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A B S T R A C T

Haze significantly hinders the application of autonomous driving, traffic surveillance, and remote sensing. Image 
dehazing serves as a key technology to enhance the clarity of images captured in hazy conditions. However, the 
lack of paired annotated training data significantly limits the performance of deep learning-based dehazing 
methods in real-world scenarios. In this work, we propose a self-supervised polarization image dehazing 
framework based on frequency domain generative adversarial networks. By incorporating a polarization 
calculation module into the generator, the Stokes parameters of airlight are accurately estimated, which are used 
to reconstruct the synthesized hazy image by combining the dehazed image generated via a densely connected 
encoder-decoder. Furthermore, we optimize the discriminator with frequency domain features extracted by 
frequency decomposition module and introduce a pseudo airlight coefficient supervision loss to enhance the self- 
supervised training. By discriminating between synthetic hazy images and real hazy images, we achieve 
adversarial training without the need for paired data. Simultaneously, supervised by the atmospheric scattering 
model, our network can iteratively generate more realistic dehazed images. Extensive experiments conducted on 
the constructed multi-view polarization datasets demonstrate that our method achieves state-of-the-art perfor
mance without requiring real-world ground truth.

1. Introduction

In modern society, where pollution is becoming increasingly severe, 
extreme weather conditions are occurring more frequently. The pres
ence of haze particles in the atmosphere degrades the sharpness and 
contrast of images. Undoubtedly, haze significantly impairs the ability of 
computer vision algorithms to perceive scene information, leading to 
severe degradation or even failure in tasks such as recognition, detec
tion, and segmentation. Therefore, research on improving visibility in 
hazy conditions, known as image dehazing [1], holds significant prac
tical importance.

Existing dehazing methods are primarily categorized into prior- 
based and deep learning-based approaches. The theoretical foundation 
of prior-based methods lies in the atmospheric scattering model, which 
is widely used in computer vision to explain the physical principles 
behind imaging systems. By leveraging statistical priors to estimate 
parameters of the atmospheric scattering model, such as transmission 
and atmospheric light intensity, the dehazed image can be recovered. 

However, these methods [2–4] suffer from cascaded error propagation 
due to the reliance on handcrafted priors, limiting their effectiveness in 
improving visibility.

Unlike the methods that rely on a single hazy image, polarization- 
based dehazing methods [17–20] possess inherent advantages due to 
their utilization of polarization properties. The intensity of airlight 
varies regularly as the angle of polarization. By leveraging this property, 
the airlight intensity can be calculated using the degree of polarization, 
enabling the recovery of the dehazed image. Although the existing 
polarization-based dehazing methods effectively solve the problem of 
insufficient input information, they require multiple iterations to esti
mate parameters, resulting in low efficiency. Besides, as 
optimization-based approaches, they fail to fully exploit semantic and 
contextual information in image features to handle the spatially-variant 
real-world scattering.

In recent years, researchers have employed deep learning methods to 
estimate parameters in the atmospheric scattering model [5–8], which 
reduces the cascaded error to a certain extent. Additionally, many deep 
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learning-based dehazing methods bypass the atmospheric scattering 
model [9–16,32–35], referred to as the end-to-end dehazing models. The 
features extracted by these models are more general, less 
time-consuming, more cost-effective, and exhibit the versatility of the 
dataset. As shown in Fig. 1(a), some GAN-based methods directly 
recover the dehazed image by learning the nonlinear mapping from hazy 
images to clear ones, but they are strictly limited by training datasets. 
Since it is impossible to simultaneously capture the real-world hazy 
image and its ground truth, synthetic datasets are predominantly used 
for training most networks. Consequently, their performances on 
real-world datasets is significantly inferior to that on synthetic datasets. 
Moreover, GAN-based methods are prone to generating artifacts, which 
adversely affects model training.

Leveraging the advantage of a large-scale polarization dataset [42] 
our team has previously collected, we aim to integrate polarization 
properties into deep learning-based dehazing methods to combine the 
strengths of both approaches and address their limitations. In this work, 
we propose a self-supervised polarization image dehazing method based 
on frequency domain generative adversarial networks (PGAN), hoping 
to enhance the performance and robustness of dehazing methods on 
real-world datasets.

