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ABSTRACT

Haze significantly hinders the application of autonomous driving, traffic surveillance, and remote sensing. Image
dehazing serves as a key technology to enhance the clarity of images captured in hazy conditions. However, the
lack of paired annotated training data significantly limits the performance of deep learning-based dehazing
methods in real-world scenarios. In this work, we propose a self-supervised polarization image dehazing
framework based on frequency domain generative adversarial networks. By incorporating a polarization
calculation module into the generator, the Stokes parameters of airlight are accurately estimated, which are used
to reconstruct the synthesized hazy image by combining the dehazed image generated via a densely connected
encoder-decoder. Furthermore, we optimize the discriminator with frequency domain features extracted by
frequency decomposition module and introduce a pseudo airlight coefficient supervision loss to enhance the self-
supervised training. By discriminating between synthetic hazy images and real hazy images, we achieve
adversarial training without the need for paired data. Simultaneously, supervised by the atmospheric scattering
model, our network can iteratively generate more realistic dehazed images. Extensive experiments conducted on
the constructed multi-view polarization datasets demonstrate that our method achieves state-of-the-art perfor-

mance without requiring real-world ground truth.

1. Introduction

In modern society, where pollution is becoming increasingly severe,
extreme weather conditions are occurring more frequently. The pres-
ence of haze particles in the atmosphere degrades the sharpness and
contrast of images. Undoubtedly, haze significantly impairs the ability of
computer vision algorithms to perceive scene information, leading to
severe degradation or even failure in tasks such as recognition, detec-
tion, and segmentation. Therefore, research on improving visibility in
hazy conditions, known as image dehazing [1], holds significant prac-
tical importance.

Existing dehazing methods are primarily categorized into prior-
based and deep learning-based approaches. The theoretical foundation
of prior-based methods lies in the atmospheric scattering model, which
is widely used in computer vision to explain the physical principles
behind imaging systems. By leveraging statistical priors to estimate
parameters of the atmospheric scattering model, such as transmission
and atmospheric light intensity, the dehazed image can be recovered.
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However, these methods [2-4] suffer from cascaded error propagation
due to the reliance on handcrafted priors, limiting their effectiveness in
improving visibility.

Unlike the methods that rely on a single hazy image, polarization-
based dehazing methods [17-20] possess inherent advantages due to
their utilization of polarization properties. The intensity of airlight
varies regularly as the angle of polarization. By leveraging this property,
the airlight intensity can be calculated using the degree of polarization,
enabling the recovery of the dehazed image. Although the existing
polarization-based dehazing methods effectively solve the problem of
insufficient input information, they require multiple iterations to esti-
mate parameters, resulting in low efficiency. Besides, as
optimization-based approaches, they fail to fully exploit semantic and
contextual information in image features to handle the spatially-variant
real-world scattering.

In recent years, researchers have employed deep learning methods to
estimate parameters in the atmospheric scattering model [5-8], which
reduces the cascaded error to a certain extent. Additionally, many deep
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learning-based dehazing methods bypass the atmospheric scattering
model [9-16,32-35], referred to as the end-to-end dehazing models. The
features extracted by these models are more general, less
time-consuming, more cost-effective, and exhibit the versatility of the
dataset. As shown in Fig. 1(a), some GAN-based methods directly
recover the dehazed image by learning the nonlinear mapping from hazy
images to clear ones, but they are strictly limited by training datasets.
Since it is impossible to simultaneously capture the real-world hazy
image and its ground truth, synthetic datasets are predominantly used
for training most networks. Consequently, their performances on
real-world datasets is significantly inferior to that on synthetic datasets.
Moreover, GAN-based methods are prone to generating artifacts, which
adversely affects model training.

Leveraging the advantage of a large-scale polarization dataset [42]
our team has previously collected, we aim to integrate polarization
properties into deep learning-based dehazing methods to combine the
strengths of both approaches and address their limitations. In this work,
we propose a self-supervised polarization image dehazing method based
on frequency domain generative adversarial networks (PGAN), hoping
to enhance the performance and robustness of dehazing methods on
real-world datasets.

