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ABSTRACT

Disentangled representations seek to recover latent factors of variation underlying
observed data, yet their identifiability is still not fully understood. We introduce
a unified framework in which disentanglement is achieved through mechanistic
independence, which characterizes latent factors by how they act on observed
variables rather than by their latent distribution. This perspective is invariant to
changes of the latent density, even when such changes induce statistical dependen-
cies among factors. Within this framework, we propose several related indepen-
dence criteria – ranging from support-based and sparsity-based to higher-order
conditions – and show that each yields identifiability of latent subspaces, even
under nonlinear, non-invertible mixing. We further establish a hierarchy among
these criteria and provide a graph-theoretic characterization of latent subspaces
as connected components. Together, these results clarify the conditions under
which disentangled representations can be identified without relying on statistical
assumptions.

1 INTRODUCTION

Disentangled representations capture the underlying explanatory factors that generate observed data.
They are widely believed to promote compositionality, enable controllable generation, and facilitate
transfer (Bengio et al., 2013; Higgins et al., 2017; Schölkopf et al., 2021; Locatello et al., 2019; Gr-
eff et al., 2020; Goyal & Bengio, 2022)). From a scientific perspective, disentanglement aligns with
the goal of discovering the causal or mechanistic structure of data-generating processes (Schölkopf
et al., 2021). The question of whether such representations can be consistently recovered is ad-
dressed by identifiability. If a model class lacks identifiability, different training runs may encode
incompatible factors, thereby undermining interpretability and transfer.

A classical route to identifiability is to posit statistical independence of the latent factors, as in
independent component analysis (ICA) (Comon, 1994; Hyvärinen & Oja, 2000) and independent
subspace analysis (ISA) (Cardoso, 1998; Hyvärinen & Hoyer, 2000). Early work focused on lin-
ear mixing, where identifiability can be obtained under mild conditions. For general nonlinear
mixing, however, identifiability is impossible without further assumptions (Hyvärinen & Pajunen,
1999; Locatello et al., 2019), motivating a large body of work that augments statistical assumptions
with temporal cues (Hyvärinen & Morioka, 2016; 2017; Klindt et al., 2020), auxiliary variables
(Hyvärinen & Morioka, 2017; Hyvärinen et al., 2019; Khemakhem et al., 2020a), multiple views
(Khemakhem et al., 2020b; Gresele et al., 2020; Von Kügelgen et al., 2021; Zimmermann et al.,
2021; Matthes et al., 2023), or interventions (Locatello et al., 2020; Lachapelle et al., 2022; Ahuja
et al., 2022; Brehmer et al., 2022; Ahuja et al., 2023; Jiang & Aragam, 2023; Yao et al., 2023; Zhang
et al., 2024; Ng et al., 2025).

A complementary strategy constrains the mechanism that maps latents to observations (Taleb & Jut-
ten, 1999; Horan et al., 2021; Gresele et al., 2021; Moran et al., 2021; Buchholz et al., 2022; Ghosh
et al., 2023; Zheng & Zhang, 2023). Independent Mechanism Analysis (IMA) (Gresele et al., 2021)
proposes to address nonlinear ICA by restricting the mixing function so that its Jacobian has orthog-
onal columns. This couples statistical independence of the latents with a mechanistic constraint on
the generator. In contrast, we pursue mechanistic independence as a stand-alone organizing princi-
ple: factors are defined by how they act on observations (through the generator), not by how they are
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distributed. This shift yields identifiability statements that are invariant to reweightings of the latent
density and allows the true factors to be misaligned with any statistically independent subspaces.

This work presents a family of mechanistic independence criteria – spanning support-based sepa-
ration, sparsity gaps in first-order action, and higher-order (cross-derivative) constraints. Similar to
ISA that shows identifiability with respect to a minimal decomposition into independent subspaces,
each criterion comes with a corresponding notion of irreducibility that rules out spurious internal
splits of a factor and yields an identifiability theorem. Our framework covers multi-dimensional
factors, partial disentanglement, and non-invertible generators.

Our framework generalizes and unifies recent identifiability results based on mechanistic con-
straints: object-centric disentanglement via disjoint supports (Brady et al., 2023), interaction asym-
metry (Brady et al., 2024), and additive decoders (Lachapelle et al., 2023), and it partially subsumes
sparsity-based nonlinear ICA results (Zheng et al., 2022; Zheng & Zhang, 2023) (the parts that do
not require statistical independence). Moreover, defining independent mechanisms by Jacobian-
orthogonality as in IMA (Gresele et al., 2021) appears in our taxonomy as one instance within a
broader class of mechanistic constraints. Unlike approaches that rely primarily on distributional
assumptions (e.g., temporal structure or auxiliary variables), our results hinge on properties of the
generator and therefore remain valid under broad latent densities. The main contributions of this
work are as follows.

• We define a notion of local disentanglement and prove that under mild topological assump-
tions (such as path-connectedness of the source space) local disentanglement extends to
global disentanglement even for generators that are not fully invertible.

• We introduce a family of mechanistic independence criteria for subspaces and prove for
each identifiability (up to block-wise invertible transforms and permutations).

• We discuss how the independence criteria are related and show that the independent and ir-
reducible factors coincide with connected components of graphs derived from mechanistic
assumptions of the generator.

Notation We write [n] := {1, . . . , n} for n ∈ N. Scalars are denoted by lowercase letters, vectors
by bold lowercase, and matrices by bold uppercase (e.g., a ∈ R, a ∈ Rn, A ∈ Rn×n). Scalar-
valued functions are written f, fi, while general maps are written f ,fi. For p ∈ S1 × · · · × Sn, we
set Difp := Dfp ◦ ιi for the differential in the i-th argument (ιi the canonical inclusion), and more
generally Dn

i,jfp := Dnfp ◦ (ιi, ιj , id, . . . , id).

2 DISENTANGLEMENT AND IDENTIFIABILITY

We now formalize the data-generating assumptions and the notion of disentanglement used through-
out the paper, before turning to identifiability. Our goal is to explain when a decoder (or encoder)
recovers, up to natural ambiguities, the underlying factors of variation that compose the observa-
tions.

2.1 DATA GENERATING PROCESS

We model latent factors of variation as subspaces of a product manifold, reflecting the often compo-
sitional nature of observed data. Let the set of generative (latent) configurations be an open1 subset
S ⊆ S1 × · · · × SK , where each factor space Si has positive dimension. We assume the latent
distribution Ps is strictly positive on S.

In line with the manifold hypothesis in representation learning (though assuming that observations
lie on rather than merely near a manifold), we posit that observations are produced via a generator
(also called a ground-truth decoder or mixing function)

g : S → X ⊆ Rdx .

1The condition that S is open implies that each factor can vary independently and without restriction at any
point within the space and is a common assumption.
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We denote the observation manifold by X := g(S), where typically ds := dim(S) is much smaller
than dx.

Notably, instead of characterizing the underlying factors through (conditional) statistical indepen-
dence or latent-space group actions (Higgins et al., 2018), we characterize them by their action on
the observation manifold via g. While these notions may align, they do not necessarily have to.
Several possibilities for making this precise are discussed in Section 3.

2.2 DISENTANGLED REPRESENTATIONS

To discuss how a learned representation may or may not reflect the underlying generative factors,
we consider a target representation space Z ⊆

∏L
j=1 Zj . In a disentangled representation, each

component Zj is intended to capture a single latent factor, or at most a restricted subset of factors.
We formalize this with the notion of a decomposable map.

Definition 1 (Decomposable map). Let S ⊆
∏K

i=1 Si and Z ⊆
∏L

j=1 Zj . A map h̃ : S → Z is
decomposable if there exists a surjection σ : [K] → [L] and maps hj :

∏
i∈σ−1(j) Si → Zj such

that, for all s ∈ S,

h̃(s) =
(
hj((si)i∈σ−1(j))

)L
j=1

. (1)

In other words, target factor zj ∈ Zj depends only on the subset of source factors {si : σ(i) = j}.

Definition 2 (Disentanglement). A decoder ĝ : Z → X is disentangled w.r.t. a generator g : S → X
if there exists a decomposable map h : S → Z such that g = ĝ ◦ h.

Disentanglement asserts that varying a single factor of the learned representation changes the de-
coded observation exactly as varying the corresponding source factors would. It can also be defined
in terms of an encoder f̂ : X → Z (e.g., f̂ ◦ g = h). However, when g is not invertible, f̂ may not
exist or may lack desirable properties such as continuity2. Notably, an oracle generator would be
trivially disentangled w.r.t. itself, even if not invertible. Under mild regularity assumptions, disen-
tanglement forms an equivalence relation (see Propositions 1 and 2), meaning that g and ĝ represent
equivalent generative models.

More generally, ĝ is locally disentangled if, for every s ∈ S, there exists a neighborhood of s where
the restriction of g admits such a disentangled representation (see Defn. 13). At first glance, local
disentanglement may appear less significant than the global property. However, under mild topolog-
ical constraints the two notions coincide, even when g is not fully invertible (see next section).

2.3 IDENTIFIABILITY

Identifiability asks whether a (locally) disentangled description is essentially unique given only ob-
servations in X . It characterizes when a learned representation must be disentangled. The following
global result shows that, under mild topological assumptions, local disentanglement implies global
disentanglement. The key condition is connectedness of slices in the source space. A k-slice is the
subspace obtained by holding all but k factors constant (see Defn. 14). Note that path-connectedness
of a space and of its slices are related but independent notions (see Remark 2).

Theorem 1 (Global Identifiability). Let S be an open subspace of the product manifold
∏K

i=1 Si,
where each factor Si has positive dimension. Then local disentanglement extends to global disen-
tanglement if:

(1) g : S → X is locally injective.

(2) S is path-connected.

(3) Every (K-1)-slice of S is path-connected.

2A practical example where continuity breaks is the responsibility problem which arises when learning
representations of unordered data, such as sets or objects within an image (Zhang et al., 2019; Hayes et al.,
2023; Mansouri et al., 2023). The permutation invariance makes the generator non-invertible.
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A proof is given in Appendix A.1. Informally, local disentanglement propagates along paths: since
each factor can vary independently (by openness and path-connectedness), and local injectivity pre-
vents branching, local decompositions extend globally.

In many practical cases (e.g., convex open sets in Rn), the topological conditions hold automatically,
and local injectivity follows from standard regularity assumptions. Thus, the main challenge is
usually to establish local disentanglement, and the remainder of the paper therefore focuses on local
identifiability.

3 IDENTIFIABILITY VIA INDEPENDENT MECHANISMS

We now establish a general framework that certifies local disentanglement by analyzing how latent
factors act on the observation manifold through the generator g. The key difference from classical
approaches is that independence is formulated at the level of the generative mechanism rather than
the latent probability law. As a result, it accommodates almost arbitrary distributions, including
those with statistical dependencies between and within subspaces. Importantly, there is no universal
notion of mechanistic independence comparable to statistical independence. Instead, we present a
family of independence criteria – disjointedness (Type D), mutual non-inclusion (Type M), spar-
sity gap (Type S), and higher-order separability (Type Hn) – each of which leads to disentangled
representations when mirrored in the learned representation.

3.1 LOCAL IDENTIFIABILITY OF TYPE D

We begin by slightly extending the result of Brady et al. (2023) and rephrasing it within our frame-
work.

Definition 3 (Mechanistic Independence of Type D). We say that Si and Sj (equivalently, si and
sj) are mechanistically independent of Type D if, for all s ∈ S, u ∈ Tsi

Si, and v ∈ Tsj
Sj ,

Digs(u) •Djgs(v) = 0, (2)

where Tsi
Si denotes the tangent space of Si at si and • denotes the element-wise (Hadamard)

product in Rdx .3

We call this Type D independence since Hadamard orthogonality expresses that different factors
act on a disjoint set of observation coordinates. For example, in images, each factor controls a
non-overlapping set of pixels. Independence among the Zj is defined analogously via ĝ.

To ensure disentanglement, independence alone is insufficient: if a source factor Si can be de-
composed into smaller, mutually independent components, a learned representation may split and
recombine them arbitrarily. This motivates the notion of reducibility.

Definition 4 (Reducibility of Type D). We say that Si is reducible of Type D if there exists s ∈ S
such that TsiSi admits a nontrivial4 direct-sum decomposition TsiSi = U ⊕ V with the property
that, for all u ∈ U and v ∈ V ,

Digs(u) •Digs(v) = 0.

If no such decomposition exists, we call Si irreducible of Type D.

This coincides with reducibility as defined in (Brady et al., 2023) (see Proposition 5), but makes
the connection to Type D independence explicit. If Si is reducible we could split it at a point into
smaller independent subspaces, and if a factor is one-dimensional it should always be irreducible.

Theorem 2 (Local Identifiability of Type D). Let g : S → X and ĝ : Z → X be local diffeomor-
phisms5 with g(S) ⊆ ĝ(Z). Then ĝ is locally disentangled w.r.t. g if:

(1) S ⊆
∏K

i=1 Si is open, and all factors are Type D independent and irreducible.

3Throughout this work, we identify Tg(s)X with its natural inclusion in Rdx .
4“Nontrivial” means dim(U),dim(V ) > 0.
5A diffeomorphism is a smooth bijection between manifolds with a smooth inverse. A local diffeomorphism

is a map that restricts to a diffeomorphism on some neighborhood of each point.
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(2) Z ⊆
∏L

i=1 Zi is open with L ≤ K, and the factors are independent of Type D.