First, polarization images are utilized to calculate the Stokes pa
rameters of airlight (PGAN-A), while the dehazed image is generated 
using a densely connected encoder-decoder network (PGAN-J). The 
generated dehazed image and Stokes parameters are then employed to 
synthesize the hazy image through the physical model, serving as one of 
the input samples of the discriminator. By incorporating the polarization 
calculation module, our method requires only three hazy polarization 
images captured at different angles at a single time, eliminating the need 
for real-world ground truth. Second, we introduce a frequency decom
position module to optimize the discriminator based on the frequency 
domain distribution properties of hazy image. The input synthetic and 
original hazy images are separated in the frequency domain, and their 
respective high- and low-frequency sub-bands are combined as input 
samples for the discriminator, significantly enhancing its supervision 
capability.

Additionally, we design a pseudo airlight coefficient supervision loss 
to enhance the self-supervised training process. This loss function, 
grounded in the atmospheric scattering model, effectively mitigates the 
generation of excessive image noise and further improves the robustness 
and generalization capability of the network. By reformulating the 
problem as the discrimination between generated hazy image and real 
hazy image, our generator can produce realistic dehazed image that 
conforms to the atmospheric scattering model as much as possible. Our 
main contributions can be summarized as follows:

A novel self-supervised polarization image dehazing method is pro
posed, integrating polarization properties and frequency domain infor
mation within the generative adversarial learning framework.

A polarization-based generator is proposed, and the discriminator is 
optimized using the frequency distribution of hazy images. This 
approach addresses the limitations of paired training datasets, and 
significantly improves the dehazing performance of the network on real- 
world datasets.

A pseudo airlight coefficient supervision loss is designed for our self- 
supervised dehazing framework. Extensive qualitative and quantitative 
experiments demonstrate the superiority of our proposed method.

By introducing polarization supervision signals from the perspective 
of network architecture and loss function, generated images are con
strained in the physical model, which not only improves the authenticity 
of generated images, but also ensures the timeliness of trained end-to- 
end dehazing model. The remainder of this paper is organized as fol
lows. We first review the polarization image dehazing and the deep 
learning-based image dehazing in Section 2. Section 3 describes the 
proposed P-GAN model in detail, and Section 4 shows the experimental 
results. Finally, Section 5 concludes this paper.

2. Related works

2.1. Polarization-based image dehazing

As illustrated in Fig. 2, to advance the innovation and development 
of polarization dehazing algorithms, we constructed an atmospheric 
polarization information observation platform and UAV atmospheric 
polarization information observation platform, designed for horizontal 
and vertical observation perspectives, respectively. The fixed atmo
spheric polarization information observation platform integrates two 
intelligent polarization cameras (FGEA460 M and SZ-FGEB500C) from 
Hefei Shizhan Photoelectric Technology company, SONY Lucid polari
zation camera (IMX250MZR) and the related equipment of atmospheric 
environment monitoring (visibility meter, PM2.5 monitoring sensor, 
etc.). The polarization cameras adopted has the advantages of high 
extinction ratio and sensitivity, and has undergone strict polarization 
calibration [36]. Through this platform, we can better obtain 

Fig. 1. Dehazing models use different architectures. (a) represents GAN-based 
dehazing methods, these methods rely on the ground truth of the hazy image 
while the ground truth of real scenes is usually difficult to define and obtain. 
And the synthetic data-driven methods have poor generalization in the real 
world. (b) represents our proposed self-supervised P-GAN, it does not require 
additional ground truth of the hazy image and effectively improves the 
authenticity of dehazed image by introducing the atmospheric scattering 
model. Our generated dehazed image is in the generator, the specific structure 
can be seen in Fig. 4.

Fig. 2. Our fixed atmospheric polarization information observation platform, 
the UAV atmospheric polarization information observation platform can be 
seen in Section 4.1. We conducted extensive field observation experiments 
under foggy, hazy and other weather conditions, and obtained multi-target 
polarization data under various meteorological conditions.
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polarization hazy data and explore the transmission characteristics of 
atmospheric polarized light in strong scattering media.

