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ABSTRACT

Disentangled representations seek to recover latent factors of variation underlying
observed data, yet their identifiability is still not fully understood. We introduce
a unified framework in which disentanglement is achieved through mechanistic
independence, which characterizes latent factors by how they act on observed
variables rather than by their latent distribution. This perspective is invariant to
changes of the latent density, even when such changes induce statistical dependen-
cies among factors. Within this framework, we propose several related indepen-
dence criteria — ranging from support-based and sparsity-based to higher-order
conditions — and show that each yields identifiability of latent subspaces, even
under nonlinear, non-invertible mixing. We further establish a hierarchy among
these criteria and provide a graph-theoretic characterization of latent subspaces
as connected components. Together, these results clarify the conditions under
which disentangled representations can be identified without relying on statistical
assumptions.

1 INTRODUCTION

Disentangled representations capture the underlying explanatory factors that generate observed data.
They are widely believed to promote compositionality, enable controllable generation, and facilitate
transfer (Bengio et al., 2013} Higgins et al., 2017; [Scholkopf et al.| 2021} [Locatello et al., 2019; \Gr-
eff et al., 2020; |Goyal & Bengio}2022))). From a scientific perspective, disentanglement aligns with
the goal of discovering the causal or mechanistic structure of data-generating processes (Scholkopf
et al., 2021). The question of whether such representations can be consistently recovered is ad-
dressed by identifiability. If a model class lacks identifiability, different training runs may encode
incompatible factors, thereby undermining interpretability and transfer.

A classical route to identifiability is to posit statistical independence of the latent factors, as in
independent component analysis (ICA) (Comon, (1994; |[Hyvirinen & Ojal |2000) and independent
subspace analysis (ISA) (Cardoso, 1998} Hyvirinen & Hoyerl, [2000). Early work focused on lin-
ear mixing, where identifiability can be obtained under mild conditions. For general nonlinear
mixing, however, identifiability is impossible without further assumptions (Hyvirinen & Pajunen)
1999; |Locatello et al.l|2019), motivating a large body of work that augments statistical assumptions
with temporal cues (Hyvirinen & Morioka, 2016} |2017; |Klindt et al.| [2020), auxiliary variables
(Hyvirinen & Moriokal 2017; |[Hyvirinen et al.l 2019; |[Khemakhem et al., [2020a)), multiple views
(Khemakhem et al., |2020b; |Gresele et al., [2020; Von Kiigelgen et al., [2021; Zimmermann et al.,
20215 Matthes et al., [2023)), or interventions (Locatello et al., 2020; |[Lachapelle et al., 2022; |Ahuja;
et al.,|2022; Brehmer et al.,2022;|Ahuja et al.| | 2023} Jiang & Aragam,|[2023}|Yao et al., [2023}Zhang
et al.| 2024} Ng et al.| [2025).

A complementary strategy constrains the mechanism that maps latents to observations (Taleb & Jut-
ten, |1999; [Horan et al., 2021} |Gresele et al., [2021; Moran et al., [2021; [Buchholz et al., 2022} |Ghosh
et al.| [2023; Zheng & Zhang|,2023)). Independent Mechanism Analysis (IMA) (Gresele et al., [2021)
proposes to address nonlinear ICA by restricting the mixing function so that its Jacobian has orthog-
onal columns. This couples statistical independence of the latents with a mechanistic constraint on
the generator. In contrast, we pursue mechanistic independence as a stand-alone organizing princi-
ple: factors are defined by how they act on observations (through the generator), not by how they are
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distributed. This shift yields identifiability statements that are invariant to reweightings of the latent
density and allows the true factors to be misaligned with any statistically independent subspaces.

This work presents a family of mechanistic independence criteria — spanning support-based sepa-
ration, sparsity gaps in first-order action, and higher-order (cross-derivative) constraints. Similar to
ISA that shows identifiability with respect to a minimal decomposition into independent subspaces,
each criterion comes with a corresponding notion of irreducibility that rules out spurious internal
splits of a factor and yields an identifiability theorem. Our framework covers multi-dimensional
factors, partial disentanglement, and non-invertible generators.

Our framework generalizes and unifies recent identifiability results based on mechanistic con-
straints: object-centric disentanglement via disjoint supports (Brady et al.,|2023)), interaction asym-
metry (Brady et al.|[2024), and additive decoders (Lachapelle et al.,[2023)), and it partially subsumes
sparsity-based nonlinear ICA results (Zheng et al.| 2022} Zheng & Zhang|, 2023) (the parts that do
not require statistical independence). Moreover, defining independent mechanisms by Jacobian-
orthogonality as in IMA (Gresele et al., [2021) appears in our taxonomy as one instance within a
broader class of mechanistic constraints. Unlike approaches that rely primarily on distributional
assumptions (e.g., temporal structure or auxiliary variables), our results hinge on properties of the
generator and therefore remain valid under broad latent densities. The main contributions of this
work are as follows.

* We define a notion of local disentanglement and prove that under mild topological assump-
tions (such as path-connectedness of the source space) local disentanglement extends to
global disentanglement even for generators that are not fully invertible.

* We introduce a family of mechanistic independence criteria for subspaces and prove for
each identifiability (up to block-wise invertible transforms and permutations).

* We discuss how the independence criteria are related and show that the independent and ir-
reducible factors coincide with connected components of graphs derived from mechanistic
assumptions of the generator.

Notation We write [n] := {1,...,n} for n € N. Scalars are denoted by lowercase letters, vectors
by bold lowercase, and matrices by bold uppercase (e.g., a € R, a € R", A € R"*™). Scalar-
valued functions are written f, f;, while general maps are written f, f;. Forp € §; x --- x §,,, we
set D; fp := D fp o ¢; for the differential in the ¢-th argument (¢, the canonical inclusion), and more
generally D}, fp = D" fp o (1, 15,id, ..., id).

2 DISENTANGLEMENT AND IDENTIFIABILITY

‘We now formalize the data-generating assumptions and the notion of disentanglement used through-
out the paper, before turning to identifiability. Our goal is to explain when a decoder (or encoder)
recovers, up to natural ambiguities, the underlying factors of variation that compose the observa-
tions.

2.1 DATA GENERATING PROCESS

We model latent factors of variation as subspaces of a product manifold, reflecting the often compo-
sitional nature of observed data. Let the set of generative (latent) configurations be an opelﬂ subset
S C &1 x --- x Sk, where each factor space S; has positive dimension. We assume the latent
distribution Pj is strictly positive on S.

In line with the manifold hypothesis in representation learning (though assuming that observations
lie on rather than merely near a manifold), we posit that observations are produced via a generator
(also called a ground-truth decoder or mixing function)

g: S — X CR%,

!'The condition that S is open implies that each factor can vary independently and without restriction at any
point within the space and is a common assumption.
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We denote the observation manifold by X' := g(S), where typically d, := dim(S) is much smaller
than d,.

Notably, instead of characterizing the underlying factors through (conditional) statistical indepen-
dence or latent-space group actions (Higgins et al.l 2018)), we characterize them by their action on
the observation manifold via g. While these notions may align, they do not necessarily have to.
Several possibilities for making this precise are discussed in Section 3]

2.2 DISENTANGLED REPRESENTATIONS

To discuss how a learned representation may or may not reflect the underlying generative factors,
we consider a target representation space Z C Hle Z;. In a disentangled representation, each

component Z; is intended to capture a single latent factor, or at most a restricted subset of factors.
We formalize this with the notion of a decomposable map.

Definition 1 (Decomposable map). Let S C Hfil S;and Z C H;‘:l Z;. A map h:S — Zis
decomposable if there exists a surjection o: [K] — [L] and maps h;: [[;c,-1(;) Si — Z; such
that, for all s € S,

h(s) = (hj((si)ieafl(j)))]ir )]

In other words, target factor z; € Z; depends only on the subset of source factors {s; : o(i) = j}.

Definition 2 (Disentanglement). A decoder g: Z — X is disentangled w.r.t. a generatorg: S — X
if there exists a decomposable map h: S — Z such that g = g o h.

Disentanglement asserts that varying a single factor of the learned representation changes the de-
coded observation exactly as varying the correspondlng source factors would. It can also be defined
in terms of an encoder f X — Z(eg., f o g = h). However, when g is not invertible, f may not
exist or may lack desirable properties such as cont1nu1tyﬂ Notably, an oracle generator would be
trivially disentangled w.r.t. itself, even if not invertible. Under mild regularity assumptions, disen-
tanglement forms an equivalence relation (see Propositions[I]and[2)), meaning that g and g represent
equivalent generative models.

More generally, g is locally disentangled if, for every s € S, there exists a neighborhood of s where
the restriction of g admits such a disentangled representation (see Defn. [I3)). At first glance, local
disentanglement may appear less significant than the global property. However, under mild topolog-
ical constraints the two notions coincide, even when g is not fully invertible (see next section).

2.3 IDENTIFIABILITY

Identifiability asks whether a (locally) disentangled description is essentially unique given only ob-
servations in X. It characterizes when a learned representation must be disentangled. The following
global result shows that, under mild topological assumptions, local disentanglement implies global
disentanglement. The key condition is connectedness of slices in the source space. A k-slice is the
subspace obtained by holding all but & factors constant (see Defn.[T4). Note that path-connectedness
of a space and of its slices are related but independent notions (see Remark 2).

Theorem 1 (Global Identifiability). Let S be an open subspace of the product manifold Hfil S,
where each factor S; has positive dimension. Then local disentanglement extends to global disen-
tanglement if:

(1) g: S — X is locally injective.
(2) S is path-connected.
(3) Every (K-1)-slice of S is path-connected.

%A practical example where continuity breaks is the responsibility problem which arises when learning
representations of unordered data, such as sets or objects within an image (Zhang et al.l [2019; |[Hayes et al.|
2023; Mansouri et al.,|2023). The permutation invariance makes the generator non-invertible.



Under review as a conference paper at ICLR 2026

A proof is given in Appendix [A.T] Informally, local disentanglement propagates along paths: since
each factor can vary independently (by openness and path-connectedness), and local injectivity pre-
vents branching, local decompositions extend globally.

In many practical cases (e.g., convex open sets in R™), the topological conditions hold automatically,
and local injectivity follows from standard regularity assumptions. Thus, the main challenge is
usually to establish local disentanglement, and the remainder of the paper therefore focuses on local
identifiability.

3 IDENTIFIABILITY VIA INDEPENDENT MECHANISMS

We now establish a general framework that certifies local disentanglement by analyzing how latent
factors act on the observation manifold through the generator g. The key difference from classical
approaches is that independence is formulated at the level of the generative mechanism rather than
the latent probability law. As a result, it accommodates almost arbitrary distributions, including
those with statistical dependencies between and within subspaces. Importantly, there is no universal
notion of mechanistic independence comparable to statistical independence. Instead, we present a
family of independence criteria — disjointedness (Type D), mutual non-inclusion (Type M), spar-
sity gap (Type S), and higher-order separability (Type H,,) — each of which leads to disentangled
representations when mirrored in the learned representation.

3.1 LoCAL IDENTIFIABILITY OF TYPE D

We begin by slightly extending the result of |Brady et al.|(2023)) and rephrasing it within our frame-
work.

Definition 3 (Mechanistic Independence of Type D). We say that S; and S; (equivalently, s; and
s8;) are mechanistically independent of Type D if, forall s € S, w € T, S;, and v € T}, S,

Digs(u) d ngs(v) =0, 2

where Ts,S; denotes the tangent space of S; at s; and e denotes the element-wise (Hadamard)
product in Rdm.

We call this Type D independence since Hadamard orthogonality expresses that different factors
act on a disjoint set of observation coordinates. For example, in images, each factor controls a
non-overlapping set of pixels. Independence among the Z; is defined analogously via g.

To ensure disentanglement, independence alone is insufficient: if a source factor S; can be de-
composed into smaller, mutually independent components, a learned representation may split and
recombine them arbitrarily. This motivates the notion of reducibility.

Definition 4 (Reducibility of Type D). We say that S; is reducible of Type D if there exists s € S
such that Ts,S,; admits a nontriviaﬂ direct-sum decomposition Ts,S; = U & V with the property
that, forallu € Uandv €V,

Digs(u) b Digs(v) =0.

If no such decomposition exists, we call S; irreducible of Type D.
This coincides with reducibility as defined in (Brady et al., [2023) (see Proposition E]), but makes

the connection to Type D independence explicit. If S; is reducible we could split it at a point into
smaller independent subspaces, and if a factor is one-dimensional it should always be irreducible.

Theorem 2 (Local Identifiability of Type D). Letg: S — X and g: Z — X be local diffeomor-
phismsE] with g(S) C g(Z). Then § is locally disentangled w.r.t. g if:

(1) § C Hfil S; is open, and all factors are Type D independent and irreducible.

3Throughout this work, we identify T4 (s)X with its natural inclusion in R,

““Nontrivial” means dim(U), dim(V) > 0.

5 A diffeomorphism is a smooth bijection between manifolds with a smooth inverse. A local diffeomorphism
is a map that restricts to a diffeomorphism on some neighborhood of each point.
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(2) Z C HiL:1 Z; is open with L < K, and the factors are independent of Type D.

Intuitively, if each source factor influences a disjoint set of observation coordinates, and no finer
decomposition is possible, then any learned representation that also acts on disjoint coordinates
recovers the true source factors (up to block-wise invertible transformations and permutations).

