
Less is More – Towards parsimonious multi-task
models using structured sparsity

Richa Upadhyay1, Ronald Phlypo2, Rajkumar Saini1, Marcus Liwicki1
1Luleå University of Technology, Sweden, 2University Grenoble Alpes, France

richa.upadhyay@ltu.se, ronald.phlypo@grenoble-inp.fr, rajkumar.saini@ltu,se,
marcus.liwicki@ltu.se

Model sparsification in deep learning promotes simpler, more interpretable mod-
els with fewer parameters. This not only reduces the model’s memory footprint
and computational needs but also shortens inference time. This work focuses on
creating sparse models optimized for multiple tasks with fewer parameters. These
parsimonious models also possess the potential to match or outperform dense mod-
els in terms of performance. In this work, we introduce channel-wise l1/l2 group
sparsity in the shared convolutional layers parameters (or weights) of the multi-
task learning model. This approach facilitates the removal of extraneous groups
i.e., channels (due to l1 regularization) and also imposes a penalty on the weights,
further enhancing the learning efficiency for all tasks (due to l2 regularization). We
analyzed the results of group sparsity in both single-task and multi-task settings on
two widely-used Multi-Task Learning (MTL) datasets: NYU-v2 and CelebAMask-
HQ. On both datasets, which consist of three different computer vision tasks each,
multi-task models with approximately 70% sparsity outperform their dense equiva-
lents. We also investigate how changing the degree of sparsification influences the
model’s performance, the overall sparsity percentage, the patterns of sparsity, and
the inference time.

1. Introduction

(a) Unstructured (b) Structured (c) Channel-wise

Figure 1: An illustration of the
various forms of sparsity that
may be introduced to a param-
eter vector of a Convolutional
Neural Network (CNN). (blue
denotes non-zero values). Fig-
ure (a) depicts unstructured
sparsity, (b) shows structured
(block or group) sparsity, and
(c) represents channel-wise
structured (group) sparsity.

The principle of parsimony states that a model with a lower number of parameters is preferred
over a more intricate model with a higher number of parameters, given that both models fit the
data equally well [1]. Model sparsification, one of the methods to obtain parsimonious models and
model compression, holds significant importance in the fields of Machine Learning (ML) and Deep
Learning (DL), often being explored through feature or parameter selection techniques. Although,
in recent times, the concept of over-parameterization [2] i.e., model having more parameters than
necessary to fit its training data and DL have become intertwined [3]. The pursuit of sparse models
does not necessarily conflict with the concept of over-parameterization. In large-scale, complex
scenarios, the benefit of sparse models is manifold. They provide increased interpretability, reduce
overfitting, efficient computation, and aid in identifying the most informative features, leading to
an efficient learning process [4]. While over-parameterization enables networks to approximate
complex mappings and simplify the loss function, making optimization easier, model sparsification
provides a different perspective that prioritizes efficiency and interpretability, both of which can
be critical in specific applications. The contrast between the efficiency of sparse models and the
comprehensive functionality of over-parameterized models showcases the continuous evolution
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of DL. Continuing along these lines, our work delves into the adoption of structured sparsity to
attain parsimonious models. We focus on identifying and leveraging the most significant features or
parameters of a model, thereby balancing the efficiency of sparse models with the vast capabilities of
deep (over-parameterized) models.
Another technique for reducing model size is parameter sharing, typically utilized in the context
ofMTL. Sparsity within anMTL framework, which seeks to train multiple tasks concurrently [5],
can yield significant advantages. It is because, in MTL, where the model complexity increases as the
number of tasks increases, a simple (sparse) model can be more interpretable and computationally
efficient. Moreover, only some featuresmight be relevant to all the tasks and oversharing of knowledge
(features) among the tasks may cause negative information transfer [6]. As a result, sparse models
can help to choose significant features for specific tasks while also assisting in learning shared
representations across multiple tasks. Therefore, the motivation for this study is to leverage the
advantages of structured sparsity to optimize MTL models.
This work, therefore, introduces structured (group) sparsity in MTL, i.e., it learns sparse shared
features among multiple tasks. There are two important reasons for this integration. First is the
organization of parameters in a CNN is inherently grouped into layers, channels, or filters; these
naturally grouped parameters provide an opportunity to apply structured sparsity [7]. Another
reason is CNNs, especially deeper ones, can develop redundant filters that extract similar features
[8, 9]. This is because the number of filters in deep CNNs is usually thousands, and it is inevitable
that there exist a lot of similar filters that extract the same or similar features [8]. Structured
sparsity optimizes these networks by targeting and pruning entire redundant filters or channels
of the weight matrix rather than just individual weights. Figure 1 illustrates the types of sparsity
induced in a 4D parameter tensor (number of filters × channels × height × width). In this work,
we introduce channel-wise group sparsity in the shared network among all the tasks, eventually
eliminating a significant amount of shared parameters (i.e., groups or channels zeroed out). As a
result, decreasing the memory footprint of the model will lead to less computational expense at the
time of inference. Our approach is based on the understanding that the dense prediction tasks vary
in the granularity and type of features they require. Some tasks might necessitate more low-level
features (e.g., edge or texture details for semantic segmentation) while others could demand more
high-level representations (like object or scene understanding for depth estimation). Channel-wise
sparsity may allow for the retention of task-specific channels that are most pertinent while pruning
the less relevant ones. The main contributions of this paper are as follows:

1. Introducing structured (group) sparsity in anMTL framework, particularly channel-wise
l1/l2 penalty to the shared (CNN) layer parameters to solve complex computer vision tasks.
Along with reducing the number of shared parameters, it aids in significantly improving
task performance.

2. Design of an experiment framework to analyze the effect of group sparsity in single-task
and multi-task settings.

3. A deep analysis of the model’s performance across different levels of sparsification, taking
into account the performance of the tasks, group sparsity, parameter reduction, and inference
time.

4. A comparative analysis of the structured (l1/l2) vs unstructured (l1) sparsity.
This article is organized as follows: The research works that used structured sparsity in the context of
MTL are discussed in Section 2. Section 3 introduces multi-task learning, the concept of l1/l2 group
sparsity, and presents the approach proposed in this work. Section 4 gives a detailed experimental
set-up, while the results, followed by an extensive performance analysis, are presented in Section 5.
At last, Section 6 draws the conclusions and future work.

2. Related work
Parameter-sharing in MTL enables models to exploit similarities across various tasks, enhancing
generalization and learning efficiency. There are two types [5]: hard parameter-sharing and soft
parameter-sharing. Hard parameter-sharing is caused by the network design, which shares some
parameters across all tasks [10–12]. In contrast, soft parameter-sharing encourages models to have
comparable but distinct parameters for the shared layers by including a regularization term in
the loss function that penalizes the variations in the parameters [13]. However, as tasks increase,
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the parameters and, consequently, the computational cost grow proportionally. Notably, not all
tasks require complex networks and static architectures might lead to suboptimal results and often
overfitting. Numerous studies in the past have optimized multi-task network structures for each task
to overcome these issues. In this section, we review recent studies emphasizing parameter efficiency
inMTL. We also explore the literature on structured sparsity both in general contexts and specifically
withinMTL.
Parameter-efficient MTL: MTL heavily uses Neural Architecture Search (NAS) [14] to optimize
network design based on task relatedness and complexity of numerous tasks. Most pruning solutions
start with a sizeable multi-task network and then propose a layer-wise architecture search process.
[15] tailored residual networks to develop a task-specific ensemble of sub-networks in different
depths, which are learned based on task similarities. Other approaches begin with a small network
and incrementally expand the architecture, like [16], which starts with a thin multi-layer network
and dynamically uses greedy algorithms to widen it during training. In their work, [17] proposed
utilizing a differentiable tree-structured topological space to optimize parameters and branching
distributions that enable automatic search of a hard parameter-sharing multi-task network. A
method for learning the layer-sharing pattern over several tasks is proposed in [18], which involves
first learning a task-specific policy distribution and then randomly selecting a select-or-skip policy
decision from that distribution. Several other works, such as [19–21], propose different approaches
to learning task-specific sparsity inducing ‘masks’ for the parameter vectors, which help to reduce
the number of trainable parameters in a multi-task setting.
Concept of parameter sparsity inDL: [7] is a very detailed review that discusses the types of sparsity
and their application in DL. Broadly, they categorize sparsity into two types: model sparsity, which
involves pruning weights or neurons, and ephemeral sparsity, which is applied on a per-instance
basis and deactivates neurons or weights, such as with dropout or activation functions. Numerous
studies in the literature have adapted these sparsification methods for various applications; we
highlight a few of these, particularly ones involving structured sparsity. The work presented in [22])
introduced block-sparse regularization in the form of l1/lq norms [23] to acquire a low-dimensional
representation that can be shared across a group of related tasks. They proved that penalizing
the trace norm of the parameter matrix to make it low rank makes the non-convex group lasso
optimization problem convex. A combination of block-sparse and element-wise sparse regularization
