

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MECHANISTIC INDEPENDENCE: A PRINCIPLE FOR IDENTIFIABLE DISENTANGLLED REPRESENTATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Disentangled representations seek to recover latent factors of variation underlying observed data, yet their *identifiability* is still not fully understood. We introduce a unified framework in which disentanglement is achieved through *mechanistic independence*, which characterizes latent factors by how they act on observed variables rather than by their latent distribution. This perspective is invariant to changes of the latent density, even when such changes induce statistical dependencies among factors. Within this framework, we propose several related independence criteria – ranging from support-based and sparsity-based to higher-order conditions – and show that each yields identifiability of latent subspaces, even under nonlinear, non-invertible mixing. We further establish a hierarchy among these criteria and provide a graph-theoretic characterization of latent subspaces as connected components. Together, these results clarify the conditions under which disentangled representations can be identified without relying on statistical assumptions.

1 INTRODUCTION

Disentangled representations capture the underlying explanatory factors that generate observed data. They are widely believed to promote compositionality, enable controllable generation, and facilitate transfer (Bengio et al., 2013; Higgins et al., 2017; Schölkopf et al., 2021; Locatello et al., 2019; Greff et al., 2020; Goyal & Bengio, 2022)). From a scientific perspective, disentanglement aligns with the goal of discovering the causal or mechanistic structure of data-generating processes (Schölkopf et al., 2021). The question of whether such representations can be consistently recovered is addressed by identifiability. If a model class lacks identifiability, different training runs may encode incompatible factors, thereby undermining interpretability and transfer.

A classical route to identifiability is to posit *statistical independence* of the latent factors, as in independent component analysis (ICA) (Comon, 1994; Hyvärinen & Oja, 2000) and independent subspace analysis (ISA) (Cardoso, 1998; Hyvärinen & Hoyer, 2000). Early work focused on linear mixing, where identifiability can be obtained under mild conditions. For general *nonlinear* mixing, however, identifiability is impossible without further assumptions (Hyvärinen & Pajunen, 1999; Locatello et al., 2019), motivating a large body of work that augments statistical assumptions with temporal cues (Hyvärinen & Morioka, 2016; 2017; Klindt et al., 2020), auxiliary variables (Hyvärinen & Morioka, 2017; Hyvärinen et al., 2019; Khemakhem et al., 2020a), multiple views (Khemakhem et al., 2020b; Gresele et al., 2020; Von Kügelgen et al., 2021; Zimmermann et al., 2021; Matthes et al., 2023), or interventions (Locatello et al., 2020; Lachapelle et al., 2022; Ahuja et al., 2022; Brehmer et al., 2022; Ahuja et al., 2023; Jiang & Aragam, 2023; Yao et al., 2023; Zhang et al., 2024; Ng et al., 2025).

A complementary strategy constrains the *mechanism* that maps latents to observations (Taleb & Juttner, 1999; Horan et al., 2021; Gresele et al., 2021; Moran et al., 2021; Buchholz et al., 2022; Ghosh et al., 2023; Zheng & Zhang, 2023). Independent Mechanism Analysis (IMA) (Gresele et al., 2021) proposes to address nonlinear ICA by restricting the mixing function so that its Jacobian has orthogonal columns. This couples statistical independence of the latents with a mechanistic constraint on the generator. In contrast, we pursue *mechanistic independence* as a stand-alone organizing principle: factors are defined by *how they act* on observations (through the generator), not by how they are

054 distributed. This shift yields identifiability statements that are invariant to reweightings of the latent
 055 density and allows the true factors to be misaligned with any statistically independent subspaces.
 056

057 This work presents a family of mechanistic independence criteria – spanning support-based sepa-
 058 ration, sparsity gaps in first-order action, and higher-order (cross-derivative) constraints. Similar to
 059 ISA that shows identifiability with respect to a minimal decomposition into independent subspaces,
 060 each criterion comes with a corresponding notion of *irreducibility* that rules out spurious internal
 061 splits of a factor and yields an identifiability theorem. Our framework covers multi-dimensional
 062 factors, partial disentanglement, and non-invertible generators.
 063

064 Our framework generalizes and unifies recent identifiability results based on mechanistic con-
 065 straints: object-centric disentanglement via disjoint supports (Brady et al., 2023), interaction asym-
 066 metry (Brady et al., 2024), and additive decoders (Lachapelle et al., 2023), and it partially subsumes
 067 sparsity-based nonlinear ICA results (Zheng et al., 2022; Zheng & Zhang, 2023) (the parts that do
 068 not require statistical independence). Moreover, defining independent mechanisms by Jacobian-
 069 orthogonality as in IMA (Gresele et al., 2021) appears in our taxonomy as one instance within a
 070 broader class of mechanistic constraints. Unlike approaches that rely primarily on distributional
 071 assumptions (e.g., temporal structure or auxiliary variables), our results hinge on properties of the
 072 generator and therefore remain valid under broad latent densities. The main contributions of this
 073 work are as follows.
 074

- 075 • We define a notion of local disentanglement and prove that under mild topological assump-
 076 tions (such as path-connectedness of the source space) local disentanglement extends to
 077 global disentanglement even for generators that are not fully invertible.
- 078 • We introduce a family of mechanistic independence criteria for subspaces and prove for
 079 each identifiability (up to block-wise invertible transforms and permutations).
- 080 • We discuss how the independence criteria are related and show that the independent and ir-
 081 reducible factors coincide with connected components of graphs derived from mechanistic
 082 assumptions of the generator.

083 **Notation** We write $[n] := \{1, \dots, n\}$ for $n \in \mathbb{N}$. Scalars are denoted by lowercase letters, vectors
 084 by bold lowercase, and matrices by bold uppercase (e.g., $a \in \mathbb{R}$, $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{n \times n}$). Scalar-
 085 valued functions are written f, f_i , while general maps are written \mathbf{f}, \mathbf{f}_i . For $\mathbf{p} \in \mathcal{S}_1 \times \dots \times \mathcal{S}_n$, we
 086 set $D_i \mathbf{f}_{\mathbf{p}} := D \mathbf{f}_{\mathbf{p}} \circ \iota_i$ for the differential in the i -th argument (ι_i the canonical inclusion), and more
 087 generally $D_{i,j}^n \mathbf{f}_{\mathbf{p}} := D^n \mathbf{f}_{\mathbf{p}} \circ (\iota_i, \iota_j, \text{id}, \dots, \text{id})$.
 088

089 2 DISENTANGLEMENT AND IDENTIFIABILITY

090 We now formalize the data-generating assumptions and the notion of disentanglement used through-
 091 out the paper, before turning to identifiability. Our goal is to explain when a decoder (or encoder)
 092 *recovers*, up to natural ambiguities, the underlying factors of variation that compose the observa-
 093 tions.
 094

095 2.1 DATA GENERATING PROCESS

096 We model latent factors of variation as subspaces of a product manifold, reflecting the often compo-
 097 sitional nature of observed data. Let the set of generative (latent) configurations be an open¹ subset
 098 $\mathcal{S} \subseteq \mathcal{S}_1 \times \dots \times \mathcal{S}_K$, where each factor space \mathcal{S}_i has positive dimension. We assume the latent
 099 distribution $\mathbb{P}_{\mathbf{s}}$ is strictly positive on \mathcal{S} .
 100

101 In line with the manifold hypothesis in representation learning (though assuming that observations
 102 lie on rather than merely near a manifold), we posit that observations are produced via a *generator*
 103 (also called a *ground-truth decoder* or *mixing function*)
 104

$$105 \mathbf{g}: \mathcal{S} \rightarrow \mathcal{X} \subseteq \mathbb{R}^{d_x}.$$

106
 107 ¹The condition that \mathcal{S} is open implies that each factor can vary independently and without restriction at any
 108 point within the space and is a common assumption.

108 We denote the observation manifold by $\mathcal{X} := g(\mathcal{S})$, where typically $d_s := \dim(\mathcal{S})$ is much smaller
 109 than d_x .

110 Notably, instead of characterizing the underlying factors through (conditional) statistical independence
 111 or latent-space group actions (Higgins et al., 2018), we characterize them by their action on
 112 the observation manifold via g . While these notions may align, they do not necessarily have to.
 113 Several possibilities for making this precise are discussed in Section 3.

115 2.2 DISENTANGLED REPRESENTATIONS

117 To discuss how a learned representation may or may not reflect the underlying generative factors,
 118 we consider a target representation space $\mathcal{Z} \subseteq \prod_{j=1}^L \mathcal{Z}_j$. In a disentangled representation, each
 119 component \mathcal{Z}_j is intended to capture a single latent factor, or at most a restricted subset of factors.
 120 We formalize this with the notion of a *decomposable map*.

121 **Definition 1** (Decomposable map). *Let $\mathcal{S} \subseteq \prod_{i=1}^K \mathcal{S}_i$ and $\mathcal{Z} \subseteq \prod_{j=1}^L \mathcal{Z}_j$. A map $\tilde{h}: \mathcal{S} \rightarrow \mathcal{Z}$ is
 122 decomposable if there exists a surjection $\sigma: [K] \rightarrow [L]$ and maps $h_j: \prod_{i \in \sigma^{-1}(j)} \mathcal{S}_i \rightarrow \mathcal{Z}_j$ such
 123 that, for all $s \in \mathcal{S}$,*

$$125 \quad \tilde{h}(s) = (h_j((s_i)_{i \in \sigma^{-1}(j)}))^L. \quad (1)$$

127 In other words, target factor $z_j \in \mathcal{Z}_j$ depends only on the subset of source factors $\{s_i : \sigma(i) = j\}$.

128 **Definition 2** (Disentanglement). *A decoder $\hat{g}: \mathcal{Z} \rightarrow \mathcal{X}$ is disentangled w.r.t. a generator $g: \mathcal{S} \rightarrow \mathcal{X}$
 129 if there exists a decomposable map $h: \mathcal{S} \rightarrow \mathcal{Z}$ such that $g = \hat{g} \circ h$.*

131 Disentanglement asserts that varying a single factor of the learned representation changes the de-
 132 coded observation exactly as varying the corresponding source factors would. It can also be defined
 133 in terms of an encoder $\hat{f}: \mathcal{X} \rightarrow \mathcal{Z}$ (e.g., $\hat{f} \circ g = h$). However, when g is not invertible, \hat{f} may not
 134 exist or may lack desirable properties such as continuity². Notably, an oracle generator would be
 135 trivially disentangled w.r.t. itself, even if not invertible. Under mild regularity assumptions, disen-
 136 tanglement forms an equivalence relation (see Propositions 1 and 2), meaning that g and \hat{g} represent
 137 equivalent generative models.

138 More generally, \hat{g} is *locally disentangled* if, for every $s \in \mathcal{S}$, there exists a neighborhood of s where
 139 the restriction of g admits such a disentangled representation (see Defn. 13). At first glance, local
 140 disentanglement may appear less significant than the global property. However, under mild topolog-
 141 ical constraints the two notions coincide, even when g is not fully invertible (see next section).

143 2.3 IDENTIFIABILITY

145 Identifiability asks whether a (locally) disentangled description is essentially unique given only ob-
 146 servations in \mathcal{X} . It characterizes when a learned representation must be disentangled. The following
 147 global result shows that, under mild topological assumptions, local disentanglement implies global
 148 disentanglement. The key condition is connectedness of slices in the source space. A k -slice is the
 149 subspace obtained by holding all but k factors constant (see Defn. 14). Note that path-connectedness
 150 of a space and of its slices are related but independent notions (see Remark 2).

151 **Theorem 1** (Global Identifiability). *Let \mathcal{S} be an open subspace of the product manifold $\prod_{i=1}^K \mathcal{S}_i$,
 152 where each factor \mathcal{S}_i has positive dimension. Then local disentanglement extends to global disen-
 153 tanglement if:*

- 155 (1) $g: \mathcal{S} \rightarrow \mathcal{X}$ is locally injective.
- 156 (2) \mathcal{S} is path-connected.
- 157 (3) Every $(K-1)$ -slice of \mathcal{S} is path-connected.

160 ²A practical example where continuity breaks is the *responsibility problem* which arises when learning
 161 representations of unordered data, such as sets or objects within an image (Zhang et al., 2019; Hayes et al.,
 2023; Mansouri et al., 2023). The permutation invariance makes the generator non-invertible.

162 A proof is given in Appendix A.1. Informally, local disentanglement propagates along paths: since
 163 each factor can vary independently (by openness and path-connectedness), and local injectivity pre-
 164 vents branching, local decompositions extend globally.

165 In many practical cases (e.g., convex open sets in \mathbb{R}^n), the topological conditions hold automatically,
 166 and local injectivity follows from standard regularity assumptions. Thus, the main challenge is
 167 usually to establish local disentanglement, and the remainder of the paper therefore focuses on local
 168 identifiability.

170 3 IDENTIFIABILITY VIA INDEPENDENT MECHANISMS

173 We now establish a general framework that certifies local disentanglement by analyzing how latent
 174 factors *act* on the observation manifold through the generator \mathbf{g} . The key difference from classical
 175 approaches is that independence is formulated at the level of the *generative mechanism* rather than
 176 the latent probability law. As a result, it accommodates almost arbitrary distributions, including
 177 those with statistical dependencies between and within subspaces. Importantly, there is no universal
 178 notion of mechanistic independence comparable to statistical independence. Instead, we present a
 179 family of independence criteria – disjointedness (Type D), mutual non-inclusion (Type M), spar-
 180 sity gap (Type S), and higher-order separability (Type H_n) – each of which leads to disentangled
 181 representations when mirrored in the learned representation.

182 3.1 LOCAL IDENTIFIABILITY OF TYPE D

184 We begin by slightly extending the result of Brady et al. (2023) and rephrasing it within our frame-
 185 work.

186 **Definition 3** (Mechanistic Independence of Type D). *We say that \mathcal{S}_i and \mathcal{S}_j (equivalently, \mathbf{s}_i and
 187 \mathbf{s}_j) are mechanistically independent of Type D if, for all $\mathbf{s} \in \mathcal{S}$, $\mathbf{u} \in T_{\mathbf{s}_i} \mathcal{S}_i$, and $\mathbf{v} \in T_{\mathbf{s}_j} \mathcal{S}_j$,*

$$189 D_i \mathbf{g}_{\mathbf{s}}(\mathbf{u}) \bullet D_j \mathbf{g}_{\mathbf{s}}(\mathbf{v}) = \mathbf{0}, \quad (2)$$

190 where $T_{\mathbf{s}_i} \mathcal{S}_i$ denotes the tangent space of \mathcal{S}_i at \mathbf{s}_i and \bullet denotes the element-wise (Hadamard)
 191 product in \mathbb{R}^{d_x} .³

193 We call this Type D independence since Hadamard orthogonality expresses that different factors
 194 act on a *disjoint* set of observation coordinates. For example, in images, each factor controls a
 195 non-overlapping set of pixels. Independence among the \mathcal{Z}_j is defined analogously via $\hat{\mathbf{g}}$.

196 To ensure disentanglement, independence alone is insufficient: if a source factor \mathcal{S}_i can be de-
 197 composed into smaller, mutually independent components, a learned representation may split and
 198 recombine them arbitrarily. This motivates the notion of reducibility.

199 **Definition 4** (Reducibility of Type D). *We say that \mathcal{S}_i is reducible of Type D if there exists $\mathbf{s} \in \mathcal{S}$
 200 such that $T_{\mathbf{s}_i} \mathcal{S}_i$ admits a nontrivial⁴ direct-sum decomposition $T_{\mathbf{s}_i} \mathcal{S}_i = U \oplus V$ with the property
 201 that, for all $\mathbf{u} \in U$ and $\mathbf{v} \in V$,*

$$202 D_i \mathbf{g}_{\mathbf{s}}(\mathbf{u}) \bullet D_i \mathbf{g}_{\mathbf{s}}(\mathbf{v}) = \mathbf{0}.$$

203 If no such decomposition exists, we call \mathcal{S}_i irreducible of Type D.

205 This coincides with reducibility as defined in (Brady et al., 2023) (see Proposition 5), but makes
 206 the connection to Type D independence explicit. If \mathcal{S}_i is reducible we could split it at a point into
 207 smaller independent subspaces, and if a factor is one-dimensional it should always be irreducible.

208 **Theorem 2** (Local Identifiability of Type D). *Let $\mathbf{g}: \mathcal{S} \rightarrow \mathcal{X}$ and $\hat{\mathbf{g}}: \mathcal{Z} \rightarrow \mathcal{X}$ be local diffeomor-
 209 phisms⁵ with $\mathbf{g}(\mathcal{S}) \subseteq \hat{\mathbf{g}}(\mathcal{Z})$. Then $\hat{\mathbf{g}}$ is locally disentangled w.r.t. \mathbf{g} if:*

211 (1) $\mathcal{S} \subseteq \prod_{i=1}^K \mathcal{S}_i$ is open, and all factors are Type D independent and irreducible.

213 ³Throughout this work, we identify $T_{\mathbf{g}(\mathbf{s})} \mathcal{X}$ with its natural inclusion in \mathbb{R}^{d_x} .

214 ⁴“Nontrivial” means $\dim(U), \dim(V) > 0$.

215 ⁵A diffeomorphism is a smooth bijection between manifolds with a smooth inverse. A local diffeomorphism
 is a map that restricts to a diffeomorphism on some neighborhood of each point.

216 (2) $\mathcal{Z} \subseteq \prod_{i=1}^L \mathcal{Z}_i$ is open with $L \leq K$, and the factors are independent of Type D.
 217

218 Intuitively, if each source factor influences a disjoint set of observation coordinates, and no finer
 219 decomposition is possible, then any learned representation that also acts on disjoint coordinates
 220 recovers the true source factors (up to block-wise invertible transformations and permutations).

221 This result generalizes Theorem 1 of (Brady et al., 2023) to partial disentanglement and non-
 222 invertible generators (when taking Theorem 1 into account). A proof is given in Appendix A.3.
 223 Interestingly, all local identifiability proofs in this paper follow a common template: starting from
 224 the local reconstruction identity $\hat{g} = g \circ v$ (where $v := g^{-1} \circ \hat{g}$ exists locally since both maps are
 225 local diffeomorphisms), one applies the independence conditions to constrain interactions between
 226 source and target factors. If a source factor interacted with multiple target factors, their indepen-
 227 dence would force a decomposition of the source factor, contradicting irreducibility. Occasionally,
 228 additional assumptions are needed to further restrict the function class.

229 Since Type D independence requires that no observation coordinate is affected by two factors, a
 230 natural question is whether this can be relaxed to allow limited overlap while still achieving identifi-
 231 ability. We next express this via supports (the index set of nonzero elements, denoted with $\text{supp}(\cdot)$)
 232 of Jacobians.

233 Select a product basis $(\mathbf{u}_1, \dots, \mathbf{u}_{d_s})$ for $T_s \mathcal{S}$; define $\Omega_i(\mathbf{s}) := \text{supp}(Dg_s(\mathbf{u}_i))$ for the i -th basis
 234 vector; and let \mathcal{C}_j be the index set of basis vectors of $T_{s_j} \mathcal{S}_j$. Then Type D independence can be
 235 reformulated as

$$236 \quad \forall i \neq j, \forall a \in \mathcal{C}_i, \forall b \in \mathcal{C}_j : \quad \Omega_a(\mathbf{s}) \cap \Omega_b(\mathbf{s}) = \emptyset. \quad (3)$$

237 As long as the basis respects the product structure, the particular choice does not matter. In the next
 238 two sections, we show how this condition can be relaxed, either via *mutual non-inclusion* or through
 239 a *sparsity gap*.
 240

241 3.2 LOCAL IDENTIFIABILITY OF TYPE M 242

243 Define the *mutual non-inclusion* relation between sets $\mathcal{A}, \mathcal{B} \subseteq [d_x]$ as $\mathcal{A} \pitchfork \mathcal{B} := \mathcal{A} \not\subseteq \mathcal{B} \wedge \mathcal{A} \not\supseteq \mathcal{B}$,
 244 that is, the sets may intersect, but neither is contained in the other.

245 **Definition 5** (Mechanistic Independence of Type M). *We say that \mathcal{S}_i and \mathcal{S}_j are mechanistically
 246 independent of Type M if, for every $\mathbf{s} \in \mathcal{S}$,*

$$247 \quad \forall i \neq j, \forall a \in \mathcal{C}_i, \forall b \in \mathcal{C}_j : \quad \Omega_a(\mathbf{s}) \pitchfork \Omega_b(\mathbf{s}). \quad (4)$$

249 Type M independence allows observation coordinates to be influenced jointly by multiple factors as
 250 long as neither support fully contains the other. In image data, for example, different factors may
 251 affect intersecting sets of pixels, allowing partial occlusion, shadows and reflections. Unlike Type D
 252 independence, this notion depends on the choice of basis for $T_s \mathcal{S}$. To make it meaningful, we restrict
 253 to $\mathcal{S} \subseteq \mathbb{R}^{d_s}$ (only for Type M), where $T_s \mathbb{R}^{d_s}$ carries a canonical basis that aligns with the product
 254 structure. Reducibility is then expressed directly in these fixed coordinates.

255 **Definition 6** (Reducibility of Type M). *The component \mathcal{S}_i is reducible of Type M if there exist $\mathbf{s} \in \mathcal{S}$
 256 and a partition $\mathcal{C}_i = \mathcal{A} \cup \mathcal{B}$ such that*

$$257 \quad \forall a \in \mathcal{A}, \forall b \in \mathcal{B} : \quad \Omega_a(\mathbf{s}) \pitchfork \Omega_b(\mathbf{s}).$$

259 **Theorem 3** (Local Identifiability of Type M). *Let $g: \mathcal{S} \rightarrow \mathcal{X}$ and $\hat{g}: \mathcal{Z} \rightarrow \mathcal{X}$ be local diffeomor-
 260 phisms with $g(\mathcal{S}) \subseteq \hat{g}(\mathcal{Z})$. Then \hat{g} is locally disentangled w.r.t. g if:*

261 (1) $\mathcal{S} \subseteq \mathbb{R}^{d_s}$ is open, and the factors are Type M independent and irreducible.

263 (2) $\mathcal{Z} \subseteq \mathbb{R}^{d_s}$ is open, and the factors are independent of Type M.