This result generalizes Theorem 1 of (Brady et al., [2023) to partial disentanglement and non-
invertible generators (when taking Theorem [I] into account). A proof is given in Appendix [A.3]
Interestingly, all local identifiability proofs in this paper follow a common template: starting from
the local reconstruction identity g = g o v (where v := g~ ! o § exists locally since both maps are
local diffeomorphisms), one applies the independence conditions to constrain interactions between
source and target factors. If a source factor interacted with multiple target factors, their indepen-
dence would force a decomposition of the source factor, contradicting irreducibility. Occasionally,
additional assumptions are needed to further restrict the function class.

Since Type D independence requires that no observation coordinate is affected by two factors, a
natural question is whether this can be relaxed to allow limited overlap while still achieving identifi-
ability. We next express this via supports (the index set of nonzero elements, denoted with supp(-))
of Jacobians.

Select a product basis (u1,...,uq,) for TsS; define Q;(s) = supp(Dgs(u;)) for the i-th basis
vector; and let C; be the index set of basis vectors of Ts,S;. Then Type D independence can be
reformulated as

Vi # j, Va € C;, Vb € Gj : Qa(s) n Qb(s) = . 3)

As long as the basis respects the product structure, the particular choice does not matter. In the next
two sections, we show how this condition can be relaxed, either via mutual non-inclusion or through
a sparsity gap.

3.2 LOCAL IDENTIFIABILITY OF TYPE M

Define the mutual non-inclusion relation between sets A, B C [dy]as A B:=AZ B N A2 B,
that is, the sets may intersect, but neither is contained in the other.

Definition 5 (Mechanistic Independence of Type M). We say that S; and S; are mechanistically
independent of Type M if, for every s € S,

Vi#j,VaeCy, Vbe € Qu(s) hQy(s). 4)

Type M independence allows observation coordinates to be influenced jointly by multiple factors as
long as neither support fully contains the other. In image data, for example, different factors may
affect intersecting sets of pixels, allowing partial occlusion, shadows and reflections. Unlike Type D
independence, this notion depends on the choice of basis for T5S. To make it meaningful, we restrict
to S C R% (only for Type M), where T;R% carries a canonical basis that aligns with the product
structure. Reducibility is then expressed directly in these fixed coordinates.

Definition 6 (Reducibility of Type M). The component S; is reducible of Type M if there exist s € S
and a partition C; = AU B such that

Vae A, Vbe B: Qu(s) hQ(s).

Theorem 3 (Local Identifiability of Type M). Let g: S — X and g: Z — X be local diffeomor-
phisms with g(S) C g(Z). Then g is locally disentangled w.r.t. g if:

(1) S C R% is open, and the factors are Type M independent and irreducible.
(2) Z C R% is open, and the factors are independent of Type M.
(3) Foralls € Sand z € Z with g(s) = g(z),
175 (2)llo < [ITg(s)llo- (5)

(4) For all such pairs,
Gz)=  J ), 6)

i€supp(B:,k)
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where B == Jg-1,4(z) and (Alk mirrors §); for g.

This theorem generalizes Theorem 3.1 of (Zheng & Zhang, [2023) (itself an extension of (Zheng
et al., 2022)) to multidimensional factors (see Proposition {4 for a detailed comparison). Statistical
independence of the sources is not required. Assumptions (1)—(2) mirror those in Theorem@]; condi-
tion (3) motivates a sparsity regularizer; and condition (4) rules out pathological cases and is implied
by condition (i) in (Zheng & Zhang| 2023). It usually holds when g is sufficiently nonlinear, though
a failure mode is illustrated in Example E], case B, where the Jacobian is constant on S.

3.3 LoOCAL IDENTIFIABILITY OF TYPE S

We now return to the setting where S is a smooth manifold and replace the mutual non-inclusion
assumption with a sparsity gap criterion. Among all coordinate systems, the basis aligned with the
true factor decomposition yields the sparsest first-order action of the generator.

For s € S, let p%(s) be the minimal {y-norm of the matrix representing Dgs: TsS — Ty X
when the domain basis is aligned with the decomposition

B = @ TsiSi-

1€[K]

Conversely, let pg, (s) be the infimum of the £o-norm over all bases of TS that do not respect 5.

Definition 7 (Mechanistic Independence of Type S). The subspaces {S;}¥, are mechanistically
independent of Type S if, for every s € S,

P (8) < pp(s). (7)

Viewing the Jacobian as a dictionary that maps infinitesimal latent directions to observation di-
rections, Type S independence states that the sparsest such dictionary (in the ¢, sense) is attained
precisely when the basis aligns with the true factorization. Any misalignment necessarily incurs a
strict sparsity gap.

If the supports of different components are disjoint, any mixing of partial derivatives can only enlarge
the support, since no cancellations are possible. In this case, Equation [7/holds trivially. Thus Type D
independence is a special case of Type S independence. The sparsity gap, however, is considerably
stronger: it remains valid even when the supports substantially overlap. For instance, suppose we
have one-dimensional sources where each support €2;(s) overlaps with the others by less than half of
its elements. Even if a misaligned basis were tuned so that every shared element canceled perfectly
(if at all possible), the total number of nonzeros would still increase. Thus, the sparsity gap persists
under this optimal misaligned (but still suboptimal) basis transformation. In higher-dimensional
subspaces, the situation becomes more intricate, since inter-cancellations within block columns are
possible. In a sense, the sparsity gap captures all such potential cancellations and characterizes the
theoretical limiting case. As before, irreducibility rules out internal decompositions (see Defn. 20).
Example [T]discusses Type M/S independence and reducibility in detail.

Theorem 4 (Local Identifiability of Type S). Letg : S — X and g : Z — X be local diffeomor-
phisms with g(S) C g(Z). Then g is locally disentangled w.r.t. g if:

(1) S C Hfil S; is open, and the factors S; are Type S independent and irreducible.
(2) Z2 C Hle Z; is open with L < K, and the factors Z; are independent of Type S.
Intuitively, identifiability follows by exploiting the strict sparsity gap in equation [/} While fairly

general, Equation [7)is intractable to optimize in practice. In Section [5] we investigate whether com-
positional contrast (Brady et al., 2023) can serve as a suitable surrogate loss.

3.4 LoOCAL IDENTIFIABILITY OF TYPE H

Lastly, we simplify and generalize the asymmetric interaction principle of (Brady et al.| |2024),
subsuming as a special case the additive setting of (Lachapelle et al.,|2023).
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Definition 8 (Mechanistic Independence of Type H,,). Let S C Hfil S be a smooth manifold, and
letg: S — X be of class C™ with n > 2. We say that S; and S; are mechanistically independent
of Type H,, if; forall s € S,

D} ;gs = 0. (®)

For n = 2, this requires that all cross-Hessian blocks vanish, implying additivity as in (Lachapelle
et al| [2023). Irreducibility is defined analogously (see Defn. 22)).

To derive disentanglement, we additionally constrain the function class via separability.

Definition 9 (Separability of n-th Order). We say that g: S — X is separable of order n > 2 if
there exists s € S such that, for all i € [K)], the image of D};gs intersects trivially with

K3
spaLn{D;«fjgs7 j#i; DFge, 1<k <n-— 1}.

Separability is closely related to sufficient independence in (Brady et al.| 2024) and sufficient non-
linearity in (Lachapelle et al.l [2023)), but is slightly weaker: it allows arbitrary interactions among
lower-order derivatives and within each block D;’;gs.

Theorem 5 (Local Identifiability of Type H,,). Let g: S — X and g: Z — X be local C"-
diffeomorphisms with n > 2 satisfying g(S) C g(Z). Then § is locally disentangled w.r.t. g if:

(1) § C Hfil S; is open, and the factors are Type H,, independent and irreducible.
(2) Z C H]L:1 Z; is open with L < K, and the factors are independent of Type H,,.
(3) g is separable of order n.

Compared to (Brady et al.| [2024), our formulation highlights that source factors should be taken
as irreducible, which we argue is a necessary and natural requirement. This perspective eliminates
any dependence on (n+1)-th derivatives (which may not exist) and avoids the use of equivalent
generators. As with our other results, the conclusion also applies to non-invertible generators, and
we provide an explicit proof for n > 3 (corresponding to n > 2 in their slightly different notation).

4 DISCUSSION

4.1 HIERARCHY OF INDEPENDENCE

The different independence criteria form a natural hierarchy (see Figure[I)). Type D independence is
the strongest: it implies all others. Differentiating Type D yields Type Hs, and further differentiation
gives Type Hs, and so on. Type M follows since disjointness is a special case of mutual non-
inclusion. Type S is also implied: in the sparsest product-respecting basis, Type D ensures that
supports are disjoint, and any linear combination of column vectors from different blocks strictly
enlarges the support, creating a sparsity gap. Finally, Type S implies Type M independence when
working in the sparsest product-splitting basis (but not in an arbitrary product-aligned basis).

Type D
Type S 4/‘/ \ Type O

.
A

Type M
Type Hp —> Type Hz — -

Figure 1: Relations among mechanistic independence types. Arrows indicate logical implications.
The dotted arrow holds only in the sparsest product-splitting basis.

Since reducibility describes whether a factor can be split into smaller independent subspaces, the im-
plication relations among reducibility types largely mirror those among independence types, except
for Type M, which depends on the choice of basis.
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This reveals a tradeoff between the identifiability results for Type D and Type S: by enforcing
stronger coherence within each factor, we can tolerate stronger interactions between different fac-
tors. Relations among the other identifiability results are less direct, since they require additional
assumptions (cf. the asymmetric interaction principle of (Brady et al.|[2024)).

As with statistical independence, one must distinguish between pairwise and mutual independence.
For Types D, M, and H,,, the two coincide, but for Type S they differ in general. While mutual
independence always implies pairwise independence, Example |1} case B, shows a Jacobian where
factors are pairwise Type S independent but not mutually so.

4.2 FACTORS OF VARIATION AS CONNECTED GRAPH COMPONENTS

The factors of variation can also be viewed through graph structures.

Definition 10 (Graph structures). Ler g: S — X be sufficiently smooth, and let B = (uq, ..., uq,)
be a basis for TsS. Define the following graphs:

(1) GP(s,B) = ([ds], EP) with
£P ={(i,]) € [ds]* | Dgs(u;) ® Dgs(u;) # 0} = {(i,5) € [ds]* | QN Qy # 0}

(2) G"2(s, B) = ([d], EM2) with EM> = {(i, j) € [ds]? | D*gs(ui, u;) # 0}.
(3) GM (s, B) = ([ds], EM) with EM = {(i,7) € [ds]* | % # Q;}.

Consider GP. In any product-splitting basis, the index sets €; and C; for i # j are disconnected sub-
sets of the vertex set. Type D irreducibility ensures that no C; can be further split into disconnected
components by using a different basis for T, S;. Thus, the Type D independent and irreducible
factors correspond exactly to the connected components of G”. Moreover, under the assumptions
of Type D independence and irreducibility, G” cannot have more than K connected components
in any basis (see Proposition 5, and in any non-aligned basis it has strictly fewer. Hence, Type D
independence and irreducibility could alternatively be characterized by a gap in the number of con-
nected components between aligned and misaligned bases, paralleling the sparsity-gap perspective
of Type S.

A similar statement holds for G2 If g is second-order separable and satisfies Type Hy indepen-
dence and irreducibility, then no basis change increases the number of connected components, and
any misaligned basis strictly reduces it.

For GM | no analogous conclusion can be drawn, since its definition depends on a specific basis.
Nevertheless, the identification of factor subspaces with connected components still applies, though
only in the standard basis of R% .

This graph-based perspective also connects to recent work on identifiability for local (Euclidean)
isometries (Horan et al.,[202 1)), conformal maps, and orthogonal coordinate transformations (Gresele
et al., 2021; |Buchholz et al.| 2022} |Ghosh et al., [2023). Each of these function classes can be
characterized in terms of their Jacobians: the columns of the Jacobian are mutually orthogonal,
differing only in whether they have unit norm, equal norm, or arbitrary norms. By analogy with
Type D independence, we may define Type O independence through orthogonality in the inner-
product sense:

Vi#j: Digs(u)-D;gs(v)=0.

Constructing a graph analogous to GP, but replacing the Hadamard product with the inner product,
yields totally disconnected graphs for these maps when the source factors are one-dimensional.

However, without additional statistical assumptions, identifiability remains limited: even in the
smallest class (local isometries), it holds only up to affine transformations. Therefore, to achieve the
stronger notion of identifiability pursued in this paper, extra assumptions on the latent distribution
are required, even for one-dimensional factors. Nevertheless, such graph constructions may provide
a useful tool when combining mechanistic and stochastic independence to recover multidimensional
factors.
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4.3 APPLICABILITY AND LIMITATIONS OF MECHANISTIC INDEPENDENCE

We illustrate the requirements for Type D/M/S/H,, mechanistic independence in the context of image
data. Assume that individual latent factors s; encode distinct objects in a scene (e.g., position, shape,
color), and let g denote the rendering process.

Type D independence fails whenever two latent factors influence the same pixel. This excludes
shadows, reflections, transparency, and partial occlusions.