is proposed in [24] to improve the block-sparse models since their performance depends on the
extent to which features are shared across tasks. Similarly, [25] introduced channel-wise, stripe-wise,
and group-wise filter pruning as a means of introducing sparsity in Deep Neural Network (DNN).
The issue of addressing the estimation of multiple linear regression equations and variable selections
within a multi-task framework is discussed in [26]. Therefore, many studies utilize structured
sparsity in the context of MTL, focusing on variable selection, identifying task-specific layers, and
learning sparse binary masks for the parameters of each task.
Positioning our work: While most of the works in the field of MTL employ the concept of sparsity
for feature selection and usually use synthetic data for simple regression tasks [22, 24, 26], and
learn sparse (unstructured) masks for individual tasks [19]; our work employs model sparsity and
ephemeral sparsity while training a multi-task model for various heterogeneous tasks [27], such as
image-level tasks (e.g., classification) and pixel-level tasks (e.g., segmentation, depth estimation).
[28] is very close to what we have done; however, they propose a fusion regularization term in
their work for task grouping and demonstrate the performance on synthetic data. Our primary
contribution lies not in the introduction of sparsity itself; instead, it centres on the investigation and
applicability of the group sparsity in MTL for dense prediction heterogeneous computer vision tasks.
In the context of this work, model sparsity is applied in the form of channel-wise l1/l2 regularization
as shown in Figure 2, which involves pruning of shared model weights during training, it impacts
not only the forward pass of the multi-task model but also its inference in terms of performance,
complexity, and prediction time. The shared CNN (i.e., ResNet, discussed in Section 4) has ReLU
activation functions after every convolutional layer. This naturally introduces ephemeral sparsity per
data point during training, which only impacts the training stage [7]. Consequently, in this study, we
concentrate solely on the effects of model sparsity. It is important to note that our work centres on
the sparsification of hard-shared parameters, specifically the backbone parameters typically shared
by all tasks. However, this concept can also be adapted for the soft-parameter sharing setting.
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Figure 2: This block diagram is a simple
illustration of the proposed work. Here,
all the shared network layers aim for spar-
sity, as their channel-wise parameters are
grouped and subjected to the l1/l2 penalty.
The objective is to learn sparse multi-task
shared representations that help to en-
hance performance across all tasks. Si-
multaneously, the task-specific networks
focus on learning representations tailored
for each individual task. This multi-task
network is trained using backpropagation
on a composite loss derived from the indi-
vidual losses of each task.

3. Methodology
In this section, we begin by establishing the foundational concepts of our work, delving intoMTL
and group sparsity-inducing penalties. Subsequently, we introduce our proposed approach.
Multi-task learning (MTL) :MTL prioritizes the simultaneous training of multiple tasks instead of
isolated training. This approach leverages common knowledge and representations across multiple
tasks, often leading to enhanced performance and generalization [27, 29]. Consider a simple multi-
task architecture that demonstrates hard parameter sharing as in Figure 2, that shares a common
backbone network between many tasks and each task having a separate task-specific network. For N
non-identical but related tasks sampled from a task distribution T = {Ti}Ni=1, let θb be the shared
parameters of the backbone network (shared layers), while {θi}Ni=1 be the task-specific parameters
forN tasks, such that θb ∩ {θi}Ni=1 = ∅. InMTL, the objective is to minimize the combined loss Lcomb
of all the tasks by finding the optimal network parameters θ = θb ∪ {θi}Ni=1. It can be expressed as:

θ∗ = argmin
θ

Lcomb(θ,D
tr), (1)

where Dtr = {Dtr
i }Ni=1 represents the training dataset of N tasks. Consider a function F that

illustrates how the losses from all the tasks are combined for being back-propagated to the multi-task
network, i.e.,Lcomb = F(L1, L2, .., LN ). Various techniques for aggregating the losses across multiple
tasks have been discussed in [30]. This work employs the concept of uncertainty weighing [31] to
balance the multiple losses. It can be mathematically represented as:

Lcomb =

N∑
i=1

(
1

2σ2
i

Li(θb, θi, D
tr
i ) + log(σi)

)
, (2)

where {σi}Ni=1 are learnable parameters that are optimized along with the model parameters θ to
minimize the combined loss.
Structured sparsity inducing penalty: The group lasso penalty [32], which combines the l1 and
l2 norms (hereafter referred to as l1/l2 in this manuscript), is a form of regularization that induces
structured sparsity [33]. Its objective is to generate solutions that eliminate entire groups of variables,
in contrast to the most frequently used l1 norm, which results in unstructured sparsity. The group
l1/l2 penalty is introduced as a regularization term along with the loss function; the optimization
objective is then expressed as:

min
θ

L(θ,Dtr) +R(θ), where R(θ) = λ

G∑
g=1

√
ng ||θg||2. (3)

R(θ) is the l1/l2 penalty term which is the l1 norm (promotes sparsity) of the l2 norm (penalizes
weights) over the non-overlapping parameter groups (g), and G is the total number of groups. Here
ng is the group size, and λ is the regularization parameter or strength or degree of regularization.
The l2 norm is given by ||θg||2 =

√∑ng

j=1 θ
2
j . Since the penalty term is non-differentiable, in order to

minimize the objective in Eq. 3, proximal gradient descent updates of the parameters are required,
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as explained in [34]. The proximal updates are based on the gradients of the differentiable part of
the composite loss function, i.e.,

θt+1 ← proxαR(θt − α∇θL(θt, Dtr)), (4)
where proxαR is the proximal operator, and α is the learning rate. In spite of its non-differentiable
nature, the proximal operator for the l1/l2 penalty term can be efficiently computed in a closed form
[35], given by:

proxαR(θg) =


[
1−

αλ
√
ng

||θg||2

]
θg ; ||θg||2 > αλ

√
ng

0 ; ||θg||2 ≤ αλ
√
ng

. (5)

Given that the parameters are partitioned into G dis-joint groups, the proximal operator likewise
adheres to this decomposition and thus can be implemented on each parameter group. According to
Eq. 5, if the norm of the parameter group is less than the strength of regularization (i.e., a function
of regularization parameter λ, learning rate α, and the number of elements in the group ng), the
entire group of parameters is set to zero resulting in a sparse solution.
Proposed approach: In this work, we apply group sparsity to the shared parameters θb of amulti-task
network. Given that the foundation forMTL and group sparsity has been laid out (discussed above),
we can now seamlessly delve into their integration. The parameter vector of a convolutional layer is a
4-D vector of dimension (N,C,H,W ), whereN is the number of filters, C is the number of channels,
H andW are the spatial height and width. The channel-wise structure sparsity is introduced in each
convolutional layer of the backbone by considering each channel as a group, as demonstrated in [36].
Therefore, the multi-task optimization objective can now be written as (from Eq. 1 and 3):

min
θ

Lcomb(θ,D
tr) + λ

G∑
g=1

√
ng ||θbg ||2 (6)

where ||θbg ||2 =
∑L
l=1

[∑Cl

nc=1 ||θlb(:, nc, :, :)||2
]
. Here L is the total number of convolutional layers in

the backbone network, andCl is the number of channels in the lth layer. In Eq. 6, the group lasso term
i.e., λ∑G

g=1

√
ng ||θbg ||2 zeroes out an entire channel group, i.e., θlb(:, nc, :, :) if its norm is below the

degree of regularization as per Eq. 5, rendering the backbone parameters sparse. Therefore, l1 sparsity
leads to structured feature selection, while l2 sparsity term promotes within-group regularization,
ensuring that all features in that group are either jointly important or jointly unimportant. While the
combined multi-task loss term i.e., Lcomb(θ,Dtr) fosters the joint learning of multiple tasks, such that
the tasks help each other to learn better. The reduction of trainable parameters in a multi-task model
through dynamic sparsification during its training phase can result in benefits during inference, such
as decreased memory usage, computation requirements, and prediction time, as well as enhanced
performance.