First, polarization images are utilized to calculate the Stokes pa-
rameters of airlight (PGAN-A), while the dehazed image is generated
using a densely connected encoder-decoder network (PGAN-J). The
generated dehazed image and Stokes parameters are then employed to
synthesize the hazy image through the physical model, serving as one of
the input samples of the discriminator. By incorporating the polarization
calculation module, our method requires only three hazy polarization
images captured at different angles at a single time, eliminating the need
for real-world ground truth. Second, we introduce a frequency decom-
position module to optimize the discriminator based on the frequency
domain distribution properties of hazy image. The input synthetic and
original hazy images are separated in the frequency domain, and their
respective high- and low-frequency sub-bands are combined as input
samples for the discriminator, significantly enhancing its supervision
capability.
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Fig. 1. Dehazing models use different architectures. (a) represents GAN-based
dehazing methods, these methods rely on the ground truth of the hazy image
while the ground truth of real scenes is usually difficult to define and obtain.
And the synthetic data-driven methods have poor generalization in the real
world. (b) represents our proposed self-supervised P-GAN, it does not require
additional ground truth of the hazy image and effectively improves the
authenticity of dehazed image by introducing the atmospheric scattering
model. Our generated dehazed image is in the generator, the specific structure
can be seen in Fig. 4.
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Additionally, we design a pseudo airlight coefficient supervision loss
to enhance the self-supervised training process. This loss function,
grounded in the atmospheric scattering model, effectively mitigates the
generation of excessive image noise and further improves the robustness
and generalization capability of the network. By reformulating the
problem as the discrimination between generated hazy image and real
hazy image, our generator can produce realistic dehazed image that
conforms to the atmospheric scattering model as much as possible. Our
main contributions can be summarized as follows:

A novel self-supervised polarization image dehazing method is pro-
posed, integrating polarization properties and frequency domain infor-
mation within the generative adversarial learning framework.

A polarization-based generator is proposed, and the discriminator is
optimized using the frequency distribution of hazy images. This
approach addresses the limitations of paired training datasets, and
significantly improves the dehazing performance of the network on real-
world datasets.

A pseudo airlight coefficient supervision loss is designed for our self-
supervised dehazing framework. Extensive qualitative and quantitative
experiments demonstrate the superiority of our proposed method.

By introducing polarization supervision signals from the perspective
of network architecture and loss function, generated images are con-
strained in the physical model, which not only improves the authenticity
of generated images, but also ensures the timeliness of trained end-to-
end dehazing model. The remainder of this paper is organized as fol-
lows. We first review the polarization image dehazing and the deep
learning-based image dehazing in Section 2. Section 3 describes the
proposed P-GAN model in detail, and Section 4 shows the experimental
results. Finally, Section 5 concludes this paper.

2. Related works
2.1. Polarization-based image dehazing

As illustrated in Fig. 2, to advance the innovation and development
of polarization dehazing algorithms, we constructed an atmospheric
polarization information observation platform and UAV atmospheric
polarization information observation platform, designed for horizontal
and vertical observation perspectives, respectively. The fixed atmo-
spheric polarization information observation platform integrates two
intelligent polarization cameras (FGEA460 M and SZ-FGEB500C) from
Hefei Shizhan Photoelectric Technology company, SONY Lucid polari-
zation camera (IMX250MZR) and the related equipment of atmospheric
environment monitoring (visibility meter, PM2.5 monitoring sensor,
etc.). The polarization cameras adopted has the advantages of high
extinction ratio and sensitivity, and has undergone strict polarization
calibration [36]. Through this platform, we can better obtain

Fig. 2. Our fixed atmospheric polarization information observation platform,
the UAV atmospheric polarization information observation platform can be
seen in Section 4.1. We conducted extensive field observation experiments
under foggy, hazy and other weather conditions, and obtained multi-target
polarization data under various meteorological conditions.



R. Sun et al.

polarization hazy data and explore the transmission characteristics of
atmospheric polarized light in strong scattering media.

The atmospheric scattering model explains the contrast decay of
hazy images from the perspective of the physical mechanism [1], as
shown in Fig. 3. The mathematical representation of this model is as
follows:

I(x) = D(x) + A(x) = J(x)t(x) + Ax (1 — t(x)) (€D)

where I(x) is the captured hazy image, and x is the position of an image
pixel. I(x) consists the direct transmission D(x) and airlight A(x). J(x) is
the object radiance, and it is the result to be recovered. A, is the airlight
radiance from the infinite distance.