Intuitively, if each source factor influences a disjoint set of observation coordinates, and no finer
decomposition is possible, then any learned representation that also acts on disjoint coordinates
recovers the true source factors (up to block-wise invertible transformations and permutations).

This result generalizes Theorem 1 of (Brady et al., 2023) to partial disentanglement and non-
invertible generators (when taking Theorem 1 into account). A proof is given in Appendix A.3.
Interestingly, all local identifiability proofs in this paper follow a common template: starting from
the local reconstruction identity ĝ = g ◦ v (where v := g−1 ◦ ĝ exists locally since both maps are
local diffeomorphisms), one applies the independence conditions to constrain interactions between
source and target factors. If a source factor interacted with multiple target factors, their indepen-
dence would force a decomposition of the source factor, contradicting irreducibility. Occasionally,
additional assumptions are needed to further restrict the function class.

Since Type D independence requires that no observation coordinate is affected by two factors, a
natural question is whether this can be relaxed to allow limited overlap while still achieving identifi-
ability. We next express this via supports (the index set of nonzero elements, denoted with supp(·))
of Jacobians.

Select a product basis (u1, . . . ,uds) for TsS; define Ωi(s) := supp(Dgs(ui)) for the i-th basis
vector; and let Cj be the index set of basis vectors of TsjSj . Then Type D independence can be
reformulated as

∀i ̸= j, ∀a ∈ Ci, ∀b ∈ Cj : Ωa(s) ∩ Ωb(s) = ∅. (3)

As long as the basis respects the product structure, the particular choice does not matter. In the next
two sections, we show how this condition can be relaxed, either via mutual non-inclusion or through
a sparsity gap.

3.2 LOCAL IDENTIFIABILITY OF TYPE M

Define the mutual non-inclusion relation between sets A,B ⊆ [dx] as A ⋔ B := A ⊈ B ∧ A ⊉ B,
that is, the sets may intersect, but neither is contained in the other.
Definition 5 (Mechanistic Independence of Type M). We say that Si and Sj are mechanistically
independent of Type M if, for every s ∈ S,

∀i ̸= j, ∀a ∈ Ci, ∀b ∈ Cj : Ωa(s) ⋔ Ωb(s). (4)

Type M independence allows observation coordinates to be influenced jointly by multiple factors as
long as neither support fully contains the other. In image data, for example, different factors may
affect intersecting sets of pixels, allowing partial occlusion, shadows and reflections. Unlike Type D
independence, this notion depends on the choice of basis for TsS. To make it meaningful, we restrict
to S ⊆ Rds (only for Type M), where TsRds carries a canonical basis that aligns with the product
structure. Reducibility is then expressed directly in these fixed coordinates.
Definition 6 (Reducibility of Type M). The component Si is reducible of Type M if there exist s ∈ S
and a partition Ci = A ∪ B such that

∀a ∈ A, ∀b ∈ B : Ωa(s) ⋔ Ωb(s).

Theorem 3 (Local Identifiability of Type M). Let g : S → X and ĝ : Z → X be local diffeomor-
phisms with g(S) ⊆ ĝ(Z). Then ĝ is locally disentangled w.r.t. g if:

(1) S ⊆ Rds is open, and the factors are Type M independent and irreducible.

(2) Z ⊆ Rds is open, and the factors are independent of Type M.

(3) For all s ∈ S and z ∈ Z with g(s) = ĝ(z),

∥Jĝ(z)∥0 ≤ ∥Jg(s)∥0. (5)

(4) For all such pairs,
Ω̂k(z) =

⋃
i∈supp(B:,k)

Ωi(s), (6)

5
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whereB := Jg−1◦ĝ(z) and Ω̂k mirrors Ωi for ĝ.

This theorem generalizes Theorem 3.1 of (Zheng & Zhang, 2023) (itself an extension of (Zheng
et al., 2022)) to multidimensional factors (see Proposition 4 for a detailed comparison). Statistical
independence of the sources is not required. Assumptions (1)–(2) mirror those in Theorem 2; condi-
tion (3) motivates a sparsity regularizer; and condition (4) rules out pathological cases and is implied
by condition (i) in (Zheng & Zhang, 2023). It usually holds when g is sufficiently nonlinear, though
a failure mode is illustrated in Example 1, caseB, where the Jacobian is constant on S.

3.3 LOCAL IDENTIFIABILITY OF TYPE S

We now return to the setting where S is a smooth manifold and replace the mutual non-inclusion
assumption with a sparsity gap criterion. Among all coordinate systems, the basis aligned with the
true factor decomposition yields the sparsest first-order action of the generator.

For s ∈ S, let ρ+B(s) be the minimal ℓ0-norm of the matrix representing Dgs : TsS → Tg(s)X
when the domain basis is aligned with the decomposition

B :=
⊕
i∈[K]

Tsi
Si.

Conversely, let ρ−B(s) be the infimum of the ℓ0-norm over all bases of TsS that do not respect B.

Definition 7 (Mechanistic Independence of Type S). The subspaces {Si}Ki=1 are mechanistically
independent of Type S if, for every s ∈ S,

ρ+B(s) < ρ−B(s). (7)

Viewing the Jacobian as a dictionary that maps infinitesimal latent directions to observation di-
rections, Type S independence states that the sparsest such dictionary (in the ℓ0 sense) is attained
precisely when the basis aligns with the true factorization. Any misalignment necessarily incurs a
strict sparsity gap.

If the supports of different components are disjoint, any mixing of partial derivatives can only enlarge
the support, since no cancellations are possible. In this case, Equation 7 holds trivially. Thus Type D
independence is a special case of Type S independence. The sparsity gap, however, is considerably
stronger: it remains valid even when the supports substantially overlap. For instance, suppose we
have one-dimensional sources where each support Ωi(s) overlaps with the others by less than half of
its elements. Even if a misaligned basis were tuned so that every shared element canceled perfectly
(if at all possible), the total number of nonzeros would still increase. Thus, the sparsity gap persists
under this optimal misaligned (but still suboptimal) basis transformation. In higher-dimensional
subspaces, the situation becomes more intricate, since inter-cancellations within block columns are
possible. In a sense, the sparsity gap captures all such potential cancellations and characterizes the
theoretical limiting case. As before, irreducibility rules out internal decompositions (see Defn. 20).
Example 1 discusses Type M/S independence and reducibility in detail.

Theorem 4 (Local Identifiability of Type S). Let g : S → X and ĝ : Z → X be local diffeomor-
phisms with g(S) ⊆ ĝ(Z). Then ĝ is locally disentangled w.r.t. g if:

(1) S ⊆
∏K

i=1 Si is open, and the factors Si are Type S independent and irreducible.

(2) Z ⊆
∏L

j=1 Zj is open with L ≤ K, and the factors Zj are independent of Type S.

Intuitively, identifiability follows by exploiting the strict sparsity gap in equation 7. While fairly
general, Equation 7 is intractable to optimize in practice. In Section 5 we investigate whether com-
positional contrast (Brady et al., 2023) can serve as a suitable surrogate loss.

3.4 LOCAL IDENTIFIABILITY OF TYPE H

Lastly, we simplify and generalize the asymmetric interaction principle of (Brady et al., 2024),
subsuming as a special case the additive setting of (Lachapelle et al., 2023).

6
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Definition 8 (Mechanistic Independence of Type Hn). Let S ⊆
∏K

i=1 Si be a smooth manifold, and
let g : S → X be of class Cn with n ≥ 2. We say that Si and Sj are mechanistically independent
of Type Hn if, for all s ∈ S,

Dn
i,jgs = 0. (8)

For n = 2, this requires that all cross-Hessian blocks vanish, implying additivity as in (Lachapelle
et al., 2023). Irreducibility is defined analogously (see Defn. 22).

To derive disentanglement, we additionally constrain the function class via separability.
Definition 9 (Separability of n-th Order). We say that g : S → X is separable of order n ≥ 2 if
there exists s ∈ S such that, for all i ∈ [K], the image of Dn

i,igs intersects trivially with

span
{
Dn

j,jgs, j ̸= i; Dkgs, 1 ≤ k ≤ n− 1
}
.

Separability is closely related to sufficient independence in (Brady et al., 2024) and sufficient non-
linearity in (Lachapelle et al., 2023), but is slightly weaker: it allows arbitrary interactions among
lower-order derivatives and within each block Dn

i,igs.
Theorem 5 (Local Identifiability of Type Hn). Let g : S → X and ĝ : Z → X be local Cn-
diffeomorphisms with n ≥ 2 satisfying g(S) ⊆ ĝ(Z). Then ĝ is locally disentangled w.r.t. g if:

(1) S ⊆
∏K

i=1 Si is open, and the factors are Type Hn independent and irreducible.

(2) Z ⊆
∏L

j=1 Zj is open with L ≤ K, and the factors are independent of Type Hn.

(3) g is separable of order n.

Compared to (Brady et al., 2024), our formulation highlights that source factors should be taken
as irreducible, which we argue is a necessary and natural requirement. This perspective eliminates
any dependence on (n+1)-th derivatives (which may not exist) and avoids the use of equivalent
generators. As with our other results, the conclusion also applies to non-invertible generators, and
we provide an explicit proof for n > 3 (corresponding to n > 2 in their slightly different notation).

4 DISCUSSION

4.1 HIERARCHY OF INDEPENDENCE

The different independence criteria form a natural hierarchy (see Figure 1). Type D independence is
the strongest: it implies all others. Differentiating Type D yields Type H2, and further differentiation
gives Type H3, and so on. Type M follows since disjointness is a special case of mutual non-
inclusion. Type S is also implied: in the sparsest product-respecting basis, Type D ensures that
supports are disjoint, and any linear combination of column vectors from different blocks strictly
enlarges the support, creating a sparsity gap. Finally, Type S implies Type M independence when
working in the sparsest product-splitting basis (but not in an arbitrary product-aligned basis).

Type D

Type M

Type S

Type H2 Type H3 ...

Type O

Figure 1: Relations among mechanistic independence types. Arrows indicate logical implications.
The dotted arrow holds only in the sparsest product-splitting basis.

Since reducibility describes whether a factor can be split into smaller independent subspaces, the im-
plication relations among reducibility types largely mirror those among independence types, except
for Type M, which depends on the choice of basis.

7
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This reveals a tradeoff between the identifiability results for Type D and Type S: by enforcing
stronger coherence within each factor, we can tolerate stronger interactions between different fac-
tors. Relations among the other identifiability results are less direct, since they require additional
assumptions (cf. the asymmetric interaction principle of (Brady et al., 2024)).

As with statistical independence, one must distinguish between pairwise and mutual independence.
For Types D, M, and Hn, the two coincide, but for Type S they differ in general. While mutual
independence always implies pairwise independence, Example 1, case B, shows a Jacobian where
factors are pairwise Type S independent but not mutually so.

4.2 FACTORS OF VARIATION AS CONNECTED GRAPH COMPONENTS

The factors of variation can also be viewed through graph structures.

Definition 10 (Graph structures). Let g : S → X be sufficiently smooth, and let B = (u1, . . . ,uds
)

be a basis for TsS. Define the following graphs:

(1) GD(s, B) = ([ds], ED) with

ED = {(i, j) ∈ [ds]
2 | Dgs(ui) •Dgs(uj) ̸= 0} = {(i, j) ∈ [ds]

2 | Ωi ∩ Ωj ̸= ∅}.

(2) GH2(s, B) = ([ds], EH2) with EH2 = {(i, j) ∈ [ds]
2 | D2gs(ui,uj) ̸= 0}.

(3) GM (s, B) = ([ds], EM ) with EM = {(i, j) ∈ [ds]
2 | Ωi ̸⋔ Ωj}.

Consider GD. In any product-splitting basis, the index sets Ci and Cj for i ̸= j are disconnected sub-
sets of the vertex set. Type D irreducibility ensures that no Ci can be further split into disconnected
components by using a different basis for Tsi

Si. Thus, the Type D independent and irreducible
factors correspond exactly to the connected components of GD. Moreover, under the assumptions
of Type D independence and irreducibility, GD cannot have more than K connected components
in any basis (see Proposition 5), and in any non-aligned basis it has strictly fewer. Hence, Type D
independence and irreducibility could alternatively be characterized by a gap in the number of con-
nected components between aligned and misaligned bases, paralleling the sparsity-gap perspective
of Type S.

A similar statement holds for GH2 . If g is second-order separable and satisfies Type H2 indepen-
dence and irreducibility, then no basis change increases the number of connected components, and
any misaligned basis strictly reduces it.

For GM , no analogous conclusion can be drawn, since its definition depends on a specific basis.
Nevertheless, the identification of factor subspaces with connected components still applies, though
only in the standard basis of Rds .

This graph-based perspective also connects to recent work on identifiability for local (Euclidean)
isometries (Horan et al., 2021), conformal maps, and orthogonal coordinate transformations (Gresele
et al., 2021; Buchholz et al., 2022; Ghosh et al., 2023). Each of these function classes can be
characterized in terms of their Jacobians: the columns of the Jacobian are mutually orthogonal,
differing only in whether they have unit norm, equal norm, or arbitrary norms. By analogy with
Type D independence, we may define Type O independence through orthogonality in the inner-
product sense:

∀i ̸= j : Digs(u) ·Djgs(v) = 0.