The atmospheric scattering model explains the contrast decay of 
hazy images from the perspective of the physical mechanism [1], as 
shown in Fig. 3. The mathematical representation of this model is as 
follows: 

I(x) = D(x) + A(x) = J(x)t(x) + A∞(1 − t(x)) (1) 

where I(x) is the captured hazy image, and x is the position of an image 
pixel. I(x) consists the direct transmission D(x) and airlight A(x). J(x) is 
the object radiance, and it is the result to be recovered. A∞ is the airlight 
radiance from the infinite distance.

Without considering the polarization properties of objects, early 
polarization-based dehazing methods controlled the received intensity 
of airlight by rotating a polaroid, utilizing the degree of polarization to 
describe the proportion of polarized light in natural light [17]. However, 
this method has a poor real-time performance. Currently, polarization 
cameras generally have focal focus planes that can acquire polarization 
images at multiple angles simultaneously. When polarization images at 
three or more angles (I0, I45, I90, I135) are available, the Stokes vector 
can be expressed as: 

S =

⎛

⎜
⎜
⎝

SI
SQ
SU
SV

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

I0 + I90
I0 − I90
I45 − I135
0

⎞

⎟
⎟
⎠ (2) 

where SI denotes the total light intensity. SQ and SU denote the intensity 
of the linear polarization state. SV denotes the intensity of circular po
larization state, which is sufficiently small for it to be neglected (SV = 0) 
in most natural light. Then the degree and angel of polarization noted as 
p and θ respectively can be calculated as follows: 

p =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

S2
Q + S2

U

√

SI
(3) 

θ =
1
2

arctan
SU

SQ
(4) 

And the airlight radiance from the infinite distance can be estimated 
as follows: 

A∞pA =
I0 − A∞(1 − pA)/2

cos2θA
(5) 

where pA and θA denote the polarized degree and angel of airlight. 
Finally, the mathematical expression for obtaining the dehazed image J 
is given as follows: 

J =
SI + SQ/p

1 + SQ/(pA∞)
(6) 

2.2. Deep learning-based image dehazing

Recently, researchers have utilized deep learning methods to 
perform image dehazing and achieved promising performance [35,
37–41]. Chen et al. [35] proposed detail-enhanced convolution and 
content-guided attention to boost the feature learning for improving the 
dehazing performance. Lyu et al. [38] introduced image priors in color 
spaces and proposed a multiple color space prior network to enhance the 
dehazing performance specifically for non-homogeneous hazy images. 
Unmanned aerial vehicle (UAV) dehazing has attracted much attention 
recently, Qiu et al. [40] present a novel UAV image dehazing framework 
to enhance perceptual tasks in foggy conditions. Sun et al. [41] proposed 
an unsupervised bidirectional contrastive reconstruction framework to 
enhance both the network’s constraint and reconstruction capabilities.

In addition to the above methods, numerous GAN-based methods 
have been applied to image dehazing [9,21–24], which learn the map
ping from hazy images to clear images without using the atmospheric 
scattering model. As shown in Fig. 1(a), the generator produces a 
dehazed image based on the input hazy image. Then, the discriminator 
evaluates the similarity between the dehazed image and ground truth. 
Typically, this similarity scores ranges from 0 to 1, with a higher score 
indicating greater resemblance to the ground truth. The generator im
proves the quality of dehazed images by utilizing this score as feedback. 
However, the training process requires a large number of paired data
sets, which are extremely difficult to obtain in real-world scenarios. 
Moreover, the mapping from hazy images to clear ones lacks constraints 
imposed by the atmospheric scattering model. In contrast, our 
self-supervised PGAN eliminates the need for paired data and conforms 
to the constraints of the physical model, offering high real-world 
applicability and good interpretability, as shown in Fig. 1(b).