Type H; independence fails when the generator cannot be decomposed additively, i.e., when g(s) #
Zie[ K] g (s;) for any set of functions g(*). Although this assumption is strictly weaker than
Type D independence, it still generally disallows partial occlusions, shadows, and reflections. In
principle, it permits semi-transparency, but only in the absence of refraction and only when colors
mix exactly additively. This condition is further weakened for n > 2, but in practice, the calculation
of higher-order derivatives is not feasible.

Type M independence fails when the set of pixels affected by a latent coordinate in one group is
strictly contained in the set affected by a latent coordinate in another group; for example, when an
object is visible solely through its reflection.

Type S independence is more subtle. For one-dimensional slots (i.e., when each object is parame-
terized by a single latent variable), it can fail only when the fraction of shared affected pixels across
slots exceeds one half (lower bound). As already mentioned, it is difficult to convey a similarly
strong intuition for multidimensional slots.

5 EXPERIMENTS

In an experiment mirroring |[Brady et al.| (2023)), we investigated whether the compositional contrast

8gn 3%
6z]

K

Comld )= 323" 3

n=1i=1 j=i+1

can serve as an effective surrogate loss for enforcing Type S independence. This question is moti-
vated by the observation that some generators have latent components that are Type S independent
but not Type D independent, yet minimizing Ccomp can nonetheless enforce Type S independence
in the learned representation (see Example [2). As argued in Section [3.3] Type S independence is
likely to hold when only a small number of observation dimensions are influenced by multiple latent
factors (slots).

To examine this, we generate synthetic datasets with varying degrees of overlap between the sets
of observation dimensions affected by different slots, as illustrated on the right in Figure 2] Latent
variables are sampled from a standard normal distribution, and observations are produced by passing
them through an invertible MLP whose Jacobian is constructed to have the desired support structure.
Only when the overlap is 0% does the generator satisfy Type D independence.

We train an autoencoder with reconstruction loss and compositional contrast, £ = Lrecon + ACcomps

across five random seeds, using L = K € {2, 3,5} slots and regularization strengths A € {1072, 1}.
For comparability across hyperparameters, we normalize Ccomp (see Appendix @] for details).

Figure E] indicates that, for sufficiently small overlaps, Ceomp acts as a reliable proxy for Type S
independence. However, as the overlap ratio increases, the likelihood of convergence to bad local
minima also grows. Identifying more robust surrogate losses remains an open challenge, which we
leave for future work. Further experiments can be found in Appendix

6 RELATED WORK

Beyond the already mentioned approaches (Brady et al.||2023}; |Lachapelle et al., 2023} Brady et al.,
2024} [Zheng et al.| 2022; Zheng & Zhang| [2023; |Horan et al., 2021} |Gresele et al., |2021} |Reizinger,
et al.,|2022; Buchholz et al., 2022}, a number of other works establish identifiability by imposing
structural constraints. [Moran et al.| (2021]) prove identifiability in sparse VAEs by enforcing sparsity
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Figure 2: Slot Identifiability Score (SIS) over reconstruction loss and compositional contrast for
different support overlaps.

in the decoder; while our framework does not subsume theirs, their synthetic dataset can also be
shown to satisfy Theorems[3|and[] Rhodes & Lee|(2021) provide empirical evidence that penalizing
the decoder Jacobian with an ¢;-norm helps break rotational symmetries in VAEs — our results can
be seen as offering the corresponding theoretical justification. In contrast, [Lachapelle et al.| (2022)
obtain identifiability of latent factors by enforcing sparsity on causal mechanisms, while |[Reizinger
et al.|(2023) connect sparsity patterns in the Jacobian to identifiable causal graphs in nonlinear ICA.

A distinctive aspect of our work is that we establish identifiability at the subspace level, whereas
most prior results assume that each latent factor is captured in a single dimension. Recent research
has also examined block-identifiability of latent variables under paired observations. These include
content—style separation via data augmentation (Von Kiigelgen et al.,|2021)) or multiple views (Daun-
hawer et al.| |2023), block-disentanglement under sparse perturbations (Fumero et al., [2021; |Ahuja
et al.,|2022; [Mansouri et al.|[2023), and temporal formulations leveraging causal graphs (Lachapelle
& Lacoste-Julien, [2022; [Lachapelle et al., 2024).

7 CONCLUSION

In this work, we have developed a unifying framework for disentanglement and identifiability based
on mechanistic independence. By formulating independence at the level of generative mechanisms
rather than distributions, we obtained identifiability results for subspaces that hold under minimal
assumptions on the latent density and extend to nonlinear, non-invertible generators. Our analysis
revealed a hierarchy of independence criteria ranging from disjointness (Type D) to mutual non-
inclusion (Type M) to sparsity (Type S) and higher-order separability (Type H,,). We also showed
how connected components in graphs naturally characterize the structure of latent factors. Overall,
the results establish when disentangled representations are identifiable without relying on statistical
assumptions, providing a theoretical foundation for future work that explores other mechanistic
independence criteria or combines mechanistic and stochastic assumptions.

REFERENCES

Kartik Ahuja, Jason Hartford, and Yoshua Bengio. Weakly supervised representation learning with
sparse perturbations. arXiv preprint arXiv:2206.01101, 2022.

Kartik Ahuja, Divyat Mahajan, Yixin Wang, and Yoshua Bengio. Interventional causal representa-
tion learning. In International conference on machine learning, pp. 372-407. PMLR, 2023.

10



Under review as a conference paper at ICLR 2026

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798-1828,
2013.

Jack Brady, Roland S Zimmermann, Yash Sharma, Bernhard Scholkopf, Julius von Kiigelgen,
and Wieland Brendel. Provably learning object-centric representations.  arXiv preprint
arXiv:2305.14229, 2023.

Jack Brady, Julius von Kiigelgen, Sébastien Lachapelle, Simon Buchholz, Thomas Kipf, and
Wieland Brendel. Interaction asymmetry: A general principle for learning composable abstrac-
tions. arXiv preprint arXiv:2411.07784, 2024.

Johann Brehmer, Pim De Haan, Phillip Lippe, and Taco S Cohen. Weakly supervised causal repre-
sentation learning. Advances in Neural Information Processing Systems, 35:38319-38331, 2022.

Simon Buchholz, Michel Besserve, and Bernhard Scholkopf. Function classes for identifiable non-

linear independent component analysis. Advances in Neural Information Processing Systems, 35:
16946-16961, 2022.

J-F Cardoso. Multidimensional independent component analysis. In Proceedings of the 1998
IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat.
No. 98CH36181), volume 4, pp. 1941-1944. IEEE, 1998.

Pierre Comon. Independent component analysis, a new concept? Signal processing, 36(3):287-314,
1994.

Imant Daunhawer, Alice Bizeul, Emanuele Palumbo, Alexander Marx, and Julia E Vogt. Identifia-
bility results for multimodal contrastive learning. arXiv preprint arXiv:2303.09166, 2023.

Marco Fumero, Luca Cosmo, Simone Melzi, and Emanuele Rodola. Learning disentangled repre-
sentations via product manifold projection. In International conference on machine learning, pp.
3530-3540. PMLR, 2021.

Shubhangi Ghosh, Luigi Gresele, Julius von Kiigelgen, Michel Besserve, and Bernhard Scholkopf.
Independent mechanism analysis and the manifold hypothesis. arXiv preprint arXiv:2312.13438,
2023.

Anirudh Goyal and Yoshua Bengio. Inductive biases for deep learning of higher-level cognition.
Proceedings of the Royal Society A, 478(2266):20210068, 2022.

Klaus Greff, Sjoerd Van Steenkiste, and Jiirgen Schmidhuber. On the binding problem in artificial
neural networks. arXiv preprint arXiv:2012.05208, 2020.

Luigi Gresele, Paul K Rubenstein, Arash Mehrjou, Francesco Locatello, and Bernhard Scholkopf.
The incomplete rosetta stone problem: Identifiability results for multi-view nonlinear ica. In
Uncertainty in Artificial Intelligence, pp. 217-227. PMLR, 2020.

Luigi Gresele, Julius Von Kiigelgen, Vincent Stimper, Bernhard Scholkopf, and Michel Besserve.
Independent mechanism analysis, a new concept? Advances in neural information processing
systems, 34:28233-28248, 2021.

Ben Hayes, Charalampos Saitis, and Gyorgy Fazekas. The responsibility problem in neural networks
with unordered targets. arXiv preprint arXiv:2304.09499, 2023.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International conference on learning representations, 2017.

Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo Rezende,
and Alexander Lerchner. Towards a definition of disentangled representations. arXiv preprint
arXiv:1812.02230, 2018.

Daniella Horan, Eitan Richardson, and Yair Weiss. When is unsupervised disentanglement possible?
Advances in Neural Information Processing Systems, 34:5150-5161, 2021.

11



Under review as a conference paper at ICLR 2026

Aapo Hyvirinen and Patrik Hoyer. Emergence of phase-and shift-invariant features by decomposi-
tion of natural images into independent feature subspaces. Neural computation, 12(7):1705-1720,
2000.

Aapo Hyvirinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive learning
and nonlinear ica. Advances in neural information processing systems, 29, 2016.

Aapo Hyvirinen and Hiroshi Morioka. Nonlinear ica of temporally dependent stationary sources.
In Artificial Intelligence and Statistics, pp. 460—469. PMLR, 2017.

Aapo Hyvirinen and Erkki Oja. Independent component analysis: algorithms and applications.
Neural networks, 13(4-5):411-430, 2000.

Aapo Hyvirinen and Petteri Pajunen. Nonlinear independent component analysis: Existence and
uniqueness results. Neural networks, 12(3):429-439, 1999.

Aapo Hyvirinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ica using auxiliary variables and
generalized contrastive learning. In The 22nd International Conference on Artificial Intelligence
and Statistics, pp. 859-868. PMLR, 2019.

Yibo Jiang and Bryon Aragam. Learning nonparametric latent causal graphs with unknown inter-
ventions. Advances in Neural Information Processing Systems, 36:60468—-60513, 2023.

Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvirinen. Variational autoen-
coders and nonlinear ica: A unifying framework. In International Conference on Artificial Intel-
ligence and Statistics, pp. 2207-2217. PMLR, 2020a.

Ilyes Khemakhem, Ricardo Monti, Diederik Kingma, and Aapo Hyvérinen. Ice-beem: Identifiable
conditional energy-based deep models based on nonlinear ica. Advances in Neural Information
Processing Systems, 33:12768-12778, 2020b.

David Klindt, Lukas Schott, Yash Sharma, Ivan Ustyuzhaninov, Wieland Brendel, Matthias Bethge,
and Dylan Paiton. Towards nonlinear disentanglement in natural data with temporal sparse coding.
arXiv preprint arXiv:2007.10930, 2020.

Sébastien Lachapelle and Simon Lacoste-Julien. Partial disentanglement via mechanism sparsity.
arXiv preprint arXiv:2207.07732, 2022.

Sébastien Lachapelle, Pau Rodriguez, Yash Sharma, Katie E Everett, Rémi Le Priol, Alexandre
Lacoste, and Simon Lacoste-Julien. Disentanglement via mechanism sparsity regularization: A
new principle for nonlinear ica. In Conference on Causal Learning and Reasoning, pp. 428-484.
PMLR, 2022.

Sébastien Lachapelle, Divyat Mahajan, loannis Mitliagkas, and Simon Lacoste-Julien. Additive
decoders for latent variables identification and cartesian-product extrapolation. arXiv preprint
arXiv:2307.02598, 2023.

Sébastien Lachapelle, Pau Rodriguez Lépez, Yash Sharma, Katie Everett, Rémi Le Priol, Alexan-
dre Lacoste, and Simon Lacoste-Julien. Nonparametric partial disentanglement via mecha-
nism sparsity: Sparse actions, interventions and sparse temporal dependencies. arXiv preprint
arXiv:2401.04890, 2024.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard
Scholkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised learning
of disentangled representations. In international conference on machine learning, pp. 4114-4124.
PMLR, 2019.

Francesco Locatello, Ben Poole, Gunnar Rétsch, Bernhard Scholkopf, Olivier Bachem, and Michael
Tschannen. Weakly-supervised disentanglement without compromises. In International Confer-
ence on Machine Learning, pp. 6348-6359. PMLR, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2017. URL https://api.semanticscholar.org/
CorpusID:53592270.

12


https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:53592270

Under review as a conference paper at ICLR 2026

Amin Mansouri, Jason Hartford, Yan Zhang, and Yoshua Bengio. Object-centric architectures en-
able efficient causal representation learning. arXiv preprint arXiv:2310.19054, 2023.

Stefan Matthes, Zhiwei Han, and Hao Shen. Towards a unified framework of contrastive learning
for disentangled representations. Advances in Neural Information Processing Systems, 36:67459—
67470, 2023.

Gemma E Moran, Dhanya Sridhar, Yixin Wang, and David M Blei. Identifiable deep generative
models via sparse decoding. arXiv preprint arXiv:2110.10804, 2021.

Ignavier Ng, Shaoan Xie, Xinshuai Dong, Peter Spirtes, and Kun Zhang. Causal representation
learning from general environments under nonparametric mixing. In The 28th International Con-
ference on Artificial Intelligence and Statistics, 2025.