Constructing a graph analogous to GD, but replacing the Hadamard product with the inner product,
yields totally disconnected graphs for these maps when the source factors are one-dimensional.

However, without additional statistical assumptions, identifiability remains limited: even in the
smallest class (local isometries), it holds only up to affine transformations. Therefore, to achieve the
stronger notion of identifiability pursued in this paper, extra assumptions on the latent distribution
are required, even for one-dimensional factors. Nevertheless, such graph constructions may provide
a useful tool when combining mechanistic and stochastic independence to recover multidimensional
factors.
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4.3 APPLICABILITY AND LIMITATIONS OF MECHANISTIC INDEPENDENCE

We illustrate the requirements for Type D/M/S/Hn mechanistic independence in the context of image
data. Assume that individual latent factors si encode distinct objects in a scene (e.g., position, shape,
color), and let g denote the rendering process.

Type D independence fails whenever two latent factors influence the same pixel. This excludes
shadows, reflections, transparency, and partial occlusions.

Type H2 independence fails when the generator cannot be decomposed additively, i.e., when g(s) ̸=∑
i∈[K] g

(i)(si) for any set of functions g(i). Although this assumption is strictly weaker than
Type D independence, it still generally disallows partial occlusions, shadows, and reflections. In
principle, it permits semi-transparency, but only in the absence of refraction and only when colors
mix exactly additively. This condition is further weakened for n > 2, but in practice, the calculation
of higher-order derivatives is not feasible.

Type M independence fails when the set of pixels affected by a latent coordinate in one group is
strictly contained in the set affected by a latent coordinate in another group; for example, when an
object is visible solely through its reflection.

Type S independence is more subtle. For one-dimensional slots (i.e., when each object is parame-
terized by a single latent variable), it can fail only when the fraction of shared affected pixels across
slots exceeds one half (lower bound). As already mentioned, it is difficult to convey a similarly
strong intuition for multidimensional slots.

5 EXPERIMENTS

In an experiment mirroring Brady et al. (2023), we investigated whether the compositional contrast

Ccomp(ĝ, z) =

dx∑
n=1

K∑
i=1

K∑
j=i+1

∥∥∥∥∂ĝn∂zi
(z)

∥∥∥∥ ∥∥∥∥∂ĝn∂zj
(z)

∥∥∥∥
can serve as an effective surrogate loss for enforcing Type S independence. This question is moti-
vated by the observation that some generators have latent components that are Type S independent
but not Type D independent, yet minimizing Ccomp can nonetheless enforce Type S independence
in the learned representation (see Example 2). As argued in Section 3.3, Type S independence is
likely to hold when only a small number of observation dimensions are influenced by multiple latent
factors (slots).

To examine this, we generate synthetic datasets with varying degrees of overlap between the sets
of observation dimensions affected by different slots, as illustrated on the right in Figure 2. Latent
variables are sampled from a standard normal distribution, and observations are produced by passing
them through an invertible MLP whose Jacobian is constructed to have the desired support structure.
Only when the overlap is 0% does the generator satisfy Type D independence.

We train an autoencoder with reconstruction loss and compositional contrast, L = Lrecon + λCcomp,
across five random seeds, using L = K ∈ {2, 3, 5} slots and regularization strengths λ ∈ {10−2, 1}.
For comparability across hyperparameters, we normalize Ccomp (see Appendix D for details).

Figure 2 indicates that, for sufficiently small overlaps, Ccomp acts as a reliable proxy for Type S
independence. However, as the overlap ratio increases, the likelihood of convergence to bad local
minima also grows. Identifying more robust surrogate losses remains an open challenge, which we
leave for future work. Further experiments can be found in Appendix D.

6 RELATED WORK

Beyond the already mentioned approaches (Brady et al., 2023; Lachapelle et al., 2023; Brady et al.,
2024; Zheng et al., 2022; Zheng & Zhang, 2023; Horan et al., 2021; Gresele et al., 2021; Reizinger
et al., 2022; Buchholz et al., 2022), a number of other works establish identifiability by imposing
structural constraints. Moran et al. (2021) prove identifiability in sparse VAEs by enforcing sparsity

9
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Figure 2: Slot Identifiability Score (SIS) over reconstruction loss and compositional contrast for
different support overlaps.

in the decoder; while our framework does not subsume theirs, their synthetic dataset can also be
shown to satisfy Theorems 3 and 4. Rhodes & Lee (2021) provide empirical evidence that penalizing
the decoder Jacobian with an ℓ1-norm helps break rotational symmetries in VAEs – our results can
be seen as offering the corresponding theoretical justification. In contrast, Lachapelle et al. (2022)
obtain identifiability of latent factors by enforcing sparsity on causal mechanisms, while Reizinger
et al. (2023) connect sparsity patterns in the Jacobian to identifiable causal graphs in nonlinear ICA.

A distinctive aspect of our work is that we establish identifiability at the subspace level, whereas
most prior results assume that each latent factor is captured in a single dimension. Recent research
has also examined block-identifiability of latent variables under paired observations. These include
content–style separation via data augmentation (Von Kügelgen et al., 2021) or multiple views (Daun-
hawer et al., 2023), block-disentanglement under sparse perturbations (Fumero et al., 2021; Ahuja
et al., 2022; Mansouri et al., 2023), and temporal formulations leveraging causal graphs (Lachapelle
& Lacoste-Julien, 2022; Lachapelle et al., 2024).

7 CONCLUSION

In this work, we have developed a unifying framework for disentanglement and identifiability based
on mechanistic independence. By formulating independence at the level of generative mechanisms
rather than distributions, we obtained identifiability results for subspaces that hold under minimal
assumptions on the latent density and extend to nonlinear, non-invertible generators. Our analysis
revealed a hierarchy of independence criteria ranging from disjointness (Type D) to mutual non-
inclusion (Type M) to sparsity (Type S) and higher-order separability (Type Hn). We also showed
how connected components in graphs naturally characterize the structure of latent factors. Overall,
the results establish when disentangled representations are identifiable without relying on statistical
assumptions, providing a theoretical foundation for future work that explores other mechanistic
independence criteria or combines mechanistic and stochastic assumptions.
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NOTATION INDEX

a A scalar
a A vector
A A matrix
A A set
ai i-th coordinate of a (index starting at 1)
ai i-th factor of a if a lives in a product space
aij j-th coordinate of the i-th factor of a
dx Dimensionality of observations
ds Dimensionality of ground-truth latents
di Dimensionality of the i-th latent factor
dz Dimensionality of the learned representa-

tion
Dn Duplication matrix for n× n matrices
Dgs Differential of g at s
Digs Partial derivative w.r.t. i-th factor Dgs ◦

ιi
D3

i,jgs Mixed derivative D3gs ◦ (ιi, ιj , id)
ei Standard basis vector with a 1 at position i

f(x;θ) A function of x parametrized by θ
(sometimes reduced to f(x) to simplify
notation)

f Ground-truth encoder
f̂ Learned encoder
g Ground-truth decoder
ĝ Learned decoder
G = (V, E) A graph G defined by a set of ver-

tices V and edges E
h Mapping from ground-truth to learned la-

tents
I Identity matrix with implied size from con-

text
In Identity matrix of size n× n

Jf Jacobian matrix of f : Rn → Rm (Jf ∈
Rm×n)

ιi The i-th canonical inclusion map
K Number of latent factors
L Number of factors in learned representation
Ln Elimination matrix for n× n matrices
P A probability distribution
s Ground-truth latent variable
S Ground-truth latent space
Si i-th latent subspace (S ⊆ S1 × · · · × SK)

supp(·) Support (index set of nonzero ele-
ments)

TsS Tangent space of S at s
v Mapping from learned to ground-truth la-

tents
x Observation or measurement
X Data manifold (x ∈ X ⊆ Rdx )
z Learned representation (or encoding)
Z Learned representation space
× Direct product
⊕ Direct sum
• Hadamard product (element-wise product)
⊗ Kronecker product
⊙ Row-wise Kronecker product (also face-

splitting product)
\ Set subtraction
∩ Set intersection
∪ Set union
⊆ Subset or equal
⊇ Superset or equal
⋔ Mutual non-inclusion (A ⊈ B ∧ A ⊉ B)
|A| Cardinality of set A (the number of ele-

ments in A)
[n] The set {1, 2, . . . , n} for n ∈ N
f ◦ g Composition of the functions f and g

∥x∥0 ℓ0 norm of x
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A PROOFS

Before we turn to the theorems and proofs, let us recall the following definitions.

Definition 11 (Decomposable map). Let S ⊆
∏K

i=1 Si and Z ⊆
∏L

j=1 Zj . We say that

a map h̃ : S → Z is decomposable if there exists a surjection σ : [K] → [L] and maps
hj :

∏
i∈σ−1(j) Si → Zj such that, for all s ∈ S,

h̃(s) =
(
hj((si)i∈σ−1(j))

)L
j=1

.

Definition 12 (Disentanglement). A decoder ĝ : Z → X is said to be disentangled w.r.t. a generator
g : S → X if there exists a decomposable map h : S → Z such that g = ĝ ◦ h.

Remark 1 (Partial/full and local/global disentanglement). If L = K and σ is a bijection (i.e., local
full disentanglement), Defn. 12 gives

g(s) = ĝ
(
h1(sσ−1(1)), . . . ,hK(sσ−1(K))

)
.

To distinguish the cases L = K from L < K, we say ĝ is fully disentangled or partially disentan-
gled, respectively.

Definition 13 (Local disentanglement). A decoder ĝ : Z → X is locally disentangled w.r.t. a gen-
erator g : S → X if for every s∗ ∈ S and z∗ ∈ Z with g(s∗) = ĝ(z∗) there exist a neighborhood
U ⊆ S of s∗ and a decomposable map h : U → Z such that

g
∣∣
U = ĝ ◦ h and h(s∗) = z∗.

Definition 14 (k-factor slice). Let k ∈ {0, . . . ,K}, and let I ⊆ [K] be an index set with |I| =
K − k. If S is a subset of the product space S1 × · · · × SK , a k-factor slice (or simply a k-slice) of
S is any set of the form

U = {s ∈ S | si = ci for all i ∈ I},
where ci ∈ Si for i ∈ I are fixed constants.

Put simply, a k-slice is a subspace in which all but k factors are held constant.

Remark 2. Path-connectedness of S ⊆
∏K

i=1 Si and path-connectedness of its (K − 1)-slices are
related but independent properties: neither one implies the other (see Figure 3). More generally, for
K > 2, connectedness of 1-slices and 2-slices are likewise independent (for K = 2 they coincide
trivially). A further related notion is orthogonal convexity, which can be interpreted as the property
that all 1-slices are path-connected (when each factor is one-dimensional).

Figure 3: Examples illustrating independence of slice- and set-level connectedness. (a) S is path-
connected, but not every 1-slice is connected. (b) S is not path-connected, though every 1-slice is
connected. (c) Some 1-slices are disconnected, but every 2-slice is connected. (d) Some 2-slices are
disconnected, but every 1-slice is connected.
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A.1 PROOF OF THEOREM 1

Lemma 1. Let S be an open subspace of the product manifold
∏K

i=1 Si, with each factor Si of posi-
tive dimension. Suppose ĝ : Z → X is locally disentangled w.r.t. g : S → X . If g is locally injective
and S is path-connected, then the surjection σ from the definition of disentanglement (Defn. 13) is
globally unique.

Proof. The proof proceeds in two steps. First, we show that the surjection σ from the definition of
disentanglement is unique on sufficiently small neighborhoods, using local injectivity of g. In the
second step, we extend this uniqueness to all of S by path-connectedness.

Step 1. The surjection σ is locally unique.

Let U ⊆ S be open such that g
∣∣
U is injective and ĝ is disentangled with respect to g

∣∣
U . Then there

exist a surjection σ : [K] → [L] and a map h̃ : U → Z that decomposes into

hj :
∏

i∈σ−1(j)

Si −→ Zj , j ∈ [L],

such that for all s ∈ U ,

g(s) = ĝ
(
h1

(
(si)i∈σ−1(1)

)
, . . . ,hL

(
(si)i∈σ−1(L)

))
. (9)

Let V := h̃(U). From Equation 9 it follows that both h̃ and ĝ
∣∣
V are injective.

Now suppose that for the same g, ĝ another representation on U exists with a different surjection σ̃.
Fix any i ∈ [K] and a basepoint p ∈ U . Consider the one-factor slice

U (i) := {s ∈ U : sj = pj for all j ̸= i}.

Since dim(Si) > 0, U (i) contains at least two distinct points. By Equation 9, variation along U (i)

affects exactly the component indexed by σ(i). If σ(i) ̸= σ̃(i), then the same variation would be
forced to appear in two different components. Thus, on the right side of Equation 9, U (i) is mapped
to different sets for σ and σ̃, while on the left side g maps U (i) to the same set independently of σ.
Therefore, σ̃(i) = σ(i). Since i was arbitrary, we get σ̃ = σ on U .

Step 2. The surjection σ is globally unique.