Without considering the polarization properties of objects, early
polarization-based dehazing methods controlled the received intensity
of airlight by rotating a polaroid, utilizing the degree of polarization to
describe the proportion of polarized light in natural light [17]. However,
this method has a poor real-time performance. Currently, polarization
cameras generally have focal focus planes that can acquire polarization
images at multiple angles simultaneously. When polarization images at
three or more angles (10, 145, 190, [135) are available, the Stokes vector
can be expressed as:

S Iy +1Ioo
S Iy — Iy

S=|22|= 2
Su Ijs — Iiszs 2
Sy 0

where S; denotes the total light intensity. Sq and Sy denote the intensity
of the linear polarization state. Sy denotes the intensity of circular po-
larization state, which is sufficiently small for it to be neglected (Sy = 0)
in most natural light. Then the degree and angel of polarization noted as
p and 0 respectively can be calculated as follows:

\/52 +82
Q
p= 3 v 3

1
0= 3 arctang—z (@)
And the airlight radiance from the infinite distance can be estimated
as follows:
IO 7A°0(1 7pA)/2
Apy = 2L Ae=lo ZPA)/2 5
Pa cos20, ®)
where ps and 64 denote the polarized degree and angel of airlight.
Finally, the mathematical expression for obtaining the dehazed image J
is given as follows:

_ S+ Sq/p
1+ So/(PAs)

(6)
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distance |
d

Fig. 3. Illustration of the atmospheric scattering model.
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2.2. Deep learning-based image dehazing

Recently, researchers have utilized deep learning methods to
perform image dehazing and achieved promising performance [35,
37-41]. Chen et al. [35] proposed detail-enhanced convolution and
content-guided attention to boost the feature learning for improving the
dehazing performance. Lyu et al. [38] introduced image priors in color
spaces and proposed a multiple color space prior network to enhance the
dehazing performance specifically for non-homogeneous hazy images.
Unmanned aerial vehicle (UAV) dehazing has attracted much attention
recently, Qiu et al. [40] present a novel UAV image dehazing framework
to enhance perceptual tasks in foggy conditions. Sun et al. [41] proposed
an unsupervised bidirectional contrastive reconstruction framework to
enhance both the network’s constraint and reconstruction capabilities.

In addition to the above methods, numerous GAN-based methods
have been applied to image dehazing [9,21-24], which learn the map-
ping from hazy images to clear images without using the atmospheric
scattering model. As shown in Fig. 1(a), the generator produces a
dehazed image based on the input hazy image. Then, the discriminator
evaluates the similarity between the dehazed image and ground truth.
Typically, this similarity scores ranges from 0 to 1, with a higher score
indicating greater resemblance to the ground truth. The generator im-
proves the quality of dehazed images by utilizing this score as feedback.
However, the training process requires a large number of paired data-
sets, which are extremely difficult to obtain in real-world scenarios.
Moreover, the mapping from hazy images to clear ones lacks constraints
imposed by the atmospheric scattering model. In contrast, our
self-supervised PGAN eliminates the need for paired data and conforms
to the constraints of the physical model, offering high real-world
applicability and good interpretability, as shown in Fig. 1(b).

3. Proposed method

As illustrated in Fig. 4, the proposed PGAN mainly consists of a
polarization-based generator (G) and a frequency-distribution-based
discriminator (D). Unlike previous methods, our generator utilizes po-
larization images as input, and the output is a synthetic hazy image but
not an intermediate generated dehazed image. Similarly, the input of
our discriminator is modified to include both the synthetic hazy image
and the original one. The original hazy image can be calculated from the
polarization images. We optimize the loss function between the original
hazy image and the synthesized hazy image to incorporate polarization
supervision, thereby implementing a self-supervised training strategy.

3.1. The generator based on polarization dehazing

Our generator utilizes polarization images to calculate the Stokes
vector of airlight and employs the atmospheric scattering model to re-
synthesize the hazy image after generating the dehazed image, as
shown in Fig. 4. PGN-J, constructed by a densely connected encoder-to-
decoder, generates the dehazed imageJfrom the original hazy image.
Since each neuron in the densely connected layer receives input from all
neurons in the previous layer, this architecture effectively facilitates
feature extraction and reconstruction of scenes in low-level computer
vision tasks [9], excelling at generating clearer dehazed images. The
original hazy image I can be calculated from the polarization images
using the Stokes vector as follows:

2
I= 3 (Io +1Iso +T120) @

where I, Iso, 120 represent the polarization images at angle 0°, 60°,
120°, respectively.

