

βα+η

)1/q
< 1 and α = (1 + ηL)2CLSI +

η
β , where CLSI is given in Theorem 12.

Our corollaries above imply a time-independent bound for the expected generalization gap (Lemma
2) and the privacy loss (Lemma 3) under dissipativity. Our bounds solely involve stability-related
constants, just like the strongly-convex bound of Chourasia et al. (2021)[Thm 3] and they decay
to zero as n → ∞. Fundamentally the real tool we used was the upgrading behavior of Gaussian
convolution. In the next section, we show this is sufficient to remove dissipativity.

6 WITHOUT DISSIPATIVITY BUT WITH ERGODICITY

In this section, we show that dissipativity is not needed to establish time-uniform generalization
bounds as long as the SGLD iterates converge towards a target distribution that verifies the LSI. It is
possible to make milder requirements on f at the cost of introducing quantities unrelated to stability:
unlike Theorems 14.1 and 15.1, the result in this section will no longer match the strongly-convex
lower-bound as it will include additional terms but its dimension dependence is improved. We
significantly relax the analysis of Futami & Fujisawa (2024) which needlessly requires dissipativity
and the parametrix method. We instead rely on simple tools to show that an approximate contraction
result (Theorem 18) can replace Theorem 6. Instead of requiring a per-iterate LSI, Theorem 18 only
requires the target to be LSI.

6.1 GAUSSIAN CONVOLUTION AND LOG-HESSIAN LOWER BOUNDS

The core of our result in this section relies on relaxing Theorem 6 in the analysis template. To
do so, we must exchange distributions: we need to swap the per-iterate distribution with the target
distribution. The swap is only possible if the distribution is sufficiently smooth. The following
Lemma shows that Gaussian convolution enforces a lower bound on the Hessian of log-densities.
Lemma 16 (log-Hessian lower bound). Let ν be a distribution that results from a Gaussian convo-
lution, i.e, ν = ν̃ ⋆N (0, ηI) for some distribution ν̃, then ∇2 log ν ⪰ − 1

η Id.

This simple result follows from straightforward computations and what is more is that Gaussian con-
volution can only improve the log-Hessian lower bound of a distribution (see Lemma 35). Functions
with a Hessian lower bound are convenient as they allow for simple changes of measure:
Lemma 17 (Change of measure). Let g : Rd → R be a twice-differentiable function such that
∇2g ⪰ −KId for some K ∈ R. Then, for any random variables X,Y over Rd, we have

E[−g(Y )] ≤ E[−g(X)] +
1

2
E [∥∇g(X)∥] + K + 1

2
E[∥X − Y ∥22]

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

The lemma above gives us the ability to change an expectation under Y to an expectation under
X , and leaves open the choice of coupling between X and Y so we can make Wassertein distances
appear on the left hand side by choosing optimal couplings. See Appendix F for the proofs.

6.2 APPROXIMATE CONTRACTION ALONG SIMULTANEOUS HEAT FLOW

We now have all the tools in hand to show that that if the SGLD chains converge to a well-behaved
limit, then approximate contraction can be established. We begin by observing that the contraction
step is applied to a half step Xk+1/2 that itself results from a Gaussian convolution since we split
the noise in two. Consequently, we know that ∇2 logPXk+1/2

⪰ β
η Id by Lemma 34. The following

theorem can then be established.
Theorem 18 (Approximate Contraction). Let π ∼ e−βFn be a distribution verifying the LSI with
constant cπ ≥ 1, whose potential Fn is L-smooth and lower bounded by F ⋆. For any distribution
π′ and at = a0 ⋆N (0, t), bt = b0 ⋆N (0, t) with ∇ log b0 ⪰ −β

η I , we have that

DKL

(
a η

β
||b η

β

)
≤ e−η/4cπDKL (a0||b0) + erg(aη, bη, π, π′) + ProbConst

where the ergodicity error term gathers quantities related to convergence of aη, bη towards π, π′ and
ProbConst gathers problem-dependent constants (explicitly given in equation 8 and equation 9).

The approximate contraction established in Theorem 18, can be instantiated for our two parallel
chains of SGLD to yield the following corollary under the following assumptions.
Assumption 19 (Reasonable loss). For any dataset D, the function Fn is L-smooth and lower
bounded by F ⋆ ∈ R. The distribution π ∼ e−βFn verifies the LSI with constant cπ and has bounded
second moments Eπ

[
∥X∥2

]
< ∞.

Assumption 20 (Bounded variance). The stochastic gradients are unbiased and satisfy
EB

[
∥g(X,B)− Fn(X)∥2

]
≤ σ2.

Corollary 20.1 (KL stability under isoperimetry). Under assumption 19, 20, and assuming cπ ≥ 1.
We have for η ≤ β

cπL2 , the iterates of equation SGLD Xk and X ′
k ran on datasets D and D′ satisfy

DKL (Xk||X ′
k) ≤

poly
(

η
β , L, d, σ,DKL (X0||π) ,DKL (X

′
0||π′)

)
+ CF + c2πSGibbs

1− γ

(
1− γk+1

)
where γ = e−η/4βcπ and SGibbs = Eπ

[
∥∇Fn(X)−∇F ′

n(X)∥2
]
, and CF = Eπ′

[
∥X∥2

]
− 2F ⋆.