Let sa, sb ∈ S and let γ : [0, 1] → S be a continuous path between them. By Step 1, every
point s ∈ γ([0, 1]) admits a neighborhood Us on which σ is uniquely determined. The compact
set γ([0, 1]) is covered by {Us : s ∈ γ([0, 1])}. By compactness, there exists a finite subcover
U1, . . . ,UM .

Using the Lebesgue number lemma, choose a partition

0 = t0 < t1 < · · · < tM = 1 such that γ([tm−1, tm]) ⊂ Um for each m.

Then γ(tm) ∈ Um ∩ Um+1, so consecutive sets intersect. By Step 1, σ is unique on each Um,
and therefore must agree on overlaps. Induction along the chain implies that the same σ applies to⋃M

m=1 Um ⊇ γ([0, 1]). Since sa, sb were arbitrary and S is path-connected, there exists a single
global surjection σ : [K] → [L] valid on all of S.

Theorem 1 (Global Identifiability). Let S be an open subspace of the product manifold
∏K

i=1 Si,
where each factor Si has positive dimension. Then local disentanglement extends to global disen-
tanglement if:

(1) g : S → X is locally injective.

(2) S is path-connected.

(3) Every (K-1)-slice of S is path-connected.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. From Lemma 1, it follows that there is a unique surjection σ : [K] → [L] such that locally,
for all j ∈ [L], zj depends only on the source components si with i ∈ σ−1(j).

Now fix j ∈ [L] and a tuple s̄σ−1(j) ∈
∏

i∈σ−1(j) Si. Consider the slice

A(j)
(
s̄σ−1(j)

)
=

{
s ∈ S : si = s̄i for all i ∈ σ−1(j)

}
.

This slice is path-connected since by assumption all (K-1)-slices of S are path-connected. Along
any path in A(j)(s̄σ−1(j)), local disentangled representations agree on overlaps (see Step 2 in
Lemma 1), and the j-th component remains constant since only coordinates outside σ−1(j) vary.
Thus the j-th component is well defined on the slice.

Therefore, we can define
h̃j :

∏
i∈σ−1(j)

Si → Zj ,

where h̃j(s̄σ−1(j)) is the common value of the j-th target component on A(j)(s̄σ−1(j)).

Finally, fix p ∈ S and choose U open such that g
∣∣
U is injective and ĝ is disentangled with respect

to g
∣∣
U . On U , a local representation has the form

g(s) = ĝ
(
h1

(
(si)i∈σ−1(1)

)
, . . . ,hL

(
(si)i∈σ−1(L)

))
.

By construction of h̃j , for all s ∈ U the local maps hj agree with h̃j . Hence

g(s) = ĝ
(
h̃1(s̄σ−1(1)), . . . , h̃L(s̄σ−1(L))

)
, s ∈ U .

Since p was arbitrary, this identity holds globally. Thus local disentanglement extends to a global
disentangled representation with surjection σ and maps {h̃j}Lj=1.

Remark 3. If L < K, not all (K-1)-slices need to be path-connected. It suffices that only the slices
corresponding to indices mapped to a common target component are path-connected.

A.2 PROOF OF PROPOSITION 1

Lemma 2. Let S ⊆
∏K

i=1 Si,Z ⊆
∏L

j=1 Zj , and suppose g : S → X and ĝ : Z → X are
local homeomorphisms. Assume that for every s∗ ∈ S there exists z∗ ∈ Z with g(s∗) = ĝ(z∗).
Moreover, suppose that for each such z∗ there exist

• a neighborhood U ⊆ Z of z∗,

• a surjection σ : [K] → [L], and

• maps vi : Zσ(i) → Si for i ∈ [K],

such that for all z ∈ U ,
ĝ(z) = g

(
v1(zσ(1)), . . . ,vK(zσ(K))

)
. (10)

Then ĝ is locally disentangled with respect to g.

Proof. Fix an arbitrary s∗ ∈ S and pick z∗ ∈ Z with ĝ(z∗) = g(s∗). By hypothesis at z∗, there is
a neighborhood U =

∏L
j=1 Uj ⊆ Z , a surjection σ, and maps vi giving Equation 10 on U .

Shrink to a neighborhood W ⊆ S of s∗ on which g : W → g(W) is a homeomorphism, and shrink
U if necessary so that ĝ(U) ⊆ g(W). Define

ψ := g−1◦ ĝ : U −→ W.

Then ψ is a homeomorphism onto its image with ψ(z∗) = s∗.

For each j ∈ [L] set

ϕj : Uj −→
∏

i∈σ−1(j)

Si, ϕj(α) :=
(
vi(α)

)
i∈σ−1(j)

.
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Then for z ∈ U Equation 10 is equivalent to

ϱσ
(
ψ(z)

)
=

(
ϕ1(z1), . . . ,ϕL(zL)

)
, (11)

where ϱσ is a reindexing homeomorphism s 7→
(
(si)i∈σ−1(j)

)L
j=1

. Therefore, each ϕi must be
injective, because the left hand side of Equation 11 is a homeomorphism onto its image.

Since ψ(U) is an open neighborhood of s∗ in the product space
∏

i Si, we can choose product
neighborhoods Vi ⊆ Si with

K∏
i=1

Vi ⊆ ψ(U).

Then for each j we have
∏

i∈σ−1(j) Vi ⊆ ϕj(Uj), and we set

hj := ϕ−1
j

∣∣∏
i∈σ−1(j) Vi

:
∏

i∈σ−1(j)

Vi −→ Uj .

Finally, for any s ∈
∏

i Vi, define z :=
(
hj((si)i∈σ−1(j))

)L
j=1

. Then, by construction and Equa-
tion 11, ψ−1(s) = z, hence

g(s) = ĝ(z) = ĝ
(
h1

(
(si)i∈σ−1(1)

)
, . . . ,hL

(
(si)i∈σ−1(L)

))
.

Therefore, ĝ is locally disentangled with respect to g on a neighborhood of the arbitrary point
s∗ ∈ S.

Proposition 1. Let g : S → X and ĝ : Z → X be surjective local homeomorphisms, where S and
Z are open subsets of their respective product spaces. Then local full disentanglement defines an
equivalence relation g ∼ld ĝ.

Proof. We verify that the relation is reflexive, transitive and symmetric.

Reflexivity: If g = ĝ, we can set each hi as the identity map and take σ as the identity permutation.
Then the definition is trivially satisfied.

Transitivity: Follows directly from composition of functions. If g ∼ld ĝ via hi, σ and ĝ ∼ld g̃ via
h̃i, σ̃, then g ∼ld g̃ via h̃i ◦ hσ̃−1(i), σ̃ ◦ σ.

Symmetry: Follows from Lemma 2.

Proposition 2. Let S ⊆
∏K

i=1 Si and Z ⊆
∏K

i=1 Zi be open, and let g : S → X and ĝ : Z → X
be surjective. Then disentanglement defines an equivalence relation g ∼d ĝ if one of the following
conditions hold:

(1) g and ĝ are bijective and S (equivalently Z) is itself a product space.

(2) g and ĝ are locally injective and every (K-1)-slice of S and Z is path-connected.

Proof. The proof is analog to Proposition 1.

A.3 PROOF OF THEOREM 2

Definition 15 (Mechanistic Independence of Type D). We say that Si and Sj (equivalently, si and
sj) are mechanistically independent of Type D if, for all s ∈ S, ξ ∈ Tsi

Si, and η ∈ Tsj
Sj ,

Digs(ξ) •Djgs(η) = 0, (12)

where • denotes the element-wise (Hadamard) product in Rdx .

Independence of the Zj is analogously defined based on ĝ.
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Definition 16 (Reducibility of Type D). We say that Si is reducible of Type D if there exists s ∈ S
such that Tsi

Si admits a nontrivial direct-sum decomposition Tsi
Si = U ⊕ V with the property

that, for all ξ ∈ U and η ∈ V ,
Digs(ξ) •Digs(η) = 0. (13)

If no such decomposition exists, we call Si irreducible of Type D.

Lemma 3. Let {Zj}Lj=1 and {Si}Ki=1 be smooth manifolds of positive dimension with L ≤ K, and
let Z ⊆ Z1 × · · · × ZL and S ⊆ S1 × · · · × SK be open subsets. Suppose v : Z → S is a
diffeomorphism such that for every z ∈ Z there exists a surjection σz : [K] → [L] satisfying

Dj(πi ◦ v)z = 0, for all i ∈ [K], j ̸= σz(i),

where πi : S → Si denotes a canonical projection. Then for every z ∈ Z there exists a neighbor-
hood U of z such that σz′ = σz for all z′ ∈ U , and moreover vi(z′) depends only on the component
z′σ(i) for each i ∈ [K].

Proof. At each z ∈ Z , the differential Dvz has block form

Dvz =

L⊕
j=1

Φz,j , Φz,j : TzjZj →
⊕

i∈σ−1
z (j)

Tπi(v(z))Si.

Since v is a diffeomorphism, Dvz is an isomorphism. Hence each block Φz,j must also be an
isomorphism, and in particular

dim(Zj) =
∑

i∈σ−1
z (j)

dim(Si).

The maps z 7→ Dj(πi ◦ v)z vary smoothly with z. Thus, if Φz,j is an isomorphism at z, it remains
so in a neighborhood of z, since invertibility is an open condition. This implies σ−1

z′ (j) ⊇ σ−1
z (j)

for all j ∈ [L] as we assumed the Si have positive dimension. Because each σz′ is surjective, we
must have σz′ = σz in a neighborhood U of z.

As Z is open in the product manifold, we may shrink U so that U = U1×· · ·×UL with each Uj path-
connected. Fix i ∈ [K] and let z̃ ∈ U satisfy z̃σ(i) = zσ(i). Choose a smooth path γ : [0, 1] → U
with γ(0) = z and γ(1) = z̃. By the fundamental theorem of calculus,

vi(z̃)− vi(z) =
∫ 1

0

d

dt
vi(γ(t)) dt.

By the chain rule,

d

dt
vi(γ(t)) = D(πi ◦ v)γ(t) · γ̇(t)

= Dσ(i)(πi ◦ v)γ(t) · γ̇σ(i)(t) +
∑

j ̸=σ(i)

Dj(πi ◦ v)γ(t) · γ̇j(t).

The first term vanishes because γσ(i)(t) is constant, and the second vanishes by the structural as-
sumption on Dv. Thus the integral is zero, and we conclude vi(z̃) = vi(z). Hence vi depends only
on the coordinate zσ(i), completing the proof.

Theorem 2 (Local Identifiability of Type D). Let g : S → X and ĝ : Z → X be local diffeomor-
phisms6 with g(S) ⊆ ĝ(Z). Then ĝ is locally disentangled w.r.t. g if:

(1) S ⊆
∏K

i=1 Si is open, and all factors are Type D independent and irreducible.

(2) Z ⊆
∏L

i=1 Zi is open with L ≤ K, and the factors are independent of Type D.
6A diffeomorphism is a smooth bijection between manifolds with a smooth inverse. A local diffeomorphism

is a map that restricts to a diffeomorphism on some neighborhood of each point.
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Proof. Fix an arbitrary point s∗ ∈ S . By the range assumption g(S) ⊆ ĝ(Z), there exists at least
one z∗ ∈ Z such that

g(s∗) = ĝ(z∗).

Since both g and ĝ are assumed to be local diffeomorphisms, there exists a neighborhood U ⊆ Z of
z∗ such that, for all z ∈ U ,

ĝ(z) = g ◦ v(z), (14)
where we define

v := g−1 ◦ ĝ
∣∣
U : U → (g−1 ◦ ĝ)(U),

and g−1 denotes the local inverse satisfying v(z∗) = s∗. Differentiating gives

Dĝz = Dgv(z) ◦Dvz. (15)

To obtain matrix representations, choose product-aligned bases on Tv(z)(
∏

i Si) and Tz(
∏

j Zj),
and identify Tĝ(z)X and Tg(v(z))X with their natural inclusions into Rdx .

By Type D independence for g, the row supports of the partial derivatives Digs and Djgs are
disjoint whenever i ̸= j. Thus there is a partition of observation coordinates [dx] = R1 ∪ · · · ∪
RK such that rows in Ri depend only on TsiSi. Permuting rows by P to group R1, . . . ,RK

consecutively makesA = P Dgv(z) block-row diagonal. Set

A := P Dgv(z), B := Dvz, C := P Dĝz,

so that C = AB.

For k ∈ [L], let B:,k denote the block-columns of B corresponding to Tzk
Zk, and let B:,−k de-

note the block-columns corresponding to
⊕

j ̸=k TzjZj . Define C:,k and C:,−k analogously as the
corresponding block-columns of C. Then

[C:,k C:,−k] =


A1,1 0 · · · 0
0 A2,2 · · · 0
...

...
. . .

...
0 0 · · · AK,K



B1,k B1,−k

B2,k B2,−k

...
...