PGAN-A is a polarization calculation module employed to calculate
the Stokes vector of airlight from three polarization images. As illus-
trated in Fig. 5, this module utilizes the frequency distribution to
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Fig. 4. The architecture of our proposed method PGAN. The generator input consists of three polarized images, and the original hazy image computed from f. f refer
to (6). PGAN-J is a densely connected encoder-decoder used to generate the dehazed image, and PGAN-A is a polarization calculation module designed to estimate
the atmospheric parameters in the haze image and provide physical constraints. The discriminator input consists of the original hazy image and the synthesized hazy
image output by the generator. The discriminatory power of discriminators is enhanced by utilizing frequency distribution properties. For the trained model, we only

use PGAN-J to generate dehazed images.
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Fig. 5. The illustration of PGAN-A. PGAN-A is a polarization calculation
module employed to calculate the Stokes vectors of airlight from three polari-
zation images. We employ NSP decomposition to extract low frequency sub-
bands from the polarization image, which are subsequently refined and used as
airlight to calculate Stokes vectors.

separate airlight and avoid the halo effect, which does not need to
discuss complex polarization properties of objects. Specifically, the po-
larization images are decomposed via the non-subsampled pyramid
(NSP) [27].

(””)H ( )1<n<k

H(z) = k=0 8)
( 2 1)7

Where H(z) is the cascade filter at the n-th stage, Hy(z) representing
a low-pass decomposition filter and H; (2) is a high pass decomposition
filter. It can be found that NSP decomposes a low-pass subband and a
band-pass subband for the first time. As the number of decompositions
increases, the low-pass subband will be decomposed many times, and
finally k band-pass subbands and a low-pass subband will be generated
in total. Follow our previous work [20], we set the number of decom-
position levels to 4 to obtain the optimal decomposition image. The
low-frequency subbands obtained by NSP decomposition are denoted as
IY, I, I}, Because of the airlight constraints, the decomposed
low-pass sub-bands which are used as airlight in different polarization
angles should be refined. We perform the trilateral filtering to refine the
low-frequency subbands.

Ay = max(min(B(x),I* (x)),0)

B(x) = I (x) — median,, (|I* (x) — I} (x)|)
I¥ (x) = median,, (I (x))

k = 0,60,120

)]

Where median,, represents the median filter, Ag, Ago, A120 are the
airlight of three polarization hazy images at angle 0°, 60°, 120°,
respectively. With the airlight, the Stokes vector can be calculated as
follows:
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2
3 (Ag + Ago + A120)
SAI 2
Sa=|Sa | = §(2Ao — Ao — A120) (10)
Sav
2
7§(Ao — A1)

On this basis, we utilize Eq. (4) and (5) are to calculate Aco. Lastly,
the synthetic hazy image I' can be calculated as follows:

 JAw + Suih — JSu

I A

an
Discussion. The polarization dehazing method has its own unique
advantages compared to other dehazing methods, as it alleviates the
fundamental flaw of dehazing tasks - insufficient acquisition of scene
information. This advantage is specifically reflected in the ability to
calculate the original fog image and polarization degree from the
polarized image, and then estimate the physical model, which is very
effective in real-world dehazing. At present, although deep learning
methods can achieve good performance through style transfer [31] or
layer disentanglement [32], they ignore the application of polarization
characteristics. We introduce polarization characteristics on the basis of
GAN-based dehazing method, improve the performance and robustness
of the network on real data through the introduction of polarization as a
physical mechanism, solve the limitations of training data, and enhance
its interpretability, thus making efforts to promote the application of
polarization characteristics in other deep learning methods.

3.2. The discriminator based on frequency distribution

As illustrated in Fig. 4, our discriminator separates the input original
hazy image I and synthetic one I'in the frequency domain, extracting
their high-frequency and low-frequency sub-bands, which combined
with their corresponding hazy images as samples of the discriminator.
To train the network, we utilize the dehazed image J as an intermediate
result of the generator, aiming for the discriminator to guide the
generator in producing a synthetic hazy image that closely resembles the
original one. This process ultimately yields a clearer dehazed image
under the physical constraints of the atmospheric scattering model.
Furthermore, to enhance the discriminator’s input diversity, we incor-
porate additional training constraints (frequency information). Direct
transmission and airlight are distributed in the high-frequency IH and
low-frequency IL sub-bands of the image frequency band [20], respec-
tively. Therefore, the low-frequency components of hazy images are
richer than clear ones due to the higher proportion of airlight. This
characteristic is leveraged to optimize the design of our discriminator by
integrating a frequency decomposition module.