3. Proposed method

As illustrated in Fig. 4, the proposed PGAN mainly consists of a 
polarization-based generator (G) and a frequency-distribution-based 
discriminator (D). Unlike previous methods, our generator utilizes po
larization images as input, and the output is a synthetic hazy image but 
not an intermediate generated dehazed image. Similarly, the input of 
our discriminator is modified to include both the synthetic hazy image 
and the original one. The original hazy image can be calculated from the 
polarization images. We optimize the loss function between the original 
hazy image and the synthesized hazy image to incorporate polarization 
supervision, thereby implementing a self-supervised training strategy.

3.1. The generator based on polarization dehazing

Our generator utilizes polarization images to calculate the Stokes 
vector of airlight and employs the atmospheric scattering model to re- 
synthesize the hazy image after generating the dehazed image, as 
shown in Fig. 4. PGN-J, constructed by a densely connected encoder-to- 
decoder, generates the dehazed imageJfrom the original hazy image. 
Since each neuron in the densely connected layer receives input from all 
neurons in the previous layer, this architecture effectively facilitates 
feature extraction and reconstruction of scenes in low-level computer 
vision tasks [9], excelling at generating clearer dehazed images. The 
original hazy image I can be calculated from the polarization images 
using the Stokes vector as follows: 

I =
2
3
(I0 + I60 + I120) (7) 

where I0, I60, I120 represent the polarization images at angle 0◦, 60◦, 
120◦, respectively.

PGAN-A is a polarization calculation module employed to calculate 
the Stokes vector of airlight from three polarization images. As illus
trated in Fig. 5, this module utilizes the frequency distribution to Fig. 3. Illustration of the atmospheric scattering model.
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separate airlight and avoid the halo effect, which does not need to 
discuss complex polarization properties of objects. Specifically, the po
larization images are decomposed via the non-subsampled pyramid 
(NSP) [27]. 

Heq
n (z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H1

(
z2n− 1 I

)∏n− 2

k=0

H0

(
z2kI

)
,1 ≤ n ≤ k

∏n− 2

k=0

H0

(
z2kI

)
, n = k + 1

(8) 

Where Heq
n (z) is the cascade filter at the n-th stage, H0(z) representing 

a low-pass decomposition filter and H1(z) is a high pass decomposition 
filter. It can be found that NSP decomposes a low-pass subband and a 
band-pass subband for the first time. As the number of decompositions 
increases, the low-pass subband will be decomposed many times, and 
finally k band-pass subbands and a low-pass subband will be generated 
in total. Follow our previous work [20], we set the number of decom
position levels to 4 to obtain the optimal decomposition image. The 
low-frequency subbands obtained by NSP decomposition are denoted as 
I0∘

L , I60∘

L , I120∘

L . Because of the airlight constraints, the decomposed 
low-pass sub-bands which are used as airlight in different polarization 
angles should be refined. We perform the trilateral filtering to refine the 
low-frequency subbands. 
⎛

⎜
⎜
⎜
⎜
⎜
⎝

Ak = max
(
min

(
B(x), Ik∘

(x)
)
,0
)

B(x) = Ik∘

Lʹ (x) − mediansv
( ⃒
⃒Ik∘

(x) − Ik∘

Lʹ (x)
⃒
⃒
)

Ik∘

Lʹ (x) = mediansv
(
Ik∘
(x)

)

k = 0,60,120

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(9) 

Where mediansv represents the median filter, A0, A60, A120 are the 
airlight of three polarization hazy images at angle 0◦, 60◦, 120◦, 
respectively. With the airlight, the Stokes vector can be calculated as 
follows: 

Fig. 4. The architecture of our proposed method PGAN. The generator input consists of three polarized images, and the original hazy image computed from f . f refer 
to (6). PGAN-J is a densely connected encoder-decoder used to generate the dehazed image, and PGAN-A is a polarization calculation module designed to estimate 
the atmospheric parameters in the haze image and provide physical constraints. The discriminator input consists of the original hazy image and the synthesized hazy 
image output by the generator. The discriminatory power of discriminators is enhanced by utilizing frequency distribution properties. For the trained model, we only 
use PGAN-J to generate dehazed images.