BK,k BK,−k

 . (16)

By Type D independence for ĝ, the column supports of C from different target slots are disjoint in
observation coordinates, which is preserved by left-multiplication withP . Hence the supports of the
columns of C:,k are disjoint from those of C:,−k, so all pairwise Hadamard products between them
vanish. Denoting the Kronecker product by ⊗ and the row-wise Kronecker product (also known as
the face-splitting product) by ⊙, we obtain

0 = C:,k ⊙C:,−k

= (AB:,k)⊙ (AB:,−k)

= (A⊙A) (B:,k ⊗B:,−k)

= [A:,1 ⊙A:,1 A:,2 ⊙A:,2 · · · A:,K ⊙A:,K ]


B1,k ⊗B1,−k

B2,k ⊗B2,−k

...
BK,k ⊗BK,−k



=


(A1,1 ⊙A1,1)(B1,k ⊗B1,−k)
(A2,2 ⊙A2,2)(B2,k ⊗B2,−k)

...
(AK,K ⊙AK,K)(BK,k ⊗BK,−k)

 .

Here, the third equality uses the mixed-product property, the fourth expands and reorders terms, and
the last exploits the block-diagonal structure ofA. Reversing the mixed-product property yields, for
all i ∈ [K] and k ∈ [L],

(Ai,iBi,k)⊙ (Ai,iBi,−k) = 0. (17)

Suppose, for a contradiction, that both Bi,k and Bi,−k are nonzero. Since v is a composition of
diffeomorphisms, B is invertible and each Bi,: has full row rank. Let us consider two cases (note
that dim(Si) = 0 and dim(Zi) = 0 were categorically excluded in advance):
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Case 1 (dim(Si) = 1). Here Bi,: consists of a single row. Choose nonzero scalars a ∈ Bi,k and
b ∈ Bi,−k. From Equation 17,

(Ai,ia)⊙ (Ai,ib) = 0,

which impliesAi,i = 0, contradicting the assumption that g is a local diffeomorphism.

Case 2 (dim(Si) > 1). In this case, select columns from Bi,k and Bi,−k that together form an
invertible square matrix B̃ =

(
B̃l, B̃r

)
, with B̃l consisting of columns of Bi,k and B̃r of Bi,−k.

Then Equation 17 gives
(Ai,iB̃l)⊙ (Ai,iB̃r) = 0.

This implies that Si is reducible, since there exists a basis in which TsiSi decomposes into subspaces
where all pairwise directional derivatives vanish in the Hadamard product. Hence, either Bi,k or
Bi,−k must be zero.

Repeating the argument for all i ∈ [K] and k ∈ [L] shows that each block-row of B contains at
most one nonzero block. Since B is invertible, each block-row must contain exactly one nonzero
block. Hence, there exists a surjection σ : [K] → [L] such that

Bi,σ(i) ̸= 0 and Bi,j = 0 for j ̸= σ(i).

By Lemma 3, it follows that on U , the component vi(z) depends only on zσ(i) for every i ∈ [K].
Equivalently, there exist functions

ṽi : Zσ(i) → Si

such that locally
g−1 ◦ ĝ(z) =

(
ṽ1(zσ(1)), . . . , ṽK(zσ(K))

)
.

Since s∗ was arbitrary and the constructions hold for any z∗ satisfying g(s∗) = ĝ(z∗), Lemma 2
implies that ĝ is locally disentangled with respect to g.

A.4 PROOF OF THEOREM 3

Denote with Ωi(s) ⊆ [dx] the support of the i-th column of Jg(s) = Dgs : Rds → Rdx in the
standard basis (i.e., Ωi(s) := supp(Jg(s):,i)). Similarly, we use Ω̂j(z) for Jĝ(z). Let Ci denote
the column index set of the i-th source factor.

For sets A,B ⊆ [m], write A ⋔ B iff A ⊈ B and A ⊉ B (mutual non-inclusion).

Definition 17 (Mechanistic Independence of Type M). We say that Si and Sj are mechanistically
independent of Type M if, for every s ∈ S,

∀a ∈ Ci, ∀b ∈ Cj : Ωa(s) ⋔ Ωb(s).

Definition 18 (Reducibility of Type M). We say that the component Si is reducible of Type M if
there exist a point s ∈ S and a partition Ci = A ∪ B such that

∀a ∈ A, ∀b ∈ B : Ωa(s) ⋔ Ωb(s).

Lemma 4. Let C = AB, where A ∈ Rm×n, B ∈ Rn×n, and C ∈ Rm×n are all of full column
rank. Define GS(A) := ([n], ES) with ES = {(i, j) ∈ [n]2 | supp(A:,i) ̸⋔ supp(A:,j)}. If
∥C∥0 ≤ ∥A∥0 and for all k ∈ [n]

supp(C:,k) ⊇
⋃

i∈supp(B:,k)

supp(A:,i), (18)

then ∥C∥0 = ∥A∥0 and GS(C) is isomorphic to GS(A).

Proof. Write Qi := supp(A:,i), Rk := supp(B:,k), and Uk := supp(C:,k). Since C:,k =∑
i∈Rk

A:,iBi,k, we have Uk ⊆
⋃

i∈Rk
Qi, while Equation 18 gives the reverse inclusion; hence

Uk =
⋃

i∈Rk

Qi ∀k ∈ [n].
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Because B is invertible, the Leibniz formula for det(B) ̸= 0 yields a permutation σ : [n] → [n]
with Bi,σ(i) ̸= 0 for all i, i.e., i ∈ Rσ(i). Thus

Qi ⊆ Uσ(i) ∀i ∈ [n].

Summing sizes and using ∥C∥0 ≤ ∥A∥0,∑
i

|Qi| ≤
∑
i

|Uσ(i)| =
∑
k

|Uk| = ∥C∥0 ≤ ∥A∥0 =
∑
i

|Qi|,

so equality holds throughout, which forces |Uσ(i)| = |Qi| and hence Uσ(i) = Qi for all i. This
says the column supports of C are exactly those of A up to a relabelling of indices. Since the edge
relation in GS(·) depends only on mutual non-inclusion of these supports, the bijection i 7→ σ(i)
preserves adjacency:

Qi ⋔ Qj ⇐⇒ Uσ(i) ⋔ Uσ(j).

Hence GS(C) ∼= GS(A).

Theorem 3 (Local Identifiability of Type M). Let g : S → X and ĝ : Z → X be local diffeomor-
phisms with g(S) ⊆ ĝ(Z). Then ĝ is locally disentangled w.r.t. g if:

(1) S ⊆ Rds is open, and the factors are Type M independent and irreducible.

(2) Z ⊆ Rds is open, and the factors are independent of Type M.

(3) For all s ∈ S and z ∈ Z with g(s) = ĝ(z),

∥Jĝ(z)∥0 ≤ ∥Jg(s)∥0. (5)

(4) For all such pairs,
Ω̂k(z) =

⋃
i∈supp(B:,k)

Ωi(s), (6)

whereB := Jg−1◦ĝ(z) and Ω̂k mirrors Ωi for ĝ.

Proof. As before, we begin with the identity

ĝ(z) = g ◦ v(z),

defined on a neighborhood U ⊆ Z , where

v := g−1 ◦ ĝ
∣∣
U : U → (g−1 ◦ ĝ)(U)

is a diffeomorphism that maps a unique z∗ ∈ U to some initially chosen arbitrary point s∗ ∈ S.
Thus, after differentiation we get

Jĝ(z) = Jg(v(z))Jv(z),

which we write as C = AB. Since both g and ĝ are local diffeomorphisms into the same observa-
tion manifold,B is square and invertible, andA, C have full column rank.

Let Ri ⊆ [ds] be the column-index set in the i-th source block, and define Cj ⊆ [ds] analogously
for the target blocks. Then {Ri}Ki=1 partitions the columns ofA and {Ci}Li=1 partitions the columns
of C.

Step 1. Each column ofB has support contained in a single source block.

Suppose not: then for some column index k, the support supp(B:,k) intersects distinct blocks
Rp ̸= Rq . By independence of the Si,B would mix mutually non-inclusive column supports ofA.
Thus, Equation 6 would force a strict increase in the support, which contradicts the assumption that
∥C∥0 ≤ ∥A∥0. Hence supp(B:,k) ⊆ Ri for some i. Define Qi := {q : supp(B:,q) ⊆ Ri}, i.e.,
the column set ofB supported in Ri.

Step 2. For each i, the columns ofB supported in Ri land in a single target block.
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Assume otherwise: then Qi meets two distinct C-blocks Cα and Cβ . Pick qα ∈ Cα ∩ Qi and
qβ ∈ Cβ ∩ Qi. By Lemma 4, there are uα and uβ such that supp(C:,qα) = supp(A:,uα

) and
supp(C:,qβ ) = supp(A:,uβ

). By Equation 6, for every k ∈ supp(B:,qα) ⊆ Ri,

supp(A:,uα
) = supp(C:,qα) =

⋃
j∈supp(B:,qα )

supp(A:,j) ⊇ supp(A:,k). (19)

This implies uα ∈ Ri due to independence of the source factors. If uα were not in Ri, then
supp(A:,uα

) would contain a column support from a different block by Equation 19. Analogously,
we get uβ ∈ Ri.

If uα = uβ , then supp(C:,qα) = supp(C:,qβ ), contradicting independence of the target blocks.
Thus uα ̸= uβ .

Define GS
i with vertex set Ri and edge set E := {(a, b) ∈ Ri × Ri | supp(A:,a) ̸⋔ supp(A:,b)}.

By irreducibility of Si, GS
i is connected. Thus, there is a path uα = v0, v1, . . . , vr = uβ with

each consecutive pair comparable (i.e., either supp(A:,vi) ⊆ supp(A:,vi+1
) or supp(A:,vi

) ⊇
supp(A:,vi+1

)). Let p be the first index where the image of vp (in C) leaves Cα. Then vp−1 and vp
are comparable but land in different C-blocks, giving a containment across C-blocks. This contra-
dicts independence of the target factors. Therefore, for each i, all columns of B supported in Ri

belong to a single target block. Since B is invertible, repeating the argument for all i ∈ [K] shows
that each block-row ofB contains exactly one nonzero block.

Finally, Lemmas 3 and 2 (as in the proof of Theorem 2) imply that ĝ is locally disentangled with
respect to g.

Proposition 3. LetA ∈ Rm×n. For k ∈ [n], write Rk := supp(A:,k) ⊆ [m] and for i ∈ [m], write
Ci := supp(Ai,:) ⊆ [n]. The following are equivalent:

(1) (Mutual non-inclusiveness) For all k ̸= ℓ, Rk ⋔ Rℓ (or equivalently, neither Rk ⊆ Rℓ nor
Rℓ ⊆ Rk).

(2) For every k ∈ [n],
{k} =

⋂
i∈Rk

Ci.

Proof. Fix k ∈ [n]. Observe the identity

{ j ∈ [n] : Rk ⊆ Rj } = { j ∈ [n] : j ∈ Ci ∀i ∈ Rk }
= { j ∈ [n] : Aij ̸= 0 ∀i ∈ Rk }

=
⋂

i∈Rk

Ci.

Thus (2) is equivalent to {k} = { j : Rk ⊆ Rj }. That is, the only column whose support contains
Rk is k itself. This rules out Rk ⊆ Rj for any j ̸= k, and by symmetry across pairs (k, ℓ) yields
(1).

Conversely, if (1) holds, then for each k there is no j ̸= k with Rk ⊆ Rj . So by the above identity
we get

⋂
i∈Rk

Ci = {k}, which is (2).

Remark 4. Under the usual convention that
⋂

i∈∅ Ci = [n], both conditions in Proposition 3 forbid
zero columns (unless n = 1, in which case both are true regardless if the column contains nonzero
elements or not).
Proposition 4. Type M identifiability generalizes Theorem 3.1 from Zheng & Zhang (2023).

Proof. We will show that the assumptions of Theorem 3.1 in Zheng & Zhang (2023) imply the
assumptions of Theorem 3 when we pick Si = R.

Zheng & Zhang (2023) show that condition (i) in Theorem 3.1 implies Equation 14 in their ap-
pendix (∀(i, j) ∈ F , {i} × Tj,: ⊂ F̂), which can be reformulated as Equation 6. Furthermore,
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Proposition 3 establishes that structural sparsity (condition (ii) in Theorem 3.1) is equivalent to mu-
tual non-inclusion. Thus, structural sparsity implies Type M independence of the source factors.
The sparsity gap (Equation 5) is not explicitly listed in Theorem 3.1 but required throughout their
entire work. Finally, for one-dimensional factors, Type M irreducibility is vacuously true, and by
Lemma 4 Type M independence of the target factors holds automatically.

A.5 PROOF OF THEOREM 4

For s ∈ S, denote by ρ+B(s) the minimal ℓ0-norm (i.e. the number of nonzero entries) of the matrix
representing Dgs : TsS → Tg(s)X when expressed in a basis of TsS that is aligned with the de-
composition B and in the canonical basis of Tg(s)X induced by its embedding in Rdx . Conversely,
define ρ−B(s) as the infimum of the ℓ0-norm of Dgs taken over all choices of basis of TsS that do
not respect the decomposition B. Analogously, we define ρ+Bi

(s) and ρ−Bi
(s) based on Digs, where

Bi is a decomposition of Tsi
Si.

Definition 19 (Mechanistic Independence of Type S). We say that the subspaces Si are mechanisti-
cally independent of Type S if, for every s ∈ S,

ρ+B(s) < ρ−B(s), where B :=
⊕
i∈[K]

Tsi
Si.