264 (3) For all $\mathbf{s} \in \mathcal{S}$ and $\mathbf{z} \in \mathcal{Z}$ with $g(\mathbf{s}) = \hat{g}(\mathbf{z})$,

$$266 \quad \|J_{\hat{g}}(\mathbf{z})\|_0 \leq \|J_g(\mathbf{s})\|_0. \quad (5)$$

268 (4) For all such pairs,

$$269 \quad \widehat{\Omega}_k(\mathbf{z}) = \bigcup_{i \in \text{supp}(\mathcal{B}_{:,k})} \Omega_i(\mathbf{s}), \quad (6)$$

270 where $\mathbf{B} := \mathbf{J}_{g^{-1} \circ \hat{g}}(\mathbf{z})$ and $\hat{\Omega}_k$ mirrors Ω_i for \hat{g} .
 271

272 This theorem generalizes Theorem 3.1 of (Zheng & Zhang, 2023) (itself an extension of (Zheng
 273 et al., 2022)) to multidimensional factors (see Proposition 4 for a detailed comparison). Statistical
 274 independence of the sources is not required. Assumptions (1)–(2) mirror those in Theorem 2; condition
 275 (3) motivates a sparsity regularizer; and condition (4) rules out pathological cases and is implied
 276 by condition (i) in (Zheng & Zhang, 2023). It usually holds when g is sufficiently nonlinear, though
 277 a failure mode is illustrated in Example 1, case \mathbf{B} , where the Jacobian is constant on \mathcal{S} .
 278

279 **3.3 LOCAL IDENTIFIABILITY OF TYPE S**

280 We now return to the setting where \mathcal{S} is a smooth manifold and replace the mutual non-inclusion
 281 assumption with a *sparsity gap* criterion. Among all coordinate systems, the basis aligned with the
 282 true factor decomposition yields the sparsest first-order action of the generator.
 283

284 For $\mathbf{s} \in \mathcal{S}$, let $\rho_{\mathfrak{B}}^+(\mathbf{s})$ be the minimal ℓ_0 -norm of the matrix representing $Dg_{\mathbf{s}}: T_{\mathbf{s}}\mathcal{S} \rightarrow T_{g(\mathbf{s})}\mathcal{X}$
 285 when the domain basis is aligned with the decomposition

$$286 \quad \mathfrak{B} := \bigoplus_{i \in [K]} T_{\mathbf{s}_i} \mathcal{S}_i. \\ 287 \\ 288$$

289 Conversely, let $\rho_{\mathfrak{B}}^-(\mathbf{s})$ be the infimum of the ℓ_0 -norm over all bases of $T_{\mathbf{s}}\mathcal{S}$ that *do not* respect \mathfrak{B} .
 290

291 **Definition 7** (Mechanistic Independence of Type S). *The subspaces $\{\mathcal{S}_i\}_{i=1}^K$ are mechanistically
 292 independent of Type S if, for every $\mathbf{s} \in \mathcal{S}$,*

$$293 \quad \rho_{\mathfrak{B}}^+(\mathbf{s}) < \rho_{\mathfrak{B}}^-(\mathbf{s}). \quad (7) \\ 294$$

295 Viewing the Jacobian as a dictionary that maps infinitesimal latent directions to observation
 296 directions, Type S independence states that the sparsest such dictionary (in the ℓ_0 sense) is attained
 297 precisely when the basis aligns with the true factorization. Any misalignment necessarily incurs a
 298 strict sparsity gap.

299 If the supports of different components are disjoint, any mixing of partial derivatives can only enlarge
 300 the support, since no cancellations are possible. In this case, Equation 7 holds trivially. Thus Type D
 301 independence is a special case of Type S independence. The sparsity gap, however, is considerably
 302 stronger: it remains valid even when the supports substantially overlap. For instance, suppose we
 303 have one-dimensional sources where each support $\Omega_i(\mathbf{s})$ overlaps with the others by less than half of
 304 its elements. Even if a misaligned basis were tuned so that every shared element canceled perfectly
 305 (if at all possible), the total number of nonzeros would still increase. Thus, the sparsity gap persists
 306 under this optimal misaligned (but still suboptimal) basis transformation. In higher-dimensional
 307 subspaces, the situation becomes more intricate, since inter-cancellations within block columns are
 308 possible. In a sense, the sparsity gap captures all such potential cancellations and characterizes the
 309 theoretical limiting case. As before, irreducibility rules out internal decompositions (see Defn. 20).
 310 Example 1 discusses Type M/S independence and reducibility in detail.

311 **Theorem 4** (Local Identifiability of Type S). *Let $g: \mathcal{S} \rightarrow \mathcal{X}$ and $\hat{g}: \mathcal{Z} \rightarrow \mathcal{X}$ be local diffeomor-
 312 phisms with $g(\mathcal{S}) \subseteq \hat{g}(\mathcal{Z})$. Then \hat{g} is locally disentangled w.r.t. g if:*

313 (1) $\mathcal{S} \subseteq \prod_{i=1}^K \mathcal{S}_i$ is open, and the factors \mathcal{S}_i are Type S independent and irreducible.
 314

315 (2) $\mathcal{Z} \subseteq \prod_{j=1}^L \mathcal{Z}_j$ is open with $L \leq K$, and the factors \mathcal{Z}_j are independent of Type S.
 316

317 Intuitively, identifiability follows by exploiting the strict sparsity gap in equation 7. While fairly
 318 general, Equation 7 is intractable to optimize in practice. In Section 5 we investigate whether *com-
 319 positional contrast* (Brady et al., 2023) can serve as a suitable surrogate loss.
 320

321 **3.4 LOCAL IDENTIFIABILITY OF TYPE H**
 322

323 Lastly, we simplify and generalize the asymmetric interaction principle of (Brady et al., 2024),
 324 subsuming as a special case the additive setting of (Lachapelle et al., 2023).

324 **Definition 8** (Mechanistic Independence of Type H_n). Let $\mathcal{S} \subseteq \prod_{i=1}^K \mathcal{S}_i$ be a smooth manifold, and
 325 let $\mathbf{g}: \mathcal{S} \rightarrow \mathcal{X}$ be of class C^n with $n \geq 2$. We say that \mathcal{S}_i and \mathcal{S}_j are mechanistically independent
 326 of Type H_n if, for all $\mathbf{s} \in \mathcal{S}$,

$$D_{i,j}^n \mathbf{g}_{\mathbf{s}} = \mathbf{0}. \quad (8)$$

327 For $n = 2$, this requires that all cross-Hessian blocks vanish, implying additivity as in (Lachapelle
 328 et al., 2023). Irreducibility is defined analogously (see Defn. 22).

331 To derive disentanglement, we additionally constrain the function class via *separability*.

332 **Definition 9** (Separability of n -th Order). We say that $\mathbf{g}: \mathcal{S} \rightarrow \mathcal{X}$ is separable of order $n \geq 2$ if
 333 there exists $\mathbf{s} \in \mathcal{S}$ such that, for all $i \in [K]$, the image of $D_{i,i}^n \mathbf{g}_{\mathbf{s}}$ intersects trivially with

$$\text{span} \left\{ D_{j,j}^n \mathbf{g}_{\mathbf{s}}, j \neq i; D^k \mathbf{g}_{\mathbf{s}}, 1 \leq k \leq n-1 \right\}.$$

337 Separability is closely related to *sufficient independence* in (Brady et al., 2024) and *sufficient non-*
 338 *linearity* in (Lachapelle et al., 2023), but is slightly weaker: it allows arbitrary interactions among
 339 lower-order derivatives and within each block $D_{i,i}^n \mathbf{g}_{\mathbf{s}}$.

340 **Theorem 5** (Local Identifiability of Type H_n). Let $\mathbf{g}: \mathcal{S} \rightarrow \mathcal{X}$ and $\hat{\mathbf{g}}: \mathcal{Z} \rightarrow \mathcal{X}$ be local C^n -
 341 diffeomorphisms with $n \geq 2$ satisfying $\mathbf{g}(\mathcal{S}) \subseteq \hat{\mathbf{g}}(\mathcal{Z})$. Then $\hat{\mathbf{g}}$ is locally disentangled w.r.t. \mathbf{g} if:

- 343 (1) $\mathcal{S} \subseteq \prod_{i=1}^K \mathcal{S}_i$ is open, and the factors are Type H_n independent and irreducible.
- 344 (2) $\mathcal{Z} \subseteq \prod_{j=1}^L \mathcal{Z}_j$ is open with $L \leq K$, and the factors are independent of Type H_n .
- 346 (3) \mathbf{g} is separable of order n .

348 Compared to (Brady et al., 2024), our formulation highlights that source factors should be taken
 349 as irreducible, which we argue is a necessary and natural requirement. This perspective eliminates
 350 any dependence on $(n+1)$ -th derivatives (which may not exist) and avoids the use of *equivalent*
 351 *generators*. As with our other results, the conclusion also applies to non-invertible generators, and
 352 we provide an explicit proof for $n > 3$ (corresponding to $n > 2$ in their slightly different notation).

353 4 DISCUSSION

355 4.1 HIERARCHY OF INDEPENDENCE

357 The different independence criteria form a natural hierarchy (see Figure 1). Type D independence is
 358 the strongest: it implies all others. Differentiating Type D yields Type H_2 , and further differentiation
 359 gives Type H_3 , and so on. Type M follows since disjointness is a special case of mutual non-
 360 inclusion. Type S is also implied: in the sparsest product-respecting basis, Type D ensures that
 361 supports are disjoint, and any linear combination of column vectors from different blocks strictly
 362 enlarges the support, creating a sparsity gap. Finally, Type S implies Type M independence when
 363 working in the sparsest product-splitting basis (but not in an arbitrary product-aligned basis).

373 Figure 1: Relations among mechanistic independence types. Arrows indicate logical implications.
 374 The dotted arrow holds only in the sparsest product-splitting basis.

375 Since reducibility describes whether a factor can be split into smaller independent subspaces, the
 376 implication relations among reducibility types largely mirror those among independence types, except
 377 for Type M, which depends on the choice of basis.

This reveals a tradeoff between the identifiability results for Type D and Type S: by enforcing stronger coherence within each factor, we can tolerate stronger interactions between different factors. Relations among the other identifiability results are less direct, since they require additional assumptions (cf. the asymmetric interaction principle of (Brady et al., 2024)).

As with statistical independence, one must distinguish between pairwise and mutual independence. For Types D, M, and H_n , the two coincide, but for Type S they differ in general. While mutual independence always implies pairwise independence, Example 1, case B , shows a Jacobian where factors are pairwise Type S independent but not mutually so.

4.2 FACTORS OF VARIATION AS CONNECTED GRAPH COMPONENTS

The factors of variation can also be viewed through graph structures.

Definition 10 (Graph structures). *Let $\mathbf{g}: \mathcal{S} \rightarrow \mathcal{X}$ be sufficiently smooth, and let $B = (\mathbf{u}_1, \dots, \mathbf{u}_{d_s})$ be a basis for $T_{\mathbf{s}}\mathcal{S}$. Define the following graphs:*

(1) $\mathcal{G}^D(\mathbf{s}, B) = ([d_s], \mathcal{E}^D)$ with

$$\mathcal{E}^D = \{(i, j) \in [d_s]^2 \mid D\mathbf{g}_s(\mathbf{u}_i) \bullet D\mathbf{g}_s(\mathbf{u}_j) \neq \mathbf{0}\} = \{(i, j) \in [d_s]^2 \mid \Omega_i \cap \Omega_j \neq \emptyset\}.$$

(2) $\mathcal{G}^{H_2}(\mathbf{s}, B) = ([d_s], \mathcal{E}^{H_2})$ with $\mathcal{E}^{H_2} = \{(i, j) \in [d_s]^2 \mid D^2\mathbf{g}_s(\mathbf{u}_i, \mathbf{u}_j) \neq \mathbf{0}\}$.

(3) $\mathcal{G}^M(\mathbf{s}, B) = ([d_s], \mathcal{E}^M)$ with $\mathcal{E}^M = \{(i, j) \in [d_s]^2 \mid \Omega_i \not\propto \Omega_j\}$.

Consider \mathcal{G}^D . In any product-splitting basis, the index sets \mathcal{C}_i and \mathcal{C}_j for $i \neq j$ are disconnected subsets of the vertex set. Type D irreducibility ensures that no \mathcal{C}_i can be further split into disconnected components by using a different basis for $T_{\mathbf{s}_i}\mathcal{S}_i$. Thus, the Type D independent and irreducible factors correspond exactly to the connected components of \mathcal{G}^D . Moreover, under the assumptions of Type D independence and irreducibility, \mathcal{G}^D cannot have more than K connected components in any basis (see Proposition 5), and in any non-aligned basis it has strictly fewer. Hence, Type D independence and irreducibility could alternatively be characterized by a gap in the number of connected components between aligned and misaligned bases, paralleling the sparsity-gap perspective of Type S.

A similar statement holds for \mathcal{G}^{H_2} . If \mathbf{g} is second-order separable and satisfies Type H_2 independence and irreducibility, then no basis change increases the number of connected components, and any misaligned basis strictly reduces it.

For \mathcal{G}^M , no analogous conclusion can be drawn, since its definition depends on a specific basis. Nevertheless, the identification of factor subspaces with connected components still applies, though only in the standard basis of \mathbb{R}^{d_s} .

This graph-based perspective also connects to recent work on identifiability for local (Euclidean) isometries (Horan et al., 2021), conformal maps, and orthogonal coordinate transformations (Gresele et al., 2021; Buchholz et al., 2022; Ghosh et al., 2023). Each of these function classes can be characterized in terms of their Jacobians: the columns of the Jacobian are mutually orthogonal, differing only in whether they have unit norm, equal norm, or arbitrary norms. By analogy with Type D independence, we may define *Type O independence* through *orthogonality* in the inner-product sense:

$$\forall i \neq j : D_i\mathbf{g}_s(\mathbf{u}) \cdot D_j\mathbf{g}_s(\mathbf{v}) = \mathbf{0}.$$

Constructing a graph analogous to \mathcal{G}^D , but replacing the Hadamard product with the inner product, yields totally disconnected graphs for these maps when the source factors are one-dimensional.

However, without additional statistical assumptions, identifiability remains limited: even in the smallest class (local isometries), it holds only up to affine transformations. Therefore, to achieve the stronger notion of identifiability pursued in this paper, extra assumptions on the latent distribution are required, even for one-dimensional factors. Nevertheless, such graph constructions may provide a useful tool when combining mechanistic and stochastic independence to recover multidimensional factors.

432 4.3 APPLICABILITY AND LIMITATIONS OF MECHANISTIC INDEPENDENCE
433

434 We illustrate the requirements for Type D/M/S/H_n mechanistic independence in the context of image
435 data. Assume that individual latent factors s_i encode distinct objects in a scene (e.g., position, shape,
436 color), and let g denote the rendering process.

437 Type D independence fails whenever two latent factors influence the same pixel. This excludes
438 shadows, reflections, transparency, and partial occlusions.

439 Type H₂ independence fails when the generator cannot be decomposed additively, i.e., when $g(s) \neq$
440 $\sum_{i \in [K]} g^{(i)}(s_i)$ for any set of functions $g^{(i)}$. Although this assumption is strictly weaker than
441 Type D independence, it still generally disallows partial occlusions, shadows, and reflections. In
442 principle, it permits semi-transparency, but only in the absence of refraction and only when colors
443 mix exactly additively. This condition is further weakened for $n > 2$, but in practice, the calculation
444 of higher-order derivatives is not feasible.

445 Type M independence fails when the set of pixels affected by a latent coordinate in one group is
446 strictly contained in the set affected by a latent coordinate in another group; for example, when an
447 object is visible solely through its reflection.

448 Type S independence is more subtle. For one-dimensional slots (i.e., when each object is parame-
449 terized by a single latent variable), it can fail only when the fraction of shared affected pixels across
450 slots exceeds one half (lower bound). As already mentioned, it is difficult to convey a similarly
451 strong intuition for multidimensional slots.

452 5 EXPERIMENTS
453

454 In an experiment mirroring Brady et al. (2023), we investigated whether the *compositional contrast*
455

$$456 C_{\text{comp}}(\hat{g}, \mathbf{z}) = \sum_{n=1}^{d_x} \sum_{i=1}^K \sum_{j=i+1}^K \left\| \frac{\partial \hat{g}_n}{\partial \mathbf{z}_i}(\mathbf{z}) \right\| \left\| \frac{\partial \hat{g}_n}{\partial \mathbf{z}_j}(\mathbf{z}) \right\|$$

457 can serve as an effective surrogate loss for enforcing Type S independence. This question is moti-
458 vated by the observation that some generators have latent components that are Type S independent
459 but not Type D independent, yet minimizing C_{comp} can nonetheless enforce Type S independence
460 in the learned representation (see Example 2). As argued in Section 3.3, Type S independence is
461 likely to hold when only a small number of observation dimensions are influenced by multiple latent
462 factors (slots).

463 To examine this, we generate synthetic datasets with varying degrees of overlap between the sets
464 of observation dimensions affected by different slots, as illustrated on the right in Figure 2. Latent
465 variables are sampled from a standard normal distribution, and observations are produced by passing
466 them through an invertible MLP whose Jacobian is constructed to have the desired support structure.
467 Only when the overlap is 0% does the generator satisfy Type D independence.

468 We train an autoencoder with reconstruction loss and compositional contrast, $\mathcal{L} = \mathcal{L}_{\text{recon}} + \lambda C_{\text{comp}}$,
469 across five random seeds, using $L = K \in \{2, 3, 5\}$ slots and regularization strengths $\lambda \in \{10^{-2}, 1\}$.
470 For comparability across hyperparameters, we normalize C_{comp} (see Appendix D for details).

471 Figure 2 indicates that, for sufficiently small overlaps, C_{comp} acts as a reliable proxy for Type S
472 independence. However, as the overlap ratio increases, the likelihood of convergence to bad local
473 minima also grows. Identifying more robust surrogate losses remains an open challenge, which we
474 leave for future work. Further experiments can be found in Appendix D.

475 6 RELATED WORK
476

477 Beyond the already mentioned approaches (Brady et al., 2023; Lachapelle et al., 2023; Brady et al.,
478 2024; Zheng et al., 2022; Zheng & Zhang, 2023; Horan et al., 2021; Gresele et al., 2021; Reizinger
479 et al., 2022; Buchholz et al., 2022), a number of other works establish identifiability by imposing
480 structural constraints. Moran et al. (2021) prove identifiability in sparse VAEs by enforcing sparsity

503 Figure 2: Slot Identifiability Score (SIS) over reconstruction loss and compositional contrast for
 504 different support overlaps.

505
 506
 507 in the decoder; while our framework does not subsume theirs, their synthetic dataset can also be
 508 shown to satisfy Theorems 3 and 4. Rhodes & Lee (2021) provide empirical evidence that penalizing
 509 the decoder Jacobian with an ℓ_1 -norm helps break rotational symmetries in VAEs – our results can
 510 be seen as offering the corresponding theoretical justification. In contrast, Lachapelle et al. (2022)
 511 obtain identifiability of latent factors by enforcing sparsity on causal mechanisms, while Reizinger
 512 et al. (2023) connect sparsity patterns in the Jacobian to identifiable causal graphs in nonlinear ICA.

513 A distinctive aspect of our work is that we establish identifiability at the subspace level, whereas
 514 most prior results assume that each latent factor is captured in a single dimension. Recent research
 515 has also examined block-identifiability of latent variables under paired observations. These include
 516 content-style separation via data augmentation (Von Kūgelgen et al., 2021) or multiple views (Daun-
 517 hawer et al., 2023), block-disentanglement under sparse perturbations (Fumero et al., 2021; Ahuja
 518 et al., 2022; Mansouri et al., 2023), and temporal formulations leveraging causal graphs (Lachapelle
 519 & Lacoste-Julien, 2022; Lachapelle et al., 2024).

521 7 CONCLUSION

522
 523 In this work, we have developed a unifying framework for disentanglement and identifiability based
 524 on *mechanistic independence*. By formulating independence at the level of generative mechanisms
 525 rather than distributions, we obtained identifiability results for subspaces that hold under minimal
 526 assumptions on the latent density and extend to nonlinear, non-invertible generators. Our analysis
 527 revealed a hierarchy of independence criteria ranging from disjointness (Type D) to mutual non-
 528 inclusion (Type M) to sparsity (Type S) and higher-order separability (Type H_n). We also showed
 529 how connected components in graphs naturally characterize the structure of latent factors. Overall,
 530 the results establish when disentangled representations are identifiable without relying on statistical
 531 assumptions, providing a theoretical foundation for future work that explores other mechanistic
 532 independence criteria or combines mechanistic and stochastic assumptions.

533 REFERENCES

534
 535
 536 Kartik Ahuja, Jason Hartford, and Yoshua Bengio. Weakly supervised representation learning with
 537 sparse perturbations. *arXiv preprint arXiv:2206.01101*, 2022.

538
 539 Kartik Ahuja, Divyat Mahajan, Yixin Wang, and Yoshua Bengio. Interventional causal representa-
 tion learning. In *International conference on machine learning*, pp. 372–407. PMLR, 2023.

540 Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
 541 perspectives. *IEEE transactions on pattern analysis and machine intelligence*, 35(8):1798–1828,
 542 2013.

543 Jack Brady, Roland S Zimmermann, Yash Sharma, Bernhard Schölkopf, Julius von Kügelgen,
 544 and Wieland Brendel. Provably learning object-centric representations. *arXiv preprint*
 545 *arXiv:2305.14229*, 2023.

546 Jack Brady, Julius von Kügelgen, Sébastien Lachapelle, Simon Buchholz, Thomas Kipf, and
 547 Wieland Brendel. Interaction asymmetry: A general principle for learning composable abstrac-
 548 tions. *arXiv preprint arXiv:2411.07784*, 2024.

549 Johann Brehmer, Pim De Haan, Phillip Lippe, and Taco S Cohen. Weakly supervised causal repre-
 550 sentation learning. *Advances in Neural Information Processing Systems*, 35:38319–38331, 2022.

551 Simon Buchholz, Michel Besserve, and Bernhard Schölkopf. Function classes for identifiable non-
 552 linear independent component analysis. *Advances in Neural Information Processing Systems*, 35:
 553 16946–16961, 2022.