We prove this Corollary in Appendix E.1. We are able to show KL stability while making the fewest
assumptions on the structure of the optimized loss Fn. Our result shows that merely knowing that
e−βFn verifies an isoperimetric inequality is sufficient to establish a generalization bound that does
not degrade as the iteration count increases.

7 CONCLUSION

Our Rényi and KL stability bounds directly imply generalization and differential privacy guarantees
for disspativite objectives, extending results only available for strongly convex settings. Noisy it-
erative algorithms can be run ad infinitum with non-vanishing step sizes without early-stopping in
non-convex settings. This is in accordance with the practical observations that long training runs
do not always harm generalization and in fact can sometimes improve it Olmin & Lindsten (2024).
We also relax the dissipativity assumption to show a generalization bound that holds solely under an
isoperimetric assumption of Fn.

The main limitation of our work is the dimension dependence of our bounds, which is affected by
the choice of β. For the algorithm to be useful at minimization, a choice β = O(d) Raginsky
et al. (2017) is necessary. However, the dependence of cπ on β is in general poor. Under additional
assumption on Fn, this dependence can be made linear Li & Erdogdu (2023), but remains unavoid-
able for information-theoretic bounds Livni (2024). The extension of our analysis to non-isotropic,
non-Gaussian, or state-dependent noise will inch closer to capturing SGD and further confirm that
early-stopping is not a requirement in non-convex settings.
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A RELATED WORK TABLE

Here we present and compare with some of the related work in table form for the reader’s conve-
nience.

non-convex un-bounded domain Bound
Chourasia et al. (2021); Ye & Shokri (2022) ✗ ✓ O (1/

√
n)

Raginsky et al. (2017) ✓ ✓ O (ηK + exp−ηK/cπ + 1/n)

Mou et al. (2018) ✓ ✗ O
(√

logK/n
)

Farghly & Rebeschini (2021) ✓ ✓ O
(
1/(n

√
η) +

√
η
)

Futami & Fujisawa (2024) ✓ ✓ O
(√

1+C
n

)
with C d, b,m-dependent

Wang et al. (2023); Chien et al. (2024) ✓ ✗

{
O (1/n) if K ≤ n

O
(√

1/n
)

with (Chien et al., 2024)

Present work ✓ ✓ O
(√

1/n
)

Table 1: Our result matches the strongly-convex bound of Chourasia et al. (2021); Ye & Shokri
(2022) in the un-bounded, non-convex setting.

Observe that the fast 1/n rate achievable with information theoretic bounds comes with drawbacks.
Wang et al. (2023) achieve the fast rate only for k ≤ n. In other words the result only holds for
the first epoch of training. Other bounds obtaining the fast rate (see Rodrı́guez-Gálvez et al. (2024))
cannot be readily applied to SGLD to take into account the algorithm which is the primary goal of
our work. It remains open to obtain a time-independent 1/n rate for SGLD (with no additional terms
that do not decay to zero as in Farghly & Rebeschini (2021)).

B ANALYSIS TEMPLATE PROOFS

In this section we provide proofs for the results in the expansion-contraction template. The first
result we prove is the bounded expansion result. We first define the tilted expectation.

Definition 21 (q-tilted Expectation). For any function h, the tilted expectation Ẽk,q is an expectation
under a modified density and is defined by

Ẽk,q [h(X
′
k)] = EX′

k
[ϕq(X

′
k)h(X

′
k)]

with tilting function is the ratio ϕq := 1
Λq

(
pXk

pX′
k

)q

where the normalization is given by Λq =

EX′
k

[(
pXk

pX′
k

)q]
. If q = 1, the tilted expectation simplifies to

Ẽk,q [h(X
′
k)] = EXk

[h(Xk)] .

We can show that the over-fitting induced at each step is controlled by this tilted expectation as
shown in the following theorem.
Theorem 5 (Bounded expansion). Let Xk+1/2 and X ′

k+1/2 be the gradient update half-steps in
equation 3, then

Dq

(
Xk+1/2||X ′

k+1/2

)
≤ Dq (Xk||X ′

k) + q
βη

2
Ẽk,q[∥g(X ′

k, Bk)− g′(X̃ ′
k, B

′
k)∥22].

where the tilted expectation Ẽk,q is an expectation under a modified density defined in Definition 21.

Proof. We first apply the data processing inequality to obtain that

Dq

(
Xk+1/2||X ′

k+1/2

)
≤ Dq

(
(Xk+1/2, Xk)||(X ′

k+1/2, X
′
k)
)

The q-tilted chain rule for q-Rényi divergences ( (7.59) in Polyanskiy (2019)) then gives us

Dq

(
(Xk+1/2, Xk)||(X ′

k+1/2, X
′
k)
)
≤ Dq (Xk||X ′

k)+ẼX̃k
Dq

(
Xk+1/2|Xk = X̃k||X ′

k+1/2|X
′
k = X̃k

)
14
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where the tilted expectation is given by

ẼX̃′
k

[
h(X̃ ′

k)
]
= EX′

k
[ϕq(X

′
k)h(X

′
k)]

where ϕq(x) = 1
Λq

(
pXk

pX′
k

)q

pX′
k

where the normalization constant is given by Λq =

EX′k

[(
pXk

pX′
k

)q]
. This tilted expectation is a little complicated but what is inside the expectation is

a simple term.

Observe that Xk+1/2|Xk = x is a N (x − g(x,Bk),
√

η
β . We obtained the result by using closed

form results for the q-Rényi divergence between Gaussians (Mironov (2017) Proposition 7).