Definition 20 (Reducibility of Type S). We say that the component Si is reducible of Type S if there
exist s ∈ S and a nontrivial decomposition TsiSi = U ⊕ V =: Bi such that

ρ+Bi
(s) < ρ−Bi

(s).

Otherwise, we call Si irreducible of Type S.
Theorem 4 (Local Identifiability of Type S). Let g : S → X and ĝ : Z → X be local diffeomor-
phisms with g(S) ⊆ ĝ(Z). Then ĝ is locally disentangled w.r.t. g if:

(1) S ⊆
∏K

i=1 Si is open, and the factors Si are Type S independent and irreducible.

(2) Z ⊆
∏L

j=1 Zj is open with L ≤ K, and the factors Zj are independent of Type S.

Proof. On a neighborhood U ⊆ Z define the diffeomorphism

v := g−1 ◦ ĝ
∣∣
U : U → (g−1 ◦ ĝ)(U),

so that ĝ = g ◦ v on U . Hence
Dĝz = Dgv(z) ◦Dvz. (20)

Fix product-splitting bases for Tv(z)(
∏

i Si) and Tz(
∏

j Zj) that minimize the ℓ0-sparsity of Dgv(z)
and Dĝz respectively. In these bases, write Equation 20 as C = AB. Since both g and ĝ are local
diffeomorphisms into the same observation manifold, B is square and invertible. Let Ri ⊆ [ds] be
the column-index set spanning TsiSi, and define Cj ⊆ [ds] analogously for TzjZj .

Step 1. Each column ofB has support contained in a single source block.

Suppose not: then for some column index k, the support supp(B:,k) intersects distinct blocks Rp ̸=
Rq . By independence of the Si, any basis change of Dgs that mixes coordinates from different
source blocks worsens the ℓ0-sparsity after multiplication. Equivalently,

∥A∥0 < ∥AB∥0 = ∥C∥0.
This contradicts the assumption that the chosen basis for Dĝz is ℓ0-minimal, since independence of
the Zj implies that the lowest ℓ0-norm is achieved in a product-splitting basis (up to reordering of
the basis vectors). Hence supp(B:,k) ⊆ Ri for some i.

Step 2. For each i, the columns ofB supported in Ri land in a single target block.

Assume otherwise: then there exists i ∈ [K] and columns p ∈ Ck and q ∈ C−k :=
⋃

j ̸=k Cj such
that both B:,p and B:,q are supported in Ri. Now consider two cases (with dim(Si) = 0 and
dim(Zi) = 0 excluded a priori):
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Case 1 (dim(Si) = 1). Then Ri = {r} and for nonzero scalars Br,p, Br,q we have

supp(C:,p) = supp(A:,rBr,p) = supp(A:,rBr,q) = supp(C:,q).

However, a necessary requirement for independence of the target factors is

supp(C:,p) ⋔ supp(C:,q),

since otherwise a cross-block mixing can be constructed involving C:,p and C:,q which leaves the
overall support unchanged. This contradicts the earlier result that supp(C:,p) = supp(C:,q).

Case 2 (dim(Si) > 1). The full row rank of BRi,: yields an invertible square submatrix B̃ formed
from columns in Ck and C−k such that

A:,Ri
B̃ = [Ã1, Ã2],

where Ã1 and Ã2 are submatrices of C:,Ck
and C:,C−k

, respectively. By independence of the Zj ,

ρ̂+
B̂
(z) < ρ̂−

B̂
(z), where B̂ :=

⊕
i∈[L]

Tzi
Zi.

This forces

ρ̂+
B̂
(z) = ∥C∥0 = ∥[Ã1, Ã2]∥0 + c < ρ̂−

B̂
(z) ≤ inf

G/∈{block-respecting}
∥[Ã1, Ã2]G∥0 + c,

where c ≥ 0 is the number of nonzero entries ofC outside [Ã1, Ã2]. SinceC has minimal support,
there is no basis transformation reducing the ℓ0-norm of Ã1 or Ã2 individually. Thus

ρ+Bi
(v(z)) ≤ ∥A:,Ri

B̃∥0 < inf
G/∈{block-respecting}

∥[Ã1, Ã2]G∥0 = ρ−Bi
(v(z)),

contradicting irreducibility of Si.

Hence, for each i, all columns of B supported in Ri belong to a single target block. Repeating the
argument for all i ∈ [K] shows that each block-row ofB contains exactly one nonzero block (since
B is invertible).

Finally, Lemmas 3 and 2 (as in the proof of Theorem 2) imply that ĝ is locally disentangled with
respect to g.

A.6 PROOF OF THEOREM 5

Definition 21 (Mechanistic Independence of Type Hn). Let S ⊆
∏K

i=1 Si be a smooth manifold,
and let g : S → X be of class Cn with n ≥ 2. Si and Sj are said to be mechanistically independent
of Type Hn if, for all s ∈ S,

Dn
i,jgs = 0. (21)

Definition 22 (Reducibility of Type Hn). We say that the component Si is reducible of Type Hn if
there exists s ∈ S such that either Dn

i,igs = 0 or there exists a nontrivial splitting TsiSi = U ⊕ V
such that for all ξ ∈ U , η ∈ V , and ζk ∈ TsS for k ∈ [n− 2],

Dn
i,igs(ξ,η, ζ1, . . . , ζn−2) = 0. (22)

Definition 23 (Separability of n-th Order). We say that g : S → X is separable of order n if there
exists s ∈ S such that, for all i ∈ [K], the image of Dn

i,igs intersects trivially with

span
{
Dn

j,jgs, j ̸= i; Dkgs, 1 ≤ k ≤ n− 1
}
.

Lemma 5. Let V be a finite-dimensional vector space with dim(V ) ≥ 2, and suppose W1, . . . ,Wn

with n ≥ 2 are subspaces of V such that W1+ · · ·+Wn = V . Assume that there exist indices i ̸= j
that satisfy Wi ̸= {0} and Wj ̸= {0}. Then there exist nonzero subspaces U1 and U2 of V such
that

V = U1 ⊕ U2,

with U1 ⊆ Wi and U2 ⊆
∑

k ̸=i Wk.
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Proof. Set C :=
∑

k ̸=i Wk and V0 := Wi ∩ C. Then choose complements

Wi = V0 ⊕ V1 and C = V0 ⊕ V2

for some subspaces V1 ⊆ Wi and V2 ⊆ C. Then

V = Wi + C = (V0 ⊕ V1) + (V0 ⊕ V2) = V0 ⊕ V1 ⊕ V2,

and the sum is direct because V1 ∩ V2 = {0} and V0 ∩ (V1 + V2) = {0}.

We now choose U1 and U2 case by case.

Case 1: V1 ̸= {0} and V2 ̸= {0}. Set U1 := V1 ⊆ Wi and U2 := V0 ⊕ V2 ⊆ C. Then
U1 ⊕ U2 = V1 ⊕ (V0 ⊕ V2) = V , and both U1, U2 are nonzero.

Case 2: V1 ̸= {0} and V2 = {0}. Then C = V0 and, since Wj ⊆ C with Wj ̸= {0}, we have
V0 ̸= {0}. Set U1 := V1 ⊆ Wi and U2 := V0 ⊆ C. Again U1 ⊕ U2 = V1 ⊕ V0 = V , with both
nonzero.

Case 3: V1 = {0} and V2 ̸= {0}. Then Wi = V0, hence V0 ̸= {0} because Wi ̸= {0}. Set
U1 := V0 ⊆ Wi and U2 := V2 ⊆ C. We have U1 ⊕ U2 = V0 ⊕ V2 = V , both nonzero.

Case 4: V1 = {0} and V2 = {0}. Then Wi = C = V0. In particular Wi = C = V . Since
dim(V ) ≥ 2, choose a decomposition V = A ⊕ B with A,B ̸= {0}. Taking U1 := A ⊆ Wi and
U2 := B ⊆ C yields the claim.

In all cases we obtain nonzero subspaces U1 ⊆ Wi and U2 ⊆ C =
∑

k ̸=i Wk with V = U1 ⊕ U2,
as required.

Theorem 5 (Local Identifiability of Type Hn). Let g : S → X and ĝ : Z → X be local Cn-
diffeomorphisms with n ≥ 2 satisfying g(S) ⊆ ĝ(Z). Then ĝ is locally disentangled w.r.t. g if:

(1) S ⊆
∏K

i=1 Si is open, and the factors are Type Hn independent and irreducible.

(2) Z ⊆
∏L

j=1 Zj is open with L ≤ K, and the factors are independent of Type Hn.

(3) g is separable of order n.

Proof. Let s∗ ∈ S be arbitrary, and choose z∗ ∈ Z such that

g(s∗) = ĝ(z∗).

Since g and ĝ are local diffeomorphisms, there exists a neighborhood U ⊆ Z of z∗ on which we
may write

ĝ = g ◦ v,
where

v := g−1 ◦ ĝ
∣∣
U : U → (g−1 ◦ ĝ)(U) satisfies v(z∗) = s∗.

Fix n ≥ 2. For z ∈ U , the higher-order chain rule gives

Dnĝz =
∑

π∈P([n])

D|π|gv(z)
(
D|B|vz

)
B∈π

, (23)

where P([n]) denotes the set of partitions of {1, . . . , n}.

On the left-hand side of Equation 23, mechanistic independence of the Zi implies that all mixed
derivatives of ĝ vanish:

Dn
i,j ĝz = 0, i ̸= j ∈ [L].

Now restrict Equation 23 to this mixed derivative and consider the right-hand side. Mechanistic
independence of the Si implies that the highest-order term (corresponding to π = {1, . . . , n}) can
be split up, and all mixed derivatives Dn

k,lgv(z) vanish:

Dngv(z)
(
Divz, Djvz, Dvz, . . . , Dvz︸ ︷︷ ︸

n−2 times

)
=

∑
k∈[K]

Dn
k,kgv(z)

(
Di(πk◦v)z, Dj(πk◦v)z, Dvz, . . . , Dvz︸ ︷︷ ︸

n−2 times

)
,
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where πk denotes the projection onto the k-th slot.

By separability (Defn. 23), the image of Dn
k,kgv(z) intersects the images of all other derivative terms

on the right-hand side of Equation 23 only at zero. Hence they cannot cancel and each individual
term in the sum must be zero. Therefore, for each k ∈ [K], we obtain

Dn
k,kgv(z)

(
Di(πk ◦ v)z, Dj(πk ◦ v)z, Dvz, . . . , Dvz︸ ︷︷ ︸

n−2 times

)
= 0. (24)

Now assume, for a contradiction, that there exist α ∈ Tzi
Zi and β ∈ Tzj

Zj such that
Di(πk ◦ v)z(α) ̸= 0 and Dj(πk ◦ v)z(β) ̸= 0.

We distinguish two cases (recall that dim(Si) = 0 and dim(Zi) = 0 were excluded by assumption):

Case 1: dim(Sk) = 1. Then Equation 24 implies Dn
k,kgv(z) = 0, contradicting irreducibility.

Case 2: dim(Sk) > 1. Define
Wi := im

(
Di(πk ◦ v)z

)
.

Since v is a composition of local diffeomorphisms, D(πk ◦ v)z is surjective, hence
Tvk(z)Sk = W1 + · · ·+WL.

By Lemma 5, we can decompose
Tvk(z)Sk = U1 ⊕ U2

with nontrivial tangent subspaces U1 ⊆ Wi and U2 ⊆
∑

j ̸=i Wj . From Equation 24 we then have,
for all ξ ∈ U1 and η ∈ U2,

Dn
k,kgv(z)

(
ξ,η, ζ1, . . . , ζn−2

)
= 0,

where ζℓ ∈ Tv(z)S are arbitrary. This implies that Sk is reducible, a contradiction.

Therefore, for each k ∈ [K] there is at most one i ∈ [L] such that
Di

(
πk ◦ v

)
z
̸= 0.

Since Dvz is an isomorphism, at least one such i must exist. Applying Lemmas 3 and 2, as in the
proof of Theorem 2, we obtain a surjection σ : [K] → [L] with the disentanglement property.

Hence ĝ is locally disentangled with respect to g.

A.7 PROOFS OF GRAPH-THEORETICAL RELATIONS

Proposition 5. Let A ∈ Rm×n have full column rank and define G(A) = ([n], E), E = {(i, j) ∈
[n]2 | A:,i ⊙A:,j ̸= 0}. For a fixed integer K ≥ 1 the following are equivalent:

(i) For any invertibleB ∈ Rn×n the maximal number of connected components of G(AB) is
K.

(ii) There are a permutation matrix P and an invertible matrixB such that
PAB = diag

(
A(1), . . . ,A(K)

)
,

and no otherP ′,B′ such thatP ′AB′ is block-diagonal with K+1 blocks on the diagonal.

(iii) There exists an invertibleB such thatAB is compositional with K irreducible mechanisms
in the sense of Definitions 1 and 5 of Brady et al. (2023).

(iv) There is a partition [m] = Q1 ∪ · · · ∪ QK with Qk ̸= ∅ such that

rank(A) =

K∑
k=1

rank
(
AQk,:

)
, rank(AQk,:) ≥ 1 ∀k,

and no partition of [m] into K + 1 non-empty sets satisfies this equality.