554 J-F Cardoso. Multidimensional independent component analysis. In *Proceedings of the 1998*
 555 *IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP'98 (Cat.*
 556 *No. 98CH36181)*, volume 4, pp. 1941–1944. IEEE, 1998.

557 Pierre Comon. Independent component analysis, a new concept? *Signal processing*, 36(3):287–314,
 558 1994.

559 Imant Daunhawer, Alice Bizeul, Emanuele Palumbo, Alexander Marx, and Julia E Vogt. Identifi-
 560 ability results for multimodal contrastive learning. *arXiv preprint arXiv:2303.09166*, 2023.

561 Marco Fumero, Luca Cosmo, Simone Melzi, and Emanuele Rodolà. Learning disentangled repre-
 562 sentations via product manifold projection. In *International conference on machine learning*, pp.
 563 3530–3540. PMLR, 2021.

564 Shubhangi Ghosh, Luigi Gresele, Julius von Kügelgen, Michel Besserve, and Bernhard Schölkopf.
 565 Independent mechanism analysis and the manifold hypothesis. *arXiv preprint arXiv:2312.13438*,
 566 2023.

567 Anirudh Goyal and Yoshua Bengio. Inductive biases for deep learning of higher-level cognition.
 568 *Proceedings of the Royal Society A*, 478(2266):20210068, 2022.

569 Klaus Greff, Sjoerd Van Steenkiste, and Jürgen Schmidhuber. On the binding problem in artificial
 570 neural networks. *arXiv preprint arXiv:2012.05208*, 2020.

571 Luigi Gresele, Paul K Rubenstein, Arash Mehrjou, Francesco Locatello, and Bernhard Schölkopf.
 572 The incomplete rosetta stone problem: Identifiability results for multi-view nonlinear ica. In
 573 *Uncertainty in Artificial Intelligence*, pp. 217–227. PMLR, 2020.

574 Luigi Gresele, Julius Von Kügelgen, Vincent Stimper, Bernhard Schölkopf, and Michel Besserve.
 575 Independent mechanism analysis, a new concept? *Advances in neural information processing*
 576 systems, 34:28233–28248, 2021.

577 Ben Hayes, Charalampos Saitis, and György Fazekas. The responsibility problem in neural networks
 578 with unordered targets. *arXiv preprint arXiv:2304.09499*, 2023.

579 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
 580 Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
 581 constrained variational framework. In *International conference on learning representations*, 2017.

582 Irina Higgins, David Amos, David Pfau, Sébastien Racaniere, Loic Matthey, Danilo Rezende,
 583 and Alexander Lerchner. Towards a definition of disentangled representations. *arXiv preprint*
 584 *arXiv:1812.02230*, 2018.

585 Daniella Horan, Eitan Richardson, and Yair Weiss. When is unsupervised disentanglement possible?
 586 *Advances in Neural Information Processing Systems*, 34:5150–5161, 2021.

594 Aapo Hyvärinen and Patrik Hoyer. Emergence of phase-and shift-invariant features by decomposi-
 595 tion of natural images into independent feature subspaces. *Neural computation*, 12(7):1705–1720,
 596 2000.

597 Aapo Hyvärinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive learning
 598 and nonlinear ica. *Advances in neural information processing systems*, 29, 2016.

600 Aapo Hyvärinen and Hiroshi Morioka. Nonlinear ica of temporally dependent stationary sources.
 601 In *Artificial Intelligence and Statistics*, pp. 460–469. PMLR, 2017.

603 Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms and applications.
 604 *Neural networks*, 13(4-5):411–430, 2000.

605 Aapo Hyvärinen and Petteri Pajunen. Nonlinear independent component analysis: Existence and
 606 uniqueness results. *Neural networks*, 12(3):429–439, 1999.

607 Aapo Hyvärinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ica using auxiliary variables and
 608 generalized contrastive learning. In *The 22nd International Conference on Artificial Intelligence
 609 and Statistics*, pp. 859–868. PMLR, 2019.

611 Yibo Jiang and Bryon Aragam. Learning nonparametric latent causal graphs with unknown inter-
 612 ventions. *Advances in Neural Information Processing Systems*, 36:60468–60513, 2023.

613 Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvärinen. Variational autoen-
 614 coders and nonlinear ica: A unifying framework. In *International Conference on Artificial Intel-
 615 ligence and Statistics*, pp. 2207–2217. PMLR, 2020a.

617 Ilyes Khemakhem, Ricardo Monti, Diederik Kingma, and Aapo Hyvärinen. Ice-beem: Identifiable
 618 conditional energy-based deep models based on nonlinear ica. *Advances in Neural Information
 619 Processing Systems*, 33:12768–12778, 2020b.

620 David Klindt, Lukas Schott, Yash Sharma, Ivan Ustyuzhaninov, Wieland Brendel, Matthias Bethge,
 621 and Dylan Paton. Towards nonlinear disentanglement in natural data with temporal sparse coding.
 622 *arXiv preprint arXiv:2007.10930*, 2020.

623 Sébastien Lachapelle and Simon Lacoste-Julien. Partial disentanglement via mechanism sparsity.
 624 *arXiv preprint arXiv:2207.07732*, 2022.

626 Sébastien Lachapelle, Pau Rodriguez, Yash Sharma, Katie E Everett, Rémi Le Priol, Alexandre
 627 Lacoste, and Simon Lacoste-Julien. Disentanglement via mechanism sparsity regularization: A
 628 new principle for nonlinear ica. In *Conference on Causal Learning and Reasoning*, pp. 428–484.
 629 PMLR, 2022.

630 Sébastien Lachapelle, Divyat Mahajan, Ioannis Mitliagkas, and Simon Lacoste-Julien. Additive
 631 decoders for latent variables identification and cartesian-product extrapolation. *arXiv preprint
 632 arXiv:2307.02598*, 2023.

634 Sébastien Lachapelle, Pau Rodríguez López, Yash Sharma, Katie Everett, Rémi Le Priol, Alexandre
 635 Lacoste, and Simon Lacoste-Julien. Nonparametric partial disentanglement via mech-
 636 anism sparsity: Sparse actions, interventions and sparse temporal dependencies. *arXiv preprint
 637 arXiv:2401.04890*, 2024.

638 Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard
 639 Schölkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised learning
 640 of disentangled representations. In *international conference on machine learning*, pp. 4114–4124.
 641 PMLR, 2019.

642 Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, and Michael
 643 Tschannen. Weakly-supervised disentanglement without compromises. In *International Confer-
 644 ence on Machine Learning*, pp. 6348–6359. PMLR, 2020.

646 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
 647 ence on Learning Representations*, 2017. URL <https://api.semanticscholar.org/CorpusID:53592270>.

648 Amin Mansouri, Jason Hartford, Yan Zhang, and Yoshua Bengio. Object-centric architectures en-
 649 able efficient causal representation learning. *arXiv preprint arXiv:2310.19054*, 2023.
 650

651 Stefan Matthes, Zhiwei Han, and Hao Shen. Towards a unified framework of contrastive learning
 652 for disentangled representations. *Advances in Neural Information Processing Systems*, 36:67459–
 653 67470, 2023.

654 Gemma E Moran, Dhanya Sridhar, Yixin Wang, and David M Blei. Identifiable deep generative
 655 models via sparse decoding. *arXiv preprint arXiv:2110.10804*, 2021.
 656

657 Ignavier Ng, Shaoan Xie, Xinshuai Dong, Peter Spirtes, and Kun Zhang. Causal representation
 658 learning from general environments under nonparametric mixing. In *The 28th International Con-
 659 ference on Artificial Intelligence and Statistics*, 2025.

660 Patrik Reizinger, Luigi Gresele, Jack Brady, Julius Von Kügelgen, Dominik Zietlow, Bernhard
 661 Schölkopf, Georg Martius, Wieland Brendel, and Michel Besserve. Embrace the gap: Vaes per-
 662 form independent mechanism analysis. *Advances in Neural Information Processing Systems*, 35:
 663 12040–12057, 2022.

664 Patrik Reizinger, Yash Sharma, Matthias Bethge, Bernhard Schölkopf, Ferenc Huszár, and Wieland
 665 Brendel. Jacobian-based causal discovery with nonlinear ica. *Transactions on Machine Learning
 666 Research*, 2023.
 667

668 Travers Rhodes and Daniel Lee. Local disentanglement in variational auto-encoders using jacobian
 669 l_1 regularization. *Advances in Neural Information Processing Systems*, 34:22708–22719, 2021.
 670

671 Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
 672 Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. *Proceedings of
 673 the IEEE*, 109(5):612–634, 2021.

674 Anisse Taleb and Christian Jutten. Source separation in post-nonlinear mixtures. *IEEE Transactions
 675 on signal Processing*, 47(10):2807–2820, 1999.
 676

677 Julius Von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel
 678 Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably
 679 isolates content from style. *Advances in neural information processing systems*, 34:16451–16467,
 2021.
 680

681 Dingling Yao, Danru Xu, Sébastien Lachapelle, Sara Magliacane, Perouz Taslakian, Georg Martius,
 682 Julius von Kügelgen, and Francesco Locatello. Multi-view causal representation learning with
 683 partial observability. *arXiv preprint arXiv:2311.04056*, 2023.
 684

685 Jiaqi Zhang, Kristjan Greenewald, Chandler Squires, Akash Srivastava, Karthikeyan Shanmugam,
 686 and Caroline Uhler. Identifiability guarantees for causal disentanglement from soft interventions.
 687 *Advances in Neural Information Processing Systems*, 36, 2024.

688 Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett. Fspool: Learning set representations with
 689 featurewise sort pooling. *arXiv preprint arXiv:1906.02795*, 2019.
 690

691 Yujia Zheng and Kun Zhang. Generalizing nonlinear ica beyond structural sparsity. *Advances in
 692 Neural Information Processing Systems*, 36:13326–13355, 2023.
 693

694 Yujia Zheng, Ignavier Ng, and Kun Zhang. On the identifiability of nonlinear ica: Sparsity and
 695 beyond. *Advances in neural information processing systems*, 35:16411–16422, 2022.
 696

697 Roland S Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and Wieland Brendel.
 698 Contrastive learning inverts the data generating process. In *International Conference on Machine
 699 Learning*, pp. 12979–12990. PMLR, 2021.
 700

701

702 NOTATION INDEX
703
704

705 a	A scalar	705 ι_i	The i -th canonical inclusion map
706 \mathbf{a}	A vector	706 K	Number of latent factors
707 \mathbf{A}	A matrix	707 L	Number of factors in learned representation
708 \mathcal{A}	A set	708 \mathbf{L}_n	Elimination matrix for $n \times n$ matrices
709 a_i	i -th coordinate of \mathbf{a} (index starting at 1)	709 \mathbb{P}	A probability distribution
710 \mathbf{a}_i	i -th factor of \mathbf{a} if \mathbf{a} lives in a product space	710 s	Ground-truth latent variable
711 a_{ij}	j -th coordinate of the i -th factor of \mathbf{a}	711 \mathcal{S}	Ground-truth latent space
712 d_x	Dimensionality of observations	712 \mathcal{S}_i	i -th latent subspace ($\mathcal{S} \subseteq \mathcal{S}_1 \times \dots \times \mathcal{S}_K$)
713 d_s	Dimensionality of ground-truth latents	713 $\text{supp}(\cdot)$	Support (index set of nonzero elements)
714 d_i	Dimensionality of the i -th latent factor	714 $T_s \mathcal{S}$	Tangent space of \mathcal{S} at s
715 d_z	Dimensionality of the learned representation	715 v	Mapping from learned to ground-truth latents
716 \mathbf{D}_n	Duplication matrix for $n \times n$ matrices	716 \mathbf{x}	Observation or measurement
717 $D\mathbf{g}_s$	Differential of \mathbf{g} at s	717 \mathcal{X}	Data manifold ($\mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^{d_x}$)
718 $D_i \mathbf{g}_s$	Partial derivative w.r.t. i -th factor $D\mathbf{g}_s \circ \iota_i$	718 \mathbf{z}	Learned representation (or encoding)
719 $D_{i,j}^3 \mathbf{g}_s$	Mixed derivative $D^3 \mathbf{g}_s \circ (\iota_i, \iota_j, \text{id})$	719 \mathcal{Z}	Learned representation space
720 \mathbf{e}_i	Standard basis vector with a 1 at position i	720 \times	Direct product
721 $f(\mathbf{x}; \boldsymbol{\theta})$	A function of \mathbf{x} parametrized by $\boldsymbol{\theta}$ (sometimes reduced to $f(\mathbf{x})$ to simplify notation)	721 \oplus	Direct sum
722 \mathbf{f}	Ground-truth encoder	722 \bullet	Hadamard product (element-wise product)
723 $\hat{\mathbf{f}}$	Learned encoder	723 \otimes	Kronecker product
724 \mathbf{g}	Ground-truth decoder	724 \odot	Row-wise Kronecker product (also face-splitting product)
725 $\hat{\mathbf{g}}$	Learned decoder	725 \setminus	Set subtraction
726 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$	A graph \mathcal{G} defined by a set of vertices \mathcal{V} and edges \mathcal{E}	726 \cap	Set intersection
727 \mathbf{h}	Mapping from ground-truth to learned latents	727 \cup	Set union
728 \mathbf{I}	Identity matrix with implied size from context	728 \subseteq	Subset or equal
729 \mathbf{I}_n	Identity matrix of size $n \times n$	729 \supseteq	Superset or equal
730 \mathbf{J}_f	Jacobian matrix of $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ ($\mathbf{J}_f \in \mathbb{R}^{m \times n}$)	730 \pitchfork	Mutual non-inclusion ($\mathcal{A} \not\subseteq \mathcal{B} \wedge \mathcal{A} \not\supseteq \mathcal{B}$)
731 $ \mathcal{A} $	Cardinality of set \mathcal{A} (the number of elements in \mathcal{A})	731 $[n]$	The set $\{1, 2, \dots, n\}$ for $n \in \mathbb{N}$
732 $f \circ g$	Composition of the functions f and g	732 $\ \mathbf{x} \ _0$	ℓ_0 norm of \mathbf{x}

741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 A PROOFS
757758 Before we turn to the theorems and proofs, let us recall the following definitions.
759760 **Definition 11** (Decomposable map). Let $\mathcal{S} \subseteq \prod_{i=1}^K \mathcal{S}_i$ and $\mathcal{Z} \subseteq \prod_{j=1}^L \mathcal{Z}_j$. We say that
761 a map $\tilde{h}: \mathcal{S} \rightarrow \mathcal{Z}$ is decomposable if there exists a surjection $\sigma: [K] \rightarrow [L]$ and maps
762 $h_j: \prod_{i \in \sigma^{-1}(j)} \mathcal{S}_i \rightarrow \mathcal{Z}_j$ such that, for all $s \in \mathcal{S}$,

763
764
$$\tilde{h}(s) = (h_j((s_i)_{i \in \sigma^{-1}(j)}))_{j=1}^L.$$

765

766 **Definition 12** (Disentanglement). A decoder $\hat{g}: \mathcal{Z} \rightarrow \mathcal{X}$ is said to be disentangled w.r.t. a generator
767 $g: \mathcal{S} \rightarrow \mathcal{X}$ if there exists a decomposable map $h: \mathcal{S} \rightarrow \mathcal{Z}$ such that $g = \hat{g} \circ h$.768 **Remark 1** (Partial/full and local/global disentanglement). If $L = K$ and σ is a bijection (i.e., local
769 full disentanglement), Defn. 12 gives

770
771
$$g(s) = \hat{g}(h_1(s_{\sigma^{-1}(1)}), \dots, h_K(s_{\sigma^{-1}(K)})).$$

772 To distinguish the cases $L = K$ from $L < K$, we say \hat{g} is fully disentangled or partially disentangled,
773 respectively.774 **Definition 13** (Local disentanglement). A decoder $\hat{g}: \mathcal{Z} \rightarrow \mathcal{X}$ is locally disentangled w.r.t. a generator
775 $g: \mathcal{S} \rightarrow \mathcal{X}$ if for every $s^* \in \mathcal{S}$ and $z^* \in \mathcal{Z}$ with $g(s^*) = \hat{g}(z^*)$ there exist a neighborhood
776 $\mathcal{U} \subseteq \mathcal{S}$ of s^* and a decomposable map $h: \mathcal{U} \rightarrow \mathcal{Z}$ such that

777
778
$$g|_{\mathcal{U}} = \hat{g} \circ h \quad \text{and} \quad h(s^*) = z^*.$$

779 **Definition 14** (k -factor slice). Let $k \in \{0, \dots, K\}$, and let $\mathcal{I} \subseteq [K]$ be an index set with $|\mathcal{I}| =$
780 $K - k$. If \mathcal{S} is a subset of the product space $\mathcal{S}_1 \times \dots \times \mathcal{S}_K$, a k -factor slice (or simply a k -slice) of
781 \mathcal{S} is any set of the form

782
$$\mathcal{U} = \{s \in \mathcal{S} \mid s_i = c_i \text{ for all } i \in \mathcal{I}\},$$

783 where $c_i \in \mathcal{S}_i$ for $i \in \mathcal{I}$ are fixed constants.784 Put simply, a k -slice is a subspace in which all but k factors are held constant.785 **Remark 2.** Path-connectedness of $\mathcal{S} \subseteq \prod_{i=1}^K \mathcal{S}_i$ and path-connectedness of its $(K - 1)$ -slices are
786 related but independent properties: neither one implies the other (see Figure 3). More generally, for
787 $K > 2$, connectedness of 1-slices and 2-slices are likewise independent (for $K = 2$ they coincide
788 trivially). A further related notion is orthogonal convexity, which can be interpreted as the property
789 that all 1-slices are path-connected (when each factor is one-dimensional).806 Figure 3: Examples illustrating independence of slice- and set-level connectedness. (a) \mathcal{S} is path-
807 connected, but not every 1-slice is connected. (b) \mathcal{S} is not path-connected, though every 1-slice is
808 connected. (c) Some 1-slices are disconnected, but every 2-slice is connected. (d) Some 2-slices are
809 disconnected, but every 1-slice is connected.

810 A.1 PROOF OF THEOREM 1
811

812 **Lemma 1.** *Let \mathcal{S} be an open subspace of the product manifold $\prod_{i=1}^K \mathcal{S}_i$, with each factor \mathcal{S}_i of positive
813 dimension. Suppose $\hat{g}: \mathcal{Z} \rightarrow \mathcal{X}$ is locally disentangled w.r.t. $\mathbf{g}: \mathcal{S} \rightarrow \mathcal{X}$. If \mathbf{g} is locally injective
814 and \mathcal{S} is path-connected, then the surjection σ from the definition of disentanglement (Defn. 13) is
815 globally unique.*

816 *Proof.* The proof proceeds in two steps. First, we show that the surjection σ from the definition of
817 disentanglement is unique on sufficiently small neighborhoods, using local injectivity of \mathbf{g} . In the
818 second step, we extend this uniqueness to all of \mathcal{S} by path-connectedness.

819 **Step 1.** *The surjection σ is locally unique.*

820 Let $\mathcal{U} \subseteq \mathcal{S}$ be open such that $\mathbf{g}|_{\mathcal{U}}$ is injective and \hat{g} is disentangled with respect to $\mathbf{g}|_{\mathcal{U}}$. Then there
821 exist a surjection $\sigma: [K] \rightarrow [L]$ and a map $\tilde{\mathbf{h}}: \mathcal{U} \rightarrow \mathcal{Z}$ that decomposes into
822

$$823 \quad \mathbf{h}_j: \prod_{i \in \sigma^{-1}(j)} \mathcal{S}_i \longrightarrow \mathcal{Z}_j, \quad j \in [L],$$

824 such that for all $\mathbf{s} \in \mathcal{U}$,

$$825 \quad \mathbf{g}(\mathbf{s}) = \hat{\mathbf{g}}\left(\mathbf{h}_1((\mathbf{s}_i)_{i \in \sigma^{-1}(1)}), \dots, \mathbf{h}_L((\mathbf{s}_i)_{i \in \sigma^{-1}(L)})\right). \quad (9)$$

826 Let $\mathcal{V} := \tilde{\mathbf{h}}(\mathcal{U})$. From Equation 9 it follows that both $\tilde{\mathbf{h}}$ and $\hat{\mathbf{g}}|_{\mathcal{V}}$ are injective.

827 Now suppose that for the same \mathbf{g} , $\hat{\mathbf{g}}$ another representation on \mathcal{U} exists with a different surjection $\tilde{\sigma}$.
828 Fix any $i \in [K]$ and a basepoint $\mathbf{p} \in \mathcal{U}$. Consider the one-factor slice
829

$$830 \quad \mathcal{U}^{(i)} := \{\mathbf{s} \in \mathcal{U} : \mathbf{s}_j = \mathbf{p}_j \text{ for all } j \neq i\}.$$

831 Since $\dim(\mathcal{S}_i) > 0$, $\mathcal{U}^{(i)}$ contains at least two distinct points. By Equation 9, variation along $\mathcal{U}^{(i)}$
832 affects exactly the component indexed by $\sigma(i)$. If $\sigma(i) \neq \tilde{\sigma}(i)$, then the same variation would be
833 forced to appear in two different components. Thus, on the right side of Equation 9, $\mathcal{U}^{(i)}$ is mapped
834 to different sets for σ and $\tilde{\sigma}$, while on the left side \mathbf{g} maps $\mathcal{U}^{(i)}$ to the same set independently of σ .
835 Therefore, $\tilde{\sigma}(i) = \sigma(i)$. Since i was arbitrary, we get $\tilde{\sigma} = \sigma$ on \mathcal{U} .

836 **Step 2.** *The surjection σ is globally unique.*

837 Let $\mathbf{s}^a, \mathbf{s}^b \in \mathcal{S}$ and let $\gamma: [0, 1] \rightarrow \mathcal{S}$ be a continuous path between them. By Step 1, every
838 point $\mathbf{s} \in \gamma([0, 1])$ admits a neighborhood \mathcal{U}_s on which σ is uniquely determined. The compact
839 set $\gamma([0, 1])$ is covered by $\{\mathcal{U}_s : s \in \gamma([0, 1])\}$. By compactness, there exists a finite subcover
840 $\mathcal{U}_1, \dots, \mathcal{U}_M$.