4. Experimental setup
Datasets and Tasks: We evaluate the concept of structured sparsity on multi-task learning on two
publicly available datasets, i.e., the NYU-v2 dataset [37] and the CelebAMask-HQ dataset [38]
(referred to as celebA dataset in this work). In the NYU-v2 dataset, which contains images of indoor
scenes, three dense pixel-level tasks are chosen: semantic segmentation (comprising 40 classes),
depth estimation, and surface normal estimation. For the celebA dataset, which is a large-scale
face image dataset, two binary classification tasks of male/female and smile/no smile identification
are considered. A pixel-level semantic segmentation task has also been selected, featuring three
classes: skin, hair, and background. The celebA dataset is usually used inMTL to investigate task
inter-dependencies.
Network architecture and hyperparameters: A three-channel RGB image of size 256× 256 is fed to
a dilated ResNet-50 [39] backbone network in batches of 16(32) for NYU-v2(celebA) dataset. The
output of the backbone are shared representations which are then given to task-specific networks
(Figure 2). A Deeplab-V3 network [40] is employed as the task head for the dense prediction tasks.
While the task-specific network for classification tasks uses a minimal network with a convolution
layer and two linear fully connected layers. This work employs cross-entropy loss for the semantic

5



segmentation task, inverse cosine similarity loss for surface normal estimation, means square loss
for depth estimation, and binary-cross entropy loss for classification. Adaptive optimizer ‘Adam’
[41] is used for optimizing the non-differentiable objective function (Eq. 3) by calculating adaptive
proximal gradients (explained in [34]). In order to ensure adequate training for all tasks, a learning
rate α of 0.0001 is used. The regularization parameter λ is a crucial hyper-parameter in this work, as it
determines the degree of sparsity. Therefore, we conducted an ablation study considering a range of
λ values, i.e., [1×10−7, 1×10−6, 1×10−5, 1×10−4, 1×10−3, 1×10−2]. The dataset was divided into
non-overlapping training, validation, and test set; for NYU-v2 dataset the same data split as [18, 42]
is followed, while for the celebA dataset, we randomly split the data in 60-20-20%. A uniform test set
and similar hyper-parameters are used to compare performance across all experiments. The training
of the models is conducted on NVIDIA A100 Tensor Core GPUs, equipped with 40 GB of onboard
HBM2 VRAM. To assess the consistency of the model, all experiments were conducted five times
using distinct random seeds. The outcomes are presented in the form of the mean and standard
deviation. The source code for reproducibility can be found at https://github.com/ricupa/Less-is-
More-Towards-parsimonious-multi-task-models-using-structured-sparsity.git.

5. Results and discussion
To evaluate the performance of the proposed approach, two types of experiments were designed:
single-task and multi-task experiments (mostly all possible task combinations are considered).
Table 1 and Table 2 display the performance of the various single-task and multi-task experiments
for the NYU-v2 and celebA datasets, respectively. Table 1 displays the results for three values of λ,
i.e., 0 (no sparsity), 1× 10−6 & 1× 10−5, while Table 2 for λ = 0 (no sparsity) and 1× 10−5.

Table 1: Single task and multi-task (test set) performance for all the three tasks on the NYU-v2 dataset. The
% group sparsity represents the fraction of groups that are eliminated after training. The values of %group
sparsity and parameter sparsity are the mean values over 5 trials. Here IoU is the intersection over union, CS is
the cosine similarity, andMAE is the mean absolute error; the ↑ represent a higher value is better and ↓ represent
a lower value is preferable. The values denoted in italics indicate the optimal performance achieved across all
tasks in a single-task configuration, incorporating group sparsity. On the contrary, the values highlighted in
bold represent the top two performances attained in a multi-task setup, also utilizing group sparsity.

Experiments
Lambda Tasks In the backbone network

λ Segmentation Surface Normal Depth % group
sparsity

% parameters
IoU ↑ CS ↑ MAE ↓ reduced to zero

Semantic 0 0.3140 ± 0.0350 0 0
Segmentation 1× 10−6 0.3203 ± 0.0096 0 0

1× 10−5 0.3338 ± 0.0068 35.77 43.05
Depth 0 0.1645 ± 0.0016 0 0
estimation 1× 10−6 0.1572 ± 0.0017 21.95 31.11

1× 10−5 0.1625 ± 0.0015 89.90 93.57
Surface normal 0 0.7077 ± 0.0047 0 0
estimation 1× 10−6 0.7903 ± 0.0041 17.87 20.42

1× 10−5 0.7699 ± 0.0058 55.62 64.39
segmentation + 0 0.2233 ± 0.0094 0.1656 ± 0.0030 0 0
depth estimation 1× 10−6 0.3308 ± 0.0049 0.1379 ± 0.0034 0 0