Patrik Reizinger, Luigi Gresele, Jack Brady, Julius Von Kiigelgen, Dominik Zietlow, Bernhard
Scholkopf, Georg Martius, Wieland Brendel, and Michel Besserve. Embrace the gap: Vaes per-
form independent mechanism analysis. Advances in Neural Information Processing Systems, 35:
12040-12057, 2022.

Patrik Reizinger, Yash Sharma, Matthias Bethge, Bernhard Scholkopf, Ferenc Huszar, and Wieland
Brendel. Jacobian-based causal discovery with nonlinear ica. Transactions on Machine Learning
Research, 2023.

Travers Rhodes and Daniel Lee. Local disentanglement in variational auto-encoders using jacobian
-1 regularization. Advances in Neural Information Processing Systems, 34:22708-22719, 2021.

Bernhard Scholkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. Proceedings of
the IEEE, 109(5):612-634, 2021.

Anisse Taleb and Christian Jutten. Source separation in post-nonlinear mixtures. I[EEE Transactions
on signal Processing, 47(10):2807-2820, 1999.

Julius Von Kiigelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Scholkopf, Michel
Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably

isolates content from style. Advances in neural information processing systems, 34:16451-16467,
2021.

Dingling Yao, Danru Xu, Sébastien Lachapelle, Sara Magliacane, Perouz Taslakian, Georg Martius,
Julius von Kiigelgen, and Francesco Locatello. Multi-view causal representation learning with
partial observability. arXiv preprint arXiv:2311.04056, 2023.

Jiaqi Zhang, Kristjan Greenewald, Chandler Squires, Akash Srivastava, Karthikeyan Shanmugam,
and Caroline Uhler. Identifiability guarantees for causal disentanglement from soft interventions.
Advances in Neural Information Processing Systems, 36, 2024.

Yan Zhang, Jonathon Hare, and Adam Priigel-Bennett. Fspool: Learning set representations with
featurewise sort pooling. arXiv preprint arXiv:1906.02795, 2019.

Yujia Zheng and Kun Zhang. Generalizing nonlinear ica beyond structural sparsity. Advances in
Neural Information Processing Systems, 36:13326-13355, 2023.

Yujia Zheng, Ignavier Ng, and Kun Zhang. On the identifiability of nonlinear ica: Sparsity and
beyond. Advances in neural information processing systems, 35:16411-16422, 2022.

Roland S Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and Wieland Brendel.
Contrastive learning inverts the data generating process. In International Conference on Machine
Learning, pp. 12979-12990. PMLR, 2021.

13



Under review as a conference paper at ICLR 2026

NOTATION INDEX

a A scalar

a A vector

A A matrix

A Aset

a; i-th coordinate of a (index starting at 1)

a; i-thfactor of a if a lives in a product space
a;;  j-th coordinate of the i-th factor of a

d, Dimensionality of observations

ds  Dimensionality of ground-truth latents

d; Dimensionality of the ¢-th latent factor

d, Dimensionality of the learned representa-

tion
Duplication matrix for n X n matrices
Differential of g at s
Partial derivative w.r.t. i-th factor Dgs o
23
Df ;9s  Mixed derivative D?g, o (14,15, id)
e; Standard basis vector with a 1 at position ¢

[(x:0)

D,
Dgs
D;gs

A function of x parametrized by 0
(sometimes reduced to f(x) to simplify
notation)

f  Ground-truth encoder
f Learned encoder

g Ground-truth decoder

g Learned decoder

G = (V,£) A graph G defined by a set of ver-
tices V and edges &£

h  Mapping from ground-truth to learned la-
tents

I  Identity matrix with implied size from con-
text

I, Identity matrix of size n X n

J¢  Jacobian matrix of f : R" — R™ (J¢ €

Rm)(’ﬂ)

14

t;  The ¢-th canonical inclusion map

K Number of latent factors

L Number of factors in learned representation
L, Elimination matrix for n X n matrices

P A probability distribution

s Ground-truth latent variable

S Ground-truth latent space

S;  i-th latent subspace (S C 81 X -+ x Sk)
supp(-)  Support (index set of nonzero ele-

ments)
TsS Tangent space of S at s

v  Mapping from learned to ground-truth la-
tents

x  Observation or measurement

X Data manifold (x € X C R%)

z  Learned representation (or encoding)

Z  Learned representation space

x  Direct product

@ Direct sum

e Hadamard product (element-wise product)

®  Kronecker product

®  Row-wise Kronecker product (also face-
splitting product)

\  Set subtraction

N Set intersection

U  Setunion

C  Subset or equal

O Superset or equal

M Mutual non-inclusion (A ¢ B A A 2 B)

|A|  Cardinality of set A (the number of ele-
ments in A)

[n] Theset{l,2,...,n}forneN

fog Composition of the functions f and g
lzllo £o norm of x



Under review as a conference paper at ICLR 2026

A PROOFS

Before we turn to the theorems and proofs, let us recall the following definitions.

Deﬁnitign 11 (Decomposable map). Let S C Hfil S; and Z C Hlezj. We say that
a map h: § — Z is decomposable if there exists a surjection o: [K| — [L] and maps
hj: Ilico-1(j) Si = Zj such that, for all s € S,

h(s) = (hj((si)iEU_l(j)))]I‘le'

Definition 12 (Disentanglement). A decoder g: Z — X is said to be disentangled w.r.t. a generator
g: S — X ifthere exists a decomposable map h: S — Z such that g = g o h.

Remark 1 (Partial/full and local/global disentanglement). If L = K and o is a bijection (i.e., local
full disentanglement), Defn. [I2] gives

g(s) = g(hise-1(1)), -  hr(So-1(k)))-

To distinguish the cases L = K from L < K, we say g is fully disentangled or partially disentan-
gled, respectively.

Definition 13 (Local disentanglement). A decoder g: Z — X is locally disentangled w.r.t. a gen-
erator g: S — X if for every s* € S and z* € Z with g(s*) = g(z*) there exist a neighborhood
U C S of s* and a decomposable map h: U — Z such that

gly=goh and h(s*) = z*.

Definition 14 (k-factor slice). Let k € {0,..., K}, and let T C [K| be an index set with |Z| =
K — k. If S is a subset of the product space S1 X - - - X Sk, a k-factor slice (or simply a k-slice) of
S is any set of the form

U={seS|s;=cforalli €T},

where ¢; € S; fori € T are fixed constants.

Put simply, a k-slice is a subspace in which all but k factors are held constant.

Remark 2. Path-connectedness of S C HzK:l S, and path-connectedness of its (K — 1)-slices are
related but independent properties: neither one implies the other (see Figure[3). More generally, for
K > 2, connectedness of 1-slices and 2-slices are likewise independent (for K = 2 they coincide
trivially). A further related notion is orthogonal convexity, which can be interpreted as the property
that all 1-slices are path-connected (when each factor is one-dimensional).

]

(@) | (b) [:j

(€ (@

=

—] =

Figure 3: Examples illustrating independence of slice- and set-level connectedness. (a) S is path-
connected, but not every 1-slice is connected. (b) S is not path-connected, though every 1-slice is
connected. (c) Some 1-slices are disconnected, but every 2-slice is connected. (d) Some 2-slices are
disconnected, but every 1-slice is connected.
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A.1 PROOF OF THEOREM[I]

Lemma 1. Let S be an open subspace of the product manifold H7K:1 S;, with each factor S; of posi-
tive dimension. Suppose g: Z — X is locally disentangled w.rt. g: S — X. If g is locally injective
and S is path-connected, then the surjection o from the definition of disentanglement (Defn. is
globally unique.

Proof. The proof proceeds in two steps. First, we show that the surjection o from the definition of
disentanglement is unique on sufficiently small neighborhoods, using local injectivity of g. In the
second step, we extend this uniqueness to all of S by path-connectedness.

Step 1. The surjection o is locally unique.

Let U4 C S be open such that g ‘u is injective and g is disentangled with respect to g |,,. Then there
exist a surjection o': [K] — [L] and a map h: U — Z that decomposes into

hjl H Si—)Zj, J € [L],
ico~1(4)

such that for all s € U,

9(s) = 5 Pa(()icom10)s -+ Ril(80)ico-1 (1) )- ©)

Let V := h(U). From Equation@it follows that both h and gy, are injective.

Now suppose that for the same g, g another representation on U/ exists with a different surjection o.
Fix any ¢ € [K] and a basepoint p € Y. Consider the one-factor slice

U = {selU:s; =pjforall j #i}.

Since dim(S;) > 0, U () contains at least two distinct points. By Equation@ variation along /(*)
affects exactly the component indexed by o(i). If o(i) # & (i), then the same variation would be
forced to appear in two different components. Thus, on the right side of Equation@ U is mapped
to different sets for o and &, while on the left side g maps 2/(¥) to the same set independently of o.
Therefore, o(i) = o(4). Since ¢ was arbitrary, we get & = o on U.

Step 2. The surjection o is globally unique.

Let s%,8® € S and let v : [0,1] — S be a continuous path between them. By Step 1, every
point s € ~([0, 1]) admits a neighborhood Us on which o is uniquely determined. The compact
set y([0,1]) is covered by {Us : s € v(]0,1])}. By compactness, there exists a finite subcover
Uy, ..., Up.

Using the Lebesgue number lemma, choose a partition
0=ty <ty <---<tpy =1 suchthat ~([t;m_1,tm]) C Upn for each m.

Then ~(t,,) € Up N U1, SO consecutive sets intersect. By Step 1, o is unique on each U,,,
and therefore must agree on overlaps. Induction along the chain implies that the same o applies to

Un]\le U 2 ~([0,1]). Since s, s” were arbitrary and S is path-connected, there exists a single
global surjection o: [K] — [L] valid on all of S. O

Theorem 1 (Global Identifiability). Let S be an open subspace of the product manifold H7K=1 S;,
where each factor S; has positive dimension. Then local disentanglement extends to global disen-
tanglement if:

(1) g: S — X is locally injective.
(2) S is path-connected.
(3) Every (K-1)-slice of S is path-connected.
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Proof. From Lemmall] it follows that there is a unique surjection o : [K] — [L] such that locally,
for all j € [L], z; depends only on the source components s; with i € o1 (j).

Now fix j € [L] and a tuple 5,-1(;) € [] S;. Consider the slice

i€o—1(j)
A(j)(.§071(j)) ={se8: s;=35foralli o '(j)}.

This slice is path-connected since by assumption all (X-1)-slices of S are path-connected. Along

any path in A(j)(EU_l(j)), local disentangled representations agree on overlaps (see Step 2 in

Lemma , and the j-th component remains constant since only coordinates outside o~ 1(j) vary.
Thus the j-th component is well defined on the slice.

Therefore, we can define B
hj : H Sz — ZJ‘,
i€o~1(4)

where ;Lj (85-1(j) is the common value of the j-th target component on A (5,-1(5)).

Finally, fix p € S and choose U open such that g |u is injective and g is disentangled with respect
tog |u~ On U, a local representation has the form

g(s) = Q( hi((Si)ico-1(1)),- - -5 hL((Si)iegfl(L)))
By construction of ﬁj, for all s € U the local maps h; agree with ”’VL]‘. Hence

g(s):g(ﬁl(gafl(l))a---a,ﬁL(gafl(L))>7 seU.

Since p was arbitrary, this identity holds globally. Thus local disentanglement extends to a global
disentangled representation with surjection o and maps {h;} ]L=1- O

Remark 3. If L < K, not all (K-1)-slices need to be path-connected. It suffices that only the slices

corresponding to indices mapped to a common target component are path-connected.

A.2 PROOF OF PROPOSITION[I]

Lemma 2. Let S C HzK=1 S, Z C Hle Z;, and suppose g: S — X and g: Z — X are
local homeomorphisms. Assume that for every s* € S there exists z* € Z with g(s*) = g(z*).
Moreover, suppose that for each such z* there exist

* aneighborhood U C Z of z*,

* a surjection o: [K| — [L], and

s maps v;: 25y — S fori € [K],
such that for all z € U,

Q(Z) :g(vl(za(l))a'--7UK(ZO'(K)))' (10
Then g is locally disentangled with respect to g.

Proof. Fix an arbitrary s* € S and pick z* € Z with g(z*) = g(s*). By hypothesis at z*, there is
a neighborhood U = Hle U; € Z, a surjection o, and maps v; giving Equationon U.

Shrink to a neighborhood W C S of s* on which g: W — g(W) is a homeomorphism, and shrink
U if necessary so that g(U) C g(W). Define

Y =g log: U— W.
Then ) is a homeomorphism onto its image with 1 (z*) = s*.
For each j € [L] set
¢j : UJ — H Si7 d)j(a) = (vi(a))ieofl(j).

i€a=1(j)
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Then for z € U Equation[I0]is equivalent to
2,(¢(2)) = ($1(z1),...,PL(zL)), (11)

where g, is a reindexing homeomorphism s +— ((Si)ieg—l(j))le. Therefore, each ¢; must be

injective, because the left hand side of Equation[TT]is a homeomorphism onto its image.

Since 1p(U) is an open neighborhood of s* in the product space [], S;, we can choose product
neighborhoods V; C §; with

K
[TV < »w).

i=1
Then for each j we have [[;c,-1 ;) Vi € ¢;(U;), and we set

v, : H VZ—>Z/[]

ico~1(4)

hj = ¢;1|H

ico—1()

Finally, for any s € [], V;, define z := (hj((sz')ieo-—l(j)));zl. Then, by construction and Equa-
tion[11} 4p~1(s) = 2, hence
g(s) = g(z) = g<h1<(si)i60—1(1))7 cee hL((si)ieg—l(L)))~

Therefore, g is locally disentangled with respect to g on a neighborhood of the arbitrary point
s*eS.