The second element is the contraction component. The contraction theorem 6 is a direct application
of the forward step in Theorem 3 of Chen et al. (2022) with t = η/β.

C UNIFORM LSI UNDER DISSIPATIVITY

In this section we prove that the iterates of equation SGLD verify a uniform log-Sobolev inequality
under assumption 10.

C.1 PROPERTIES OF DISSIPATIVE FUNCTIONS

We first begin by showing approximative contraction property of dissipative functions.
Lemma 22 (Dissipative gradient updates are approximately contractive). Let f be an L-smooth,
(m, b)-dissipative function, then for any η ≤ m

2L2 ,

∥x− η∇f(x)∥2 ≤ ω∥x∥2 +
(
2η2L2R2 + 2ηb

)
with ω = (1− ηm) and R =

√
b
m .

Proof. Let η ≤
√
m

2L , let x ∈ Rd,

∥x− η∇f(x)∥2 = ∥x∥2 − 2η ⟨x,∇f(x)⟩+ η2∥∇f(x)∥2

≤ ∥x∥2 − 2ηm∥x∥2 + 2η2L2∥x∥2 + 2η2L2 b

m
+ 2ηb (using Ass. 10 and Lemma 23)

≤ (1− ηm)∥x∥2 + 2η2L2 b

m
+ 2ηb (using that η ≤ m

2L2
)

≤ ω∥x∥2 + 2η2L2R2 + 2ηb

with ω = (1− ηm) and R =
√

b
m .

Lemma 23 (Gradients of dissipative and smooth functions). Let f be an L-smooth, (m, b)-
dissipative function, then

∥∇f(x)∥ ≤ L∥x∥+ L

√
b

m

Proof. Let x⋆ be a stationary point of f , then

∥∇f(x)∥ = ∥∇f(x)−∇f(x⋆)∥ ≤ L∥x− x⋆∥ ≤ L∥x∥+ L∥x⋆∥

The result follows from Lemma 24.

Lemma 24 (Stationary points of dissipative functions). Let f be an (m, b)-dissipative function, then
for any x ∈ Rd,

∇f(x) = 0 =⇒ ∥x∥2 ≤ b

m

15
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Proof. The result follows from the definition of dissipativity in 10.

Dissipative functions therefore roughly keep the iterates in a bounded region of size R =
√

b
m . This

will have implications for their exponential integrability.

C.2 EXPONENTIAL INTEGRABILITY

Given that each gradient update is contracting, we can show that the iterates of SGLD are sub-
Gaussian. In other words, we can show exponential integrability as given by the following lemma.

Lemma 25 (Exponential integrability). Let X0 ∼ N (0,
√

η
dβ I), and let f be (m, b)-dissipative

with contraction constant ω = (1 − ηm). For any p ≥ 1 such that pω < 1/8, we have for any
k ≥ 1, the iterate Xk of equation SGLD verifies

1

p
logE

[
exp

(
2p

β

2η
∥Xk − η∇f(Xk)∥2

)]
≤ 16

(
d+ ηβ(LR)2

)
p

Proof. We show the result by expressing the norm of the gradient update as a sum of Gaussian
norms. Let k ≥ 1, we have that

∥Xk − η∇f(Xk)∥2 ≤ ω∥Xk∥2 + 2η2L2R2 + 2ηb

≤ 2ω∥Xk−1 − η∇f(Xk−1)∥2 + 2ω
2η

β
∥Nk∥2 + 2η2L2R2 + 2ηb

≤ (2ω)k∥X0∥2 +
2η

β

k∑
i=0

(2ω)i+1∥Nk−i∥2 +
2η2L2R2 + 2ηb

1− 2ω

Since X0 ∼ N (0,
√

η
dβ I), we have that

β

2η
∥Xk − η∇f(Xk)∥2 ≤ 1

d
(2ω)k∥N0∥2 +

k∑
i=0

(2ω)i+1∥Nk−i∥2 +
ηβ(LR)2 + b

2ηm− 1

where each Ni is an independent N (0, I) variable. Norms of Gaussians are exponentially integrable.
Consequently, for p ≥ 1, such that 2p(2ω) < 1/4, we can invoke Lemma 26 to find that

logE
[
exp

(
2p

β

2η
∥Xk − η∇f(Xk)∥2

)]
≤

(
4p(2ω)k + 4

k∑
i=0

(2ω)idp+
ηβ(LR)2 + b

2ηm− 1

)
≤ 16

(
b+ d+ ηβ(LR)2

)
p

where we used the fact that ω < 1/4 implies that 2ηm− 1 ≥ 1/2.

Lemma 26 (Square Gaussian moment generating function). Let Z ∼ N (0, Id), we have that, for
any λ < 1/4,

logE
[
eλ∥Z∥2

]
≤ 2dλ

Proof. The random variable ∥Z∥2 is a sum of d standard Gaussians squared. Using elementary
computations we can derive its moment generating function

E[eλ∥Z∥2

] =

(
1

1− 2λ

)d/2

We obtain the result using the inequality − ln (1− 2λ) ≤ 4λ for λ < 1/4.