1× 10−5 0.3345 ± 0.0073 0.1389 ± 0.0027 66.06 73.58
segmentation + 0 0.2276 ± 0.0064 0.7072 ± 0.0087 0 0
surface normal 1× 10−6 0.3353 ± 0.0082 0.7797 ± 0.0128 13.51 15.34
estimation 1× 10−5 0.3480 ± 0.0180 0.7833 ± 0.0058 64.05 72.97
surface normal 0 0.6905 ± 0.0037 0.1719 ± 0.0038 0 0
estimation + 1× 10−6 0.7609 ± 0.0279 0.1299 ± 0.0030 60.62 69.83
depth estimation 1× 10−5 0.7967 ± 0.0042 0.1332 ± 0.0015 88.62 93.38
segmentation + 0 0.2171 ± 0.0128 0.6948 ± 0.0080 0.1657 ± 0.0034 0 0
surface normal + 1× 10−6 0.3418 ± 0.0062 0.7814 ± 0.0108 0.1301 ± 0.0064 21.80 23.85
depth estimation 1× 10−5 0.3394 ± 0.0107 0.7857 ± 0.0076 0.1336 ± 0.0029 69.72 76.72

Group sparsity enhances the performance: For both datasets, the outcomes of the experiments
show that even with approximately 70% sparsity, the multi-task models perform better than the
non-sparse models; this is also true in the case of single-task settings. Upon assessing the task
performance for the NYU-v2 dataset, as presented in Table 1, it is apparent that the implementation
of group sparsity yields a notable improvement in the performance of all tasks, especially in the
multi-task setting. For the semantic segmentation task, the best IoU score is achieved with a λ value
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Figure 3: Comparison of the number of (non-zero) channels per convolution layer before (blue) and after
sparsity (orange). The names of dilated ResNet-50 convolution layers are on the horizontal axis, and on the
vertical axis are the number of channels. For all these plots, the value of λ = 1× 10−5.

(a) performance vs λ (b) % sparsity vs λ (c) sparsity profile (d) inference time vs λ
Figure 4: These figures demonstrate (a) the variations in the task’s test performance, (b) group and parameter
sparsity percentage, (c) sparsity profile during training, and (d) mean inference time for the multi-task scenario
involving all three tasks of the NYU-v2 dataset, across a spectrum of regularization parameter values λ. The
term “% group sparsity" refers to the proportion of eliminated groups, while “% parameter sparsity" indicates
the ratio of parameters assigned a value of zero.

of 1 × 10−5 in both single task (0.3338 ± 0.0068) and the multi-task settings (0.3480 ± 0.0180 in
combination with surface normal estimation). The lowest MAE (mean absolute error) for the depth
estimation task is achieved with a λ value of 1 × 10−6 (0.1572 ± 0.0017) for single-task learning.
In the multi-task setting, when depth estimation is combined with surface normal estimation, the
performance improved significantly, with the lowest MAE being 0.1299 ± 0.0030 at a lambda of
1 × 10−6. For surface normal estimation, in a single-task framework, the best result (CS) is for
λ = 1× 10−6 (0.7903 ± 0.0041). However, the best performance throughout is when it is combined
with depth estimation, specifically at a λ = 1× 10−5 (0.7967 ± 0.0042). It is evident that combining
tasks can boost performance, but the effect is task-dependent. Segmentation performs well on its own
or when supplemented with surface normal estimation, while depth estimation gains significantly
from the surface normal estimation task (closely related tasks, with the latter often being derived
from the former). In fact, combining depth estimation and surface normal estimation results in better
performance and much higher group sparsity than when paired with semantic segmentation. In the
absence of sparsity, i.e., λ = 0, the individual task performance surpasses that of any of the multi-task
performances across all tasks. The reason behind this can probably be negative information transfer
between tasks due to oversharing of information. The introduction of group sparsity in multi-task
experiments yields a significant improvement in the performances of all tasks. Thus, it can be inferred
that the implementation of group sparsity within the shared layers regulates the dissemination of
information across tasks. Specifically, the utilization of l2 regularization in the penalty term outlined
in Equation 3 facilitates soft parameter sharing, while the application of l1 regularization promotes
sparse hard parameter sharing. Thus, the outcomes of the proposed approach show the effectiveness
of group sparsity in MTL.
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Table 2: Single task and multi-task (test set) performance for all the three tasks on the celebA dataset. The %
group sparsity represents the fraction of groups that are eliminated after training. Here, IoU represents the
metric intersection over union, and the ↑ represents that a higher value of the metric (IoU and accuracy) is
better. The % group sparsity and % parameter sparsity (i.e., reduce to zero) contain the mean values obtained
from five trials. The values highlighted in bold represent the top two performances attained in a multi-task
setup, incorporating group sparsity.