To jointly optimize model’s dehazing capability, it should be noted
that the frequency decomposition method used in this module is
consistent with PGAN-A as shown in Fig. 4. Since low-frequency sub-
bands IL can be used as airlight after constraints, the supervised learning
of them can actually be regarded as the supervised learning of airlight
coefficient, which inspired us to design the supervised loss function of
the pseudo-airlight coefficient. In previous work, researchers typically
used generated dehazed images and ground truths as paired learning
samples for the discriminator, with less exploration of the model’s su-
pervisory information. The discriminator we designed can more effec-
tively distinguish between real and synthetic data, thereby generating
more realistic and satisfactory dehazed images. We conducted a detailed
experimental analysis on the effectiveness of the frequency domain
decomposition module in Section 4.4.

3.3. The design of loss functions

This subsection focuses on the design of the loss function in our
network. In addition to incorporating common losses such as pixel-level
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loss, SSIM loss, and adversarial loss into our framework, we also intro-
duce a pseudo airlight coefficient supervision loss. This loss considers
the low-frequency components of the discriminator input and the
application of the physical model. Since low-frequency components
represent the primary information of the image, designing a pseudo
atmospheric scattering coefficient supervision loss based on these
components enhances the constraints on network training, resulting in a
more robust model.

3.3.1. Pixel-level loss

The pixel-level loss is utilized to measure the fidelity between the
real and fake sample. In our method, given an original hazy image I, the
synthetic hazy image output by the generator is I'. Then the pixel-level
loss function LP in the form of L1 on N samples can be calculated as
follows:

N
L= |Ii-L| a2)
i=1

3.3.2. SSIM loss

The Structure Similarity Index Measure (SSIM) is an important
reference image quality evaluation index [25], which comprehensively
considers differences in brightness, contrast and structure. It accurately
reflects the image quality of human perception so as widely used in the
algorithm performance evaluation of computer vision tasks. In our
method, SSIM can be calculated as follows:

(2/4”41 + C1)(20H + Cz)
(Ui +pi +Cr)(0f + 07 + Cs)

SSIM(I', 1) = (13)

wherepand c%are the average value and the variance, respectively. sis
the covariance. C;,Ciare constants used to maintain stability. SSIM
ranges from O to 1 and the SSIM loss is defined as follows:

Lssmy = 1 — SSIM(I 1) 14)

3.3.3. Adversarial loss

The adversarial loss encourages the generator to continuously
improve the sample quality by minimizing the differences between
generated and real samples, while maximizing the ability of the
discriminator. We integrate the adversarial mechanism into the training
process, enabling the model to learn more effective representations and
features, thereby achieving better performance and robustness. In our
method, the hazy images combined with high and low sub-bands sam-
ples are expressed asIUIyUI;, then the adversarial loss can be
expressed as follows:

LAdv = ].Og(]. —D(G(IUIH U IL))) (15)

3.3.4. Pseudo airlight coefficient supervision loss

Airlight is closely related to the hazy image through the atmospheric
scattering model, which directly affects the brightness and the distri-
bution of fog. Therefore, the more similar the synthetic hazy image of
generator is to the real hazy image, the more similar the dehazing image
generated by PGAN-J is to the real clear image. Accurate airlight esti-
mation can significantly improve the defogging effect, make the recov-
ered image clearer and reduce artifacts. We expect to penalize
differences of airlight between the original and synthetic hazy images in
the network by designing the pseudo airlight coefficient supervision
loss. Arlight can be estimated from the low-frequency sub-band after
frequency decomposition in the discriminator. We regard the low-
frequency subbands of the synthetic and original hazy images con-
strained by Eq. (8) as airlight, denoted asA’and A, respectively.
Following the pixel-level loss, we force airlight to converge by MAE loss.
Then the pseudo airlight coefficient supervision loss on the N samples is
defined as
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N
La=)Y |Ai-A| (16)
i=1

Finally, the loss function of the whole network consists of the pixel-
level loss, SSIM loss, adversarial loss, and pseudo airlight coefficient
supervision loss, and it can be expressed as

L = ApLp + AssimLssiv + AadvLady + 2aLa 17)

whereirepresent the weight coefficient of the corresponding loss.
4. Experimental results
4.1. Datasets construction and parameters settings

Dataset. Most of the existing hazy image datasets are synthetic,
which often fail to accurately reflect real-world haze distribution,
particularly under strong wind conditions. Additionally, there are also
many problems in a limited number of real-world datasets which
creating artificial haze using a smoking generator. For a long time, the
disclosure of datasets in the field of polarization dehazing has not
attracted enough attention from the research community, which has
severely hindered the widespread adoption and application of
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polarization methods.