841 Using the Lebesgue number lemma, choose a partition

$$842 \quad 0 = t_0 < t_1 < \dots < t_M = 1 \quad \text{such that} \quad \gamma([t_{m-1}, t_m]) \subset \mathcal{U}_m \text{ for each } m.$$

843 Then $\gamma(t_m) \in \mathcal{U}_m \cap \mathcal{U}_{m+1}$, so consecutive sets intersect. By Step 1, σ is unique on each \mathcal{U}_m ,
844 and therefore must agree on overlaps. Induction along the chain implies that the same σ applies to
845 $\bigcup_{m=1}^M \mathcal{U}_m \supseteq \gamma([0, 1])$. Since $\mathbf{s}^a, \mathbf{s}^b$ were arbitrary and \mathcal{S} is path-connected, there exists a single
846 global surjection $\sigma: [K] \rightarrow [L]$ valid on all of \mathcal{S} . \square

847 **Theorem 1 (Global Identifiability).** *Let \mathcal{S} be an open subspace of the product manifold $\prod_{i=1}^K \mathcal{S}_i$,
848 where each factor \mathcal{S}_i has positive dimension. Then local disentanglement extends to global disen-
849 tangement if:*

- 850 (1) $\mathbf{g}: \mathcal{S} \rightarrow \mathcal{X}$ is locally injective.
- 851 (2) \mathcal{S} is path-connected.
- 852 (3) Every $(K-1)$ -slice of \mathcal{S} is path-connected.

864 *Proof.* From Lemma 1, it follows that there is a unique surjection $\sigma: [K] \rightarrow [L]$ such that locally,
 865 for all $j \in [L]$, \mathbf{z}_j depends only on the source components \mathbf{s}_i with $i \in \sigma^{-1}(j)$.

866 Now fix $j \in [L]$ and a tuple $\bar{\mathbf{s}}_{\sigma^{-1}(j)} \in \prod_{i \in \sigma^{-1}(j)} \mathcal{S}_i$. Consider the slice

$$868 \quad \mathcal{A}^{(j)}(\bar{\mathbf{s}}_{\sigma^{-1}(j)}) = \{ \mathbf{s} \in \mathcal{S} : \mathbf{s}_i = \bar{\mathbf{s}}_i \text{ for all } i \in \sigma^{-1}(j) \}. \\ 869$$

870 This slice is path-connected since by assumption all $(K-1)$ -slices of \mathcal{S} are path-connected. Along
 871 any path in $\mathcal{A}^{(j)}(\bar{\mathbf{s}}_{\sigma^{-1}(j)})$, local disentangled representations agree on overlaps (see Step 2 in
 872 Lemma 1), and the j -th component remains constant since only coordinates outside $\sigma^{-1}(j)$ vary.
 873 Thus the j -th component is well defined on the slice.

874 Therefore, we can define

$$875 \quad \tilde{\mathbf{h}}_j: \prod_{i \in \sigma^{-1}(j)} \mathcal{S}_i \rightarrow \mathcal{Z}_j,$$

876 where $\tilde{\mathbf{h}}_j(\bar{\mathbf{s}}_{\sigma^{-1}(j)})$ is the common value of the j -th target component on $\mathcal{A}^{(j)}(\bar{\mathbf{s}}_{\sigma^{-1}(j)})$.

877 Finally, fix $\mathbf{p} \in \mathcal{S}$ and choose \mathcal{U} open such that $\mathbf{g}|_{\mathcal{U}}$ is injective and $\hat{\mathbf{g}}$ is disentangled with respect
 878 to $\mathbf{g}|_{\mathcal{U}}$. On \mathcal{U} , a local representation has the form

$$882 \quad \mathbf{g}(\mathbf{s}) = \hat{\mathbf{g}}\left(\mathbf{h}_1((\mathbf{s}_i)_{i \in \sigma^{-1}(1)}), \dots, \mathbf{h}_L((\mathbf{s}_i)_{i \in \sigma^{-1}(L)})\right). \\ 883$$

884 By construction of $\tilde{\mathbf{h}}_j$, for all $\mathbf{s} \in \mathcal{U}$ the local maps \mathbf{h}_j agree with $\tilde{\mathbf{h}}_j$. Hence

$$886 \quad \mathbf{g}(\mathbf{s}) = \hat{\mathbf{g}}\left(\tilde{\mathbf{h}}_1(\bar{\mathbf{s}}_{\sigma^{-1}(1)}), \dots, \tilde{\mathbf{h}}_L(\bar{\mathbf{s}}_{\sigma^{-1}(L)})\right), \quad \mathbf{s} \in \mathcal{U}.$$

887 Since \mathbf{p} was arbitrary, this identity holds globally. Thus local disentanglement extends to a global
 888 disentangled representation with surjection σ and maps $\{\tilde{\mathbf{h}}_j\}_{j=1}^L$. \square

889 **Remark 3.** If $L < K$, not all $(K-1)$ -slices need to be path-connected. It suffices that only the slices
 890 corresponding to indices mapped to a common target component are path-connected.

893 A.2 PROOF OF PROPOSITION 1

894 **Lemma 2.** Let $\mathcal{S} \subseteq \prod_{i=1}^K \mathcal{S}_i$, $\mathcal{Z} \subseteq \prod_{j=1}^L \mathcal{Z}_j$, and suppose $\mathbf{g}: \mathcal{S} \rightarrow \mathcal{X}$ and $\hat{\mathbf{g}}: \mathcal{Z} \rightarrow \mathcal{X}$ are
 895 local homeomorphisms. Assume that for every $\mathbf{s}^* \in \mathcal{S}$ there exists $\mathbf{z}^* \in \mathcal{Z}$ with $\mathbf{g}(\mathbf{s}^*) = \hat{\mathbf{g}}(\mathbf{z}^*)$.
 896 Moreover, suppose that for each such \mathbf{z}^* there exist

- 897 • a neighborhood $\mathcal{U} \subseteq \mathcal{Z}$ of \mathbf{z}^* ,
- 898 • a surjection $\sigma: [K] \rightarrow [L]$, and
- 899 • maps $\mathbf{v}_i: \mathcal{Z}_{\sigma(i)} \rightarrow \mathcal{S}_i$ for $i \in [K]$,

900 such that for all $\mathbf{z} \in \mathcal{U}$,

$$901 \quad \hat{\mathbf{g}}(\mathbf{z}) = \mathbf{g}(\mathbf{v}_1(\mathbf{z}_{\sigma(1)}), \dots, \mathbf{v}_K(\mathbf{z}_{\sigma(K)})). \quad (10)$$

902 Then $\hat{\mathbf{g}}$ is locally disentangled with respect to \mathbf{g} .

903 *Proof.* Fix an arbitrary $\mathbf{s}^* \in \mathcal{S}$ and pick $\mathbf{z}^* \in \mathcal{Z}$ with $\hat{\mathbf{g}}(\mathbf{z}^*) = \mathbf{g}(\mathbf{s}^*)$. By hypothesis at \mathbf{z}^* , there is
 904 a neighborhood $\mathcal{U} = \prod_{j=1}^L \mathcal{U}_j \subseteq \mathcal{Z}$, a surjection σ , and maps \mathbf{v}_i giving Equation 10 on \mathcal{U} .

905 Shrink to a neighborhood $\mathcal{W} \subseteq \mathcal{S}$ of \mathbf{s}^* on which $\mathbf{g}: \mathcal{W} \rightarrow \mathbf{g}(\mathcal{W})$ is a homeomorphism, and shrink
 906 \mathcal{U} if necessary so that $\hat{\mathbf{g}}(\mathcal{U}) \subseteq \mathbf{g}(\mathcal{W})$. Define

$$907 \quad \psi := \mathbf{g}^{-1} \circ \hat{\mathbf{g}}: \mathcal{U} \rightarrow \mathcal{W}.$$

908 Then ψ is a homeomorphism onto its image with $\psi(\mathbf{z}^*) = \mathbf{s}^*$.

909 For each $j \in [L]$ set

$$910 \quad \phi_j: \mathcal{U}_j \rightarrow \prod_{i \in \sigma^{-1}(j)} \mathcal{S}_i, \quad \phi_j(\mathbf{z}) := (\mathbf{v}_i(\mathbf{z}))_{i \in \sigma^{-1}(j)}.$$

918 Then for $z \in \mathcal{U}$ Equation 10 is equivalent to
 919

$$\varrho_\sigma(\psi(z)) = (\phi_1(z_1), \dots, \phi_L(z_L)), \quad (11)$$

920 where ϱ_σ is a reindexing homeomorphism $s \mapsto ((s_i)_{i \in \sigma^{-1}(j)})_{j=1}^L$. Therefore, each ϕ_i must be
 921 injective, because the left hand side of Equation 11 is a homeomorphism onto its image.
 922

923 Since $\psi(\mathcal{U})$ is an open neighborhood of s^* in the product space $\prod_i \mathcal{S}_i$, we can choose product
 924 neighborhoods $\mathcal{V}_i \subseteq \mathcal{S}_i$ with
 925

$$\prod_{i=1}^K \mathcal{V}_i \subseteq \psi(\mathcal{U}).$$

926 Then for each j we have $\prod_{i \in \sigma^{-1}(j)} \mathcal{V}_i \subseteq \phi_j(\mathcal{U}_j)$, and we set
 927

$$\mathbf{h}_j := \phi_j^{-1}|_{\prod_{i \in \sigma^{-1}(j)} \mathcal{V}_i} : \prod_{i \in \sigma^{-1}(j)} \mathcal{V}_i \longrightarrow \mathcal{U}_j.$$

928 Finally, for any $s \in \prod_i \mathcal{V}_i$, define $z := (\mathbf{h}_j((s_i)_{i \in \sigma^{-1}(j)}))_{j=1}^L$. Then, by construction and Equa-
 929 tion 11, $\psi^{-1}(s) = z$, hence
 930

$$g(s) = \hat{g}(z) = \hat{g}(\mathbf{h}_1((s_i)_{i \in \sigma^{-1}(1)}), \dots, \mathbf{h}_L((s_i)_{i \in \sigma^{-1}(L)})).$$

931 Therefore, \hat{g} is locally disentangled with respect to g on a neighborhood of the arbitrary point
 932 $s^* \in \mathcal{S}$. \square
 933

934 **Proposition 1.** *Let $g: \mathcal{S} \rightarrow \mathcal{X}$ and $\hat{g}: \mathcal{Z} \rightarrow \mathcal{X}$ be surjective local homeomorphisms, where \mathcal{S} and
 935 \mathcal{Z} are open subsets of their respective product spaces. Then local full disentanglement defines an
 936 equivalence relation $g \sim_{ld} \hat{g}$.*
 937

938 *Proof.* We verify that the relation is reflexive, transitive and symmetric.
 939

940 *Reflexivity:* If $g = \hat{g}$, we can set each \mathbf{h}_i as the identity map and take σ as the identity permutation.
 941 Then the definition is trivially satisfied.
 942

943 *Transitivity:* Follows directly from composition of functions. If $g \sim_{ld} \hat{g}$ via \mathbf{h}_i, σ and $\hat{g} \sim_{ld} \tilde{g}$ via
 944 $\tilde{\mathbf{h}}_i, \tilde{\sigma}$, then $g \sim_{ld} \tilde{g}$ via $\tilde{\mathbf{h}}_i \circ \mathbf{h}_{\tilde{\sigma}^{-1}(i)}, \tilde{\sigma} \circ \sigma$.
 945

946 *Symmetry:* Follows from Lemma 2. \square
 947

948 **Proposition 2.** *Let $\mathcal{S} \subseteq \prod_{i=1}^K \mathcal{S}_i$ and $\mathcal{Z} \subseteq \prod_{i=1}^K \mathcal{Z}_i$ be open, and let $g: \mathcal{S} \rightarrow \mathcal{X}$ and $\hat{g}: \mathcal{Z} \rightarrow \mathcal{X}$
 949 be surjective. Then disentanglement defines an equivalence relation $g \sim_d \hat{g}$ if one of the following
 950 conditions hold:*
 951

952 (1) g and \hat{g} are bijective and \mathcal{S} (equivalently \mathcal{Z}) is itself a product space.
 953

954 (2) g and \hat{g} are locally injective and every $(K-1)$ -slice of \mathcal{S} and \mathcal{Z} is path-connected.
 955

956 *Proof.* The proof is analog to Proposition 1. \square
 957

958 A.3 PROOF OF THEOREM 2

959 **Definition 15** (Mechanistic Independence of Type D). *We say that \mathcal{S}_i and \mathcal{S}_j (equivalently, s_i and
 960 s_j) are mechanistically independent of Type D if, for all $s \in \mathcal{S}$, $\xi \in T_{s_i} \mathcal{S}_i$, and $\eta \in T_{s_j} \mathcal{S}_j$,*
 961

$$D_i g_s(\xi) \bullet D_j g_s(\eta) = \mathbf{0}, \quad (12)$$

962 where \bullet denotes the element-wise (Hadamard) product in \mathbb{R}^{d_x} .
 963

964 Independence of the \mathcal{Z}_j is analogously defined based on \hat{g} .
 965

972 **Definition 16** (Reducibility of Type D). We say that \mathcal{S}_i is *reducible of Type D* if there exists $\mathbf{s} \in \mathcal{S}$ such that $T_{\mathbf{s}_i} \mathcal{S}_i$ admits a nontrivial direct-sum decomposition $T_{\mathbf{s}_i} \mathcal{S}_i = U \oplus V$ with the property that, for all $\xi \in U$ and $\eta \in V$,

$$D_i \mathbf{g}_{\mathbf{s}}(\xi) \bullet D_i \mathbf{g}_{\mathbf{s}}(\eta) = \mathbf{0}. \quad (13)$$

973 If no such decomposition exists, we call \mathcal{S}_i *irreducible of Type D*.

974 **Lemma 3.** Let $\{\mathcal{Z}_j\}_{j=1}^L$ and $\{\mathcal{S}_i\}_{i=1}^K$ be smooth manifolds of positive dimension with $L \leq K$, and 975 let $\mathcal{Z} \subseteq \mathcal{Z}_1 \times \cdots \times \mathcal{Z}_L$ and $\mathcal{S} \subseteq \mathcal{S}_1 \times \cdots \times \mathcal{S}_K$ be open subsets. Suppose $\mathbf{v} : \mathcal{Z} \rightarrow \mathcal{S}$ is a 976 diffeomorphism such that for every $\mathbf{z} \in \mathcal{Z}$ there exists a surjection $\sigma_{\mathbf{z}} : [K] \rightarrow [L]$ satisfying 977

$$D_j(\pi_i \circ \mathbf{v})_{\mathbf{z}} = 0, \quad \text{for all } i \in [K], j \neq \sigma_{\mathbf{z}}(i),$$

978 where $\pi_i : \mathcal{S} \rightarrow \mathcal{S}_i$ denotes a canonical projection. Then for every $\mathbf{z} \in \mathcal{Z}$ there exists a neighborhood 979 \mathcal{U} of \mathbf{z} such that $\sigma_{\mathbf{z}'} = \sigma_{\mathbf{z}}$ for all $\mathbf{z}' \in \mathcal{U}$, and moreover $\mathbf{v}_i(\mathbf{z}')$ depends only on the component 980 $\mathbf{z}'_{\sigma(i)}$ for each $i \in [K]$. 981

982 *Proof.* At each $\mathbf{z} \in \mathcal{Z}$, the differential $D\mathbf{v}_{\mathbf{z}}$ has block form 983

$$D\mathbf{v}_{\mathbf{z}} = \bigoplus_{j=1}^L \Phi_{\mathbf{z},j}, \quad \Phi_{\mathbf{z},j} : T_{\mathbf{z}} \mathcal{Z}_j \rightarrow \bigoplus_{i \in \sigma_{\mathbf{z}}^{-1}(j)} T_{\pi_i(\mathbf{v}(\mathbf{z}))} \mathcal{S}_i.$$

984 Since \mathbf{v} is a diffeomorphism, $D\mathbf{v}_{\mathbf{z}}$ is an isomorphism. Hence each block $\Phi_{\mathbf{z},j}$ must also be an 985 isomorphism, and in particular

$$\dim(\mathcal{Z}_j) = \sum_{i \in \sigma_{\mathbf{z}}^{-1}(j)} \dim(\mathcal{S}_i).$$

986 The maps $\mathbf{z} \mapsto D_j(\pi_i \circ \mathbf{v})_{\mathbf{z}}$ vary smoothly with \mathbf{z} . Thus, if $\Phi_{\mathbf{z},j}$ is an isomorphism at \mathbf{z} , it remains 987 so in a neighborhood of \mathbf{z} , since invertibility is an open condition. This implies $\sigma_{\mathbf{z}'}^{-1}(j) \supseteq \sigma_{\mathbf{z}}^{-1}(j)$ 988 for all $j \in [L]$ as we assumed the \mathcal{S}_i have positive dimension. Because each $\sigma_{\mathbf{z}'}$ is surjective, we 989 must have $\sigma_{\mathbf{z}'} = \sigma_{\mathbf{z}}$ in a neighborhood \mathcal{U} of \mathbf{z} . 990

991 As \mathcal{Z} is open in the product manifold, we may shrink \mathcal{U} so that $\mathcal{U} = \mathcal{U}_1 \times \cdots \times \mathcal{U}_L$ with each \mathcal{U}_j path- 992 connected. Fix $i \in [K]$ and let $\tilde{\mathbf{z}} \in \mathcal{U}$ satisfy $\tilde{\mathbf{z}}_{\sigma(i)} = \mathbf{z}_{\sigma(i)}$. Choose a smooth path $\gamma : [0, 1] \rightarrow \mathcal{U}$ 993 with $\gamma(0) = \mathbf{z}$ and $\gamma(1) = \tilde{\mathbf{z}}$. By the fundamental theorem of calculus, 994

$$\mathbf{v}_i(\tilde{\mathbf{z}}) - \mathbf{v}_i(\mathbf{z}) = \int_0^1 \frac{d}{dt} \mathbf{v}_i(\gamma(t)) dt.$$

995 By the chain rule, 996

$$\begin{aligned} \frac{d}{dt} \mathbf{v}_i(\gamma(t)) &= D(\pi_i \circ \mathbf{v})_{\gamma(t)} \cdot \dot{\gamma}(t) \\ &= D_{\sigma(i)}(\pi_i \circ \mathbf{v})_{\gamma(t)} \cdot \dot{\gamma}_{\sigma(i)}(t) + \sum_{j \neq \sigma(i)} D_j(\pi_i \circ \mathbf{v})_{\gamma(t)} \cdot \dot{\gamma}_j(t). \end{aligned}$$

997 The first term vanishes because $\gamma_{\sigma(i)}(t)$ is constant, and the second vanishes by the structural 998 assumption on $D\mathbf{v}$. Thus the integral is zero, and we conclude $\mathbf{v}_i(\tilde{\mathbf{z}}) = \mathbf{v}_i(\mathbf{z})$. Hence \mathbf{v}_i depends only 999 on the coordinate $\mathbf{z}_{\sigma(i)}$, completing the proof. \square 1000

1001 **Theorem 2** (Local Identifiability of Type D). Let $\mathbf{g} : \mathcal{S} \rightarrow \mathcal{X}$ and $\hat{\mathbf{g}} : \mathcal{Z} \rightarrow \mathcal{X}$ be local diffeomorphisms⁶ 1002 with $\mathbf{g}(\mathcal{S}) \subseteq \hat{\mathbf{g}}(\mathcal{Z})$. Then $\hat{\mathbf{g}}$ is locally disentangled w.r.t. \mathbf{g} if:

- 1003 (1) $\mathcal{S} \subseteq \prod_{i=1}^K \mathcal{S}_i$ is open, and all factors are Type D independent and irreducible.
- 1004 (2) $\mathcal{Z} \subseteq \prod_{i=1}^L \mathcal{Z}_i$ is open with $L \leq K$, and the factors are independent of Type D.

1005 ⁶A diffeomorphism is a smooth bijection between manifolds with a smooth inverse. A local diffeomorphism 1006 is a map that restricts to a diffeomorphism on some neighborhood of each point.

1026 *Proof.* Fix an arbitrary point $s^* \in \mathcal{S}$. By the range assumption $\mathbf{g}(\mathcal{S}) \subseteq \hat{\mathbf{g}}(\mathcal{Z})$, there exists at least
1027 one $z^* \in \mathcal{Z}$ such that

$$1028 \quad \mathbf{g}(s^*) = \hat{\mathbf{g}}(z^*).$$

1029 Since both \mathbf{g} and $\hat{\mathbf{g}}$ are assumed to be local diffeomorphisms, there exists a neighborhood $\mathcal{U} \subseteq \mathcal{Z}$ of
1030 z^* such that, for all $z \in \mathcal{U}$,

$$1031 \quad \hat{\mathbf{g}}(z) = \mathbf{g} \circ \mathbf{v}(z), \quad (14)$$

1032 where we define

$$1033 \quad \mathbf{v} := \mathbf{g}^{-1} \circ \hat{\mathbf{g}}|_{\mathcal{U}}: \mathcal{U} \rightarrow (\mathbf{g}^{-1} \circ \hat{\mathbf{g}})(\mathcal{U}),$$

1034 and \mathbf{g}^{-1} denotes the local inverse satisfying $\mathbf{v}(z^*) = s^*$. Differentiating gives

$$1036 \quad D\hat{\mathbf{g}}_z = D\mathbf{g}_{\mathbf{v}(z)} \circ D\mathbf{v}_z. \quad (15)$$

1037 To obtain matrix representations, choose product-aligned bases on $T_{\mathbf{v}(z)}(\prod_i \mathcal{S}_i)$ and $T_z(\prod_j \mathcal{Z}_j)$,
1038 and identify $T_{\hat{\mathbf{g}}(z)}\mathcal{X}$ and $T_{\mathbf{g}(\mathbf{v}(z))}\mathcal{X}$ with their natural inclusions into \mathbb{R}^{d_x} .