Proposition 1. Let g: S — X and g: Z — X be surjective local homeomorphisms, where S and
Z are open subsets of their respective product spaces. Then local full disentanglement defines an
equivalence relation g ~4 g.

Proof. We verify that the relation is reflexive, transitive and symmetric.

Reflexivity: If g = g, we can set each h; as the identity map and take o as the identity permutation.
Then the definition is trivially satisfied.

Transitivity: Follows directly from composition of functions. If g ~4 g via h;, o and g ~y4 g via
h;, o, then g ~id § via h; o hg—l(i), ooo.

Symmetry: Follows from Lemma 2] O
Proposition 2. Let S C [[, S; and Z C [[X, Z; be open, and let g: S — X and §: Z — X
be surjective. Then disentanglement defines an equivalence relation g ~4 g if one of the following

conditions hold:

(1) g and g are bijective and S (equivalently Z) is itself a product space.
(2) g and g are locally injective and every (K-1)-slice of S and Z is path-connected.

Proof. The proof is analog to Proposition O

A.3 PROOF OF THEOREM[2|

Definition 15 (Mechanistic Independence of Type D). We say that S; and S; (equivalently, s; and
8;) are mechanistically independent of Type D if, forall s € S, § € Ts,S;, andm € T, S,

Digs(€) e Djgs(n) =0, (12)

where o denotes the element-wise (Hadamard) product in R%

Independence of the Z; is analogously defined based on g.
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Definition 16 (Reducibility of Type D). We say that S; is reducible of Type D if there exists s € S
such that Ts,S; admits a nontrivial direct-sum decomposition Ts,S; = U @& V with the property
that, forall§ €e U andm eV,

Digs(é) 'Digs(n) =0. (13)
If no such decomposition exists, we call S; irreducible of Type D.

Lemma 3. Let {Z;}L | and {S;} X, be smooth manifolds of positive dimension with L < K, and
let Z C Z1 X+ x Zand § C 81 X -+ X Sk be open subsets. Suppose v : Z — Sisa
diffeomorphism such that for every z € Z there exists a surjection o, : [K| — [L] satisfying

Dj(miov), =0, forallie K], j#o0.(i),

where w;: S — S; denotes a canonical projection. Then for every z € Z there exists a neighbor-
hood U of z such that 0, = o, for all 2’ € U, and moreover v;(2") depends only on the component

2} Jor each i € [K].

Proof. Ateach z € Z, the differential Dv_ has block form

L
Duv, = @cbzhj, O, T 25 — @ T (0(2))Si-
Jj=1 i€oz ' (5)
Since v is a diffeomorphism, Dv, is an isomorphism. Hence each block @ ; must also be an
isomorphism, and in particular

dim(Z;) = Y dim(S;).

i€oz ' (5)

The maps z — D;(m; o v), vary smoothly with z. Thus, if ®, ; is an isomorphism at z, it remains
so in a neighborhood of z, since invertibility is an open condition. This implies oz_,l (4) 2 o1 (%)
for all j € [L] as we assumed the S; have positive dimension. Because each o is surjective, we
must have 0, = 0, in a neighborhood U of z.

As Z is open in the product manifold, we may shrink ¢/ so that{f = Uf; X - - - x Uy, with each U; path-
connected. Fix i € [K] and let 2 € U satisfy Z,(;) = 2,(;). Choose a smooth path v : [0,1] — U
with v(0) = z and (1) = 2. By the fundamental theorem of calculus,

vi() - vi(z) = / S vy at

By the chain rule,

d

G (1) = Dm0 v)3- (1)

= Do(i) (i 0 )yt Yoy () + D Dj(mi 00) ) 45 (1)
i#o(i)

The first term vanishes because 7, ;) (t) is constant, and the second vanishes by the structural as-
sumption on Dv. Thus the integral is zero, and we conclude v;(2) = v;(z). Hence v; depends only
on the coordinate 2, ;), completing the proof. O

Theorem 2 (Local Identifiability of Type D). Let g: S — X and g: Z — X be local diffeomor-
phismaE] with g(8) C g(Z). Then g is locally disentangled w.rt. g if:

(1) S C Hfil S; is open, and all factors are Type D independent and irreducible.

(2) Z2 C HiL:1 Z; is open with L < K, and the factors are independent of Type D.

8A diffeomorphism is a smooth bijection between manifolds with a smooth inverse. A local diffeomorphism
is a map that restricts to a diffeomorphism on some neighborhood of each point.
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Proof. Fix an arbitrary point s* € S. By the range assumption g(S) C g(Z), there exists at least
one z* € Z such that

g(s") = g(z%).
Since both g and g are assumed to be local diffeomorphisms, there exists a neighborhood U C Z of
z* such that, for all z € U,

9(z) =gow(z), (14)
where we define
vi=g togl U= (g7 0 g)U),
and g~ ! denotes the local inverse satisfying v(z*) = s*. Differentiating gives
Dgz = ng(z) o D’Uz. (15)

To obtain matrix representations, choose product-aligned bases on Ty (z)(I]; Si) and T:(I]; Z;),
and identify Ty )X and Ty (2))X with their natural inclusions into R,
By Type D independence for g, the row supports of the partial derivatives D;gs and D,g, are
disjoint whenever ¢ # j. Thus there is a partition of observation coordinates [d;] = Ry U --- U
Rk such that rows in R; depend only on Ts,S,;. Permuting rows by P to group Rq,..., Rk
consecutively makes A = P Dg,.) block-row diagonal. Set

A =P Dgy(2), B = Duv,, C:=PDg,,
sothat C = A B.
For k € [L], let B. ;, denote the block-columns of B corresponding to T3, Zj, and let B. _j, de-

note the block-columns corresponding to itk T,,Z;. Define C. j, and C. _j analogously as the
corresponding block-columns of C'. Then

A171 0 s 0 Bl,k Bl,—k
0 Ayp - 0 By, By _j

[Cor Comkl =1, : : : : : (16)
0 0 -+ Agrxl |Brxr Brk -k

By Type D independence for g, the column supports of C' from different target slots are disjoint in
observation coordinates, which is preserved by left-multiplication with P. Hence the supports of the
columns of C. j, are disjoint from those of C. _j, so all pairwise Hadamard products between them
vanish. Denoting the Kronecker product by ® and the row-wise Kronecker product (also known as
the face-splitting product) by ®, we obtain

0= C:,k ©) C:,—k
= (AB.;) ®© (AB. _y)
=(A0A)(B.,®B._y)

B, ® B
B ® By

[A:,l QA:,l A:72 QA:,2 A:,K ®A:,K}

Bk ® B,k

(A11© A11)(B1x @ By )
(Ag2 ® As9)(Bay ® B _i)

(Ax k © Ag x)(Bk ® Br,—1)

Here, the third equality uses the mixed-product property, the fourth expands and reorders terms, and
the last exploits the block-diagonal structure of A. Reversing the mixed-product property yields, for
alli € [K]and k € [L],

(AiiBix) © (Ai:Bi 1) = 0. (17)

Suppose, for a contradiction, that both B; ;, and B; _j are nonzero. Since v is a composition of

diffeomorphisms, B is invertible and each B; . has full row rank. Let us consider two cases (note
that dim(S;) = 0 and dim(Z;) = 0 were categorically excluded in advance):

20



Under review as a conference paper at ICLR 2026

Case 1 (dim(S;) = 1). Here B; . consists of a single row. Choose nonzero scalars a € B; j and
b € B, . From Equation[17}
(A;a) © (A ;:b) =0,

which implies A; ; = 0, contradicting the assumption that g is a local diffeomorphism.

Case 2 (dim(S;) > 1). In this case, select columns from B; , and B; _ that together form an
invertible square matrix B = (El, ﬁr), with B, consisting of columns of B, j, and B, of B;__j.
Then Equation [T7] gives

(A;:B)) ® (A;;B,) = 0.
This implies that S; is reducible, since there exists a basis in which T, S; decomposes into subspaces

where all pairwise directional derivatives vanish in the Hadamard product. Hence, either B; j or
B; _;, must be zero.

Repeating the argument for all ¢ € [K] and k € [L] shows that each block-row of B contains at
most one nonzero block. Since B is invertible, each block-row must contain exactly one nonzero
block. Hence, there exists a surjection o : [K] — [L] such that

B, #0 and B;,; =0 forj # o(i).

By Lemma 3| it follows that on U/, the component v;(z) depends only on z,; for every i € [K].
Equivalently, there exist functions
v; Zg(i) — Si
such that locally
g 0g(2) = (01(2501)), ---» Dk (Zo(x)))-

Since s* was arbitrary and the constructions hold for any z* satisfying g(s*) = g(z*), Lemma[2]
implies that g is locally disentangled with respect to g. ]

A.4 PROOF OF THEOREM 3]

Denote with Q;(s) C [d,] the support of the i-th column of J,4(s) = Dgs: R% — R in the

standard basis (i.e., ;(s) = supp(Jg(s).,:)). Similarly, we use ﬁj(z) for Jg(z). Let C; denote
the column index set of the ¢-th source factor.

For sets A, B C [m], write Ath Biff A¢ B and A 2 B (mutual non-inclusion).

Definition 17 (Mechanistic Independence of Type M). We say that S; and S; are mechanistically
independent of Type M if, for every s € S,

Ya € (?i, Vb € Gj : QQ(S) M Qb(s).

Definition 18 (Reducibility of Type M). We say that the component S; is reducible of Type M if
there exist a point s € S and a partition C; = A U B such that

Yae A, Vbe B: Qu(s) hQ(s).

Lemma 4. Let C = AB, where A € R™*" B € R" " and C € R™*" are all of full column
rank. Define GS(A) = ([n], %) with €5 = {(i,5) € [n]*> | supp(A.;) ¢ supp(A.;)}. If
ICllo < ||Allo and for all k € [n]

supp(Cox) 2 () supp(A.,), (18)

i€supp(B: k)

then ||C||o = || Allo and G°(C) is isomorphic to G%(A).

Proof. Write Q; = supp(A.;), Rrx = supp(B.x), and U, = supp(C.). Since C.; =

o

ZiGRk A.;B; 1, we have U, C UieRk Q;, while Equation gives the reverse inclusion; hence

U.= |J & Vvkenl

1€ER
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Because B is invertible, the Leibniz formula for det(B) # 0 yields a permutation o : [n] — [n]
with B; ,(;) # 0 for all 4, i.e., i € R,(;). Thus

Qi - Z/{g(i) Vi € [n}

Summing sizes and using ||C|lo < || Allos
DI <D WMol =D Uil = ICllo < | Allo =) 1Qil,
i i k i

so equality holds throughout, which forces |4, ;)| = |Q;| and hence U, ;) = Q; for all 4. This
says the column supports of C' are exactly those of A up to a relabelling of indices. Since the edge
relation in G°(-) depends only on mutual non-inclusion of these supports, the bijection i — o(7)
preserves adjacency:

Q; M Qj — Ug(i) h Z/{J(j).

Hence G°(C) = G9(A). O
Theorem 3 (Local Identifiability of Type M). Let g: S — X and g: Z — X be local diffeomor-
phisms with g(S) C g(Z). Then g is locally disentangled w.r.t. g if:

(1) S C R% is open, and the factors are Type M independent and irreducible.

(2) Z C R% is open, and the factors are independent of Type M.

(3) Forall s € S and z € Z with g(s) = g(z),

175 (2)llo < Il g (s)l0- (5)

(4) For all such pairs,
Uz= U ), (©)

i€supp(B:,k)

where B = Jg-1,4(2) and (AZk mirrors Q; for §.

Proof. As before, we begin with the identity
9(z) = gov(z),
defined on a neighborhood ¢/ C Z, where
vi=g logl, U= (g7 0g)U)

is a diffeomorphism that maps a unique z* € U to some initially chosen arbitrary point s* € S.
Thus, after differentiation we get

which we write as C' = AB. Since both g and g are local diffeomorphisms into the same observa-
tion manifold, B is square and invertible, and A, C have full column rank.

Let R; C [d] be the column-index set in the i-th source block, and define C; C [d] analogously

for the target blocks. Then {RR;}X | partitions the columns of A and {C;}%_, partitions the columns
of C.

Step 1. Each column of B has support contained in a single source block.

Suppose not: then for some column index k, the support supp(B. ;) intersects distinct blocks
R, # Rq. By independence of the §;, B would mix mutually non-inclusive column supports of A.
Thus, Equation [6] would force a strict increase in the support, which contradicts the assumption that
IClo < ||Allo.- Hence supp(B. ) € R; for some ¢. Define Q, := {q: supp(B.4) € R;},ie.,

the column set of B supported in R;.

Step 2. For each i, the columns of B supported in R; land in a single target block.
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Assume otherwise: then Q; meets two distinct C-blocks C,, and Cg. Pick ¢ € Co N Q; and
qs € Cs N Q;. By Lemma[d] there are u, and ug such that supp(C. ,,) = supp(A.,,) and
supp(C. q,) = supp(A. ;). By Equation@ for every k € supp(B. 4,) C R,

supp(A.y, ) = supp(C.q,) = U  supp(A.;) 2 supp(A. x). (19)
j€supp(B: q,)
This implies u, € R; due to independence of the source factors. If u, were not in R;, then

supp(A. ,,) would contain a column support from a different block by Equation Analogously,
we get ug € R;.