In order to efficiently collect polarization data, we built different
polarization data collection platforms with polarization cameras, and
carried out long-term data collection work from November 2021. We
have collected >30,000 hazy polarization images, and some of them
have been open in the form of datasets, as shown in Fig. 6. We selected
600 polarization images from each of three different haze concentra-
tions in the horizontal direction. The haze concentration of image was
based on the value of no reference image quality index FADE [26] and
visibly: thin haze (0 < FADE<6.7, 1km< visibility <3 km), heavy haze
(6.7 < FADE<7.9, 200 m < visibility <1 km), and dense haze (7.9 <
FADE<9.0, visibility <200 m). In addition to the horizontal data, ver-
tical data also holds significant experimental value, as it enables the
evaluation of dehazing methods in aerial scenarios. Therefore, we also
tilized 600 polarization images captured vertical direction using our
unmanned aerial vehicle (UAV) platform, as illustrated in Fig. 7.

Our datasets do not explicitly use different scene names as classifi-
cation criteria to reflect data diversity. Instead, different objects and
backgrounds in the large view field of data acquisition equipment
(masonry buildings, metal windows and tarmac pavement, etc.,) are
used to reflect the diversity. We can evaluate the effects of different
degree of scattering degradation on scenes with different polarization
characteristics in the same view field, and the restoration effects of

horizontal direction

dense

60°

o

g

120 I

vertical direction

120°

I

Fig. 6. Example images of our constructed dataset. We collect color images with polarization angles of 0°, 60°, and 120°, as well as color hazy image I. The image
resolution is 2480x1860.The obtained hazy images are divided into three concentration levels: dense, heavy, and thin. In addition, the dataset covers both horizontal
and vertical directions, effectively solving the problem of a single perspective in existing datasets.
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Fig. 7. The UAV for vertical direction data acquisition.
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related algorithms on various targets and backgrounds with different
polarization characteristics.

Parameters. We set the four weight parameters Ap, Assm, Aady, 44 to 1,
0.5, 0.1 and 1, respectively. The Nonsubsampled Pyramid (NSP) was
used in all frequency domain decomposition modules, and the layer of
decomposition was set to 4. In terms of the size of the input image, the
original size captured by the polarization camera is 2480x1860x 3. The
polarization image and the original fog image have been downsampled,
and the downsampled image size is 320x240x3. The training of the
entire network is conducted on one Nvidia RTX A6000 GPU.

4.2. Qualitative experimental results in the horizontal and vertical
directions

We chose dehazing algorithms based on priors and polarization
including DCP [2] and PBD [17]. We also chose two dehazing algorithms
based on deep learning including YOLY [32], D4 [24] and Dehamer
[11], DehazeFormer [33] and DEA-Net [35]. Our method is defined as

~
=
=

Fig. 8. Qualitative experimental results of the data in horizontal direction. It can be observed that our proposed PGAN demonstrates a better dehazing effect than
other polarization-based and deep-learning-based state-of-the-art methods. Especially in the dense haze scenes, PGAN presents a strong dehazing ability.
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Fig. 9. Qualitative experimental results of the data in vertical direction. It can be observed that our proposed PGAN demonstrates a better dehazing effect than other
polarization-based and deep-learning-based state-of-the-art methods. Data-driven deep learning-based method lacks physical model constraints and demonstrates
poorer dehazing results in the absence of vertical view training data. However, PGAN exhibits a robust dehazing capability in different views.

PGAN. The experimental results of two groups are shown in Figs. 8 and
Fig. 9, respectively.