1040 By Type D independence for \mathbf{g} , the row supports of the partial derivatives $D_i \mathbf{g}_s$ and $D_j \mathbf{g}_s$ are
1041 disjoint whenever $i \neq j$. Thus there is a partition of observation coordinates $[d_x] = \mathcal{R}_1 \cup \dots \cup$
1042 \mathcal{R}_K such that rows in \mathcal{R}_i depend only on $T_{s_i} \mathcal{S}_i$. Permuting rows by \mathbf{P} to group $\mathcal{R}_1, \dots, \mathcal{R}_K$
1043 consecutively makes $\mathbf{A} = \mathbf{P} D\mathbf{g}_{\mathbf{v}(z)}$ block-row diagonal. Set

$$1044 \quad \mathbf{A} := \mathbf{P} D\mathbf{g}_{\mathbf{v}(z)}, \quad \mathbf{B} := D\mathbf{v}_z, \quad \mathbf{C} := \mathbf{P} D\hat{\mathbf{g}}_z,$$

1045 so that $\mathbf{C} = \mathbf{A} \mathbf{B}$.

1046 For $k \in [L]$, let $\mathbf{B}_{:,k}$ denote the block-columns of \mathbf{B} corresponding to $T_{z_k} \mathcal{Z}_k$, and let $\mathbf{B}_{:,-k}$ denote
1047 the block-columns corresponding to $\bigoplus_{j \neq k} T_{z_j} \mathcal{Z}_j$. Define $\mathbf{C}_{:,k}$ and $\mathbf{C}_{:,-k}$ analogously as the
1048 corresponding block-columns of \mathbf{C} . Then

$$1050 \quad [C_{:,k} \quad C_{:,-k}] = \begin{bmatrix} \mathbf{A}_{1,1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{2,2} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{A}_{K,K} \end{bmatrix} \begin{bmatrix} \mathbf{B}_{1,k} & \mathbf{B}_{1,-k} \\ \mathbf{B}_{2,k} & \mathbf{B}_{2,-k} \\ \vdots & \vdots \\ \mathbf{B}_{K,k} & \mathbf{B}_{K,-k} \end{bmatrix}. \quad (16)$$

1055 By Type D independence for $\hat{\mathbf{g}}$, the column supports of \mathbf{C} from different target slots are disjoint in
1056 observation coordinates, which is preserved by left-multiplication with \mathbf{P} . Hence the supports of the
1057 columns of $\mathbf{C}_{:,k}$ are disjoint from those of $\mathbf{C}_{:,-k}$, so all pairwise Hadamard products between them
1058 vanish. Denoting the Kronecker product by \otimes and the row-wise Kronecker product (also known as
1059 the face-splitting product) by \odot , we obtain

$$1060 \quad \begin{aligned} \mathbf{0} &= \mathbf{C}_{:,k} \odot \mathbf{C}_{:,-k} \\ 1061 &= (\mathbf{A} \mathbf{B}_{:,k}) \odot (\mathbf{A} \mathbf{B}_{:,-k}) \\ 1062 &= (\mathbf{A} \odot \mathbf{A}) (\mathbf{B}_{:,k} \otimes \mathbf{B}_{:,-k}) \\ 1063 &= [\mathbf{A}_{:,1} \odot \mathbf{A}_{:,1} \quad \mathbf{A}_{:,2} \odot \mathbf{A}_{:,2} \quad \cdots \quad \mathbf{A}_{:,K} \odot \mathbf{A}_{:,K}] \begin{bmatrix} \mathbf{B}_{1,k} \otimes \mathbf{B}_{1,-k} \\ \mathbf{B}_{2,k} \otimes \mathbf{B}_{2,-k} \\ \vdots \\ \mathbf{B}_{K,k} \otimes \mathbf{B}_{K,-k} \end{bmatrix} \\ 1064 &= \begin{bmatrix} (\mathbf{A}_{1,1} \odot \mathbf{A}_{1,1})(\mathbf{B}_{1,k} \otimes \mathbf{B}_{1,-k}) \\ (\mathbf{A}_{2,2} \odot \mathbf{A}_{2,2})(\mathbf{B}_{2,k} \otimes \mathbf{B}_{2,-k}) \\ \vdots \\ (\mathbf{A}_{K,K} \odot \mathbf{A}_{K,K})(\mathbf{B}_{K,k} \otimes \mathbf{B}_{K,-k}) \end{bmatrix}. \end{aligned}$$

1073 Here, the third equality uses the mixed-product property, the fourth expands and reorders terms, and
1074 the last exploits the block-diagonal structure of \mathbf{A} . Reversing the mixed-product property yields, for
1075 all $i \in [K]$ and $k \in [L]$,

$$1076 \quad (\mathbf{A}_{i,i} \mathbf{B}_{i,k}) \odot (\mathbf{A}_{i,i} \mathbf{B}_{i,-k}) = \mathbf{0}. \quad (17)$$

1078 Suppose, for a contradiction, that both $\mathbf{B}_{i,k}$ and $\mathbf{B}_{i,-k}$ are nonzero. Since \mathbf{v} is a composition of
1079 diffeomorphisms, \mathbf{B} is invertible and each $\mathbf{B}_{i,:}$ has full row rank. Let us consider two cases (note
that $\dim(\mathcal{S}_i) = 0$ and $\dim(\mathcal{Z}_i) = 0$ were categorically excluded in advance):

1080 Case 1 ($\dim(\mathcal{S}_i) = 1$). Here $\mathbf{B}_{i,:}$ consists of a single row. Choose nonzero scalars $a \in \mathbf{B}_{i,k}$ and
 1081 $b \in \mathbf{B}_{i,-k}$. From Equation 17,

$$(A_{i,i}a) \odot (A_{i,i}b) = \mathbf{0},$$

1083 which implies $A_{i,i} = \mathbf{0}$, contradicting the assumption that \mathbf{g} is a local diffeomorphism.

1085 Case 2 ($\dim(\mathcal{S}_i) > 1$). In this case, select columns from $\mathbf{B}_{i,k}$ and $\mathbf{B}_{i,-k}$ that together form an
 1086 invertible square matrix $\tilde{\mathbf{B}} = (\tilde{\mathbf{B}}_l, \tilde{\mathbf{B}}_r)$, with $\tilde{\mathbf{B}}_l$ consisting of columns of $\mathbf{B}_{i,k}$ and $\tilde{\mathbf{B}}_r$ of $\mathbf{B}_{i,-k}$.
 1087 Then Equation 17 gives

$$(A_{i,i}\tilde{\mathbf{B}}_l) \odot (A_{i,i}\tilde{\mathbf{B}}_r) = \mathbf{0}.$$

1090 This implies that \mathcal{S}_i is reducible, since there exists a basis in which $T_{s_i}\mathcal{S}_i$ decomposes into subspaces
 1091 where all pairwise directional derivatives vanish in the Hadamard product. Hence, either $\mathbf{B}_{i,k}$ or
 1092 $\mathbf{B}_{i,-k}$ must be zero.

1093 Repeating the argument for all $i \in [K]$ and $k \in [L]$ shows that each block-row of \mathbf{B} contains at
 1094 most one nonzero block. Since \mathbf{B} is invertible, each block-row must contain exactly one nonzero
 1095 block. Hence, there exists a surjection $\sigma: [K] \rightarrow [L]$ such that

$$\mathbf{B}_{i,\sigma(i)} \neq \mathbf{0} \quad \text{and} \quad \mathbf{B}_{i,j} = \mathbf{0} \quad \text{for } j \neq \sigma(i).$$

1098 By Lemma 3, it follows that on \mathcal{U} , the component $\mathbf{v}_i(\mathbf{z})$ depends only on $\mathbf{z}_{\sigma(i)}$ for every $i \in [K]$.
 1099 Equivalently, there exist functions

$$\tilde{\mathbf{v}}_i: \mathcal{Z}_{\sigma(i)} \rightarrow \mathcal{S}_i$$

1100 such that locally

$$\mathbf{g}^{-1} \circ \hat{\mathbf{g}}(\mathbf{z}) = (\tilde{\mathbf{v}}_1(\mathbf{z}_{\sigma(1)}), \dots, \tilde{\mathbf{v}}_K(\mathbf{z}_{\sigma(K)})).$$

1104 Since \mathbf{s}^* was arbitrary and the constructions hold for any \mathbf{z}^* satisfying $\mathbf{g}(\mathbf{s}^*) = \hat{\mathbf{g}}(\mathbf{z}^*)$, Lemma 2
 1105 implies that $\hat{\mathbf{g}}$ is locally disentangled with respect to \mathbf{g} . \square

1107 A.4 PROOF OF THEOREM 3

1109 Denote with $\Omega_i(\mathbf{s}) \subseteq [d_x]$ the support of the i -th column of $\mathbf{J}_{\mathbf{g}}(\mathbf{s}) = D\mathbf{g}_{\mathbf{s}}: \mathbb{R}^{d_s} \rightarrow \mathbb{R}^{d_x}$ in the
 1110 standard basis (i.e., $\Omega_i(\mathbf{s}) := \text{supp}(\mathbf{J}_{\mathbf{g}}(\mathbf{s})_{:,i})$). Similarly, we use $\hat{\Omega}_j(\mathbf{z})$ for $\mathbf{J}_{\hat{\mathbf{g}}}(\mathbf{z})$. Let \mathcal{C}_i denote
 1111 the column index set of the i -th source factor.

1112 For sets $A, B \subseteq [m]$, write $A \pitchfork B$ iff $A \not\subseteq B$ and $A \not\supseteq B$ (mutual non-inclusion).

1113 **Definition 17** (Mechanistic Independence of Type M). *We say that \mathcal{S}_i and \mathcal{S}_j are mechanistically
 1114 independent of Type M if, for every $\mathbf{s} \in \mathcal{S}$,*

$$\forall a \in \mathcal{C}_i, \forall b \in \mathcal{C}_j : \quad \Omega_a(\mathbf{s}) \pitchfork \Omega_b(\mathbf{s}).$$

1117 **Definition 18** (Reducibility of Type M). *We say that the component \mathcal{S}_i is reducible of Type M if
 1118 there exist a point $\mathbf{s} \in \mathcal{S}$ and a partition $\mathcal{C}_i = \mathcal{A} \cup \mathcal{B}$ such that*

$$\forall a \in \mathcal{A}, \forall b \in \mathcal{B} : \quad \Omega_a(\mathbf{s}) \pitchfork \Omega_b(\mathbf{s}).$$

1121 **Lemma 4.** *Let $\mathbf{C} = \mathbf{AB}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times n}$, and $\mathbf{C} \in \mathbb{R}^{m \times n}$ are all of full column
 1122 rank. Define $\mathcal{G}^S(\mathbf{A}) := ([n], \mathcal{E}^S)$ with $\mathcal{E}^S = \{(i, j) \in [n]^2 \mid \text{supp}(\mathbf{A}_{:,i}) \not\pitchfork \text{supp}(\mathbf{A}_{:,j})\}$. If
 1123 $\|\mathbf{C}\|_0 \leq \|\mathbf{A}\|_0$ and for all $k \in [n]$*

$$\text{supp}(\mathbf{C}_{:,k}) \supseteq \bigcup_{i \in \text{supp}(\mathbf{B}_{:,k})} \text{supp}(\mathbf{A}_{:,i}), \quad (18)$$

1127 then $\|\mathbf{C}\|_0 = \|\mathbf{A}\|_0$ and $\mathcal{G}^S(\mathbf{C})$ is isomorphic to $\mathcal{G}^S(\mathbf{A})$.

1130 *Proof.* Write $\mathcal{Q}_i := \text{supp}(\mathbf{A}_{:,i})$, $\mathcal{R}_k := \text{supp}(\mathbf{B}_{:,k})$, and $\mathcal{U}_k := \text{supp}(\mathbf{C}_{:,k})$. Since $\mathbf{C}_{:,k} =$
 1131 $\sum_{i \in \mathcal{R}_k} \mathbf{A}_{:,i} \mathbf{B}_{i,k}$, we have $\mathcal{U}_k \subseteq \bigcup_{i \in \mathcal{R}_k} \mathcal{Q}_i$, while Equation 18 gives the reverse inclusion; hence

$$\mathcal{U}_k = \bigcup_{i \in \mathcal{R}_k} \mathcal{Q}_i \quad \forall k \in [n].$$

Because \mathbf{B} is invertible, the Leibniz formula for $\det(\mathbf{B}) \neq 0$ yields a permutation $\sigma : [n] \rightarrow [n]$ with $B_{i,\sigma(i)} \neq 0$ for all i , i.e., $i \in \mathcal{R}_{\sigma(i)}$. Thus

$$\mathcal{Q}_i \subseteq \mathcal{U}_{\sigma(i)} \quad \forall i \in [n].$$

Summing sizes and using $\|\mathbf{C}\|_0 \leq \|\mathbf{A}\|_0$,

$$\sum_i |\mathcal{Q}_i| \leq \sum_i |\mathcal{U}_{\sigma(i)}| = \sum_k |\mathcal{U}_k| = \|\mathbf{C}\|_0 \leq \|\mathbf{A}\|_0 = \sum_i |\mathcal{Q}_i|,$$

so equality holds throughout, which forces $|\mathcal{U}_{\sigma(i)}| = |\mathcal{Q}_i|$ and hence $\mathcal{U}_{\sigma(i)} = \mathcal{Q}_i$ for all i . This says the column supports of \mathbf{C} are exactly those of \mathbf{A} up to a relabelling of indices. Since the edge relation in $\mathcal{G}^S(\cdot)$ depends only on mutual non-inclusion of these supports, the bijection $i \mapsto \sigma(i)$ preserves adjacency:

$$\mathcal{Q}_i \pitchfork \mathcal{Q}_j \iff \mathcal{U}_{\sigma(i)} \pitchfork \mathcal{U}_{\sigma(j)}.$$

Hence $\mathcal{G}^S(\mathbf{C}) \cong \mathcal{G}^S(\mathbf{A})$. \square

Theorem 3 (Local Identifiability of Type M). *Let $\mathbf{g} : \mathcal{S} \rightarrow \mathcal{X}$ and $\hat{\mathbf{g}} : \mathcal{Z} \rightarrow \mathcal{X}$ be local diffeomorphisms with $\mathbf{g}(\mathcal{S}) \subseteq \hat{\mathbf{g}}(\mathcal{Z})$. Then $\hat{\mathbf{g}}$ is locally disentangled w.r.t. \mathbf{g} if:*

(1) $\mathcal{S} \subseteq \mathbb{R}^{d_s}$ is open, and the factors are Type M independent and irreducible.

(2) $\mathcal{Z} \subseteq \mathbb{R}^{d_s}$ is open, and the factors are independent of Type M.

(3) For all $\mathbf{s} \in \mathcal{S}$ and $\mathbf{z} \in \mathcal{Z}$ with $\mathbf{g}(\mathbf{s}) = \hat{\mathbf{g}}(\mathbf{z})$,

$$\|\mathbf{J}_{\hat{\mathbf{g}}}(\mathbf{z})\|_0 \leq \|\mathbf{J}_{\mathbf{g}}(\mathbf{s})\|_0. \quad (5)$$

(4) For all such pairs,

$$\widehat{\Omega}_k(\mathbf{z}) = \bigcup_{i \in \text{supp}(\mathbf{B}_{:,k})} \Omega_i(\mathbf{s}), \quad (6)$$

where $\mathbf{B} := \mathbf{J}_{\mathbf{g}^{-1} \circ \hat{\mathbf{g}}}(\mathbf{z})$ and $\widehat{\Omega}_k$ mirrors Ω_i for $\hat{\mathbf{g}}$.

Proof. As before, we begin with the identity

$$\hat{\mathbf{g}}(\mathbf{z}) = \mathbf{g} \circ \mathbf{v}(\mathbf{z}),$$

defined on a neighborhood $\mathcal{U} \subseteq \mathcal{Z}$, where

$$\mathbf{v} := \mathbf{g}^{-1} \circ \hat{\mathbf{g}}|_{\mathcal{U}} : \mathcal{U} \rightarrow (\mathbf{g}^{-1} \circ \hat{\mathbf{g}})(\mathcal{U})$$

is a diffeomorphism that maps a unique $\mathbf{z}^* \in \mathcal{U}$ to some initially chosen arbitrary point $\mathbf{s}^* \in \mathcal{S}$. Thus, after differentiation we get

$$\mathbf{J}_{\hat{\mathbf{g}}}(\mathbf{z}) = \mathbf{J}_{\mathbf{g}}(\mathbf{v}(\mathbf{z})) \mathbf{J}_{\mathbf{v}}(\mathbf{z}),$$

which we write as $\mathbf{C} = \mathbf{A}\mathbf{B}$. Since both \mathbf{g} and $\hat{\mathbf{g}}$ are local diffeomorphisms into the same observation manifold, \mathbf{B} is square and invertible, and \mathbf{A}, \mathbf{C} have full column rank.

Let $\mathcal{R}_i \subseteq [d_s]$ be the column-index set in the i -th source block, and define $\mathcal{C}_j \subseteq [d_s]$ analogously for the target blocks. Then $\{\mathcal{R}_i\}_{i=1}^K$ partitions the columns of \mathbf{A} and $\{\mathcal{C}_i\}_{i=1}^L$ partitions the columns of \mathbf{C} .

Step 1. *Each column of \mathbf{B} has support contained in a single source block.*

Suppose not: then for some column index k , the support $\text{supp}(\mathbf{B}_{:,k})$ intersects distinct blocks $\mathcal{R}_p \neq \mathcal{R}_q$. By independence of the \mathcal{S}_i , \mathbf{B} would mix mutually non-inclusive column supports of \mathbf{A} . Thus, Equation 6 would force a strict increase in the support, which contradicts the assumption that $\|\mathbf{C}\|_0 \leq \|\mathbf{A}\|_0$. Hence $\text{supp}(\mathbf{B}_{:,k}) \subseteq \mathcal{R}_i$ for some i . Define $\mathcal{Q}_i := \{q : \text{supp}(\mathbf{B}_{:,q}) \subseteq \mathcal{R}_i\}$, i.e., the column set of \mathbf{B} supported in \mathcal{R}_i .

Step 2. *For each i , the columns of \mathbf{B} supported in \mathcal{R}_i land in a single target block.*

1188 Assume otherwise: then \mathcal{Q}_i meets two distinct C -blocks \mathcal{C}_α and \mathcal{C}_β . Pick $q_\alpha \in \mathcal{C}_\alpha \cap \mathcal{Q}_i$ and
 1189 $q_\beta \in \mathcal{C}_\beta \cap \mathcal{Q}_i$. By Lemma 4, there are u_α and u_β such that $\text{supp}(\mathbf{C}_{:,q_\alpha}) = \text{supp}(\mathbf{A}_{:,u_\alpha})$ and
 1190 $\text{supp}(\mathbf{C}_{:,q_\beta}) = \text{supp}(\mathbf{A}_{:,u_\beta})$. By Equation 6, for every $k \in \text{supp}(\mathbf{B}_{:,q_\alpha}) \subseteq \mathcal{R}_i$,
 1191

$$1192 \text{supp}(\mathbf{A}_{:,u_\alpha}) = \text{supp}(\mathbf{C}_{:,q_\alpha}) = \bigcup_{j \in \text{supp}(\mathbf{B}_{:,q_\alpha})} \text{supp}(\mathbf{A}_{:,j}) \supseteq \text{supp}(\mathbf{A}_{:,k}). \quad (19)$$

1194 This implies $u_\alpha \in \mathcal{R}_i$ due to independence of the source factors. If u_α were not in \mathcal{R}_i , then
 1195 $\text{supp}(\mathbf{A}_{:,u_\alpha})$ would contain a column support from a different block by Equation 19. Analogously,
 1196 we get $u_\beta \in \mathcal{R}_i$.
 1197

1198 If $u_\alpha = u_\beta$, then $\text{supp}(\mathbf{C}_{:,q_\alpha}) = \text{supp}(\mathbf{C}_{:,q_\beta})$, contradicting independence of the target blocks.
 1199 Thus $u_\alpha \neq u_\beta$.

1200 Define \mathcal{G}_i^S with vertex set \mathcal{R}_i and edge set $\mathcal{E} := \{(a, b) \in \mathcal{R}_i \times \mathcal{R}_i \mid \text{supp}(\mathbf{A}_{:,a}) \not\supseteq \text{supp}(\mathbf{A}_{:,b})\}$.
 1201 By irreducibility of \mathcal{S}_i , \mathcal{G}_i^S is connected. Thus, there is a path $u_\alpha = v_0, v_1, \dots, v_r = u_\beta$ with
 1202 each consecutive pair comparable (i.e., either $\text{supp}(\mathbf{A}_{:,v_i}) \subseteq \text{supp}(\mathbf{A}_{:,v_{i+1}})$ or $\text{supp}(\mathbf{A}_{:,v_i}) \supseteq$
 1203 $\text{supp}(\mathbf{A}_{:,v_{i+1}})$). Let p be the first index where the image of v_p (in \mathbf{C}) leaves \mathcal{C}_α . Then v_{p-1} and v_p
 1204 are comparable but land in different C -blocks, giving a containment across C -blocks. This contra-
 1205 dicta-
 1206 tes independence of the target factors. Therefore, for each i , all columns of \mathbf{B} supported in \mathcal{R}_i
 1207 belong to a single target block. Since \mathbf{B} is invertible, repeating the argument for all $i \in [K]$ shows
 1208 that each block-row of \mathbf{B} contains exactly one nonzero block.
 1209

1210 Finally, Lemmas 3 and 2 (as in the proof of Theorem 2) imply that $\hat{\mathbf{g}}$ is locally disentangled with
 1211 respect to \mathbf{g} .
 1212 \square

1213 **Proposition 3.** *Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. For $k \in [n]$, write $\mathcal{R}_k := \text{supp}(\mathbf{A}_{:,k}) \subseteq [m]$ and for $i \in [m]$, write
 1214 $\mathcal{C}_i := \text{supp}(\mathbf{A}_{i,:}) \subseteq [n]$. The following are equivalent:*

1215 (1) (Mutual non-inclusiveness) For all $k \neq \ell$, $\mathcal{R}_k \pitchfork \mathcal{R}_\ell$ (or equivalently, neither $\mathcal{R}_k \subseteq \mathcal{R}_\ell$ nor
 1216 $\mathcal{R}_\ell \subseteq \mathcal{R}_k$).
 1217 (2) For every $k \in [n]$,

$$1218 \{k\} = \bigcap_{i \in \mathcal{R}_k} \mathcal{C}_i.$$

1219 *Proof.* Fix $k \in [n]$. Observe the identity
 1220

$$1221 \begin{aligned} \{j \in [n] : \mathcal{R}_k \subseteq \mathcal{R}_j\} &= \{j \in [n] : j \in \mathcal{C}_i \forall i \in \mathcal{R}_k\} \\ 1222 &= \{j \in [n] : A_{ij} \neq 0 \forall i \in \mathcal{R}_k\} \\ 1223 &= \bigcap_{i \in \mathcal{R}_k} \mathcal{C}_i. \end{aligned}$$

1224 Thus (2) is equivalent to $\{k\} = \{j : \mathcal{R}_k \subseteq \mathcal{R}_j\}$. That is, the only column whose support contains
 1225 \mathcal{R}_k is k itself. This rules out $\mathcal{R}_k \subseteq \mathcal{R}_j$ for any $j \neq k$, and by symmetry across pairs (k, ℓ) yields
 1226 (1).
 1227

1228 Conversely, if (1) holds, then for each k there is no $j \neq k$ with $\mathcal{R}_k \subseteq \mathcal{R}_j$. So by the above identity
 1229 we get $\bigcap_{i \in \mathcal{R}_k} \mathcal{C}_i = \{k\}$, which is (2).
 1230 \square

1231 **Remark 4.** Under the usual convention that $\bigcap_{i \in \emptyset} \mathcal{C}_i = [n]$, both conditions in Proposition 3 forbid
 1232 zero columns (unless $n = 1$, in which case both are true regardless if the column contains nonzero
 1233 elements or not).