If uo = ug, then supp(C. 4,) = supp(C. ), contradicting independence of the target blocks.
Thus uq # ug.

Define G with vertex set R; and edge set £ := {(a,b) € R; x R; | supp(A..) # supp(A.;)}.
By irreducibility of S;, gf is connected. Thus, there is a path uq, = vg,v1,...,v, = ug with
each consecutive pair comparable (i.e., either supp(A..,) € supp(A..,,,) or supp(A..,) 2

supp(A4. o, . ). Let p be the first index where the image of v, (in C) leaves C,. Then v,_; and v,
are comparable but land in different C-blocks, giving a containment across C-blocks. This contra-
dicts independence of the target factors. Therefore, for each ¢, all columns of B supported in R;
belong to a single target block. Since B is invertible, repeating the argument for all ¢ € [K] shows
that each block-row of B contains exactly one nonzero block.

Finally, Lemmas [3| and [2| (as in the proof of Theorem [2) imply that g is locally disentangled with
respect to g.

O

Proposition 3. Let A € R™*". For k € [n], write Ry, := supp(A. ;) C [m] and for i € [m], write
C; :=supp(A;..) C [n]. The following are equivalent:

(1) (Mutual non-inclusiveness) For all k # £, Ry, th Ry (or equivalently, neither Ry, C Ry nor
Re € Ry).
(2) Foreveryk € [n],
{ky= () ¢

1€ERL

Proof. Fix k € [n]. Observe the identity
{jem R CRj}={jen]:jeC;VieRy}
:{]G [n] Alj#OVZERk}
1E€ERL

Thus (2) is equivalent to {k} = {j : Ry C R; }. That is, the only column whose support contains
Ry is k itself. This rules out R, C R; for any j # k, and by symmetry across pairs (k, £) yields
(1).

Conversely, if (1) holds, then for each k there is no j # k with R, C R;. So by the above identity
we get (;cz, Ci = {k}, which is (2). O

Remark 4. Under the usual convention that (), C; = [n], both conditions in Proposition orbid
zero columns (unless n = 1, in which case both are true regardless if the column contains nonzero
elements or not).

Proposition 4. Type M identifiability generalizes Theorem 3.1 from|Zheng & Zhang|(2023).

Proof. We will show that the assumptions of Theorem 3.1 in [Zheng & Zhang| (2023)) imply the
assumptions of Theorem 3] when we pick S; = R.

Zheng & Zhang| (2023) show that condition (i) in Theorem 3.1 implies Equation 14 in their ap-
pendix (V(i,j) € F,{i} x T;. C F), which can be reformulated as Equation @ Furthermore,
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Proposition [3|establishes that structural sparsity (condition (ii) in Theorem 3.1) is equivalent to mu-
tual non-inclusion. Thus, structural sparsity implies Type M independence of the source factors.
The sparsity gap (Equation [5)) is not explicitly listed in Theorem 3.1 but required throughout their
entire work. Finally, for one-dimensional factors, Type M irreducibility is vacuously true, and by
Lemma ] Type M independence of the target factors holds automatically. O

A.5 PROOF OF THEOREM 4]

For s € &, denote by pg (s) the minimal ¢y-norm (i.e. the number of nonzero entries) of the matrix
representing Dgs: TsS — Tg(4)X when expressed in a basis of TS that is aligned with the de-

composition ‘B and in the canonical basis of T ()X induced by its embedding in R? . Conversely,
define pgy (s) as the infimum of the ¢y-norm of Dg; taken over all choices of basis of TS that do

not respect the decomposition B. Analogously, we define p%i (8) and pyg () based on D; g, where
B, is a decomposition of T, S;. ' '

Definition 19 (Mechanistic Independence of Type S). We say that the subspaces S; are mechanisti-
cally independent of Type S if; for every s € S,

P (8) < pg(s), where B := @ Ts,S;.
1€[K]
Definition 20 (Reducibility of Type S). We say that the component S; is reducible of Type S if there
exist s € S and a nontrivial decomposition T, S; = U @V =:B; such that
ps.(5) < i, (5)
Otherwise, we call S; irreducible of Type S.

Theorem 4 (Local Identifiability of Type S). Letg : S — X and g : Z — X be local diffeomor-
phisms with g(S) C g(Z). Then g is locally disentangled w.r.t. g if:

(1) § C Hfil S; is open, and the factors S; are Type S independent and irreducible.

(2) Z2 C Hle Zj is open with L < K, and the factors Z; are independent of Type S.

Proof. On a neighborhood ¢ C Z define the diffeomorphism
vi=glogl, U~ (g7 og)U),
so that g = g o v on . Hence
Dg, = ng(z) o Dv,. (20)
Fix product-splitting bases for Ty, ([ [; S;) and T (] ] . Z;) that minimize the {o-sparsity of Dg,, ()
and Dg, respectively. In these bases, write Equation[20|as C' = A B. Since both g and g are local

diffeomorphisms into the same observation manifold, B is square and invertible. Let R; C [d;] be
the column-index set spanning T, S;, and define C; C [ds] analogously for T, Z;.

Step 1. Each column of B has support contained in a single source block.

Suppose not: then for some column index k, the support supp(B:. ;) intersects distinct blocks R, #
R4. By independence of the S;, any basis change of Dg, that mixes coordinates from different
source blocks worsens the /y-sparsity after multiplication. Equivalently,

[Allo < [[ABlo = [|Cfo-

This contradicts the assumption that the chosen basis for Dg., is {y-minimal, since independence of
the Z; implies that the lowest {p-norm is achieved in a product-splitting basis (up to reordering of
the basis vectors). Hence supp(B. ) C R; for some 1.

Step 2. For each i, the columns of B supported in R; land in a single target block.

Assume otherwise: then there exists ¢ € [K] and columns p € Cy, and ¢ € C—, := [J,;, C; such

that both B, , and B. , are supported in R;. Now consider two cases (with dim(S;) = 0 and
dim(Z;) = 0 excluded a priori):
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Case 1 (dim(S;) = 1). Then R; = {r} and for nonzero scalars B, ,, B, , we have

supp(C:,p) = Supp(A:,rBr,p) = Supp(A:,rBr,q) = Supp(c:,q)-

However, a necessary requirement for independence of the target factors is

supp(C.p) M supp(C. q),
since otherwise a cross-block mixing can be constructed involving C. ;, and C. , which leaves the

overall support unchanged. This contradicts the earlier result that supp(C. ,) = supp(C. 4).

Case 2 (dim(S;) > 1). The full row rank of By, . yields an invertible square submatrix B formed
from columns in Cy and C_j, such that

A.r,B=[A;, A,
where fL and 22 are submatrices of C. ¢, and C. ¢_,, respectively. By independence of the Z;,

p”é(z) < pg(z), where B = @Tzizi.
i€[L]

This forces

it (z) = ||ICllo = |[[A1, A < plz) < inf A, A))G

Pg(z) = ICllo = [[[A1, Az]llo + ¢ < pg(z) < G (oo pecting) I[A1, A2]Gllo + <,
where ¢ > 0 is the number of nonzero entries of C' outside [Avl, AVQ]. Since C has minimal support,
there is no basis transformation reducing the £y-norm of A; or As individually. Thus

p%i('u(z)) = HA:’RiBHO < G¢{blocik1-1r£specting} ”[Ah AQ]GHO - pg_Bi(’U(Z))’

contradicting irreducibility of S;.

Hence, for each i, all columns of B supported in R; belong to a single target block. Repeating the
argument for all ¢ € [K] shows that each block-row of B contains exactly one nonzero block (since
B is invertible).

Finally, Lemmas [3| and [2| (as in the proof of Theorem [2) imply that g is locally disentangled with
respect to g. O

A.6 PROOF OF THEOREM[3

Definition 21 (Mechanistic Independence of Type H,,). Let S C Hfil S; be a smooth manifold,
andletg: S — X be of class C" withn > 2. S; and S; are said to be mechanistically independent
of Type H,, if, forall s € S,

D;?jgs =0. (21)
Definition 22 (Reducibility of Type H,,). We say that the component S; is reducible of Type H,, if
there exists s € S such that either D;';gs = O or there exists a nontrivial splitting Ts,S; = U & V
such that forall € € U, p € V, and (i, € TsS for k € [n — 2],

D}:gs(&,m,C1,---,Cn2) = 0. (22)

Definition 23 (Separability of n-th Order). We say that g: S — X’ is separable of order n if there
exists s € S such that, for all i € [K], the image of D}',gs intersects trivially with

Span{D;jgsv J 7&7” Dkg.97 1 S k S n— ]-}

Lemma 5. Let V be a finite-dimensional vector space with diim(V') > 2, and suppose Wy, ..., W,
with n > 2 are subspaces of V such that W1 + - - - +W,, = V. Assume that there exist indices i # j
that satisfy W; # {0} and W; # {0}. Then there exist nonzero subspaces Uy and Uy of V' such
that

V =U, & U,,

with Uy C W; and Uy C Zk#i Wh.
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Proof. SetC =3, 2 Wy, and Vy := W,; N C. Then choose complements
Wi=Vo@V, and C =V,
for some subspaces V; C W; and Vo C C. Then
V=W,+C=WVoaWV)+ Vel =VaV,a,
and the sum is direct because V; N V5 = {0} and Vp N (V5 + V5) = {0}.

We now choose Uy and U, case by case.

Case 1: Vi # {0} and Vo # {0}. SetU; := V3 C Wy and Uy := Vy @ Vo C C. Then
U U =V @ (Vy @ Vo) =V, and both Uy, Us are nonzero.

Case 2: Vi # {0} and Vo = {0}. Then C' = Vj and, since W; C C with W; # {0}, we have
Vo # {0} SetU; .=V, C W,and Uy := Vy C C. Again Uy & Uy = Vi &V = V, with both

nonzero.

Case 3: Vi = {0} and Vo # {0}. Then W; = Vj, hence V; # {0} because W; # {0}. Set
Ui =V CW;and Uy := Vo C C. Wehave U; & Uy = Vy @ Vo = V, both nonzero.

Case 4: Vi = {0} and Vo = {0}. Then W; = C = V4. In particular W; = C = V. Since
dim (V') > 2, choose a decomposition V = A @ B with A, B # {0}. Taking U; := A C W, and
U, := B C (' yields the claim.

In all cases we obtain nonzero subspaces Uy C W; and U, C C = Zk# Wy with V. = U; & Us,
as required. O

Theorem 5 (Local Identifiability of Type H,). Let g: S — X and g: Z — X be local C"-
diffeomorphisms with n > 2 satisfying g(S) C g(Z). Then § is locally disentangled w.r.t. g if:

(1) S C Hfil S; is open, and the factors are Type H,, independent and irreducible.
(2) Z2 C Hle Z; is open with L < K, and the factors are independent of Type H,,.

(3) g is separable of order n.

Proof. Let s* € S be arbitrary, and choose z* € Z such that
g(s") = g(z").
Since g and g are local diffeomorphisms, there exists a neighborhood &/ C Z of z* on which we
may write
g=gov,
where

*

vi=g logl, U= (g7 0g)U) satisfies v(z*) =s".

Fix n > 2. For z € U, the higher-order chain rule gives

D"g. = Y Dgy.(DPl.),_, (23)
7P ([n])
where P([n]) denotes the set of partitions of {1,...,n}.

On the left-hand side of Equation 23] mechanistic independence of the Z; implies that all mixed
derivatives of g vanish:

Now restrict Equation 23] to this mixed derivative and consider the right-hand side. Mechanistic
independence of the S; implies that the highest-order term (corresponding to 7 = {1,...,n}) can
be split up, and all mixed derivatives Dy ;g (z) vanish:

D" gy (z) (Di'vz, D;v,,Dv,,... ,sz) = E Dy 1.9v(2) (D,-(ﬂ—kov)z, Dj(myov),, Dv,, ... ,sz),
— —_—
n—2 times ke[K] n—2 times
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where 7, denotes the projection onto the k-th slot.

By separability (Defn. 23), the image of Dy gy () intersects the images of all other derivative terms
on the right-hand side of Equation 23| only at zero. Hence they cannot cancel and each individual
term in the sum must be zero. Therefore, for each k € [K], we obtain

Dy 19u(2) (Di(wk °0v)z, Dj(mp0v),, Du,, ..., sz) =0. (24)
’ ~—_————

n—2 times

Now assume, for a contradiction, that there exist « € T, Z; and 8 € T, Z; such that
Di(mpov)z(a) #0 and Dj(m, 0v),(8) # 0.

We distinguish two cases (recall that dim(S;) = 0 and dim(Z;) = 0 were excluded by assumption):
Case I: dim(Sy) = 1. Then Equationimplies D} 1.9v(z) = 0, contradicting irreducibility.