With the Exponential integrability, we simply exploit the fact that Gaussian convolution upgrades
sub-Gaussianity to an LSI to show the following result.
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Theorem 12 (Uniform LSI). Let X0 ∼ N (0,
√

η
β I), and let f be (m, b)-dissipative, 31

32m < η ≤
m
2L2 the iterates of equation SGLD all verify a Poincare and log-Sobolev inequality with constants

CP ≤ 4η

β
exp

(
32
(
b+ d+ ηβ(LR)2

))
and CLSI ≤ 6CP

(
32
(
b+ d+ ηβ(LR)2

))
where R =

√
b/m.

Proof. Thanks to our Lemma 25, the proof will follow from the fact that Gaussian convolution
upgrades sub-Gaussianity to a log-Sobolev inequality which was shown in Chen et al. (2021). For
any k ≥ 1, we have that

Xk = Xk − ηg(Xk, Bk)︸ ︷︷ ︸
Exponentially integral gradient step

+
√
ηNk+1︸ ︷︷ ︸

Independent noise

We cast our result in their notation. We can express the equation above as the mixture of Gaussians.
Indeed if µ denotes the distribution of the gradient step and Px is the Gaussian distribution centered
at X , then the distribution of Xk is the mixture µP :=

∫
Pxdµ(x) . We can thus apply Theorem

1 Chen et al. (2021) which bounds the LSI of mixtures. Using the exponential integrability bound
established in Lemma 25 and taking p = 2, we have, following their notation, that,

Kp,χ2(P, µ) := EX∼µ,X∼µ′
[
1 + χ2 (PX ||P ′

X)
]
≤ E

[
exp

(
4
β

2η
∥Xk − η∇f(Xk)∥2

)]
By combining our bound in Lemma 25 and Theorem 1 Chen et al. (2021) yields the result since
KP = η

β .

C.3 COROLLARIES UNDER DISSIPATIVITY

Here we provide proofs for the corollaries derived under dissipativity.
Corollary 14.1 (Bounded KL stability). For q = 1, under Assumptions 13 and 14, for any k ≥ 1
and 31

32m < η ≤ m
2L2 , we have that the iterates Xk and X ′

k of SGLD with stay within a bounded KL
divergence from each other given by

D (Xk||X ′
k) ≤

βη(θ2M +D2)

(1− γ)

(
1− γk+1

)
with γ =

(
βα

βα+η

)
, M = 2ηL2R2+2b

m + 2d
mβ and with α = (1 + ηL)2CLSI +

η
β , where CLSI is the

uniform LSI given in Theorem 12.

Proof. To establish the corollary, it suffices to control the sensitivity terms Sk given in equation 4.
Thanks to assumption 14, we have that

Sk ≤ 2θ2Ẽ
[
∥X ′

k∥2
]
+ 2D2

Since we have chosen q = 1, the tilted expectation is actually an expectation under Xk according to
Definition 21. Consequently,

Ẽ
[
∥X ′

k∥2
]
= E

[
∥Xk∥2

]
≤ ωE

[
∥Xk−1∥2

]
+
(
2η2L2R2 + 2ηb

)
+

2dη

β

where the second inequality follows from the approximate contractions of dissipative gradient up-
dates Lemma 11 and the last term is the expected norm of Gaussian noise Nk. By unrolling the
geometric sequence above, we have that

E
[
∥Xk∥2

]
≤ 1

1− ω

[(
2η2L2R2 + 2ηb

)
+

2dη

β

]
Using the fact that 1− ω = ηm, we find that

E
[
∥Xk∥2

]
≤
(
2ηL2R2 + 2b

m
+

2d

mβ

)
Defining M := 2ηL2R2+2b

m + 2d
mβ yields the result.
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D OPTIMIZING CONSTANTS

With regards to optimizing the constant 31/32, we first observe that for any x ∈ Rd, and ι > 0, we
have thanks to Lemma 23,

η2|∇f(x)|2 ≤ η2

(
L|x|+ L

√
b

m

)2

= η2

(
L2|x|22 + 2(L|x|)(L

√
b

m
) + L2 b

m

)

= η2

(
L2|x|22 + 2(

√
ιL|x|)( 1√

ι
L

√
b

m
) + L2 b

m

)

≤ (1 + ι)η2L2|x|22 + (1 +
1

ι
)η2L2 b

m

where we have used Young’s inequality in the last inequality. Now here, notice that we have (1 + ι)
instead of 2 in the proof of Lemma 11. So we can choose η ≤ m

(1+ι)L2 , to have that

η2|∇f(x)|2 ≤ ηm|x|22 + (1 +
1

ι
)η2L2 b

m

By having a larger constant term, we can allow ourselves a larger choice of η. We can combine this
result with dissipativity to obtain the following gradient contraction

|x− η∇f(x)|22 ≤ (1− ηm)|x|2 + 2η2L2(1 +
1

ι
)
b

m
+ 2ηb

which tightened version of Lemma 11.

E APPROXIMATE CONTRACTION PROOFS

In this section, we prove the approximate contraction along heat flow theorem established in section.
Theorem 18 (Approximate Contraction). Let π ∼ e−βFn be a distribution verifying the LSI with
constant cπ ≥ 1, whose potential Fn is L-smooth and lower bounded by F ⋆. For any distribution
π′ and at = a0 ⋆N (0, t), bt = b0 ⋆N (0, t) with ∇ log b0 ⪰ −β

η I , we have that

DKL

(
a η

β
||b η

β

)
≤ e−η/4cπDKL (a0||b0) + erg(aη, bη, π, π′) + ProbConst

where the ergodicity error term gathers quantities related to convergence of aη, bη towards π, π′ and
ProbConst gathers problem-dependent constants (explicitly given in equation 8 and equation 9).