1234 **Proposition 4.** Type M identifiability generalizes Theorem 3.1 from Zheng & Zhang (2023).
 1235

1236 *Proof.* We will show that the assumptions of Theorem 3.1 in Zheng & Zhang (2023) imply the
 1237 assumptions of Theorem 3 when we pick $\mathcal{S}_i = \mathbb{R}$.
 1238

1239 Zheng & Zhang (2023) show that condition (i) in Theorem 3.1 implies Equation 14 in their
 1240 appendix ($\forall (i, j) \in \mathcal{F}, \{i\} \times \mathcal{T}_{j,:} \subset \hat{\mathcal{F}}$), which can be reformulated as Equation 6. Furthermore,
 1241

1242 Proposition 3 establishes that *structural sparsity* (condition (ii) in Theorem 3.1) is equivalent to mu-
 1243 tual non-inclusion. Thus, structural sparsity implies Type M independence of the source factors.
 1244 The sparsity gap (Equation 5) is not explicitly listed in Theorem 3.1 but required throughout their
 1245 entire work. Finally, for one-dimensional factors, Type M irreducibility is vacuously true, and by
 1246 Lemma 4 Type M independence of the target factors holds automatically. \square

1247 **A.5 PROOF OF THEOREM 4**

1248 For $\mathbf{s} \in \mathcal{S}$, denote by $\rho_{\mathfrak{B}}^+(\mathbf{s})$ the minimal ℓ_0 -norm (i.e. the number of nonzero entries) of the matrix
 1249 representing $Dg_{\mathbf{s}}: T_{\mathbf{s}}\mathcal{S} \rightarrow T_{g(\mathbf{s})}\mathcal{X}$ when expressed in a basis of $T_{\mathbf{s}}\mathcal{S}$ that is *aligned* with the de-
 1250 composition \mathfrak{B} and in the canonical basis of $T_{g(\mathbf{s})}\mathcal{X}$ induced by its embedding in \mathbb{R}^{d_x} . Conversely,
 1251 define $\rho_{\mathfrak{B}}^-(\mathbf{s})$ as the infimum of the ℓ_0 -norm of $Dg_{\mathbf{s}}$ taken over all choices of basis of $T_{\mathbf{s}}\mathcal{S}$ that do
 1252 not respect the decomposition \mathfrak{B} . Analogously, we define $\rho_{\mathfrak{B}_i}^+(\mathbf{s})$ and $\rho_{\mathfrak{B}_i}^-(\mathbf{s})$ based on $D_i g_{\mathbf{s}}$, where
 1253 \mathfrak{B}_i is a decomposition of $T_{\mathbf{s}_i}\mathcal{S}_i$.

1254 **Definition 19** (Mechanistic Independence of Type S). *We say that the subspaces \mathcal{S}_i are mechanisti-
 1255 cally independent of Type S if, for every $\mathbf{s} \in \mathcal{S}$,*

$$1256 \rho_{\mathfrak{B}}^+(\mathbf{s}) < \rho_{\mathfrak{B}}^-(\mathbf{s}), \quad \text{where } \mathfrak{B} := \bigoplus_{i \in [K]} T_{\mathbf{s}_i} \mathcal{S}_i.$$

1257 **Definition 20** (Reducibility of Type S). *We say that the component \mathcal{S}_i is reducible of Type S if there
 1258 exist $\mathbf{s} \in \mathcal{S}$ and a nontrivial decomposition $T_{\mathbf{s}_i} \mathcal{S}_i = U \oplus V =: \mathfrak{B}_i$ such that*

$$1259 \rho_{\mathfrak{B}_i}^+(\mathbf{s}) < \rho_{\mathfrak{B}_i}^-(\mathbf{s}).$$

1260 *Otherwise, we call \mathcal{S}_i irreducible of Type S.*

1261 **Theorem 4** (Local Identifiability of Type S). *Let $\mathbf{g}: \mathcal{S} \rightarrow \mathcal{X}$ and $\hat{\mathbf{g}}: \mathcal{Z} \rightarrow \mathcal{X}$ be local diffeomor-
 1262 phisms with $\mathbf{g}(\mathcal{S}) \subseteq \hat{\mathbf{g}}(\mathcal{Z})$. Then $\hat{\mathbf{g}}$ is locally disentangled w.r.t. \mathbf{g} if:*

1263 (1) $\mathcal{S} \subseteq \prod_{i=1}^K \mathcal{S}_i$ is open, and the factors \mathcal{S}_i are Type S independent and irreducible.

1264 (2) $\mathcal{Z} \subseteq \prod_{j=1}^L \mathcal{Z}_j$ is open with $L \leq K$, and the factors \mathcal{Z}_j are independent of Type S.

1265 *Proof.* On a neighborhood $\mathcal{U} \subseteq \mathcal{Z}$ define the diffeomorphism

$$1266 \mathbf{v} := \mathbf{g}^{-1} \circ \hat{\mathbf{g}}|_{\mathcal{U}}: \mathcal{U} \rightarrow (\mathbf{g}^{-1} \circ \hat{\mathbf{g}})(\mathcal{U}),$$

1267 so that $\hat{\mathbf{g}} = \mathbf{g} \circ \mathbf{v}$ on \mathcal{U} . Hence

$$1268 D\hat{\mathbf{g}}_{\mathbf{z}} = D\mathbf{g}_{\mathbf{v}(\mathbf{z})} \circ D\mathbf{v}_{\mathbf{z}}. \quad (20)$$

1269 Fix product-splitting bases for $T_{\mathbf{v}(\mathbf{z})}(\prod_i \mathcal{S}_i)$ and $T_{\mathbf{z}}(\prod_j \mathcal{Z}_j)$ that minimize the ℓ_0 -sparsity of $D\mathbf{g}_{\mathbf{v}(\mathbf{z})}$
 1270 and $D\hat{\mathbf{g}}_{\mathbf{z}}$ respectively. In these bases, write Equation 20 as $\mathbf{C} = \mathbf{A}\mathbf{B}$. Since both \mathbf{g} and $\hat{\mathbf{g}}$ are local
 1271 diffeomorphisms into the same observation manifold, \mathbf{B} is square and invertible. Let $\mathcal{R}_i \subseteq [d_s]$ be
 1272 the column-index set spanning $T_{\mathbf{s}_i} \mathcal{S}_i$, and define $\mathcal{C}_j \subseteq [d_s]$ analogously for $T_{\mathbf{z}_j} \mathcal{Z}_j$.

1273 **Step 1.** *Each column of \mathbf{B} has support contained in a single source block.*

1274 Suppose not: then for some column index k , the support $\text{supp}(\mathbf{B}_{:,k})$ intersects distinct blocks $\mathcal{R}_p \neq$
 1275 \mathcal{R}_q . By independence of the \mathcal{S}_i , any basis change of $Dg_{\mathbf{s}}$ that mixes coordinates from different
 1276 source blocks worsens the ℓ_0 -sparsity after multiplication. Equivalently,

$$1277 \|\mathbf{A}\|_0 < \|\mathbf{A}\mathbf{B}\|_0 = \|\mathbf{C}\|_0.$$

1278 This contradicts the assumption that the chosen basis for $D\hat{\mathbf{g}}_{\mathbf{z}}$ is ℓ_0 -minimal, since independence of
 1279 the \mathcal{Z}_j implies that the lowest ℓ_0 -norm is achieved in a product-splitting basis (up to reordering of
 1280 the basis vectors). Hence $\text{supp}(\mathbf{B}_{:,k}) \subseteq \mathcal{R}_i$ for some i .

1281 **Step 2.** *For each i , the columns of \mathbf{B} supported in \mathcal{R}_i land in a single target block.*

1282 Assume otherwise: then there exists $i \in [K]$ and columns $p \in \mathcal{C}_k$ and $q \in \mathcal{C}_{-k} := \bigcup_{j \neq k} \mathcal{C}_j$ such
 1283 that both $\mathbf{B}_{:,p}$ and $\mathbf{B}_{:,q}$ are supported in \mathcal{R}_i . Now consider two cases (with $\dim(\mathcal{S}_i) = 0$ and
 1284 $\dim(\mathcal{Z}_i) = 0$ excluded a priori):

1296 Case 1 ($\dim(\mathcal{S}_i) = 1$). Then $\mathcal{R}_i = \{r\}$ and for nonzero scalars $B_{r,p}, B_{r,q}$ we have
 1297

$$1298 \quad \text{supp}(\mathbf{C}_{:,p}) = \text{supp}(\mathbf{A}_{:,r} B_{r,p}) = \text{supp}(\mathbf{A}_{:,r} B_{r,q}) = \text{supp}(\mathbf{C}_{:,q}).$$

1299 However, a necessary requirement for independence of the target factors is
 1300

$$1301 \quad \text{supp}(\mathbf{C}_{:,p}) \pitchfork \text{supp}(\mathbf{C}_{:,q}),$$

1302 since otherwise a cross-block mixing can be constructed involving $\mathbf{C}_{:,p}$ and $\mathbf{C}_{:,q}$ which leaves the
 1303 overall support unchanged. This contradicts the earlier result that $\text{supp}(\mathbf{C}_{:,p}) = \text{supp}(\mathbf{C}_{:,q})$.
 1304

1305 Case 2 ($\dim(\mathcal{S}_i) > 1$). The full row rank of $\mathbf{B}_{\mathcal{R}_i,:}$ yields an invertible square submatrix $\tilde{\mathbf{B}}$ formed
 1306 from columns in \mathcal{C}_k and \mathcal{C}_{-k} such that
 1307

$$1308 \quad \mathbf{A}_{:, \mathcal{R}_i} \tilde{\mathbf{B}} = [\tilde{\mathbf{A}}_1, \tilde{\mathbf{A}}_2],$$

1309 where $\tilde{\mathbf{A}}_1$ and $\tilde{\mathbf{A}}_2$ are submatrices of $\mathbf{C}_{:, \mathcal{C}_k}$ and $\mathbf{C}_{:, \mathcal{C}_{-k}}$, respectively. By independence of the \mathcal{Z}_j ,
 1310

$$1311 \quad \hat{\rho}_{\mathfrak{B}}^+(\mathbf{z}) < \hat{\rho}_{\mathfrak{B}}^-(\mathbf{z}), \quad \text{where } \hat{\mathfrak{B}} := \bigoplus_{i \in [L]} T_{\mathbf{z}_i} \mathcal{Z}_i.$$

1313 This forces
 1314

$$1315 \quad \hat{\rho}_{\mathfrak{B}}^+(\mathbf{z}) = \|\mathbf{C}\|_0 = \|[\tilde{\mathbf{A}}_1, \tilde{\mathbf{A}}_2]\|_0 + c < \hat{\rho}_{\mathfrak{B}}^-(\mathbf{z}) \leq \inf_{\mathbf{G} \notin \{\text{block-respecting}\}} \|[\tilde{\mathbf{A}}_1, \tilde{\mathbf{A}}_2]\mathbf{G}\|_0 + c,$$

1317 where $c \geq 0$ is the number of nonzero entries of \mathbf{C} outside $[\tilde{\mathbf{A}}_1, \tilde{\mathbf{A}}_2]$. Since \mathbf{C} has minimal support,
 1318 there is no basis transformation reducing the ℓ_0 -norm of $\tilde{\mathbf{A}}_1$ or $\tilde{\mathbf{A}}_2$ individually. Thus
 1319

$$1320 \quad \rho_{\mathfrak{B}_i}^+(\mathbf{v}(\mathbf{z})) \leq \|\mathbf{A}_{:, \mathcal{R}_i} \tilde{\mathbf{B}}\|_0 < \inf_{\mathbf{G} \notin \{\text{block-respecting}\}} \|[\tilde{\mathbf{A}}_1, \tilde{\mathbf{A}}_2]\mathbf{G}\|_0 = \rho_{\mathfrak{B}_i}^-(\mathbf{v}(\mathbf{z})),$$

1322 contradicting irreducibility of \mathcal{S}_i .
 1323

Hence, for each i , all columns of \mathbf{B} supported in \mathcal{R}_i belong to a single target block. Repeating the
 1324 argument for all $i \in [K]$ shows that each block-row of \mathbf{B} contains exactly one nonzero block (since
 1325 \mathbf{B} is invertible).
 1326

Finally, Lemmas 3 and 2 (as in the proof of Theorem 2) imply that $\hat{\mathbf{g}}$ is locally disentangled with
 1327 respect to \mathbf{g} . \square
 1328

1329 A.6 PROOF OF THEOREM 5

1331 **Definition 21** (Mechanistic Independence of Type H_n). Let $\mathcal{S} \subseteq \prod_{i=1}^K \mathcal{S}_i$ be a smooth manifold,
 1332 and let $\mathbf{g}: \mathcal{S} \rightarrow \mathcal{X}$ be of class C^n with $n \geq 2$. \mathcal{S}_i and \mathcal{S}_j are said to be mechanistically independent
 1333 of Type H_n if, for all $\mathbf{s} \in \mathcal{S}$,

$$1334 \quad D_{i,j}^n \mathbf{g}_{\mathbf{s}} = \mathbf{0}. \quad (21)$$

1335 **Definition 22** (Reducibility of Type H_n). We say that the component \mathcal{S}_i is reducible of Type H_n if
 1336 there exists $\mathbf{s} \in \mathcal{S}$ such that either $D_{i,i}^n \mathbf{g}_{\mathbf{s}} = \mathbf{0}$ or there exists a nontrivial splitting $T_{\mathbf{s}_i} \mathcal{S}_i = U \oplus V$
 1337 such that for all $\xi \in U$, $\eta \in V$, and $\zeta_k \in T_{\mathbf{s}} \mathcal{S}$ for $k \in [n-2]$,
 1338

$$1339 \quad D_{i,i}^n \mathbf{g}_{\mathbf{s}}(\xi, \eta, \zeta_1, \dots, \zeta_{n-2}) = \mathbf{0}. \quad (22)$$

1340 **Definition 23** (Separability of n -th Order). We say that $\mathbf{g}: \mathcal{S} \rightarrow \mathcal{X}$ is separable of order n if there
 1341 exists $\mathbf{s} \in \mathcal{S}$ such that, for all $i \in [K]$, the image of $D_{i,i}^n \mathbf{g}_{\mathbf{s}}$ intersects trivially with
 1342

$$1343 \quad \text{span} \left\{ D_{j,j}^n \mathbf{g}_{\mathbf{s}}, j \neq i; D^k \mathbf{g}_{\mathbf{s}}, 1 \leq k \leq n-1 \right\}.$$

1345 **Lemma 5.** Let V be a finite-dimensional vector space with $\dim(V) \geq 2$, and suppose W_1, \dots, W_n
 1346 with $n \geq 2$ are subspaces of V such that $W_1 + \dots + W_n = V$. Assume that there exist indices $i \neq j$
 1347 that satisfy $W_i \neq \{\mathbf{0}\}$ and $W_j \neq \{\mathbf{0}\}$. Then there exist nonzero subspaces U_1 and U_2 of V such
 1348 that
 1349

$$V = U_1 \oplus U_2,$$

with $U_1 \subseteq W_i$ and $U_2 \subseteq \sum_{k \neq i} W_k$.

1350 *Proof.* Set $C := \sum_{k \neq i} W_k$ and $V_0 := W_i \cap C$. Then choose complements

$$1352 \quad W_i = V_0 \oplus V_1 \quad \text{and} \quad C = V_0 \oplus V_2$$

1353 for some subspaces $V_1 \subseteq W_i$ and $V_2 \subseteq C$. Then

$$1355 \quad V = W_i + C = (V_0 \oplus V_1) + (V_0 \oplus V_2) = V_0 \oplus V_1 \oplus V_2,$$

1356 and the sum is direct because $V_1 \cap V_2 = \{\mathbf{0}\}$ and $V_0 \cap (V_1 + V_2) = \{\mathbf{0}\}$.

1357 We now choose U_1 and U_2 case by case.

1359 *Case 1:* $V_1 \neq \{\mathbf{0}\}$ and $V_2 \neq \{\mathbf{0}\}$. Set $U_1 := V_1 \subseteq W_i$ and $U_2 := V_0 \oplus V_2 \subseteq C$. Then
1360 $U_1 \oplus U_2 = V_1 \oplus (V_0 \oplus V_2) = V$, and both U_1, U_2 are nonzero.

1361 *Case 2:* $V_1 \neq \{\mathbf{0}\}$ and $V_2 = \{\mathbf{0}\}$. Then $C = V_0$ and, since $W_j \subseteq C$ with $W_j \neq \{\mathbf{0}\}$, we have
1362 $V_0 \neq \{\mathbf{0}\}$. Set $U_1 := V_1 \subseteq W_i$ and $U_2 := V_0 \subseteq C$. Again $U_1 \oplus U_2 = V_1 \oplus V_0 = V$, with both
1363 nonzero.

1364 *Case 3:* $V_1 = \{\mathbf{0}\}$ and $V_2 \neq \{\mathbf{0}\}$. Then $W_i = V_0$, hence $V_0 \neq \{\mathbf{0}\}$ because $W_i \neq \{\mathbf{0}\}$. Set
1366 $U_1 := V_0 \subseteq W_i$ and $U_2 := V_2 \subseteq C$. We have $U_1 \oplus U_2 = V_0 \oplus V_2 = V$, both nonzero.

1367 *Case 4:* $V_1 = \{\mathbf{0}\}$ and $V_2 = \{\mathbf{0}\}$. Then $W_i = C = V_0$. In particular $W_i = C = V$. Since
1368 $\dim(V) \geq 2$, choose a decomposition $V = A \oplus B$ with $A, B \neq \{\mathbf{0}\}$. Taking $U_1 := A \subseteq W_i$ and
1369 $U_2 := B \subseteq C$ yields the claim.

1370 In all cases we obtain nonzero subspaces $U_1 \subseteq W_i$ and $U_2 \subseteq C = \sum_{k \neq i} W_k$ with $V = U_1 \oplus U_2$,
1372 as required. \square

1373 **Theorem 5** (Local Identifiability of Type H_n). *Let $\mathbf{g}: \mathcal{S} \rightarrow \mathcal{X}$ and $\hat{\mathbf{g}}: \mathcal{Z} \rightarrow \mathcal{X}$ be local C^n -
1374 diffeomorphisms with $n \geq 2$ satisfying $\mathbf{g}(\mathcal{S}) \subseteq \hat{\mathbf{g}}(\mathcal{Z})$. Then $\hat{\mathbf{g}}$ is locally disentangled w.r.t. \mathbf{g} if:*

1376 (1) $\mathcal{S} \subseteq \prod_{i=1}^K \mathcal{S}_i$ is open, and the factors are Type H_n independent and irreducible.
1377

1378 (2) $\mathcal{Z} \subseteq \prod_{j=1}^L \mathcal{Z}_j$ is open with $L \leq K$, and the factors are independent of Type H_n .
1379

1380 (3) \mathbf{g} is separable of order n .

1381 *Proof.* Let $\mathbf{s}^* \in \mathcal{S}$ be arbitrary, and choose $\mathbf{z}^* \in \mathcal{Z}$ such that

$$1383 \quad \mathbf{g}(\mathbf{s}^*) = \hat{\mathbf{g}}(\mathbf{z}^*).$$

1384 Since \mathbf{g} and $\hat{\mathbf{g}}$ are local diffeomorphisms, there exists a neighborhood $\mathcal{U} \subseteq \mathcal{Z}$ of \mathbf{z}^* on which we
1385 may write

$$1386 \quad \hat{\mathbf{g}} = \mathbf{g} \circ \mathbf{v},$$

1387 where

$$1389 \quad \mathbf{v} := \mathbf{g}^{-1} \circ \hat{\mathbf{g}}|_{\mathcal{U}}: \mathcal{U} \rightarrow (\mathbf{g}^{-1} \circ \hat{\mathbf{g}})(\mathcal{U}) \quad \text{satisfies} \quad \mathbf{v}(\mathbf{z}^*) = \mathbf{s}^*.$$

1390 Fix $n \geq 2$. For $\mathbf{z} \in \mathcal{U}$, the higher-order chain rule gives

$$1392 \quad D^n \hat{\mathbf{g}}_{\mathbf{z}} = \sum_{\pi \in \mathcal{P}([n])} D^{|\pi|} \mathbf{g}_{\mathbf{v}(\mathbf{z})} (D^{|B|} \mathbf{v}_{\mathbf{z}})_{B \in \pi}, \quad (23)$$

1394 where $\mathcal{P}([n])$ denotes the set of partitions of $\{1, \dots, n\}$.