Case 2: dim(Sy) > 1. Define
W, == im(DZ-(ﬂ'k ) v)z).
Since v is a composition of local diffeomorphisms, D (7, o v), is surjective, hence
Tvk(z)Sk =Wy +---+Wg.
By Lemma[5 we can decompose
T'uk(z)sk' =U; @ Us
with nontrivial tangent subspaces Uy C W; and Uy C 3 ki W;. From Equation [24{ we then have,
forall ¢ € Uy andn € Us,
Dg,kgv(z) (57 n, Ch RN Cn72) =0,
where (¢ € Ty (,)S are arbitrary. This implies that Sy, is reducible, a contradiction.

Therefore, for each k& € [K] there is at most one ¢ € [L] such that

Di(rk ) v)z £ 0.
Since Dw, is an isomorphism, at least one such ¢ must exist. Applying Lemmas [3|and[2] as in the
proof of Theorem |2} we obtain a surjection o : [K] — [L] with the disentanglement property.

Hence g is locally disentangled with respect to g. O

A.7 PROOFS OF GRAPH-THEORETICAL RELATIONS

Proposition 5. Let A € R™*™ have full column rank and define G(A) = ([n], £), € = {(i,j) €
n)?> | A.; ® A.; # 0}. For a fixed integer K > 1 the following are equivalent:

(i) For any invertible B € R™*™ the maximal number of connected components of G(AB) is

K.

(ii) There are a permutation matrix P and an invertible matrix B such that
PAB = diag( AW, ..., A5)),
and no other P’, B’ such that P' AB’ is block-diagonal with K +1 blocks on the diagonal.

(iii) There exists an invertible B such that A B is compositional with K irreducible mechanisms
in the sense of Definitions 1 and 5 of\Brady et al.|(2023).

(iv) There is a partition [m] = Q1 U - -+ U Qg with Q, # & such that
K
rank(A) = Zrank(AQk,z), rank(Ag, .) > 1 VEk,
k=1
and no partition of [m] into K + 1 non-empty sets satisfies this equality.

Proof. Throughout, all ranks are column-ranks. For a matrix X, let row(X') denote its row space
and let supp(X) be the set of row indices whose corresponding rows are non—zero. Multiplication
by an invertible matrix or a permutation matrix preserves rank and does not change the edge—relation
that defines the graph G( ).
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(i) = (i)

Statement (i) asserts that there exists a B € R™*™ such that G(AB) possesses exactly K con-
nected components. Let Ci,...,Cx C [n] be the vertex sets of these components and put
Ri = Uice, supp((AB).;) C [m]. Without loss of generality we can assume that Cy, .. .,Cx
appear in contiguous order. Otherwise, permute the columns of B first.

Because different components have disjoint row supports (otherwise there would be a connecting
edge), the sets R1, ..., Rk are mutually disjoint. Permute the rows so that R4, ..., Rk appear
contiguously and denote the corresponding permutation matrix by P. Then P A B is block—diagonal
with exactly K diagonal blocks. Note that any zero rows of A B can be placed arbitrarily.

If, contrary to the minimality clause of (ii), another pair P’, B’ produced K + 1 diagonal blocks,
the graph G(AB’) would contain at least K + 1 connected components, contradicting (i). Therefore
(ii) holds.

(i) = (iii)

Write PAB = diag(AW, ..., A%)) as in (ii) and set M*®) := (AB)g,. (k = 1,...,K)
with Ry, as before. The matrices M *) have pairwise disjoint row supports, so they constitute K
mechanisms and A B is compositional.

Assume that one mechanism, say M (1), were reducible. Then its row support could be partitioned
into two non—empty sets whose row spaces are independent, yielding another decomposition of
P'AB' into K + 1 diagonal blocks. This contradicts the minimality property in (ii). Thus every
mechanism is irreducible and (iii) follows.

(iil) = (iv)
Since AB has K compositional mechanisms, there are disjoint R1, ..., Rx C [m]. Add zero rows

of AB arbitrarily to R; denoted by Q; (i.e., R; C Q;) such that Oy, ..., Q) partition [m]. Then
rank(AB) = 25:1 rank((AB)g,,:). and rank((AB)g, ) > 1.

Suppose a refinement [m] = Q1 U --- U Q' ; also satisfied the same rank identity. Then there is a

B’ € R™*™ such that AB’ has K + 1 compositional machanisms. Next, we show by contradiction
that if AB has K compositional and irreducible mechanisms then there is no invertible B’ € R™*™
such that A B’ has more than K compositional mechanisms establishing (iv).

Suppose such a B’ existed. Denote with {R/, fil (with K’ > K) the row sets that constitute the
compositional mechanisms of AB’, respectively.

According to the pigeonhole principle there is at least one R; which has elements in multiple R;
Denote with U;; = R; N R; Then rank(Ag,.) = rank(Ag,.B) = Zj rank(Ay, ;.B) =
> y rank( Ay, ;..), which contradicts the irreducibility assumption. Thus, there is no basis in which
A has more than K compositional mechanisms.

(iv) = (1)
Assume (iv) with partition [m] = Q1 U -+ U Q.

Permute rows so that Q1, ..., Q are consecutive; call the permutation matrix P. Because the row
spaces row(Ag, .) are pairwise independent, one may choose a column basis aligned with them,

yielding B € R™*" with PAB = diag(A™",..., AU)). Consequently G(PAB) = G(AB)
has at least K connected components.

Now, let B be arbitrary and suppose G(AB) had K + 1 connected components with vertex sets
Ci,...,Cxyq. As before set R := Uz‘ec,; supp((AB).;) C [m]. Disjointness of components
implies [m] = R} U--- U R/, and, as before,

K+1
rank(A) = Z rank(AR;c’:),
k=1

28



Under review as a conference paper at ICLR 2026

contradicting the minimality clause in (i). Therefore every invertible B produces at most K con-
nected components.

We have established the chain of implications
(i) = (i) = (iv) = (i) = (i),

hence all four statements are equivalent. O

B EXAMPLES

Example 1 (Type M and Type S mechanistic independence vs. reducibility). This example illus-
trates Type M and Type S mechanistic independence and reducibility. We display four Jacobians,
each written in a basis aligned with a given product decomposition of the source tangent space.
Block columns (corresponding to distinct source components) are separated by vertical rules:

o
1o T 10 | -1
901 1100
101 111 ] o
A=\ 111l B=|l0ol1]o0
9 |1 0 l-1]1
0|1 001
L 0 |1 ] )
1 110 0 -
110 1] 1 0|0 o0
1] 0 |o 1 20 o0
111 |o 0 11 o0
C=1l9ol1lo| P=1]3 Z1|1 o
0| -1]1 0 0|2 -1
001 0 0|1 o0
L0 0 |-1 3 |

For a Jacobian J displayed in a basis aligned with the product decomposition B = @, Ts,S;, let
T ||o denote the number of its nonzero entries. In this aligned basis, we have

ps < [ ]o-

For a (right) change of source basis G € GL(TsS) that respects B, the transformed Jacobian is
JG, and
&= i JGlo.
P Ge{blrgllc%gagonal} H HO

Conversely, for a change of basis G € GL(TsS) that does not respect B,

® in JGlo.
P G ¢ {block-respecting } | | | | 0

Likewise, for a single component i with a (nontrivial) split 8, = U &V = Ty, S,, we compare p;gl
vs. pog, using changes of basis that do (or do not) respect B; while fixing basis elements spanning

Djeixniiy TsiSie

Mechanistic independence and irreducibility of Type M. Since no column support contains or
is contained in the support of a column from a different block, Type M mechanistic independence
holds in all cases. For A, B, C, each component is one-dimensional, so Type M irreducibility holds
vacuously. The first block of D is further reducible since D. 1 M D. o while the second block is
irreducible as D.3 O D. 4. Note that in the sparsest product-splitting basis multi-dimensional
factors cannot be Type M reducible.
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Irreducibility of Type S. Again, since each component of A, B, C' is one-dimensional, Type S
irreducibility holds automatically. For the Jacobian D, each component is two-dimensional; thus
we must verify that no 2D block can be internally split to reduce sparsity compared with all other
possible splits.

First block (columns 1-2). Consider the displayed split B, = T, S1 and any other nontrivial

internal split 81 = U ® V. Since both U and V are one-dimensional, no further 81 -respecting
basis transformation can reduce the support. Counting nonzeros yields p%l = 8, and since

1 0
a=[} 1| Il =Dz o

we obtain pjél = Py,

For a distinct split B # B, we have pé < p%l, since we can always revert to the current split.
1

Moreover, p% > p;gl, as the current split already achieves minimal support. Hence, the first block

is irreducible. (We could construct an alternative Jacobian with reducible first component by setting
both —1 entries in D to 0; modifying only one is insufficient.)

Second block (columns 3—4). Here a local simplification is possible: by mixing the third and fourth
columns appropriately, we can reduce the third column by one nonzero. After this adjustment, the
same argument as above shows that the second block is also Type S irreducible.

Mechanistic independence of Type S. We now check mechanistic independence for each Jaco-
bian individually.

Case A. Columns (blocks) have exclusive rows: rows 1,2 are nonzero only in the first block, and
rows 7,8 only in the second. Any non-respecting change of basis mixes the two one-dimensional
components, introducing nonzeros into these exclusive rows while at most one of the four shared
rows in the middle can be canceled. Thus, any genuine mixing strictly increases the total {y-norm,
50 pg > P = [ Allo-

Case B. Pairwise, B behaves analogously to C': for each column pair there are four exclusive rows
and only one shared. This enforces a lower bound under any 2 x 2 mix, so all pairwise checks pass.

However, there exists a full G € R3*3 mixing all three columns without increasing the overall
support (thus violating strict inequality in Def.[I9):

1 0 1
G=|1 1 0|, |IBG|o=|Blo.
1 0 0

Hence, B is pairwise but not fully mechanistically independent.

Case C. As in B, all pairwise checks pass. The key difference is that in C' the three shared rows (1st,
3rd, 5th) cannot be simultaneously eliminated by any invertible G € R3*3. Thus, any combination
involving all three blocks necessarily preserves the three exclusive rows (2nd, 4th, 6th) and increases
Lo. Therefore, py > p% =||C|lo, i-e., C is fully mechanistically independent.

Case D. A local simplification inside the second block (mixing the third and fourth columns) reduces
the third column by one nonzero. After this, the first, second, and third columns each have four
nonzeros (the fourth remains at two), giving p% =14=4+4+4+2

To break Type S independence, one would need a cross-block mix: there must exist a vector
(a, b, c,d) with either a or b nonzero and either ¢ or d nonzero such that

D (a,b,c, d)T

has at most four nonzero entries (matching pg ). This is impossible: any such combination has
at least five nonzeros, even under careful cancellations. Hence, every cross-block mixing strictly
increases the Ly-norm, and D is Type S mechanistically independent.

In summary, all components of A, B, C, D are Type S irreducible; A, C, D are Type S mechanis-
tically independent,; B is pairwise but not fully mechanistically independent.
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Example 2 (Minimizers of compositional contrast yield Type S independence in some generators).
This example shows that there exist generators whose latent components are Type S independent but
not Type D independent, yet for which the compositional contrast Ccomy, recovers the sources up to
permutation and element-wise transformations.

Let s € R? and g: R? — R® with g(s) = As, where
1

O O = =
— == O O

We immediately observe that s and so are Type S but not Type D independent.

Consider now a learned decoder §: R? — R®. If g minimizes the reconstruction error, then its
Jacobian at some z* € R? takes the form Jg(z*) = AB for a nonsingular matrix B. Equivalently,

| det(B)| > q for some q > 0. Writing
a b
p=(t )

we obtain
a b
a b
AB=|a+c b+d and Ceomp(B) = 2|a||b] + 2|c||d| + |a + c||b + d|.
c d
c d

We will show that

min  Ceomp(B) = q,
4, Ceomp(B) =

and that every global minimizer of Ceomp is a generalized permutation matrix (i.e., a matrix with
exactly one nonzero entry in each row and each column). This means that the learned latent factors
are Type S independent after joint minimization of the reconstruction error and Ceomp.
Proof. We prove the claim in three steps.
Step 1. Reduction to the case | det(B)| = q.
For ¢ > 0 we get

Ceomp(tB) = t*Ceomp(B), | det(tB)| = t*| det(B)|.

If | det(B)| > ¢, choose t = 4/q/| det(B)| < 1. Then
|det(tB)| = q, Ceomp(tB) = t*Ceomp(B) < Ceomp(B).
Thus any minimizer must satisfy | det(B)| = ¢. It therefore suffices to prove
Ceomp(B) > | det(B)] for all B,

and to identify the matrices for which equality holds.

Step 2. A chain of inequalities.
Let

x = |al, y = 1b], u=|c|, v =1d|.
By the triangle inequality,
la+c| > |z — ul, [b+d| > |y — vl

Hence,
Ceomp(B) > 2zy +2uv + |z —u| - |y —v| = F(z,y,u,v).
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We now claim
F(z,y,u,v) > 2v+yu forall z,y,u,v > 0.

Define
D = F(x,y,u,v) — (xv 4+ yu) = 2zy + 2uv + |z — u||y — v| — 2v — yu.
We analyze D by cases on the signs of x — v and y — v.

Case 1: © > wandy > v. Then | — u| = = — u,

y—v|=y—wv,and

D:2xy+2uv—xv—yu+($—u)(y—v)
= 3zy + 3uv — 2zv — 2yu
= (zy +uwv) +2(z —u)(y —v) > 0.