Proof. From Lemma 39, we know that

d

dt
DKL (at||bt) ≤ −1

2
E
[
∥∇ log at(At)−∇ log bt(At)∥2

]
Expanding the square, we find that

d

dt
DKL (At||Bt) ≤ −1

2
Eat

[
∥∇ log at∥2

]
− 1

2
E
[
∥∇ log bt(At)∥2

]
+ Eat

[⟨∇ log at,∇ log bt⟩]

Now making the same observation as Futami & Fujisawa (2024) that −∥u−v∥2 ≤ − 1
2∥u∥

2+∥v∥2,
we have that
d

dt
DKL (At||Bt) ≤ −1

4
Eat

[
∥∇ log at −∇ log π∥2

]
+
1

2
Eat [∥∇ log π∥]−1

2
Eat

[
∥∇ log bt∥2

]
+Eat [⟨∇ log at,∇ log bt⟩]

Invoking the LSI for π, we can write

d

dt
DKL (At||Bt) ≤ − 1

4cπ
Eat

[
log

at
π

]
+
1

2
Eat

[
∥∇ log π∥2

]
−1

2
Eat

[
∥∇ log bt∥2

]
+Eat [⟨∇ log at,∇ log bt⟩]
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Introducing bt back into the first term, we find that

d

dt
DKL (At||Bt) ≤ − 1

4cπ
Eat

[
log

at
bt

]
+ Err(π) + Err(b) (6)

where we define
Err(π) :=

1

4cπ
Eat

[log π] +
1

2
Eat

[
∥∇ log π∥2

]
and

Err(b) :=
1

4cπ
Eat [− log bt]−

1

2
Eat

[
∥∇ log bt∥2

]
+ Eat [⟨∇ log at,∇ log bt⟩]

We will establish time-independent upper bounds for both these error terms. Using Grónwall’s
lemma, we can then deduce from equation 6, by integrating from 0 to t = η

β that

DKL

(
a η

β
||b η

β

)
≤ e−η/4βcπDKL (a0||b0) +

η

β
(Err(π) + Err(b)) (7)

We control each term individually. First, observe that Err(π) is a sum of a negative Shannon entropy
and a log-gradient norm measured through a distribution at instead of π. We bound each summand
in Lemmas 30 and 31 respectively to obtain that

Err(π) ≤ −2βF ⋆ +
d

2
log(

βL

2π
) + 2β2L2W2

2

(
a η

β
, π
)
+ 2β2L2η + Ld

The other error term is where the regularizing properties of Gaussian convolution are fully exploited
and it is here that we differ most sharply with the analysis of Futami & Fujisawa (2024). The
first term in Err(b) is an expectation of − log bt and we have established that thanks to Gaussian
convolution, the log-Hessian of log bt is lower bounded. This induced smoothness allows us to
perform a change of measure in Lemma 28 to control the first two terms of Err(b). The last term
is again controlled using the properties of Gaussian convolution and simple integration by parts in
Lemma 27. We obtain that

Err(b) ≤ max
t≤ η

β

Ebt [− log bt] +
K + 1

2

(
W2

2

(
a η

β
, b η

β

)
+ 8

η

β
d

)
+Kd

Using the density bound in equation 29, we can control the Shannon entropy, which gives for any
π′,

Err(b) ≤ 4β

η
W2

2

(
b η

β
, π′
)
+

4β

η
Eπ′

[
∥X∥2

]
+ 2d+

K + 1

2

(
W2

2

(
a η

β
, b η

β

)
+ 8

η

β
d

)
+Kd

Putting everything together in equation 7, with K = β
η , we find that

DKL

(
a η

β
||b η

β

)
≤ e−η/4cπDKL (a0||b0) + erg(a η

β
, b η

β
, π, π′) + ProbConst

where the ergodicity error term gathers quantities related to the convergence of the processes

erg(a η
β
, b η

β
, π, π′) = 2ηβ2L2W2

2

(
a η

β
, π
)
+ (1 +

η

2β
)W2

2

(
a η

β
, b η

β

)
+ 4W2

2

(
b η

β
, π′
)

(8)

and the problem constants intervene in ProbConst with

ProbConst = Eπ′
[
∥X∥2

]
− 2F ⋆+

ηd

2
log(

βL

2π
)+

d

2
log(2π

η

β
)+ d

(
η2L2 + Ld+ d+ 2

η

β

)
(9)

Lemma 27 (Inner product bound). Let at, bt as in Theorem 18 with ∇2 log b0 ⪰ −K,

Eat [⟨∇ log at,∇ log bt⟩] = −Eat [∆ log bt] ≤ Kd

Proof. The result follows from integration by parts (Lemma 40) which gives

Eat
[⟨∇ log at,∇ log bt⟩] = −Eat

[∆ log bt]

Since Gaussian convolution only improves log-Hessian lower bounds, we find that

−Eat
[∆ log bt] ≤ Kd
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Lemma 28 (Change of measure). Let at, bt as in Theorem 18, then for cπ ≥ 1

1

4cπ
Eat

[− log bt]−
1

2
Eat

[
∥∇ log bt∥2

]
≤ Ebt [− log bt] +

K + 1

2

(
W2

2

(
A η

β
, B η

β

)
+ 8

η

β
d

)