In the horizontal experimental design, the haze concentration in the
selected experimental scenarios (1) to (6) showed an increasing trend, in
order to facilitate the testing of the performance of various algorithms
under different haze concentrations. In the selection of scenes, we
deliberately arranged many areas that are difficult to handle in the al-
gorithm, such as water surfaces, bright white buildings, white trucks,
etc., and some of these scenes were specifically shot under low light
conditions. This test data organization is significantly different from the
overly single data organization form in existing work. We hope that
through this experimental data organization form, the performance of
various algorithms can be more comprehensively reflected.

Horizontal direction comparison. The results of DCP and PBD are
very different in thin haze scenes or containing white objects, such as
scenes 1 and 2. This can be attribute to the reason that DCP is prone to
estimating a higher airlight radiance from the infinite distance. In the

dense haze condition, such as scenes 5 and 6, their results are similar due
to the strong haze coverage.

It is obvious that PGAN has achieved excellent results in all hori-
zontal direction images. Even in dark light and dense haze conditions,
such as scenes 4 to 6, the improvement of visibility is very effective. This
is made possible by the introduction of polarization calculation module
and frequency information, which constrains the model to recover the
hazy image as clearly and reasonably as possible under the atmospheric
scattering model. Other image noises are inevitably generated in the
experimental results of each method. We constantly adjust the polari-
zation degree correction factor of PBD, but the appearance of local color
shift cannot be avoided. Deep-learning based methods can better restore
image details in thin haze scenes, but YOLY and D4 are worse than the
advanced DEA-Net and DehazeFormer in brightness recovery. In heavy
and dense haze scenes, almost all deep-learning based methods
demonstrate a poor dehazing effect. Dehamer got heavier color shift in
scene 5, even a seriously mistake result in scene 6. In addition to
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restoring clearer dehazed images under dense haze condition, PGAN can
also enhance the visibility of targets under low light conditions.
Although it seems to have some haze residue and saturation reduce, it
does not affect the first visual feeling of human eyes.

Vertical direction comparison. The visibility of hazy images taken in
the vertical direction is related to the height of the UAV. Most of the
methods such as PBD, DeahzeFormer and PGAN achieve good results
from scenes 1 to 3, because these hazy images are collected in sunny
days. But in scenes 4 to 6, only PBD and PGAN can keep high brightness,
because there are many areas with very weak light illumination or ob-
jects with weak reflective effects in these scenes. For example, the trees
under the tall buildings are shielded from most of the light in scene 5,
and the asphalt road with low light reflection in scene 4 and 6.
Compared with all other methods, the experimental results of PGAN are
clearer, and the target recovery of the low light scene is excellent,
especially the details of the blue dome of scene 5 is well restored. The
trees and paths are also clearly visible. These results demonstrate that
our method maintains excellent dehazing capability in a variety of
scenarios.

4.3. Quantitative experimental results

We employ the widely recognized no-reference image quality
assessment to quantitatively evaluate the dehazing results of our method
in comparison to other dehazing methods. It is important to note that,
unlike dehazing algorithms that can utilize synthetic data, polarization-
based dehazing algorithms cannot directly apply reference image qual-
ity assessments for quantitative evaluation of dehazed images. Although
some works have suggested collecting haze-free data at different times
in the same scene or using experimental results of a certain algorithm as
ground-truth, the ground-truth obtained through this method is not
strict, so these practices have not yet been widely recognized. Our
selected no-reference image quality assessments include Fog Aware
Density Evaluator (FADE) [26], Blind Image Quality Index (BIQI) [28],
Blind Image Spatial Quality Evaluator (BRISQUE) [29] and Nature
Image Quality Evaluator (NIQE) [30]. These indexes based on the nat-
ural scene statistics have different priorities, allowing them to compre-
hensively reflect the dehazing performance rather than focusing on
visibility improvement. US represents the percentage of votes in user
study. The mean score of each dehazing algorithm in different groups is
listed in Table 1 and Table 2. The best scores are marked in bold font.

In the horizontal direction, PGAN has achieved significant advan-
tages in all evaluation metrics. Physical model-based methods such as
PBD and DCP achieved better FADE than deep learning-based methods,
indicating higher visibility in dehazing images. This proves that physical
constraints are the key factor in dehazing, therefore our PGAN can
achieve optimal FADE after introducing polarization information
constraint. Similarly, deep learning-based methods perform poorly on
BRISQUE, with a score of 16.19 indicating that our method achieves
minimal image distortion and achieves the best human visual effects.
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Table 2
Quantitative experimental results of the data in vertical direction. No-reference
image quality assessments are calculated.