Tasks In the backbone network
classificationSegmentation Male/female smile/no smileExperiments Lambda

IoU ↑ Accuracy ↑ Accuracy ↑
% group
sparsity

% parameters
reduce to zero

0 0.8885 ± 0.0048 0 0segmentation
1× 10−5 0.9084 ± 0.0033 58.1 71.94

0 0.6296 ± 0.0019 0 0male/female
1× 10−5 0.6284 ± 0.0029 87.32 92.31

0 0.5204 ± 0.0026 0 0smile/no smile
1× 10−5 0.5238 ± 0.0004 100 100

0 0.8363 ± 0.0028 0.9103 ± 0.0217 0 0seg + male
1× 10−5 0.9136± 0.0024 0.9726± 0.0035 67.66 77.77

0 0.6284 ± 0.0108 0.5242 ± 0.0006 0 0male + smile
1× 10−5 0.7275 ± 0.0016 0.5308 ± 0.0103 63.18 78.1

seg +male + 0 0.8123 ± 0.0024 0.8641 ± 0.0269 0.5238 ± 0.0012 0 0
smile 1× 10−5 0.9040± 0.0035 0.8514± 0.1578 0.5241± 0.0760 77.1 83.41

Figure 3 illustrates the groups of parameters before and after pruning for all the convolution layers
of the shared backbone network. Comparing single-task plots to multi-task plots shows howMTL
facilitates learning shared features, and sparsity eliminates unimportant parameter groups. In
multi-task model plots, initial layers are predominantly active, sharing low-level features with more
parameters assigned to them than to later layers. Conversely, most intermediate layers are sparse,
with only a few deep layers actively sharing high-level features. Such a sparsity pattern suggests that
group lasso preserves vital network structures, such as residual connections of the ResNet backbone
network.
Similar findings can also be asserted for the celebA dataset, as presented in Table 2. The tasks of
segmentation and male/female classification exhibit significant enhancements with sparsity and
in MTL setting. The accuracy of the smile/no smile classification task remains consistent (under-
performing) even with the introduction of sparsity. As expected, combining image-level male/female
classification with pixel-level semantic segmentation tasks significantly improves the performance
of the classification task. When all the tasks are trained together, even with 77% sparsity, the tasks
perform better or sometimes equivalent to their no sparse and single-task experiments. These results
prove the significance of both MTL and group sparsity.
% Sparsity-performance trade-off: Figure 4a illustrates the average test performance of all three
tasks in a multi-task setting when subjected to various regularization strengths (i.e., λ on the hori-
zontal axis). While Figure 4b displays the amount of % group sparsity and % parameter sparsity for
different values of λ. It can be concluded from both these figures that performance improvements
are observed as sparsity increases to a certain point, beyond which performance begins to decline.
As the value of lambda rises, sparsity also increases, leading to improved task performance (i.e.,
IoU and CS ↑, while MAE ↓) up to λ = 1× 10−5; beyond this point, any further increase in lambda,
or consequently in % sparsity, results in declining performance. It is noteworthy that increasing λ
from 1× 10−6 to 1× 10−5 results in substantial growth in sparsity, while the performance metrics
remain relatively stable i.e., no significant change. The model exhibits complete sparsity (i.e., all
parameters groups are equal to zero) for higher values of λ (1× 10−3 and 1× 10−2), resulting in two
implications. Firstly, the absence of shared parameters contradicts the notion of MTL. Secondly, the
model is so simple (sparse) that it cannot acquire adequate knowledge, leading to underfitting. The
present ablation study examined the impact of increasing regularization intensity on overall task
performance. Therefore, there is a trade-off between task performance and the degree of sparsity.
Faster inference time: Model sparsity results in a simple model with fewer parameters for inference;
therefore, an increase in sparsity decreases inference time (specifically the runtime for backbone
only), as shown in Figure 4d. In this work, the mean inference time represents the time taken by
the backbone or shared network to process a batch of data, determined over five experimental trials
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using different batches of the same size to validate the robustness of the results. For λ = 1× 10−6,
optimal performance corresponds to approximately 21% group sparsity, reducing the inference time
by 0.32ms compared to the dense network. In contrast, at λ = 1 × 10−5 with around 70% group
sparsity, despite a slight dip in performance, the network’s speed increases by 0.74ms. Therefore, the
choice of λmodulates the balance between model performance and inference speed.
Dynamic sparsity: In this work we apply dynamic sparsity that involves continuously adjusting
which weights are pruned during training, while static sparsity is a fixed pruning of neural network
weights after training. Figure 4c shows the sparsification profiles for different values of λ while
training all three tasks together for the NYU-v2 dataset. Smaller λ values initially yield a dense
model that gradually becomes sparse, improving performance. Conversely, larger λ values lead to
high sparsity from the start of training, limiting performance. Starting with all parameters and then
progressively pruning them is akin to synaptic pruning in the human brain [7]). Just as the network
begins with a rich set of dense parameters and sparsifies over time, the brain initially forms an excess
of neural connections. As development proceeds, less vital synapses are eliminated, optimizing the
brain for efficiency and environmental adaptation.
Structured vs Unstructured sparsity: We also compared the performance of l1/l2 (structured)
sparsity with l1 (unstructured) sparsity, the results are shown in Table 3. Although applying solely l1
sparsity achieves similar levels of parameter sparsity, the performance with l1/l2 sparsity, as shown
in Table 1, remains superior. Fine-tuning the regularization parameter (λ) could potentially lead to
comparable or improved performance and even greater parameter sparsity. However, unstructured
sparsity often faces challenges in hardware efficiency since it is a fine-grain approach that involves
removing parameters randomly (without a pattern) based on some criteria. Conversely, while
structured sparsity aligns better with hardware optimization, it typically faces limitations in achieving
high levels of sparsity without adversely impacting performance because it is a coarse-grained
approach for pruning structured blocks of parameters [7]. The choice between structured and
unstructured sparsity depends on the use case, balancing between performance and hardware
efficiency. Furthermore, as shown in Table 3, unstructured sparsity can also lead to the zeroing out
of some channels, thus contributing to a notably low percentage of group sparsity.
Table 3: Performance ofMTLwith l1 sparse regularization on the NYU-v2 Dataset. The regularization parameter
(λ) is set at 1× 10−3, which yields a level of parameter sparsity comparable to that achieved with l1/l2 sparsity.
MTL Experiments Segmentation Surface normal est. Depth est. % group % parameter