Proof. Since −∇2 log bt ⪯ K, we can apply the change of measure Lemma 17 to the function
− log bt to find that for cπ ≥ 1, we have

1

4cπ
Eat

[− log bt]−
1

2
Eat

[
∥∇ log bt∥2

]
≤ Ebt [− log bt] +

K + 1

8
E
[
∥At −Bt∥2

]
The crucial feature of the change of measure lemma is that we can choose the coupling between
(At, Bt) freely. Let ((A0, N), ((B0, N

′)) be coupled such that

W2
2

(
A0 +

√
η

β
N,B0 +

√
η

β
N ′
)

= E
[
∥A0 +

√
ηN − (B0 +

√
ηN ′)∥2

]
With this coupling in hand, we define At = A0+

√
tZ and Bt = B0+

√
tZ ′ with Z,Z ′ independent

N (0, I) variables. We then compute

E
[
∥At −Bt∥2

]
≤ 2E

[
∥A0 +

√
η

β
N − (B0 +

√
η

β
N ′)∥2

]
+ 4td+ 4

η

β
d

= W2
2

(
A η

β
, B η

β

)
+ 4(t+

η

β
)d

Lemma 29 (Density bound). Let t ≤ η ≤ 1, let B be a random variable with density b. Let us
define the half step density2 as b1/2 = (b ⋆N (0, η/βI)). Let bt = b1/2 ⋆N (0, tI) be the result of a
Gaussian convolution applied to the half step b1/2, then for any π′, we have that

Ebt [− log bt] ≤
4β

η
W2

2

(
b η

β
, π′
)
+

4β

η
Eπ′

[
∥X∥2

]
+

d

2
log(2π

η

β
) + 2d

Proof. By definition of Gaussian convolution, the following equalities hold

bt(x) = EN

[
b1/2(x−

√
tN)

]
and b1/2(x) = Eb [N (x−B, ηI)]

A repeated application of Jensen’s inequality yields

− log bt(x) ≤ EN

[
− log b1/2(x−

√
tN)

]
≤ β

2η
ENEb

[
∥x−

√
tN −B∥2

]
+

d

2
log(2π

η

β
)

≤ β

2η
ENEb

[
∥x−

√
tN −B∥2

]
+

d

2
log(2π

η

β
)

Now taking expectation with respect to bt, we find that

Ebt [− log bt(Bt)] ≤
β

2η
E
[
∥Bt −

√
tN −B∥2

]
+

d

2
log(2π

η

β
) (10)

We then add some noise terms to look forward in the heat flow. Let N ′, N ′′ ∼ N (0, I) be indepen-
dent Gaussians, then

E
[
∥Bt −

√
tN −B∥2

]
≤ E

[
∥(Bt +

√
η

β
− tN ′)− (B +

√
2ηN ′′)∥2

]
+ (

η

β
− t)d+ td+ 2ηd

≤ 2E
[
∥B η

β
∥2
]
+ 2E

[
∥B +

√
2ηN ′′∥2

]
+ 3

η

β
d

2(i.e akin to the density of Xk+1/2)
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Recall that both B η
β

and B +
√
2 η
βN

′′ have the same law. Indeed B η
β

has distribution b η
β

=

b1/2 ⋆ N (0, η
β I) (i.e bt with t = η

β ) which adds variance η
β gaussian noise to the half step which

already adds variance η
β gaussian noise to B, consequently it corresponds to adding 2 η

β variance
gaussian noise to B. By plugging the above into 10 that,

Ebt [− log bt(Bt)] ≤
2β

η
E
[
∥B η

β
∥2
]
+

d

2
log(2π

η

β
) +

3

2
d

From this we deduce that,

Ebt [− log bt(Bt)] ≤
4β

η
W2

2

(
b η

β
, π′
)
+

4β

η
Eπ′

[
∥X∥2

]
+

d

2
log(2π

η

β
) + 2d.

Lemma 30 (Entropy bound lower bound). Let π ∝ e−βF with F an L-smooth, lower bounded
function such that F (x) ≥ F ⋆ for some real value F ⋆ ∈ R, then for any ν

Eν [log π] ≤ −2βF ⋆ +
d

2
log(

βL

2π
)

Proof. We denote by Λ the normalization constant of π defined as

Λ =

∫
Rd

e−βF (x)dx.

Observe that
log π = −βF − log(Λ) ≤ βF ⋆ − log(Λ)

We therefore need only to lower bound log(Λ), which, as performed in Raginsky et al. (2017)
Propostion 3.4, can be achieved using a Laplace integral approximation to yield

log Λ ≥ βF ⋆ +
d

2
log(

2π

βL
)

As a consequence, we obtain that

Eat
[log π] ≤ −2βF ⋆ +

d

2
log(

βL

2π
)

Lemma 31 (log-Gradient bound). Let π ∝ e−βF with F an L-smooth potential, then for t ≤ η
β ,

1

2
Eat

[
∥∇ log π∥2

]
≤ 2β2L2W2

2

(
a η

β
, π
)
+ 2βL2ηd+ Ld

Proof. Recall from Vempala & Wibisono (2019) Lemma 11 that

Eπ [∥∇F∥] ≤ dL.