1395 On the left-hand side of Equation 23, mechanistic independence of the \mathcal{Z}_i implies that all mixed
1396 derivatives of $\hat{\mathbf{g}}$ vanish:

$$1398 \quad D_{i,j}^n \hat{\mathbf{g}}_{\mathbf{z}} = \mathbf{0}, \quad i \neq j \in [L].$$

1399 Now restrict Equation 23 to this mixed derivative and consider the right-hand side. Mechanistic
1400 independence of the \mathcal{S}_i implies that the highest-order term (corresponding to $\pi = \{1, \dots, n\}$) can
1401 be split up, and all mixed derivatives $D_{k,l}^n \mathbf{g}_{\mathbf{v}(\mathbf{z})}$ vanish:

$$1403 \quad D^n \mathbf{g}_{\mathbf{v}(\mathbf{z})} (D_i \mathbf{v}_{\mathbf{z}}, D_j \mathbf{v}_{\mathbf{z}}, \underbrace{D \mathbf{v}_{\mathbf{z}}, \dots, D \mathbf{v}_{\mathbf{z}}}_{n-2 \text{ times}}) = \sum_{k \in [K]} D_{k,k}^n \mathbf{g}_{\mathbf{v}(\mathbf{z})} (D_i (\pi_k \circ \mathbf{v})_{\mathbf{z}}, D_j (\pi_k \circ \mathbf{v})_{\mathbf{z}}, \underbrace{D \mathbf{v}_{\mathbf{z}}, \dots, D \mathbf{v}_{\mathbf{z}}}_{n-2 \text{ times}}),$$

1404 where π_k denotes the projection onto the k -th slot.
 1405

1406 By separability (Defn. 23), the image of $D_{k,k}^n \mathbf{g}_{\mathbf{v}(\mathbf{z})}$ intersects the images of all other derivative terms
 1407 on the right-hand side of Equation 23 only at zero. Hence they cannot cancel and each individual
 1408 term in the sum must be zero. Therefore, for each $k \in [K]$, we obtain

$$1409 D_{k,k}^n \mathbf{g}_{\mathbf{v}(\mathbf{z})} \left(D_i(\pi_k \circ \mathbf{v})_{\mathbf{z}}, D_j(\pi_k \circ \mathbf{v})_{\mathbf{z}}, \underbrace{D\mathbf{v}_{\mathbf{z}}, \dots, D\mathbf{v}_{\mathbf{z}}}_{n-2 \text{ times}} \right) = \mathbf{0}. \quad (24)$$

1411 Now assume, for a contradiction, that there exist $\alpha \in T_{\mathbf{z}_i} \mathcal{Z}_i$ and $\beta \in T_{\mathbf{z}_j} \mathcal{Z}_j$ such that
 1412

$$1413 D_i(\pi_k \circ \mathbf{v})_{\mathbf{z}}(\alpha) \neq \mathbf{0} \quad \text{and} \quad D_j(\pi_k \circ \mathbf{v})_{\mathbf{z}}(\beta) \neq \mathbf{0}.$$

1414 We distinguish two cases (recall that $\dim(\mathcal{S}_i) = 0$ and $\dim(\mathcal{Z}_i) = 0$ were excluded by assumption):
 1415

1416 *Case 1:* $\dim(\mathcal{S}_k) = 1$. Then Equation 24 implies $D_{k,k}^n \mathbf{g}_{\mathbf{v}(\mathbf{z})} = \mathbf{0}$, contradicting irreducibility.
 1417

1418 *Case 2:* $\dim(\mathcal{S}_k) > 1$. Define

$$1419 W_i := \text{im}(D_i(\pi_k \circ \mathbf{v})_{\mathbf{z}}).$$

1420 Since \mathbf{v} is a composition of local diffeomorphisms, $D(\pi_k \circ \mathbf{v})_{\mathbf{z}}$ is surjective, hence

$$1421 T_{\mathbf{v}_k(\mathbf{z})} \mathcal{S}_k = W_1 + \dots + W_L.$$

1422 By Lemma 5, we can decompose

$$1423 T_{\mathbf{v}_k(\mathbf{z})} \mathcal{S}_k = U_1 \oplus U_2$$

1424 with nontrivial tangent subspaces $U_1 \subseteq W_i$ and $U_2 \subseteq \sum_{j \neq i} W_j$. From Equation 24 we then have,
 1425 for all $\xi \in U_1$ and $\eta \in U_2$,

$$1426 D_{k,k}^n \mathbf{g}_{\mathbf{v}(\mathbf{z})}(\xi, \eta, \zeta_1, \dots, \zeta_{n-2}) = \mathbf{0},$$

1427 where $\zeta_\ell \in T_{\mathbf{v}(\mathbf{z})} \mathcal{S}$ are arbitrary. This implies that \mathcal{S}_k is reducible, a contradiction.
 1428

1429 Therefore, for each $k \in [K]$ there is at most one $i \in [L]$ such that
 1430

$$1431 D_i(\pi_k \circ \mathbf{v})_{\mathbf{z}} \neq \mathbf{0}.$$

1432 Since $D\mathbf{v}_{\mathbf{z}}$ is an isomorphism, at least one such i must exist. Applying Lemmas 3 and 2, as in the
 1433 proof of Theorem 2, we obtain a surjection $\sigma: [K] \rightarrow [L]$ with the disentanglement property.

1434 Hence $\hat{\mathbf{g}}$ is locally disentangled with respect to \mathbf{g} . □
 1435

1436 A.7 PROOFS OF GRAPH-THEORETICAL RELATIONS

1437 **Proposition 5.** *Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ have full column rank and define $\mathcal{G}(\mathbf{A}) = ([n], \mathcal{E})$, $\mathcal{E} = \{(i, j) \in [n]^2 \mid \mathbf{A}_{:,i} \odot \mathbf{A}_{:,j} \neq \mathbf{0}\}$. For a fixed integer $K \geq 1$ the following are equivalent:*

1440 (i) *For any invertible $\mathbf{B} \in \mathbb{R}^{n \times n}$ the maximal number of connected components of $\mathcal{G}(\mathbf{AB})$ is
 1441 K .*

1442 (ii) *There are a permutation matrix \mathbf{P} and an invertible matrix \mathbf{B} such that*

$$1443 \mathbf{PAB} = \text{diag}(\mathbf{A}^{(1)}, \dots, \mathbf{A}^{(K)}),$$

1444 *and no other \mathbf{P}' , \mathbf{B}' such that $\mathbf{P}'\mathbf{AB}'$ is block-diagonal with $K+1$ blocks on the diagonal.*

1445 (iii) *There exists an invertible \mathbf{B} such that \mathbf{AB} is compositional with K irreducible mechanisms
 1446 in the sense of Definitions 1 and 5 of Brady et al. (2023).*

1447 (iv) *There is a partition $[m] = \mathcal{Q}_1 \cup \dots \cup \mathcal{Q}_K$ with $\mathcal{Q}_k \neq \emptyset$ such that*

$$1448 \text{rank}(\mathbf{A}) = \sum_{k=1}^K \text{rank}(\mathbf{A}_{\mathcal{Q}_k,:}), \quad \text{rank}(\mathbf{A}_{\mathcal{Q}_k,:}) \geq 1 \quad \forall k,$$

1449 *and no partition of $[m]$ into $K+1$ non-empty sets satisfies this equality.*

1450 *Proof.* Throughout, all ranks are column-ranks. For a matrix \mathbf{X} , let $\text{row}(\mathbf{X})$ denote its row space
 1451 and let $\text{supp}(\mathbf{X})$ be the set of row indices whose corresponding rows are non-zero. Multiplication
 1452 by an invertible matrix or a permutation matrix preserves rank and does not change the edge-relation
 1453 that defines the graph $\mathcal{G}(\cdot)$.

1458 (i) \implies (ii)

1459

1460 Statement (i) asserts that there exists a $\mathbf{B} \in \mathbb{R}^{n \times n}$ such that $\mathcal{G}(\mathbf{AB})$ possesses exactly K con-
 1461 nected components. Let $\mathcal{C}_1, \dots, \mathcal{C}_K \subset [n]$ be the vertex sets of these components and put
 1462 $\mathcal{R}_k := \bigcup_{i \in \mathcal{C}_k} \text{supp}((\mathbf{AB})_{:,i}) \subseteq [m]$. Without loss of generality we can assume that $\mathcal{C}_1, \dots, \mathcal{C}_K$
 1463 appear in contiguous order. Otherwise, permute the columns of \mathbf{B} first.

1464 Because different components have disjoint row supports (otherwise there would be a connecting
 1465 edge), the sets $\mathcal{R}_1, \dots, \mathcal{R}_K$ are mutually disjoint. Permute the rows so that $\mathcal{R}_1, \dots, \mathcal{R}_K$ appear
 1466 contiguously and denote the corresponding permutation matrix by \mathbf{P} . Then \mathbf{PAB} is block-diagonal
 1467 with exactly K diagonal blocks. Note that any zero rows of \mathbf{AB} can be placed arbitrarily.

1468 If, contrary to the minimality clause of (ii), another pair \mathbf{P}', \mathbf{B}' produced $K + 1$ diagonal blocks,
 1469 the graph $\mathcal{G}(\mathbf{AB}')$ would contain at least $K + 1$ connected components, contradicting (i). Therefore
 1470 (ii) holds.

1471

1472 (ii) \implies (iii)

1473

1474 Write $\mathbf{PAB} = \text{diag}(\mathbf{A}^{(1)}, \dots, \mathbf{A}^{(K)})$ as in (ii) and set $\mathbf{M}^{(k)} := (\mathbf{AB})_{\mathcal{R}_k,:}$ ($k = 1, \dots, K$)
 1475 with \mathcal{R}_k as before. The matrices $\mathbf{M}^{(k)}$ have pairwise disjoint row supports, so they constitute K
 1476 *mechanisms* and \mathbf{AB} is *compositional*.

1477 Assume that one mechanism, say $\mathbf{M}^{(1)}$, were reducible. Then its row support could be partitioned
 1478 into two non-empty sets whose row spaces are independent, yielding another decomposition of
 1479 $\mathbf{P}'\mathbf{AB}'$ into $K + 1$ diagonal blocks. This contradicts the minimality property in (ii). Thus every
 1480 mechanism is irreducible and (iii) follows.

1481

1482 (iii) \implies (iv)

1483

1484 Since \mathbf{AB} has K compositional mechanisms, there are disjoint $\mathcal{R}_1, \dots, \mathcal{R}_K \subseteq [m]$. Add zero rows
 1485 of \mathbf{AB} arbitrarily to \mathcal{R}_i denoted by \mathcal{Q}_i (i.e., $\mathcal{R}_i \subseteq \mathcal{Q}_i$) such that $\mathcal{Q}_1, \dots, \mathcal{Q}_K$ partition $[m]$. Then
 1486 $\text{rank}(\mathbf{AB}) = \sum_{k=1}^K \text{rank}((\mathbf{AB})_{\mathcal{Q}_k,:})$ and $\text{rank}((\mathbf{AB})_{\mathcal{Q}_k,:}) \geq 1$.

1487 Suppose a refinement $[m] = \mathcal{Q}'_1 \cup \dots \cup \mathcal{Q}'_{K+1}$ also satisfied the same rank identity. Then there is a
 1488 $\mathbf{B}' \in \mathbb{R}^{n \times n}$ such that \mathbf{AB}' has $K + 1$ compositional mechanisms. Next, we show by contradiction
 1489 that if \mathbf{AB} has K compositional and irreducible mechanisms then there is no invertible $\mathbf{B}' \in \mathbb{R}^{n \times n}$
 1490 such that \mathbf{AB}' has more than K compositional mechanisms establishing (iv).

1491

1492 Suppose such a \mathbf{B}' existed. Denote with $\{\mathcal{R}'_j\}_{j=1}^{K'}$ (with $K' > K$) the row sets that constitute the
 1493 compositional mechanisms of \mathbf{AB}' , respectively.

1494

1495 According to the pigeonhole principle there is at least one \mathcal{R}_i which has elements in multiple \mathcal{R}'_j .
 1496 Denote with $\mathcal{U}_{ij} = \mathcal{R}_i \cap \mathcal{R}'_j$. Then $\text{rank}(\mathbf{A}_{\mathcal{R}_i,:}) = \text{rank}(\mathbf{A}_{\mathcal{R}_i,:} \mathbf{B}) = \sum_j \text{rank}(\mathbf{A}_{\mathcal{U}_{i,j},:} \mathbf{B}) =$
 1497 $\sum_j \text{rank}(\mathbf{A}_{\mathcal{U}_{i,j},:})$, which contradicts the irreducibility assumption. Thus, there is no basis in which
 1498 \mathbf{A} has more than K compositional mechanisms.

1499

1500 (iv) \implies (i)

1501

1502 Assume (iv) with partition $[m] = \mathcal{Q}_1 \cup \dots \cup \mathcal{Q}_K$.

1503

1504 Permute rows so that $\mathcal{Q}_1, \dots, \mathcal{Q}_K$ are consecutive; call the permutation matrix \mathbf{P} . Because the row
 1505 spaces $\text{row}(\mathbf{A}_{\mathcal{Q}_k,:})$ are pairwise independent, one may choose a column basis aligned with them,
 1506 yielding $\mathbf{B} \in \mathbb{R}^{n \times n}$ with $\mathbf{PAB} = \text{diag}(\mathbf{A}^{(1)}, \dots, \mathbf{A}^{(K)})$. Consequently $\mathcal{G}(\mathbf{PAB}) = \mathcal{G}(\mathbf{AB})$
 1507 has at least K connected components.

1508

1509 Now, let \mathbf{B} be arbitrary and suppose $\mathcal{G}(\mathbf{AB})$ had $K + 1$ connected components with vertex sets
 1510 $\mathcal{C}'_1, \dots, \mathcal{C}'_{K+1}$. As before set $\mathcal{R}'_k := \bigcup_{i \in \mathcal{C}'_k} \text{supp}((\mathbf{AB})_{:,i}) \subseteq [m]$. Disjointness of components
 1511 implies $[m] = \mathcal{R}'_1 \cup \dots \cup \mathcal{R}'_{K+1}$ and, as before,

$$\text{rank}(\mathbf{A}) = \sum_{k=1}^{K+1} \text{rank}(\mathbf{A}_{\mathcal{R}'_k,:}),$$

1512 contradicting the minimality clause in (i). Therefore every invertible \mathbf{B} produces at most K connected components.
 1513

1514 We have established the chain of implications
 1515

$$1516 \quad (i) \implies (ii) \implies (iv) \implies (iii) \implies (i), \\ 1517$$

1518 hence all four statements are equivalent. \square
 1519

1520 **B EXAMPLES**
 1521

1522 **Example 1** (Type M and Type S mechanistic independence vs. reducibility). *This example illustrates Type M and Type S mechanistic independence and reducibility. We display four Jacobians, each written in a basis aligned with a given product decomposition of the source tangent space. Block columns (corresponding to distinct source components) are separated by vertical rules:*
 1523
 1524
 1525

$$1526 \quad \mathbf{A} = \left[\begin{array}{c|c} 1 & 0 \\ 1 & 0 \\ -2 & 1 \\ -1 & 1 \\ 1 & 1 \\ 2 & 1 \\ 0 & 1 \\ 0 & 1 \end{array} \right] \quad \mathbf{B} = \left[\begin{array}{c|c|c} 1 & 0 & -1 \\ 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{array} \right]$$

$$1534 \quad \mathbf{C} = \left[\begin{array}{c|c|c} 1 & 0 & 1 \\ 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{array} \right] \quad \mathbf{D} = \left[\begin{array}{c|c|c|c} -1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 3 & -1 & 1 & 0 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 3 \end{array} \right]$$

1543 For a Jacobian \mathbf{J} displayed in a basis aligned with the product decomposition $\mathfrak{B} = \bigoplus_i T_{\mathbf{s}_i} \mathcal{S}_i$, let
 1544 $\|\mathbf{J}\|_0$ denote the number of its nonzero entries. In this aligned basis, we have
 1545

$$1546 \quad \rho_{\mathfrak{B}}^+ \leq \|\mathbf{J}\|_0.$$

1547 For a (right) change of source basis $\mathbf{G} \in \text{GL}(T_{\mathbf{s}} \mathcal{S})$ that respects \mathfrak{B} , the transformed Jacobian is
 1548 $\mathbf{J}\mathbf{G}$, and
 1549

$$1550 \quad \rho_{\mathfrak{B}}^+ = \min_{\mathbf{G} \in \{\text{block-diagonal}\}} \|\mathbf{J}\mathbf{G}\|_0.$$

1551 Conversely, for a change of basis $\mathbf{G} \in \text{GL}(T_{\mathbf{s}} \mathcal{S})$ that does not respect \mathfrak{B} ,
 1552

$$1553 \quad \rho_{\mathfrak{B}}^- = \inf_{\mathbf{G} \notin \{\text{block-respecting}\}} \|\mathbf{J}\mathbf{G}\|_0.$$

1555 Likewise, for a single component i with a (nontrivial) split $\mathfrak{B}_i = U \oplus V = T_{\mathbf{s}_i} \mathcal{S}_i$, we compare $\rho_{\mathfrak{B}_i}^+$
 1556 vs. $\rho_{\mathfrak{B}_i}^-$ using changes of basis that do (or do not) respect \mathfrak{B}_i while fixing basis elements spanning
 1557 $\bigoplus_{j \in [K] \setminus \{i\}} T_{\mathbf{s}_j} \mathcal{S}_j$.
 1558

1559 **Mechanistic independence and irreducibility of Type M.** Since no column support contains or
 1560 is contained in the support of a column from a different block, Type M mechanistic independence
 1561 holds in all cases. For $\mathbf{A}, \mathbf{B}, \mathbf{C}$, each component is one-dimensional, so Type M irreducibility holds
 1562 vacuously. The first block of \mathbf{D} is further reducible since $\mathbf{D}_{:,1} \pitchfork \mathbf{D}_{:,2}$ while the second block is
 1563 irreducible as $\mathbf{D}_{:,3} \supset \mathbf{D}_{:,4}$. Note that in the sparsest product-splitting basis multi-dimensional
 1564 factors cannot be Type M reducible.
 1565

1566 **Irreducibility of Type S.** Again, since each component of $\mathbf{A}, \mathbf{B}, \mathbf{C}$ is one-dimensional, Type S
 1567 irreducibility holds automatically. For the Jacobian \mathbf{D} , each component is two-dimensional; thus
 1568 we must verify that no 2D block can be internally split to reduce sparsity compared with all other
 1569 possible splits.

1570 First block (columns 1–2). Consider the displayed split $\mathfrak{B}_1 = T_{s_1} \mathcal{S}_1$ and any other nontrivial
 1571 internal split $\tilde{\mathfrak{B}}_1 = U \oplus V$. Since both U and V are one-dimensional, no further \mathfrak{B}_1 -respecting
 1572 basis transformation can reduce the support. Counting nonzeros yields $\rho_{\mathfrak{B}_1}^+ = 8$, and since
 1573

$$1574 \mathbf{G} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \quad \|\mathbf{D}_{:, \{1,2\}} \mathbf{G}\|_0 = \|\mathbf{D}_{:, \{1,2\}}\|_0,$$

1576 we obtain $\rho_{\mathfrak{B}_1}^+ = \rho_{\mathfrak{B}_1}^-$.

1577 For a distinct split $\tilde{\mathfrak{B}} \neq \mathfrak{B}$, we have $\rho_{\tilde{\mathfrak{B}}_1}^- \leq \rho_{\mathfrak{B}_1}^+$, since we can always revert to the current split.
 1578 Moreover, $\rho_{\mathfrak{B}_1}^+ \geq \rho_{\mathfrak{B}_1}^-$, as the current split already achieves minimal support. Hence, the first block
 1579 is irreducible. (We could construct an alternative Jacobian with reducible first component by setting
 1580 both -1 entries in \mathbf{D} to 0; modifying only one is insufficient.)

1581 Second block (columns 3–4). Here a local simplification is possible: by mixing the third and fourth
 1582 columns appropriately, we can reduce the third column by one nonzero. After this adjustment, the
 1583 same argument as above shows that the second block is also Type S irreducible.

1584

1585 **Mechanistic independence of Type S.** We now check mechanistic independence for each Jacobian
 1586 individually.

1587 Case **A**. Columns (blocks) have exclusive rows: rows 1, 2 are nonzero only in the first block, and
 1588 rows 7, 8 only in the second. Any non-respecting change of basis mixes the two one-dimensional
 1589 components, introducing nonzeros into these exclusive rows while at most one of the four shared
 1590 rows in the middle can be canceled. Thus, any genuine mixing strictly increases the total ℓ_0 -norm,
 1591 so $\rho_{\mathfrak{B}}^- > \rho_{\mathfrak{B}}^+ = \|\mathbf{A}\|_0$.

1592

1593 Case **B**. Pairwise, \mathbf{B} behaves analogously to \mathbf{C} : for each column pair there are four exclusive rows
 1594 and only one shared. This enforces a lower bound under any 2×2 mix, so all pairwise checks pass.

1595 However, there exists a full $\mathbf{G} \in \mathbb{R}^{3 \times 3}$ mixing all three columns without increasing the overall
 1596 support (thus violating strict inequality in Def. 19):

$$1597 \mathbf{G} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad \|\mathbf{B}\mathbf{G}\|_0 = \|\mathbf{B}\|_0.$$

1598 Hence, \mathbf{B} is pairwise but not fully mechanistically independent.

1599 Case **C**. As in **B**, all pairwise checks pass. The key difference is that in \mathbf{C} the three shared rows (1st,
 1600 3rd, 5th) cannot be simultaneously eliminated by any invertible $\mathbf{G} \in \mathbb{R}^{3 \times 3}$. Thus, any combination
 1601 involving all three blocks necessarily preserves the three exclusive rows (2nd, 4th, 6th) and increases
 1602 ℓ_0 . Therefore, $\rho_{\mathfrak{B}}^- > \rho_{\mathfrak{B}}^+ = \|\mathbf{C}\|_0$, i.e., \mathbf{C} is fully mechanistically independent.

1603

1604 Case **D**. A local simplification inside the second block (mixing the third and fourth columns) reduces
 1605 the third column by one nonzero. After this, the first, second, and third columns each have four
 1606 nonzeros (the fourth remains at two), giving $\rho_{\mathfrak{B}}^+ = 14 = 4 + 4 + 4 + 2$.