Methods FADE| BIQI| BRISQUE| NIQE| ust
Hazy 1.98 75.63 34.88 7.00 -

DCP [2] 0.58 53.44 26.62 5.84 0.12
PBD [17] 1.18 52.14 29.37 5.71 0.10
YOLY [32] 0.47 42.02 38.16 5.26 0.23
D4 [24] 0.92 61.20 29.56 6.04 0.19
Dehamer [11] 0.79 42.27 42.17 5.93 0.07
DehazeFormer [33] 1.04 73.60 31.59 6.54 0.08
SGDRL [34] 1.12 72.46 30.32 6.17 0.10
DEA-Net [35] 1.18 73.23 31.07 6.56 0.07
PGAN (Ours) 0.37 44.24 22.01 5.22 0.52

The optimal NIQE shows that our method can preserve the natural at-
tributes of the image (e.g. contrast, clarity) during the dehazing process.

While in the vertical direction, PGAN has attained the best FADE,
BRISQUE and NIQE. PGAN only achieve the second best BIQI, demon-
strating that it contains some noise when generating dehazed images.
This is an inevitable problem for generative-based method, such as the
high BIQI value of D4. YOLY achieves the best BIQI through a layer
disentanglement network that does not require training. The US scores
reflect that the PGAN is the most recognized among user groups. These
results demonstrate that our method can achieve robust dehazing per-
formance in natural scenes with multiple perspectives and uneven haze.

4.4. Ablation study

The ablation experiments are performed to verify the effectiveness of
our generator based on polarization and discriminator based on fre-
quency distribution. For the generator, we remove the airlight Stokes
calculation module in PGAN-A, and replace the input of PGAN-A with
the original hazy image to estimate the airlight. This method is denoted
as w/o SP. For the discriminator, we remove the frequency decompo-
sition module, and only use the original and synthetic hazy images as
input samples. Meanwhile, the pseudo airlight coefficient supervision
loss is removed. This method is denoted as w/o FS.

As shown in Fig. 10, in the absence of the Stokes calculation module,
the calculation accuracy of the airlight decreases after losing the po-
larization information. As a result, the dehazing performance of w/o SP
is very limited. In fact, this is similar to most dehazing methods based on
generative adversarial networks. If only the frequency decomposition
module of our discriminator is removed, although the visibility of the
scene can be improved overall, the experimental results of w/o FS are
obviously less restored than PGAN in detail. It can be observed that
details of trees and buildings marked by red boxes are blurred, and these
details are restored in the experimental results of PGAN.

Quantitative analysis of experimental results for the three protocols
on published datasets is shown in Table 3. It is not difficult to find that

Table 1
Quantitative experimental results of the data in horizontal direction. No-reference image quality assessments are calculated.
Type Methods Publication FADE| BIQI} BRISQUE| NIQE| ust
Original image Hazy - 6.73 85.16 45.81 9.78 -
Prior DCP [2] TPAMI'10 0.67 58.86 18.74 5.4 0.15
PBD [17] AO’03 0.65 59.9 16.74 4.81 0.27
CAP [4] TIP’15 3.48 78.63 20.01 7.71 0.12
Deep-Learning AOD-Net [6] ICCcv’17 3.06 66.94 24.49 9.16 0.18
FD-GAN [9] AAAT’20 1.66 71.41 26.06 6.07 0.11
YOLY [32] 1JCv’21 2.08 71.55 33.1 7.47 0.25
D4 [24] CVPR’22 1.54 75.18 33.68 7.58 0.09
Dehamer [11] CVPR’22 1.5 53.94 30.62 6.54 0.2
DehazeFormer [33] TIP’23 1.89 82.98 40.4 9.15 0.17
SGDRL [34] NN’24 2.76 79.77 34.58 8.36 0.12
DEA-Net [35] TIP’24 2.52 83.31 37.46 9.28 0.08
PGAN Ours 0.43 50.01 16.19 4.73 0.43
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w/o SP w/o FS

Fig. 10. Qualitative results of the ablation experiment. “w/o SP” means removing the Stokes calculation module of PGAN-A and replacing the input with the original
hazy image. “w/o FS” represents for removing the frequency decomposition module of discriminator and the pseudo airlight coefficient supervision loss.
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