To control the gradients under a different measure, it suffices to do a simple change of measure as is
done in Lemma 12 of Vempala & Wibisono (2019). Since gradients of F are L-Lipscthiz, we have
that for any y ∈ Rd and independent N ′ ∼ N (0, I)

1

2
Eat

[
∥∇ log π∥2

]
≤ β2Eat

[
∥∇F (At)−∇F (y)∥2

]
+ ∥∇F (y)∥2

≤ β2L2Eat

[
∥At − y∥2

]
+ ∥∇F (y)∥2

≤ 2β2L2Eat

[
∥At +

√
η

β
− tN ′ − y∥2

]
+ 2β2L2(

η

β
− t)d+ ∥∇F (y)∥2

≤ 2β2L2W2
2 (Aη, π) + 2βL2ηd+ Ld,

where the last inequality is obtained by having y ∼ π with an optimal coupling.
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E.1 PROOF OF THE COROLLARY

Here we show how to use our approximate contraction result to obtain a bound on the generalization
of SGLD.
Corollary 20.1 (KL stability under isoperimetry). Under assumption 19, 20, and assuming cπ ≥ 1.
We have for η ≤ β

cπL2 , the iterates of equation SGLD Xk and X ′
k ran on datasets D and D′ satisfy

DKL (Xk||X ′
k) ≤

poly
(

η
β , L, d, σ,DKL (X0||π) ,DKL (X

′
0||π′)

)
+ CF + c2πSGibbs

1− γ

(
1− γk+1

)
where γ = e−η/4βcπ and SGibbs = Eπ

[
∥∇Fn(X)−∇F ′

n(X)∥2
]
, and CF = Eπ′

[
∥X∥2

]
− 2F ⋆.

Proof. Our goal is to apply Theorem 18 to the iterates Xk and X ′
k. Let us first look at the additive

error term erg 8. The additive error term erg(a η
β
, b η

β
, π, π′) is a sum of Wassertein distances between

a η
β

and π and b η
β

and π′. Indeed, we have that

erg(a η
β
, b η

β
, π, π′) = 2ηβ2L2W 2

2 (a η
β
, π) + (1 +

η

2β
)W 2

2 (a η
β
, b η

β
) + 4W 2

2 (b η
β
, π′)

≤ 2ηβ2L2W 2
2 (a η

β
, π) + 2(1 +

η

2β
)W 2

2 (a η
β
, π)

+ 4(1 +
η

2β
)W 2

2 (π, π
′) + 8(1 +

η

2β
)W 2

2 (b η
β
, π′)

where we use the triangle inequality for Wassertein distances to obtain the above. We thus have the
following three Wassertein distances we need to control: W 2

2 (a η
β
, π), W 2

2 (b η
β
, π′) and W 2

2 (π, π
′).

When applied to the iterates of SGLD, the Wassertein distances of interest become W 2
2 (Xk+1, π)

and W 2
2 (X

′
k+1, π

′) and W 2
2 (π, π

′). To bound these terms, we therefore need to show that the it-
erates of SGLD converge in Wassertein distance to their respective target measures π and π′. This
was shown in Kinoshita & Suzuki (2022) and we restate their result in Lemma 32. The distances
W 2

2 (Xk+1, π) and W 2
2 (X

′
k+1, π

′) are thus given by Lemma 32. Now we also know from the log-
Sobolev inequality that

W 2
2 (π, π

′) ≤ 2cπDKL (π||π′) ≤ c2πEπ′ [|∇Fn(X)−∇F ′
n(X)|2]

The first inequality follows from Talagrand’s inequality which is implied by the LSI (see 2.2.1 in
Vempala & Wibisono (2019). The second inequality is the LSI. We define the stability quantity
denoted SGibbs := Eπ′ [|∇Fn(X)−∇F ′

n(X)|2] to control the right hand side.

Combining the upper bounds given in equation 11 for Xk and X ′
k, with the above we find that

erg(a η
β
, b η

β
, π, π′) ≤ poly

(
η

β
, L, d, σ,DKL (X0||π) ,DKL (X

′
0||π′)

)
+ c2πSGibbs.

Adding in the second constant ProbConst 9 and un-rolling the geometric recursion for the iterates
Xk, X

′
k in Theorem 18 yields the result.

Lemma 32 (W2 convergence of SGLD Vempala & Wibisono (2019); Kinoshita & Suzuki (2022)).
Under assumptions 19 and 20, for η < 1

cπL2 the iterates of Xk of SGLD satisfy

W 2
2 (Xk, π) ≤ cπKL(X0, π) +

η

β
(8dL2 + 2σ2) (11)

Proof. The analysis of Vempala & Wibisono (2019) is sufficient to show this result. As shown in
Lemma 3 of Vempala & Wibisono (2019), convergence is established by comparing a single step
to the continuous Langevin diffusion with the discrete iterates. Here, in our case, in addition to a
discretization error, we further have a stochastic gradient error. In other words, the gap between the
drift of the continuous time Langevin diffusion and the discretized SGLD iterates compounds two
errors: one for discretization, one for stochasticity. For a continuous Langevin diffusion (X)t with

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

drift ∇Fn started at X0, the expected gap between the continuous Langevin drift and the gradient
step of SGLD is given by
E[∥∇Fn(Xt)− g(X0, B)∥22] ≤ 2E[∥∇Fn(Xt)−∇F (X0)∥22] + 2E[∥∇Fn(X0)− g(X0, B)∥22]

≤ 2E[∥∇Fn(Xt)−∇Fn(X0)∥22] + 2σ2

Consequently, the same analysis as in Vempala & Wibisono (2019) holds, with an additional 2σ2

term appearing in addition to the discretization error. According to equation 13 in Vempala &
Wibisono (2019) it follows that

KL(Xk, π) ≤ KL(X0, π) +
η(8dL2 + 2σ2)

βcπ

Since π verifies the LSI, and the LSI implies Talagrand’s T2 inequality Gozlan (2009) the inequality
above also gives

W 2
2 (Xk, π) ≤ cπKL(X0, π) +

η

β
(8dL2 + 2σ2).