Case2: v > uwandy < v. Then | —u| = z — u,

y—v|=v—y,and

D =2zy+2uw —a2v —yu+ (x —u)(v —y)
=22y + 2uv — zv — yu + (zv — Yy — wv + uy)
=xy+uv > 0.

Case 3: x < wand y > v. By symmetry with Case 2 (interchanging (z, u)), we again obtain

D =zxy+uv>0.

Case4: r <uwandy < v. Then |z —u| =u—=z, |y —v| =v —y, and
D =2zy+2uw —a2v—yu+ (u—2x)(v—y)
= 22y + 2uv — v — yu + (uv — uy — v + TY)
= 3zy + 3uv — 2zv — 2yu
= (xzy 4+ wv) + 2(x —u)(y —v) > 0.

In all cases we have D > 0, so indeed

F(z,y,u,v) > zv +yu = [al|d] + [b]|c[-

Finally, the determinant satisfies
| det(B)| = |ad — be| < |ad] + |be| = |al|d| + |b]|c|] = zv + yu
by the triangle inequality. In summary, we have the chain
Ceomp(B) > F(z,y,u,v) > zv+yu > |det(B)|.

In particular, if | det(B)| = ¢, then
Ccomp(B) 2 q.

Step 3. Equality conditions and classification of minimizers.

To attain the minimum under | det(B)| > ¢, we must have | det(B)| = ¢ and equality throughout
the chain
Ccomp(B) Z F(x7yvu7v) Z v+ yu Z |det(B)|

(i) Equality in Ceomp(B) > F(z,y,u,v).

‘We used
la+c|>|lal —lcl|,  [b+d| > |b] - |d]|-

This requires

ac<0 bd < 0.

)

(ii) Equality in F(x,y,u,v) > zv + yu.
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From the case analysis above, equality F'(x,y, u,v) = zv + yu forces
zy=0 and wuv =0,

that is,
|al[b] = 0, |cl|d] =0,

o)
eithera =0orb=0, and eitherc=0o0rd =0.

(iii) Equality in zv 4+ yu > | det(B)].

We used
|det(A)| = |ad — be| < |ad| + |be| = zv + yu,
which requires
(ad)(bec) < 0.

From (ii) we get four structural patterns, two of which are incompatible with det(B) # 0. The

remaining possibilities are
a 0 0 b
B = (O d) or B = (c O) .

Ceomp(B) = | det(B)| € {|ad|, [bc| },

so equality holds everywhere.

For these matrices,

These are precisely the 2 x 2 generalized permutation matrices. Consequently, the global minimizers
of Ceomp under the constraint | det(B)| > ¢ are exactly the generalized permutation matrices with
| det(B)| = ¢, and the minimum value of Ctop,p, 1S g. O

C DISENTANGLEMENT FOR NON-INVERTIBLE GENERATORS

In some applications the underlying generator is non-invertible when modelling the latent space as
a product space (or a subset thereof). For two such scenarios we can nevertheless make meaningful
statements about disentanglement: (1) local invertibility, and (2) invertibility on an open subset.

For the former category, an example is image data containing multiple objects with identical appear-
ance, since the generator is then (block-)permutation invariant. Another example is the angle of a
rotary joint with multiple revolutions in a robotic arm, as 6 4+ n(27) maps to the same physical state.
More generally, these situations involve symmetries such as permutation or rotational symmetry.

For the second category, an example arises from occlusions in image data. Here the generator is also
non-invertible, but now entire regions of the latent space map to the same observation (e.g., when
one object is hidden behind another).

In such cases multiple latent codes map to the same observation, which makes the encoder inherently
ambiguous. The learning algorithm must make a choice about how to represent those observations.
This choice may lead to defects in the encoder, such as discontinuities (as discussed later). However,
a decoder need not suffer from this issue. As long as we can learn a decoder that generates the
observation manifold and whose components are mechanistically independent, we can still obtain
disentanglement in case (1), and at least on the invertible subsets in case (2).

We now consider two illustrative examples.

Example 1. Consider images depicting two balls of identical appearance at arbitrary positions in
the image, but without occlusion. In this case the latent space can be modelled using an ordered
configuration space, representing tuples of pairwise distinct object states:

Confy () = {s € QF | s; #£s;, Vi#j€[K]}, (25)
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where ) denotes the state space of a single object (e.g., position, color), and K is the number of
objects. Since any permutation of the factors (i.e., objects) yields the same observation, the ground-
truth decoder must be permutation invariant. The observation manifold can therefore be viewed as
an unordered configuration space, obtained by quotienting out permutations.

Assuming a soft rasterizer, the generator can be modelled as a local diffeomorphism: the map is
locally invertible, and small latent perturbations produce small and reversible changes in the ob-
servations. A direct check verifies that we have Type D independence and, by implication, also
Type M/S/H,, independence. Because a single ball cannot be itself represented as an additive func-
tion with two or more components, we have Type Hj irreducibility, and thus also Type D irreducibil-
ity. The generator is also second-order separable, since all first- and second-order partial derivatives
are linearly independent at every point in the latent space. Considering the affine equivariance of
positional encoding, the generator must also be Type S irreducible. Thus the local identifiability
results for Type D, S, and Hy apply.

Furthermore, any configuration space with K > 2 and dim({2) > 2 is connected. Its 1-slices are
also connected: fixing one ball, the other can be moved continuously to any other position in the
image while avoiding collisions. Hence Theorem [I] applies, and local disentanglement extends to
global disentanglement.

Example 2. Consider images of two balls, one large and one small, placed at different locations,
with possible occlusion (the smaller potentially disappearing behind the larger). The latent space
can be modelled as S = R? x R?, describing the (x, y)-positions of both balls. The generator then
maps a hyper-tube of latent codes (corresponding to positions of the smaller ball behind the larger
one) to the same observations. With a soft rasterizer, the generator becomes differentiable, but it
is not invertible (not even locally invertible) on the full domain. However, at any point outside the
hyper-tube it is locally invertible.

Following the same reasoning as in Example 1, we obtain local identifiability of the decoder at all
points outside the hyper-tube. Restricted to this region, the model is even globally identifiable, since
the resulting space is identical to that of the previous example. Therefore, if we train a decoder
with mechanistically independent components that can generate the observation manifold, it must
be globally disentangled outside the hyper-tube.

Whether disentanglement holds within the hyper-tube is undecidable: if the large ball occludes the
smaller one and moves by a small amount, we cannot determine from the observation alone whether
the smaller ball behind it moved as well.

D EXPERIMENTAL DETAILS AND FURTHER EXPERIMENTS

D.1 COMPOSITIONAL CONTRAST AS A SURROGATE FOR TYPE S INDEPENDENCE

This experiment closely follows the setup of Brady et al.[(2023). We first sample latent variables
from a standard normal distribution and then generate observations by passing them through an
invertible MLP. The outputs are concatenated as

9(3) = (9(1)(51),9(1’2)(31782)39(2)(32)79(2’3)(32,83)7 e 79(K)(3K))-

For each g(i), the slot dimension is fixed at dim(S;) = 3, and the slot-output dimension is set to 20.
The overlap ratio is determined by the output dimensions of g(!) and g(:?): if they have the same
number of output dimensions, the overlap is 50%. Strictly speaking, for K > 2, this implies that in
Figure[2] K — 2 slots exhibit a 66% overlap.

We train models with K € {2,3,5} slots and regularization parameters A € {1072, 1}, where the
loss is £ = Lrecon + ACcomp- For each configuration, we run five random seeds across overlap levels
{0%, 5%, 20%, 50%}, resulting in 120 models in total. To ensure comparability across different
numbers of slots and regularization parameters, we apply the same normalization procedure to all
experiments. In addition, within each group of models sharing the same overlap ratio, we normalize
Ceomp by dividing by the group mean, since the achievable minimum of Cconp varies substantially
with overlap.
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D.2 EXPERIMENTS ON NON-INVERTIBLE GENERATORS
We now consider images depicting two balls whose colors lie between green and red and which may

appear at any position in the image, but without occlusion (K = 2, ds = 6); see Figure [d] We train
an autoencoder with an additive decoder (i.e., Type Ho independence), defined as

gz = Y §9(=),

i€[K]

using the standard Mean Squared Error (MSE) reconstruction loss (implementation details are pro-

vided below).
A HHANN
(O]
®
@
@

Figure 4: Image reconstructions for the entire latent code and for individual slots. Note that the
per-slot reconstructions appear brighter because the offset is undetermined in an additive model.

Rec

Slot2 Slot 1

To evaluate disentanglement quantitatively in this setting, we cannot directly predict the ground-
truth latent code from the learned representation using the Slot Identifiability Score (SIS) as before.
Because multiple latent codes always correspond to the same observation, the prediction target is
ambiguous. Instead, we first determine the best-fitting fundamental domain of the latent space under
permutations. A fundamental domain is any connected subset of the configuration space containing
exactly one representative of each latent orbit under permutations. Restricting the generator to a
fundamental domain renders it invertible, making the prediction target unique.

However, there exist infinitely many choices of fundamental domains, and for most of them the
learned regressor would need to approximate a discontinuous function. To avoid this, for each
reconstructed image we compute the centers of mass of both balls in image space and select, among
all permutations of the ground-truth factors, the closest match. This produces a partition of the latent
space that aligns as closely as possible with the encoder’s (arbitrary) convention. We then compute
the SIS on this selected fundamental domain and denote the resulting metric by SIS*. Table [I]shows
that the model achieves nearly perfect disentanglement.

Table 1: Slot Identifiability Scores after selecting the best-fitting fundamental domain over 5 random
seeds.

RMSE SIS*
1.30 £0.18  99.6 £ 0.05

Next, we examine the encoder in more detail. As noted by |Zhang et al.|(2019); Hayes et al.| (2023),
the encoder must approximate discontinuities in this setting, a phenomenon known as the responsi-
bility problem. Such discontinuities necessarily arise whenever we traverse a path in the latent space
that connects a point to its block-permutation.

Figure[5|shows the learned latent variables for several latent traversals: in each row, only one ground-
truth latent variable is varied while the others remain fixed. The corresponding images and recon-
structions are shown in Figure[6] When we vary the coordinates of the first ball s1, only the second
encoded slot zo = (22,1, 22,2, 22,3)T changes; modifying s, analogously affects only z;, with one
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exception: The lower-left traversal in Figure [5 reveals an (approximately) discontinuous jump in
the middle. On either side of this jump, changes to the ground-truth latent affect only one slot.
This discontinuity is unavoidable and can, in principle, hinder autoencoder training by trapping the
optimization in poor local minima. However, in this instance, training succeeds without issue.
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Figure 5: Latent traversals: in each subplot, one ground-truth latent variable varies while all others
remain fixed. The curves depict the learned latent codes.

In Figure [6] consider the traversal of the z-position of the second ball: the image reconstructions
align perfectly with the ground truth, and nothing in the visual output betrays the latent discontinuity.
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Figure 6: Image reconstructions for latent traversals: in each row, a single ground-truth latent vari-
able is varied while all others remain fixed. From top to bottom, we vary the z-position, y-position,
and color of the first ball, followed by the same for the second.

Implementation Details
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Dataset. We use images of size 64 x 64 x 3 with pixel values in [0, 255]. The dataset contains
300,000 training images, 10,000 validation images, and 50,000 test images. Images with occlusions
are removed, introducing mild dependencies between object positions. Apart from this, the latent
variables are sampled uniformly over their support.

Model Architecture. The encoder consists of:

(1) A ResNet-18 backbone with the final classification layer removed (output dimension: 512).

(2) A linear layer mapping 512 — 4096, followed by Batch Normalization and a Leaky ReLU
(slope 0.01 for negative inputs).

(3) A fully connected layer of size 4096 x 4096, again followed by Batch Normalization and
a Leaky ReLU.

(4) A final linear layer mapping 4096 to the total ground-truth latent dimension, followed by
Batch Normalization.

We use an additive decoder §(z) = Y ;c(x 9" (2i), where each subdecoder ') has the same
architecture (with no shared weights):

(1) A linear layer mapping from d; = dﬁ to 1024, followed by Batch Normalization and a
Leaky ReL.U.

(2) Four fully connected layers of size 1024 x 1024, each followed by Batch Normalization
and a Leaky ReLU. The output is reshaped into 64 feature channels over a 4 x 4 grid.

(3) A stack of deconvolutional layers, each followed by a Leaky ReLLU:

(a) Deconvolution: 64 — 1024, kernel size 4, stride 2, padding 1.
(b) Deconvolution: 1024 — 512, kernel size 4, stride 2, padding 1.
(c) Deconvolution: 512 — 128, kernel size 4, stride 2, padding 1.
(d) Deconvolution: 128 — 3, kernel size 4, stride 2, padding 1.

Hyperparameters. We use the AdamW optimizer (Loshchilov & Hutter, 20177)) with:

e Batch size: 1024,

* Learning rate: 5 x 1075,

» Weight decay: 1 x 107?,

* Number of training epochs: 1000.

LLM USAGE DISCLOSURE

In accordance with the ICLR policy on large language model (LLM) usage, we disclose that an LLM
(OpenATI’s ChatGPT) was used solely for minor language polishing. This included limited grammar
correction and rephrasing for clarity. All research ideas, technical content, analyses, and conclusions
were generated entirely by the authors, who remain fully responsible for the paper’s content. For
full transparency, this very disclosure note was also drafted with the help of ChatGPT.
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