1607

1608 To break Type S independence, one would need a cross-block mix: there must exist a vector
 1609 (a, b, c, d) with either a or b nonzero and either c or d nonzero such that

$$1610 \mathbf{D} (a, b, c, d)^\top$$

1611 has at most four nonzero entries (matching $\rho_{\mathfrak{B}}^+$). This is impossible: any such combination has
 1612 at least five nonzeros, even under careful cancellations. Hence, every cross-block mixing strictly
 1613 increases the ℓ_0 -norm, and \mathbf{D} is Type S mechanistically independent.

1614

1615 In summary, all components of $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ are Type S irreducible; $\mathbf{A}, \mathbf{C}, \mathbf{D}$ are Type S mechanis-
 1616 tically independent; \mathbf{B} is pairwise but not fully mechanistically independent.

1620 **Example 2** (Minimizers of compositional contrast yield Type S independence in some generators).
 1621 *This example shows that there exist generators whose latent components are Type S independent but*
 1622 *not Type D independent, yet for which the compositional contrast C_{comp} recovers the sources up to*
 1623 *permutation and element-wise transformations.*

1624 Let $s \in \mathbb{R}^2$ and $g: \mathbb{R}^2 \rightarrow \mathbb{R}^5$ with $g(s) = As$, where

$$1626 \quad 1627 \quad 1628 \quad 1629 \quad 1630 \quad 1631 \quad A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}.$$

1632 We immediately observe that s_1 and s_2 are Type S but not Type D independent.

1633 Consider now a learned decoder $\hat{g}: \mathbb{R}^2 \rightarrow \mathbb{R}^5$. If \hat{g} minimizes the reconstruction error, then its
 1634 Jacobian at some $z^* \in \mathbb{R}^2$ takes the form $J_{\hat{g}}(z^*) = AB$ for a nonsingular matrix B . Equivalently,
 1635 $|\det(B)| \geq q$ for some $q > 0$. Writing

$$1636 \quad 1637 \quad 1638 \quad B = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

1639 we obtain

$$1640 \quad 1641 \quad 1642 \quad 1643 \quad 1644 \quad 1645 \quad AB = \begin{pmatrix} a & b \\ a & b \\ a+c & b+d \\ c & d \\ c & d \end{pmatrix} \quad \text{and} \quad C_{\text{comp}}(B) = 2|a||b| + 2|c||d| + |a+c||b+d|.$$

1646 We will show that

$$1647 \quad \min_{|\det(B)| \geq q} C_{\text{comp}}(B) = q,$$

1649 and that every global minimizer of C_{comp} is a generalized permutation matrix (i.e., a matrix with
 1650 exactly one nonzero entry in each row and each column). This means that the learned latent factors
 1651 are Type S independent after joint minimization of the reconstruction error and C_{comp} .

1652 *Proof.* We prove the claim in three steps.

1654 **Step 1. Reduction to the case $|\det(B)| = q$.**

1655 For $t > 0$ we get

$$1656 \quad C_{\text{comp}}(tB) = t^2 C_{\text{comp}}(B), \quad |\det(tB)| = t^2 |\det(B)|.$$

1658 If $|\det(B)| > q$, choose $t = \sqrt{q/|\det(B)|} < 1$. Then

$$1660 \quad |\det(tB)| = q, \quad C_{\text{comp}}(tB) = t^2 C_{\text{comp}}(B) < C_{\text{comp}}(B).$$

1662 Thus any minimizer must satisfy $|\det(B)| = q$. It therefore suffices to prove

$$1663 \quad C_{\text{comp}}(B) \geq |\det(B)| \quad \text{for all } B,$$

1664 and to identify the matrices for which equality holds.

1666 **Step 2. A chain of inequalities.**

1667 Let

$$1668 \quad x = |a|, \quad y = |b|, \quad u = |c|, \quad v = |d|.$$

1670 By the triangle inequality,

$$1671 \quad |a+c| \geq |x-u|, \quad |b+d| \geq |y-v|.$$

1673 Hence,

$$1674 \quad C_{\text{comp}}(B) \geq 2xy + 2uv + |x-u| \cdot |y-v| =: F(x, y, u, v).$$

1674 We now claim

1675
$$F(x, y, u, v) \geq xv + yu \quad \text{for all } x, y, u, v \geq 0.$$

1676

1677 Define

1678

1679
$$D := F(x, y, u, v) - (xv + yu) = 2xy + 2uv + |x - u||y - v| - xv - yu.$$

1680

1681 We analyze D by cases on the signs of $x - u$ and $y - v$.

1682

1683 *Case 1:* $x \geq u$ and $y \geq v$. Then $|x - u| = x - u$, $|y - v| = y - v$, and

1684

1685
$$\begin{aligned} D &= 2xy + 2uv - xv - yu + (x - u)(y - v) \\ &= 3xy + 3uv - 2xv - 2yu \\ &= (xy + uv) + 2(x - u)(y - v) \geq 0. \end{aligned}$$

1686

1687

1688 *Case 2:* $x \geq u$ and $y < v$. Then $|x - u| = x - u$, $|y - v| = v - y$, and

1689

1690
$$\begin{aligned} D &= 2xy + 2uv - xv - yu + (x - u)(v - y) \\ &= 2xy + 2uv - xv - yu + (xv - xy - uv + uy) \\ &= xy + uv \geq 0. \end{aligned}$$

1691

1692

1693 *Case 3:* $x < u$ and $y \geq v$. By symmetry with Case 2 (interchanging (x, u)), we again obtain

1694

1695
$$D = xy + uv \geq 0.$$

1696

1697

1698 *Case 4:* $x < u$ and $y < v$. Then $|x - u| = u - x$, $|y - v| = v - y$, and

1699

1700
$$\begin{aligned} D &= 2xy + 2uv - xv - yu + (u - x)(v - y) \\ &= 2xy + 2uv - xv - yu + (uv - uy - xv + xy) \\ &= 3xy + 3uv - 2xv - 2yu \\ &= (xy + uv) + 2(x - u)(y - v) \geq 0. \end{aligned}$$

1701

1702

1703

1704 In all cases we have $D \geq 0$, so indeed

1705

1706
$$F(x, y, u, v) \geq xv + yu = |a||d| + |b||c|.$$

1707

1708 Finally, the determinant satisfies

1709

1710
$$|\det(\mathbf{B})| = |ad - bc| \leq |ad| + |bc| = |a||d| + |b||c| = xv + yu$$

1711

1712 by the triangle inequality. In summary, we have the chain

1713

1714
$$C_{\text{comp}}(\mathbf{B}) \geq F(x, y, u, v) \geq xv + yu \geq |\det(\mathbf{B})|.$$

1715

1716 In particular, if $|\det(\mathbf{B})| = q$, then

1717

1718
$$C_{\text{comp}}(\mathbf{B}) \geq q.$$

1719

1720 **Step 3. Equality conditions and classification of minimizers.**

1721

1722 To attain the minimum under $|\det(\mathbf{B})| \geq q$, we must have $|\det(\mathbf{B})| = q$ and equality throughout the chain

1723

1724
$$C_{\text{comp}}(\mathbf{B}) \geq F(x, y, u, v) \geq xv + yu \geq |\det(\mathbf{B})|.$$

1725

1726 (i) *Equality in $C_{\text{comp}}(\mathbf{B}) \geq F(x, y, u, v)$.*

1727

1728 We used

1729

1730
$$|a + c| \geq |a| - |c|, \quad |b + d| \geq |b| - |d|.$$

1731

1732 This requires

1733

1734
$$ac \leq 0, \quad bd \leq 0.$$

1735

1736 (ii) *Equality in $F(x, y, u, v) \geq xv + yu$.*

1737

1728 From the case analysis above, equality $F(x, y, u, v) = xv + yu$ forces
 1729

$$1730 \quad xy = 0 \quad \text{and} \quad uv = 0,$$

1731 that is,

$$1732 \quad |a||b| = 0, \quad |c||d| = 0,$$

1733 so

$$1735 \quad \text{either } a = 0 \text{ or } b = 0, \quad \text{and} \quad \text{either } c = 0 \text{ or } d = 0.$$

1736 (iii) *Equality in $xv + yu \geq |\det(\mathbf{B})|$.*

1738 We used

$$1739 \quad |\det(A)| = |ad - bc| \leq |ad| + |bc| = xv + yu,$$

1740 which requires

$$1741 \quad (ad)(bc) \leq 0.$$

1743 From (ii) we get four structural patterns, two of which are incompatible with $\det(\mathbf{B}) \neq 0$. The
 1744 remaining possibilities are

$$1746 \quad \mathbf{B} = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \quad \text{or} \quad \mathbf{B} = \begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix}.$$

1749 For these matrices,

$$1750 \quad C_{\text{comp}}(\mathbf{B}) = |\det(\mathbf{B})| \in \{ |ad|, |bc| \},$$

1752 so equality holds everywhere.

1753 These are precisely the 2×2 generalized permutation matrices. Consequently, the global minimizers
 1754 of C_{comp} under the constraint $|\det(\mathbf{B})| \geq q$ are exactly the generalized permutation matrices with
 1755 $|\det(\mathbf{B})| = q$, and the minimum value of C_{comp} is q . \square

1757 C DISENTANGLEMENT FOR NON-INVERTIBLE GENERATORS

1759 In some applications the underlying generator is non-invertible when modelling the latent space as
 1760 a product space (or a subset thereof). For two such scenarios we can nevertheless make meaningful
 1761 statements about disentanglement: (1) *local invertibility*, and (2) *invertibility on an open subset*.

1763 For the former category, an example is image data containing multiple objects with identical appear-
 1764 ance, since the generator is then (block-)permutation invariant. Another example is the angle of a
 1765 rotary joint with multiple revolutions in a robotic arm, as $\theta + n(2\pi)$ maps to the same physical state.
 1766 More generally, these situations involve symmetries such as permutation or rotational symmetry.

1767 For the second category, an example arises from occlusions in image data. Here the generator is also
 1768 non-invertible, but now entire regions of the latent space map to the same observation (e.g., when
 1769 one object is hidden behind another).

1770 In such cases multiple latent codes map to the same observation, which makes the encoder inherently
 1771 ambiguous. The learning algorithm must make a choice about how to represent those observations.
 1772 This choice may lead to defects in the encoder, such as discontinuities (as discussed later). However,
 1773 a decoder need not suffer from this issue. As long as we can learn a decoder that generates the
 1774 observation manifold and whose components are mechanistically independent, we can still obtain
 1775 disentanglement in case (1), and at least on the invertible subsets in case (2).

1776 We now consider two illustrative examples.

1778 **Example 1.** Consider images depicting two balls of identical appearance at arbitrary positions in
 1779 the image, but without occlusion. In this case the latent space can be modelled using an ordered
 1780 configuration space, representing tuples of pairwise distinct object states:

$$1781 \quad \text{Conf}_K(\Omega) := \{ \mathbf{s} \in \Omega^K \mid s_i \neq s_j, \forall i \neq j \in [K] \}, \quad (25)$$

1782 where Ω denotes the state space of a single object (e.g., position, color), and K is the number of
 1783 objects. Since any permutation of the factors (i.e., objects) yields the same observation, the ground-
 1784 truth decoder must be permutation invariant. The observation manifold can therefore be viewed as
 1785 an *unordered* configuration space, obtained by quotienting out permutations.

1786 Assuming a soft rasterizer, the generator can be modelled as a local diffeomorphism: the map is
 1787 locally invertible, and small latent perturbations produce small and reversible changes in the ob-
 1788 servations. A direct check verifies that we have Type D independence and, by implication, also
 1789 Type M/S/ H_n independence. Because a single ball cannot be itself represented as an additive func-
 1790 tion with two or more components, we have Type H_2 irreducibility, and thus also Type D irreducibil-
 1791 ity. The generator is also second-order separable, since all first- and second-order partial derivatives
 1792 are linearly independent at every point in the latent space. Considering the affine equivariance of
 1793 positional encoding, the generator must also be Type S irreducible. Thus the local identifiability
 1794 results for Type D, S, and H_2 apply.

1795 Furthermore, any configuration space with $K \geq 2$ and $\dim(\Omega) \geq 2$ is connected. Its 1-slices are
 1796 also connected: fixing one ball, the other can be moved continuously to any other position in the
 1797 image while avoiding collisions. Hence Theorem 1 applies, and local disentanglement extends to
 1798 global disentanglement.

1800 **Example 2.** Consider images of two balls, one large and one small, placed at different locations,
 1801 with possible occlusion (the smaller potentially disappearing behind the larger). The latent space
 1802 can be modelled as $\mathcal{S} = \mathbb{R}^2 \times \mathbb{R}^2$, describing the (x, y) -positions of both balls. The generator then
 1803 maps a hyper-tube of latent codes (corresponding to positions of the smaller ball behind the larger
 1804 one) to the same observations. With a soft rasterizer, the generator becomes differentiable, but it
 1805 is not invertible (not even locally invertible) on the full domain. However, at any point outside the
 1806 hyper-tube it is locally invertible.

1807 Following the same reasoning as in Example 1, we obtain local identifiability of the decoder at all
 1808 points outside the hyper-tube. Restricted to this region, the model is even globally identifiable, since
 1809 the resulting space is identical to that of the previous example. Therefore, if we train a decoder
 1810 with mechanistically independent components that can generate the observation manifold, it must
 1811 be globally disentangled outside the hyper-tube.

1812 Whether disentanglement holds *within* the hyper-tube is undecidable: if the large ball occludes the
 1813 smaller one and moves by a small amount, we cannot determine from the observation alone whether
 1814 the smaller ball behind it moved as well.

1816 D EXPERIMENTAL DETAILS AND FURTHER EXPERIMENTS

1818 D.1 COMPOSITIONAL CONTRAST AS A SURROGATE FOR TYPE S INDEPENDENCE

1820 This experiment closely follows the setup of Brady et al. (2023). We first sample latent variables
 1821 from a standard normal distribution and then generate observations by passing them through an
 1822 invertible MLP. The outputs are concatenated as

$$1824 \quad \mathbf{g}(\mathbf{s}) = (\mathbf{g}^{(1)}(\mathbf{s}_1), \mathbf{g}^{(1,2)}(\mathbf{s}_1, \mathbf{s}_2), \mathbf{g}^{(2)}(\mathbf{s}_2), \mathbf{g}^{(2,3)}(\mathbf{s}_2, \mathbf{s}_3), \dots, \mathbf{g}^{(K)}(\mathbf{s}_K)).$$

1825 For each $\mathbf{g}^{(i)}$, the slot dimension is fixed at $\dim(\mathcal{S}_i) = 3$, and the slot-output dimension is set to 20.
 1826 The overlap ratio is determined by the output dimensions of $\mathbf{g}^{(1)}$ and $\mathbf{g}^{(1,2)}$: if they have the same
 1827 number of output dimensions, the overlap is 50%. Strictly speaking, for $K > 2$, this implies that in
 1828 Figure 2, $K - 2$ slots exhibit a 66% overlap.

1830 We train models with $K \in \{2, 3, 5\}$ slots and regularization parameters $\lambda \in \{10^{-2}, 1\}$, where the
 1831 loss is $\mathcal{L} = \mathcal{L}_{\text{recon}} + \lambda C_{\text{comp}}$. For each configuration, we run five random seeds across overlap levels
 1832 $\{0\%, 5\%, 20\%, 50\%\}$, resulting in 120 models in total. To ensure comparability across different
 1833 numbers of slots and regularization parameters, we apply the same normalization procedure to all
 1834 experiments. In addition, within each group of models sharing the same overlap ratio, we normalize
 1835 C_{comp} by dividing by the group mean, since the achievable minimum of C_{comp} varies substantially
 with overlap.

1836
1837

D.2 EXPERIMENTS ON NON-INVERTIBLE GENERATORS

1838
1839
1840

We now consider images depicting two balls whose colors lie between green and red and which may appear at any position in the image, but without occlusion ($K = 2, d_s = 6$); see Figure 4. We train an autoencoder with an *additive decoder* (i.e., Type H₂ independence), defined as

1841
1842
1843

$$\hat{g}(\mathbf{z}) = \sum_{i \in [K]} \hat{g}^{(i)}(\mathbf{z}_i),$$

1844
1845

using the standard Mean Squared Error (MSE) reconstruction loss (implementation details are provided below).

1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
18571858
1859
1860

Figure 4: Image reconstructions for the entire latent code and for individual slots. Note that the per-slot reconstructions appear brighter because the offset is undetermined in an additive model.

1861
1862
1863
1864
1865
1866
1867

To evaluate disentanglement quantitatively in this setting, we cannot directly predict the ground-truth latent code from the learned representation using the Slot Identifiability Score (SIS) as before. Because multiple latent codes always correspond to the same observation, the prediction target is ambiguous. Instead, we first determine the best-fitting *fundamental domain* of the latent space under permutations. A fundamental domain is any connected subset of the configuration space containing exactly one representative of each latent orbit under permutations. Restricting the generator to a fundamental domain renders it invertible, making the prediction target unique.

1868
1869
1870
1871
1872
1873
1874

However, there exist infinitely many choices of fundamental domains, and for most of them the learned regressor would need to approximate a discontinuous function. To avoid this, for each reconstructed image we compute the centers of mass of both balls in image space and select, among all permutations of the ground-truth factors, the closest match. This produces a partition of the latent space that aligns as closely as possible with the encoder’s (arbitrary) convention. We then compute the SIS on this selected fundamental domain and denote the resulting metric by SIS*. Table 1 shows that the model achieves nearly perfect disentanglement.

1875
1876
1877

Table 1: Slot Identifiability Scores after selecting the best-fitting fundamental domain over 5 random seeds.

1878
1879
1880
1881
1882
1883
1884
1885
1886

	RMSE	SIS*
	1.30 ± 0.18	99.6 ± 0.05

Next, we examine the encoder in more detail. As noted by Zhang et al. (2019); Hayes et al. (2023), the encoder must approximate discontinuities in this setting, a phenomenon known as the *responsibility problem*. Such discontinuities necessarily arise whenever we traverse a path in the latent space that connects a point to its block-permutation.

1887
1888
1889

Figure 5 shows the learned latent variables for several latent traversals: in each row, only one ground-truth latent variable is varied while the others remain fixed. The corresponding images and reconstructions are shown in Figure 6. When we vary the coordinates of the first ball \mathbf{s}_1 , only the second encoded slot $\mathbf{z}_2 = (z_{2,1}, z_{2,2}, z_{2,3})^\top$ changes; modifying \mathbf{s}_2 analogously affects only \mathbf{z}_1 , with one

exception: The lower-left traversal in Figure 5 reveals an (approximately) discontinuous jump in the middle. On either side of this jump, changes to the ground-truth latent affect only one slot. This discontinuity is unavoidable and can, in principle, hinder autoencoder training by trapping the optimization in poor local minima. However, in this instance, training succeeds without issue.

Figure 5: Latent traversals: in each subplot, one ground-truth latent variable varies while all others remain fixed. The curves depict the learned latent codes.

In Figure 6, consider the traversal of the x -position of the second ball: the image reconstructions align perfectly with the ground truth, and nothing in the visual output betrays the latent discontinuity.

Figure 6: Image reconstructions for latent traversals: in each row, a single ground-truth latent variable is varied while all others remain fixed. From top to bottom, we vary the x -position, y -position, and color of the first ball, followed by the same for the second.

Implementation Details

1944
 1945 **Dataset.** We use images of size $64 \times 64 \times 3$ with pixel values in $[0, 255]$. The dataset contains
 1946 300,000 training images, 10,000 validation images, and 50,000 test images. Images with occlusions
 1947 are removed, introducing mild dependencies between object positions. Apart from this, the latent
 1948 variables are sampled uniformly over their support.

1949 **Model Architecture.** The *encoder* consists of:

1950 (1) A ResNet-18 backbone with the final classification layer removed (output dimension: 512).
 1951 (2) A linear layer mapping $512 \rightarrow 4096$, followed by Batch Normalization and a Leaky ReLU
 1952 (slope 0.01 for negative inputs).
 1953 (3) A fully connected layer of size 4096×4096 , again followed by Batch Normalization and
 1954 a Leaky ReLU.
 1955 (4) A final linear layer mapping 4096 to the total ground-truth latent dimension, followed by
 1956 Batch Normalization.

1957 We use an *additive decoder* $\hat{\mathbf{g}}(\mathbf{z}) = \sum_{i \in [K]} \hat{\mathbf{g}}^{(i)}(\mathbf{z}_i)$, where each subdecoder $\hat{\mathbf{g}}^{(i)}$ has the same
 1958 architecture (with no shared weights):

1959 (1) A linear layer mapping from $d_i = \frac{d_s}{K}$ to 1024, followed by Batch Normalization and a
 1960 Leaky ReLU.
 1961 (2) Four fully connected layers of size 1024×1024 , each followed by Batch Normalization
 1962 and a Leaky ReLU. The output is reshaped into 64 feature channels over a 4×4 grid.
 1963 (3) A stack of deconvolutional layers, each followed by a Leaky ReLU:
 1964 (a) Deconvolution: $64 \rightarrow 1024$, kernel size 4, stride 2, padding 1.
 1965 (b) Deconvolution: $1024 \rightarrow 512$, kernel size 4, stride 2, padding 1.
 1966 (c) Deconvolution: $512 \rightarrow 128$, kernel size 4, stride 2, padding 1.
 1967 (d) Deconvolution: $128 \rightarrow 3$, kernel size 4, stride 2, padding 1.

1968 **Hyperparameters.** We use the AdamW optimizer (Loshchilov & Hutter, 2017) with:

1969 • Batch size: 1024,
 1970 • Learning rate: 5×10^{-5} ,
 1971 • Weight decay: 1×10^{-5} ,
 1972 • Number of training epochs: 1000.

1973 LLM USAGE DISCLOSURE

1974 In accordance with the ICLR policy on large language model (LLM) usage, we disclose that an LLM
 1975 (OpenAI’s ChatGPT) was used solely for minor language polishing. This included limited grammar
 1976 correction and rephrasing for clarity. All research ideas, technical content, analyses, and conclusions
 1977 were generated entirely by the authors, who remain fully responsible for the paper’s content. For
 1978 full transparency, this very disclosure note was also drafted with the help of ChatGPT.

1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997