Proof. Throughout, all ranks are column–ranks. For a matrix X , let row(X) denote its row space
and let supp(X) be the set of row indices whose corresponding rows are non–zero. Multiplication
by an invertible matrix or a permutation matrix preserves rank and does not change the edge–relation
that defines the graph G( · ).
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(i) =⇒ (ii)

Statement (i) asserts that there exists a B ∈ Rn×n such that G(AB) possesses exactly K con-
nected components. Let C1, . . . , CK ⊂ [n] be the vertex sets of these components and put
Rk :=

⋃
i∈Ck

supp
(
(AB):,i

)
⊆ [m]. Without loss of generality we can assume that C1, . . . , CK

appear in contiguous order. Otherwise, permute the columns ofB first.

Because different components have disjoint row supports (otherwise there would be a connecting
edge), the sets R1, . . . ,RK are mutually disjoint. Permute the rows so that R1, . . . ,RK appear
contiguously and denote the corresponding permutation matrix byP . ThenPAB is block–diagonal
with exactly K diagonal blocks. Note that any zero rows ofAB can be placed arbitrarily.

If, contrary to the minimality clause of (ii), another pair P ′,B′ produced K + 1 diagonal blocks,
the graph G(AB′) would contain at least K+1 connected components, contradicting (i). Therefore
(ii) holds.

(ii) =⇒ (iii)

Write PAB = diag
(
A(1), . . . ,A(K)

)
as in (ii) and set M (k) := (AB)Rk,: (k = 1, . . . ,K)

with Rk as before. The matrices M (k) have pairwise disjoint row supports, so they constitute K
mechanisms andAB is compositional.

Assume that one mechanism, say M (1), were reducible. Then its row support could be partitioned
into two non–empty sets whose row spaces are independent, yielding another decomposition of
P ′AB′ into K + 1 diagonal blocks. This contradicts the minimality property in (ii). Thus every
mechanism is irreducible and (iii) follows.

(iii) =⇒ (iv)

SinceAB has K compositional mechanisms, there are disjoint R1, . . . ,RK ⊆ [m]. Add zero rows
of AB arbitrarily to Ri denoted by Qi (i.e., Ri ⊆ Qi) such that Q1, . . . ,Q′

K partition [m]. Then
rank(AB) =

∑K
k=1 rank

(
(AB)Qk,:

)
. and rank

(
(AB)Qk,:

)
≥ 1.

Suppose a refinement [m] = Q′
1 ∪ · · · ∪ Q′

K+1 also satisfied the same rank identity. Then there is a
B′ ∈ Rn×n such thatAB′ has K + 1 compositional machanisms. Next, we show by contradiction
that ifAB has K compositional and irreducible mechanisms then there is no invertibleB′ ∈ Rn×n

such thatAB′ has more than K compositional mechanisms establishing (iv).

Suppose such a B′ existed. Denote with {R′
j}K

′

j=1 (with K ′ > K) the row sets that constitute the
compositional mechanisms ofAB′, respectively.

According to the pigeonhole principle there is at least one Ri which has elements in multiple R′
j .

Denote with Uij = Ri ∩ R′
j . Then rank(ARi,:) = rank(ARi,:B) =

∑
j rank(AUi,j ,:B) =∑

j rank(AUi,j ,:), which contradicts the irreducibility assumption. Thus, there is no basis in which
A has more than K compositional mechanisms.

(iv) =⇒ (i)

Assume (iv) with partition [m] = Q1 ∪ · · · ∪ QK .

Permute rows so that Q1, . . . ,QK are consecutive; call the permutation matrix P . Because the row
spaces row(AQk,:) are pairwise independent, one may choose a column basis aligned with them,
yielding B ∈ Rn×n with PAB = diag(A(1), . . . ,A(K)). Consequently G(PAB) = G(AB)
has at least K connected components.

Now, let B be arbitrary and suppose G(AB) had K + 1 connected components with vertex sets
C′
1, . . . , C′

K+1. As before set R′
k :=

⋃
i∈C′

k
supp

(
(AB):,i

)
⊂ [m]. Disjointness of components

implies [m] = R′
1 ∪ · · · ∪ R′

K+1 and, as before,

rank(A) =

K+1∑
k=1

rank
(
AR′

k,:

)
,
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contradicting the minimality clause in (i). Therefore every invertible B produces at most K con-
nected components.

We have established the chain of implications

(i) =⇒ (ii) =⇒ (iv) =⇒ (iii) =⇒ (i),

hence all four statements are equivalent.

B EXAMPLES

Example 1 (Type M and Type S mechanistic independence vs. reducibility). This example illus-
trates Type M and Type S mechanistic independence and reducibility. We display four Jacobians,
each written in a basis aligned with a given product decomposition of the source tangent space.
Block columns (corresponding to distinct source components) are separated by vertical rules:

A =



1 0
1 0
−2 1
−1 1
1 1
2 1
0 1
0 1


B =


1 0 −1
1 0 0
−1 1 0
0 1 0
0 −1 1
0 0 1



C =


1 0 1
1 0 0
−1 1 0
0 1 0
0 −1 1
0 0 1

 D =



−1 1 0 0
1 0 0 0
1 2 0 0
0 1 1 0
3 −1 1 0
0 0 2 −1
0 0 1 0
0 0 −1 3


For a Jacobian J displayed in a basis aligned with the product decomposition B =

⊕
i Tsi

Si, let
∥J∥0 denote the number of its nonzero entries. In this aligned basis, we have

ρ+B ≤ ∥J∥0.

For a (right) change of source basis G ∈ GL(TsS) that respects B, the transformed Jacobian is
JG, and

ρ+B = min
G∈{block-diagonal}

∥JG∥0.

Conversely, for a change of basisG ∈ GL(TsS) that does not respect B,

ρ−B = inf
G/∈{block-respecting}

∥JG∥0.

Likewise, for a single component i with a (nontrivial) split Bi = U ⊕ V = Tsi
Si, we compare ρ+Bi

vs. ρ−Bi
using changes of basis that do (or do not) respect Bi while fixing basis elements spanning⊕

j∈[K]\{i} Tsj
Sj .

Mechanistic independence and irreducibility of Type M. Since no column support contains or
is contained in the support of a column from a different block, Type M mechanistic independence
holds in all cases. ForA,B,C, each component is one-dimensional, so Type M irreducibility holds
vacuously. The first block of D is further reducible since D:,1 ⋔ D:,2 while the second block is
irreducible as D:,3 ⊃ D:,4. Note that in the sparsest product-splitting basis multi-dimensional
factors cannot be Type M reducible.
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Irreducibility of Type S. Again, since each component of A,B,C is one-dimensional, Type S
irreducibility holds automatically. For the Jacobian D, each component is two-dimensional; thus
we must verify that no 2D block can be internally split to reduce sparsity compared with all other
possible splits.

First block (columns 1–2). Consider the displayed split B1 = Ts1S1 and any other nontrivial
internal split B̃1 = U ⊕ V . Since both U and V are one-dimensional, no further B1-respecting
basis transformation can reduce the support. Counting nonzeros yields ρ+B1

= 8, and since

G =

[
1 0

1 1

]
, ∥D:,{1,2}G∥0 = ∥D:,{1,2}∥0,

we obtain ρ+B1
= ρ−B1

.

For a distinct split B̃ ̸= B, we have ρ−
B̃1

≤ ρ+B1
, since we can always revert to the current split.

Moreover, ρ+
B̃1

≥ ρ+B1
, as the current split already achieves minimal support. Hence, the first block

is irreducible. (We could construct an alternative Jacobian with reducible first component by setting
both −1 entries inD to 0; modifying only one is insufficient.)

Second block (columns 3–4). Here a local simplification is possible: by mixing the third and fourth
columns appropriately, we can reduce the third column by one nonzero. After this adjustment, the
same argument as above shows that the second block is also Type S irreducible.

Mechanistic independence of Type S. We now check mechanistic independence for each Jaco-
bian individually.

Case A. Columns (blocks) have exclusive rows: rows 1, 2 are nonzero only in the first block, and
rows 7, 8 only in the second. Any non-respecting change of basis mixes the two one-dimensional
components, introducing nonzeros into these exclusive rows while at most one of the four shared
rows in the middle can be canceled. Thus, any genuine mixing strictly increases the total ℓ0-norm,
so ρ−B > ρ+B = ∥A∥0.

CaseB. Pairwise,B behaves analogously toC: for each column pair there are four exclusive rows
and only one shared. This enforces a lower bound under any 2× 2 mix, so all pairwise checks pass.

However, there exists a full G ∈ R3×3 mixing all three columns without increasing the overall
support (thus violating strict inequality in Def. 19):

G =

1 0 1

1 1 0

1 0 0

 , ∥BG∥0 = ∥B∥0.

Hence,B is pairwise but not fully mechanistically independent.

CaseC. As inB, all pairwise checks pass. The key difference is that inC the three shared rows (1st,
3rd, 5th) cannot be simultaneously eliminated by any invertible G ∈ R3×3. Thus, any combination
involving all three blocks necessarily preserves the three exclusive rows (2nd, 4th, 6th) and increases
ℓ0. Therefore, ρ−B > ρ+B = ∥C∥0, i.e., C is fully mechanistically independent.

CaseD. A local simplification inside the second block (mixing the third and fourth columns) reduces
the third column by one nonzero. After this, the first, second, and third columns each have four
nonzeros (the fourth remains at two), giving ρ+B = 14 = 4 + 4 + 4 + 2.

To break Type S independence, one would need a cross-block mix: there must exist a vector
(a, b, c, d) with either a or b nonzero and either c or d nonzero such that

D (a, b, c, d)⊤

has at most four nonzero entries (matching ρ+B). This is impossible: any such combination has
at least five nonzeros, even under careful cancellations. Hence, every cross-block mixing strictly
increases the ℓ0-norm, andD is Type S mechanistically independent.

In summary, all components of A,B,C,D are Type S irreducible; A,C,D are Type S mechanis-
tically independent;B is pairwise but not fully mechanistically independent.
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Example 2 (Minimizers of compositional contrast yield Type S independence in some generators).
This example shows that there exist generators whose latent components are Type S independent but
not Type D independent, yet for which the compositional contrast Ccomp recovers the sources up to
permutation and element-wise transformations.

Let s ∈ R2 and g : R2 → R5 with g(s) = As, where

A =


1 0

1 0

1 1

0 1

0 1

 .

We immediately observe that s1 and s2 are Type S but not Type D independent.

Consider now a learned decoder ĝ : R2 → R5. If ĝ minimizes the reconstruction error, then its
Jacobian at some z∗ ∈ R2 takes the form Jĝ(z

∗) = AB for a nonsingular matrixB. Equivalently,
|det(B)| ≥ q for some q > 0. Writing

B =

(
a b
c d

)
,

we obtain

AB =


a b

a b

a+ c b+ d

c d

c d

 and Ccomp(B) = 2|a||b|+ 2|c||d|+ |a+ c||b+ d|.

We will show that
min

| det(B)|≥q
Ccomp(B) = q,

and that every global minimizer of Ccomp is a generalized permutation matrix (i.e., a matrix with
exactly one nonzero entry in each row and each column). This means that the learned latent factors
are Type S independent after joint minimization of the reconstruction error and Ccomp.

Proof. We prove the claim in three steps.

Step 1. Reduction to the case |det(B)| = q.

For t > 0 we get

Ccomp(tB) = t2Ccomp(B), |det(tB)| = t2|det(B)|.

If |det(B)| > q, choose t =
√
q/|det(B)| < 1. Then

|det(tB)| = q, Ccomp(tB) = t2Ccomp(B) < Ccomp(B).

Thus any minimizer must satisfy |det(B)| = q. It therefore suffices to prove

Ccomp(B) ≥ |det(B)| for allB,

and to identify the matrices for which equality holds.

Step 2. A chain of inequalities.

Let
x = |a|, y = |b|, u = |c|, v = |d|.

By the triangle inequality,

|a+ c| ≥ |x− u|, |b+ d| ≥ |y − v|.

Hence,
Ccomp(B) ≥ 2xy + 2uv + |x− u| · |y − v| =: F (x, y, u, v).
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We now claim
F (x, y, u, v) ≥ xv + yu for all x, y, u, v ≥ 0.

Define

D := F (x, y, u, v)− (xv + yu) = 2xy + 2uv + |x− u||y − v| − xv − yu.

We analyze D by cases on the signs of x− u and y − v.

Case 1: x ≥ u and y ≥ v. Then |x− u| = x− u, |y − v| = y − v, and

D = 2xy + 2uv − xv − yu+ (x− u)(y − v)

= 3xy + 3uv − 2xv − 2yu

= (xy + uv) + 2(x− u)(y − v) ≥ 0.

Case 2: x ≥ u and y < v. Then |x− u| = x− u, |y − v| = v − y, and

D = 2xy + 2uv − xv − yu+ (x− u)(v − y)

= 2xy + 2uv − xv − yu+ (xv − xy − uv + uy)

= xy + uv ≥ 0.

Case 3: x < u and y ≥ v. By symmetry with Case 2 (interchanging (x, u)), we again obtain

D = xy + uv ≥ 0.