IoU ↑ CS ↑ MAE ↓ sparsity sparsity

Segmentation + Surface Normal est. 0.2962 ± 0.0050 0.7421 ± 0.0048 - 0.59 74.31
Depth est. + Surface Normal est. - 0.7285 ± 0.0096 0.1545 ± 0.0011 5.46 77.78
Segmentation + Depth est. + 0.2900 ± 0.0258 0.7389 ± 0.0187 0.1520 ± 0.0052 1.68 69.92Surface Normal est.
In general, the outcomes presented in this section for both datasets demonstrate the efficacy of

group sparsity in MTL. The aforementioned approach is effective as it leverages the principle of
inductive bias, wherein tasks in MTL share features and mutually reinforce learning. Additionally,
the incorporation of l1/l2 group sparsity facilitates the removal of redundant parameters that do
not contribute to any of the tasks while also regularizing the parameters. This approach yields a
parsimonious backbone model with reduced parameters that accommodates all the tasks within a
multi-task framework.

6. Conclusion and future scope
We present an approach for developing parsimonious models by employing dynamic group sparsity
in a multi-task setting. Through extensive experiments, we demonstrate that sparse multi-task
models perform as well as or better than their dense counterparts. So, sparsifying the model during
training yields a more general model that offers faster inference times. Our proposed method can
be integrated with any multi-task models that undergo gradient-based training. Furthermore, it is
adaptable to various tasks, be they classification, regression, or otherwise. Therefore, we put forth
a model-agnostic and task-agnostic approach for developing simple and interpretable multi-task
models. In this study, the regularization factor (λ), which is a hyper-parameter, determines the level
of sparsity. Finding the ideal value of λ is a challenging task, though. Therefore, a promising future
research direction might involve developing an approach for learning the optimal value of λ while
training, potentially leading to enhanced performance and optimal sparsity.
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