F PROPERTIES OF GAUSSIAN CONVOLUTION

In this section, we prove the two fundamental properties of Gaussian convolution which enable our
analysis. We first provide expressions of the log-Hessian, from which both properties of interest
follow.
Lemma 33 (Lemma E.3 of Chen et al. (2022)). Let pη = p ∗ N (0, ηI), we have that

1. ∇2 log pt(x) = Varp0|η (
Y
η )−

Id
η

2. ∇2 log pt(x) = Ep0|η

[
∇2 log p(Y )

]
+ Varp0|η (∇ log p(Y ))

Both the following lemmas follow immediately from the characterization given above. Indeed since
Variance terms are p.s.d, we can deduce both the lemmas below. The next Lemma follows from
point 1. in 33.
Lemma 34 (log-Hessian lower bound). Let ν be a distribution that results from a Gaussian convo-
lution, i.e, ν = ν̃ ⋆N (0, ηI) for some distribution ν̃, then

∇2 log ν ⪰ −1

η
Id.

The next lemma follows from point 2. in 33.
Lemma 35 (Only upwards). For any distribution ν be a distribution, it holds that

∇2 log (ν ⋆N (0, ηI)) ⪰ ∇2 log ν.

A direct application of the lemmas allows us to also establish that
Lemma 36 (Bounded Laplacian). Let b be a distribution such that ∇2 log b ⪰ −K, with K ≥ 0, let
bt = b ⋆N (0, tI)

Ebt [∥∇ log bt∥] = −Ebt [tr
(
∇2 log bt

)
] ≤ Kd

Finally the change of measure lemma is a simple consequence of analysis.
Lemma 37 (Change of measure). Let g : Rd → R be a twice-differentiable function such that
∇2g ⪰ −KId for some K ∈ R. Then, for any random variables X,Y over Rd, we have

E[−g(Y )] ≤ E[−g(X)] +
1

2
E [∥∇g(X)∥] + K + 1

2
E[∥X − Y ∥22]

Proof. From classic results in analysis, we know that

g(y) ≥ g(x) + ⟨∇g(x), y − x⟩ − K

2
∥x− y∥2

We apply Young’s inequality and integrate to obtain the result.
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G TECHNICAL LEMMAS

In this section, we include the small technical lemmas that can be found in the literature.

We first show the link between our Lemma 2 and the result of Xu & Raginsky (2017). We first recall
their result.
Lemma 38 (Expected generalization of subgaussian losses, Thm 1 Xu & Raginsky (2017)). Let
f(w,Z) be a loss function that verifies assumption 1. Then, for any k ≥ 1,

gen(PXk|D,D) ≤
√

2cI(Xk;D)

n
.

where I denotes the mutual information.

Let Xk be the output of SGLD ran on a dataset D with distribution PXk|D. Recall that the mutual
information is given by

I(PXk|D;D) = DKL ((Xk,D)||(X ′
k,D))

where X ′
k is an independent output of SGLD ran on an independent dataset D′. Conditioning on the

second coordinate we have that

I(PXk|D;D) ≤ ED

[
DKL

(
PXk|D||PX′

k

)]
since PX′

k
=
∫
PX′

k|D′PD′ , we can invoke Jensen and convexity of the KL divergence to find that

I(PXk|D;D) ≤ ED,D′

[
DKL

(
PXk|D||PX′

k|D′

)]
.

Which leads to the KL stability characterization of generalization.
Lemma 39 (DeBruijn’s Identity Zozor & Brossier (2015)). Let A,B be two random variables over
Rd, for t > 0, let At = A +

√
tN and B = B +

√
tN . Denoting by at and bt the densities of At

and Bt respectively, we have that

d

dt
DKL (at||bt) ≤ −1

2
E
[
∥∇ log at −∇ log bt∥2

]
Lemma 40 (Integration by parts). For any two functions h, g : Rd 7→ R∫

Rd

⟨∇h(x),∇g(x)⟩ dx = −
∫
Rd

h(x)∆g(x)dx

Lemma 41 (DeBruijn’s Identity Zozor & Brossier (2015)). Let A,B be two random variables over
Rd, for t > 0, let At = A +

√
tN and B = B +

√
tN . Denoting by at and bt the densities of At

and Bt respectively, we have that

d

dt
DKL (at||bt) ≤ −1

2
E
[
∥∇ log at −∇ log bt∥2

]
Proof. Since at, bt are undergoing simultaneous heat flow we know that

∂at
∂t

= ∆at
∂bt
∂t

= ∆bt

It follows from straightforward computations that

∂DKL (at||bt)
∂t

=

∫
Rd

∂at
∂t

(x) log
at(x)

bt(x)
−
∫
Rd

∂bt
∂t

(x)
at(x)

bt(x)

= −1

2
Eat

[
∥∇ log at −∇ log bt∥22

]
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