Case 4: x < u and y < v. Then |x− u| = u− x, |y − v| = v − y, and

D = 2xy + 2uv − xv − yu+ (u− x)(v − y)

= 2xy + 2uv − xv − yu+ (uv − uy − xv + xy)

= 3xy + 3uv − 2xv − 2yu

= (xy + uv) + 2(x− u)(y − v) ≥ 0.

In all cases we have D ≥ 0, so indeed

F (x, y, u, v) ≥ xv + yu = |a||d|+ |b||c|.

Finally, the determinant satisfies

|det(B)| = |ad− bc| ≤ |ad|+ |bc| = |a||d|+ |b||c| = xv + yu

by the triangle inequality. In summary, we have the chain

Ccomp(B) ≥ F (x, y, u, v) ≥ xv + yu ≥ |det(B)|.

In particular, if |det(B)| = q, then
Ccomp(B) ≥ q.

Step 3. Equality conditions and classification of minimizers.

To attain the minimum under |det(B)| ≥ q, we must have |det(B)| = q and equality throughout
the chain

Ccomp(B) ≥ F (x, y, u, v) ≥ xv + yu ≥ |det(B)|.

(i) Equality in Ccomp(B) ≥ F (x, y, u, v).

We used
|a+ c| ≥

∣∣|a| − |c|
∣∣, |b+ d| ≥

∣∣|b| − |d|
∣∣.

This requires
ac ≤ 0, bd ≤ 0.

(ii) Equality in F (x, y, u, v) ≥ xv + yu.
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From the case analysis above, equality F (x, y, u, v) = xv + yu forces

xy = 0 and uv = 0,

that is,
|a||b| = 0, |c||d| = 0,

so
either a = 0 or b = 0, and either c = 0 or d = 0.

(iii) Equality in xv + yu ≥ |det(B)|.
We used

|det(A)| = |ad− bc| ≤ |ad|+ |bc| = xv + yu,

which requires
(ad)(bc) ≤ 0.

From (ii) we get four structural patterns, two of which are incompatible with det(B) ̸= 0. The
remaining possibilities are

B =

(
a 0
0 d

)
or B =

(
0 b
c 0

)
.

For these matrices,
Ccomp(B) = |det(B)| ∈ { |ad|, |bc| },

so equality holds everywhere.

These are precisely the 2×2 generalized permutation matrices. Consequently, the global minimizers
of Ccomp under the constraint |det(B)| ≥ q are exactly the generalized permutation matrices with
|det(B)| = q, and the minimum value of Ccomp is q.

C DISENTANGLEMENT FOR NON-INVERTIBLE GENERATORS

In some applications the underlying generator is non-invertible when modelling the latent space as
a product space (or a subset thereof). For two such scenarios we can nevertheless make meaningful
statements about disentanglement: (1) local invertibility, and (2) invertibility on an open subset.

For the former category, an example is image data containing multiple objects with identical appear-
ance, since the generator is then (block-)permutation invariant. Another example is the angle of a
rotary joint with multiple revolutions in a robotic arm, as θ+n(2π) maps to the same physical state.
More generally, these situations involve symmetries such as permutation or rotational symmetry.

For the second category, an example arises from occlusions in image data. Here the generator is also
non-invertible, but now entire regions of the latent space map to the same observation (e.g., when
one object is hidden behind another).

In such cases multiple latent codes map to the same observation, which makes the encoder inherently
ambiguous. The learning algorithm must make a choice about how to represent those observations.
This choice may lead to defects in the encoder, such as discontinuities (as discussed later). However,
a decoder need not suffer from this issue. As long as we can learn a decoder that generates the
observation manifold and whose components are mechanistically independent, we can still obtain
disentanglement in case (1), and at least on the invertible subsets in case (2).

We now consider two illustrative examples.

Example 1. Consider images depicting two balls of identical appearance at arbitrary positions in
the image, but without occlusion. In this case the latent space can be modelled using an ordered
configuration space, representing tuples of pairwise distinct object states:

ConfK(Ω) :=
{
s ∈ ΩK

∣∣ si ̸= sj , ∀ i ̸= j ∈ [K]
}
, (25)
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where Ω denotes the state space of a single object (e.g., position, color), and K is the number of
objects. Since any permutation of the factors (i.e., objects) yields the same observation, the ground-
truth decoder must be permutation invariant. The observation manifold can therefore be viewed as
an unordered configuration space, obtained by quotienting out permutations.

Assuming a soft rasterizer, the generator can be modelled as a local diffeomorphism: the map is
locally invertible, and small latent perturbations produce small and reversible changes in the ob-
servations. A direct check verifies that we have Type D independence and, by implication, also
Type M/S/Hn independence. Because a single ball cannot be itself represented as an additive func-
tion with two or more components, we have Type H2 irreducibility, and thus also Type D irreducibil-
ity. The generator is also second-order separable, since all first- and second-order partial derivatives
are linearly independent at every point in the latent space. Considering the affine equivariance of
positional encoding, the generator must also be Type S irreducible. Thus the local identifiability
results for Type D, S, and H2 apply.

Furthermore, any configuration space with K ≥ 2 and dim(Ω) ≥ 2 is connected. Its 1-slices are
also connected: fixing one ball, the other can be moved continuously to any other position in the
image while avoiding collisions. Hence Theorem 1 applies, and local disentanglement extends to
global disentanglement.

Example 2. Consider images of two balls, one large and one small, placed at different locations,
with possible occlusion (the smaller potentially disappearing behind the larger). The latent space
can be modelled as S = R2 × R2, describing the (x, y)-positions of both balls. The generator then
maps a hyper-tube of latent codes (corresponding to positions of the smaller ball behind the larger
one) to the same observations. With a soft rasterizer, the generator becomes differentiable, but it
is not invertible (not even locally invertible) on the full domain. However, at any point outside the
hyper-tube it is locally invertible.

Following the same reasoning as in Example 1, we obtain local identifiability of the decoder at all
points outside the hyper-tube. Restricted to this region, the model is even globally identifiable, since
the resulting space is identical to that of the previous example. Therefore, if we train a decoder
with mechanistically independent components that can generate the observation manifold, it must
be globally disentangled outside the hyper-tube.

Whether disentanglement holds within the hyper-tube is undecidable: if the large ball occludes the
smaller one and moves by a small amount, we cannot determine from the observation alone whether
the smaller ball behind it moved as well.

D EXPERIMENTAL DETAILS AND FURTHER EXPERIMENTS

D.1 COMPOSITIONAL CONTRAST AS A SURROGATE FOR TYPE S INDEPENDENCE

This experiment closely follows the setup of Brady et al. (2023). We first sample latent variables
from a standard normal distribution and then generate observations by passing them through an
invertible MLP. The outputs are concatenated as

g(s) =
(
g(1)(s1), g

(1,2)(s1, s2), g
(2)(s2), g

(2,3)(s2, s3), . . . , g
(K)(sK)

)
.

For each g(i), the slot dimension is fixed at dim(Si) = 3, and the slot-output dimension is set to 20.
The overlap ratio is determined by the output dimensions of g(1) and g(1,2): if they have the same
number of output dimensions, the overlap is 50%. Strictly speaking, for K > 2, this implies that in
Figure 2, K − 2 slots exhibit a 66% overlap.

We train models with K ∈ {2, 3, 5} slots and regularization parameters λ ∈ {10−2, 1}, where the
loss is L = Lrecon + λCcomp. For each configuration, we run five random seeds across overlap levels
{0%, 5%, 20%, 50%}, resulting in 120 models in total. To ensure comparability across different
numbers of slots and regularization parameters, we apply the same normalization procedure to all
experiments. In addition, within each group of models sharing the same overlap ratio, we normalize
Ccomp by dividing by the group mean, since the achievable minimum of Ccomp varies substantially
with overlap.
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D.2 EXPERIMENTS ON NON-INVERTIBLE GENERATORS

We now consider images depicting two balls whose colors lie between green and red and which may
appear at any position in the image, but without occlusion (K = 2, ds = 6); see Figure 4. We train
an autoencoder with an additive decoder (i.e., Type H2 independence), defined as

ĝ(z) =
∑
i∈[K]

ĝ(i)(zi),

using the standard Mean Squared Error (MSE) reconstruction loss (implementation details are pro-
vided below).

Figure 4: Image reconstructions for the entire latent code and for individual slots. Note that the
per-slot reconstructions appear brighter because the offset is undetermined in an additive model.

To evaluate disentanglement quantitatively in this setting, we cannot directly predict the ground-
truth latent code from the learned representation using the Slot Identifiability Score (SIS) as before.
Because multiple latent codes always correspond to the same observation, the prediction target is
ambiguous. Instead, we first determine the best-fitting fundamental domain of the latent space under
permutations. A fundamental domain is any connected subset of the configuration space containing
exactly one representative of each latent orbit under permutations. Restricting the generator to a
fundamental domain renders it invertible, making the prediction target unique.

However, there exist infinitely many choices of fundamental domains, and for most of them the
learned regressor would need to approximate a discontinuous function. To avoid this, for each
reconstructed image we compute the centers of mass of both balls in image space and select, among
all permutations of the ground-truth factors, the closest match. This produces a partition of the latent
space that aligns as closely as possible with the encoder’s (arbitrary) convention. We then compute
the SIS on this selected fundamental domain and denote the resulting metric by SIS*. Table 1 shows
that the model achieves nearly perfect disentanglement.

Table 1: Slot Identifiability Scores after selecting the best-fitting fundamental domain over 5 random
seeds.

RMSE SIS*

1.30 ± 0.18 99.6 ± 0.05

Next, we examine the encoder in more detail. As noted by Zhang et al. (2019); Hayes et al. (2023),
the encoder must approximate discontinuities in this setting, a phenomenon known as the responsi-
bility problem. Such discontinuities necessarily arise whenever we traverse a path in the latent space
that connects a point to its block-permutation.

Figure 5 shows the learned latent variables for several latent traversals: in each row, only one ground-
truth latent variable is varied while the others remain fixed. The corresponding images and recon-
structions are shown in Figure 6. When we vary the coordinates of the first ball s1, only the second
encoded slot z2 = (z2,1, z2,2, z2,3)

⊤ changes; modifying s2 analogously affects only z1, with one
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exception: The lower-left traversal in Figure 5 reveals an (approximately) discontinuous jump in
the middle. On either side of this jump, changes to the ground-truth latent affect only one slot.
This discontinuity is unavoidable and can, in principle, hinder autoencoder training by trapping the
optimization in poor local minima. However, in this instance, training succeeds without issue.

Figure 5: Latent traversals: in each subplot, one ground-truth latent variable varies while all others
remain fixed. The curves depict the learned latent codes.

In Figure 6, consider the traversal of the x-position of the second ball: the image reconstructions
align perfectly with the ground truth, and nothing in the visual output betrays the latent discontinuity.

Figure 6: Image reconstructions for latent traversals: in each row, a single ground-truth latent vari-
able is varied while all others remain fixed. From top to bottom, we vary the x-position, y-position,
and color of the first ball, followed by the same for the second.

Implementation Details
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Dataset. We use images of size 64 × 64 × 3 with pixel values in [0, 255]. The dataset contains
300,000 training images, 10,000 validation images, and 50,000 test images. Images with occlusions
are removed, introducing mild dependencies between object positions. Apart from this, the latent
variables are sampled uniformly over their support.

Model Architecture. The encoder consists of:

(1) A ResNet-18 backbone with the final classification layer removed (output dimension: 512).
(2) A linear layer mapping 512 → 4096, followed by Batch Normalization and a Leaky ReLU

(slope 0.01 for negative inputs).
(3) A fully connected layer of size 4096 × 4096, again followed by Batch Normalization and

a Leaky ReLU.
(4) A final linear layer mapping 4096 to the total ground-truth latent dimension, followed by

Batch Normalization.

We use an additive decoder ĝ(z) =
∑

i∈[K] ĝ
(i)(zi), where each subdecoder ĝ(i) has the same

architecture (with no shared weights):

(1) A linear layer mapping from di = ds

K to 1024, followed by Batch Normalization and a
Leaky ReLU.

(2) Four fully connected layers of size 1024 × 1024, each followed by Batch Normalization
and a Leaky ReLU. The output is reshaped into 64 feature channels over a 4× 4 grid.

(3) A stack of deconvolutional layers, each followed by a Leaky ReLU:
(a) Deconvolution: 64 → 1024, kernel size 4, stride 2, padding 1.
(b) Deconvolution: 1024 → 512, kernel size 4, stride 2, padding 1.
(c) Deconvolution: 512 → 128, kernel size 4, stride 2, padding 1.
(d) Deconvolution: 128 → 3, kernel size 4, stride 2, padding 1.

Hyperparameters. We use the AdamW optimizer (Loshchilov & Hutter, 2017) with:

• Batch size: 1024,
• Learning rate: 5× 10−5,
• Weight decay: 1× 10−5,
• Number of training epochs: 1000.

LLM USAGE DISCLOSURE

In accordance with the ICLR policy on large language model (LLM) usage, we disclose that an LLM
(OpenAI’s ChatGPT) was used solely for minor language polishing. This included limited grammar
correction and rephrasing for clarity. All research ideas, technical content, analyses, and conclusions
were generated entirely by the authors, who remain fully responsible for the paper’s content. For
full transparency, this very disclosure note was also drafted with the help of ChatGPT.
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