Fig. 5. The illustration of PGAN-A. PGAN-A is a polarization calculation 
module employed to calculate the Stokes vectors of airlight from three polari
zation images. We employ NSP decomposition to extract low frequency sub
bands from the polarization image, which are subsequently refined and used as 
airlight to calculate Stokes vectors.
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SA =

⎛

⎝
SAI
SAQ
SAU

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2
3
(A0 + A60 + A120)

2
3
(2A0 − A60 − A120)

2̅
̅̅
3

√ (A0 − A120)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(10) 

On this basis, we utilize Eq. (4) and (5) are to calculate A∞. Lastly, 
the synthetic hazy image Iʹ can be calculated as follows: 

Iʹ =
JA∞ + SAIA∞ − JSAI

A∞
(11) 

Discussion. The polarization dehazing method has its own unique 
advantages compared to other dehazing methods, as it alleviates the 
fundamental flaw of dehazing tasks - insufficient acquisition of scene 
information. This advantage is specifically reflected in the ability to 
calculate the original fog image and polarization degree from the 
polarized image, and then estimate the physical model, which is very 
effective in real-world dehazing. At present, although deep learning 
methods can achieve good performance through style transfer [31] or 
layer disentanglement [32], they ignore the application of polarization 
characteristics. We introduce polarization characteristics on the basis of 
GAN-based dehazing method, improve the performance and robustness 
of the network on real data through the introduction of polarization as a 
physical mechanism, solve the limitations of training data, and enhance 
its interpretability, thus making efforts to promote the application of 
polarization characteristics in other deep learning methods.

3.2. The discriminator based on frequency distribution

As illustrated in Fig. 4, our discriminator separates the input original 
hazy image I and synthetic one Í in the frequency domain, extracting 
their high-frequency and low-frequency sub-bands, which combined 
with their corresponding hazy images as samples of the discriminator. 
To train the network, we utilize the dehazed image J as an intermediate 
result of the generator, aiming for the discriminator to guide the 
generator in producing a synthetic hazy image that closely resembles the 
original one. This process ultimately yields a clearer dehazed image 
under the physical constraints of the atmospheric scattering model. 
Furthermore, to enhance the discriminator’s input diversity, we incor
porate additional training constraints (frequency information). Direct 
transmission and airlight are distributed in the high-frequency IH and 
low-frequency IL sub-bands of the image frequency band [20], respec
tively. Therefore, the low-frequency components of hazy images are 
richer than clear ones due to the higher proportion of airlight. This 
characteristic is leveraged to optimize the design of our discriminator by 
integrating a frequency decomposition module.

To jointly optimize model’s dehazing capability, it should be noted 
that the frequency decomposition method used in this module is 
consistent with PGAN-A as shown in Fig. 4. Since low-frequency sub- 
bands IL can be used as airlight after constraints, the supervised learning 
of them can actually be regarded as the supervised learning of airlight 
coefficient, which inspired us to design the supervised loss function of 
the pseudo-airlight coefficient. In previous work, researchers typically 
used generated dehazed images and ground truths as paired learning 
samples for the discriminator, with less exploration of the model’s su
pervisory information. The discriminator we designed can more effec
tively distinguish between real and synthetic data, thereby generating 
more realistic and satisfactory dehazed images. We conducted a detailed 
experimental analysis on the effectiveness of the frequency domain 
decomposition module in Section 4.4.

3.3. The design of loss functions

This subsection focuses on the design of the loss function in our 
network. In addition to incorporating common losses such as pixel-level 

loss, SSIM loss, and adversarial loss into our framework, we also intro
duce a pseudo airlight coefficient supervision loss. This loss considers 
the low-frequency components of the discriminator input and the 
application of the physical model. Since low-frequency components 
represent the primary information of the image, designing a pseudo 
atmospheric scattering coefficient supervision loss based on these 
components enhances the constraints on network training, resulting in a 
more robust model.

3.3.1. Pixel-level loss
The pixel-level loss is utilized to measure the fidelity between the 

real and fake sample. In our method, given an original hazy image I, the 
synthetic hazy image output by the generator is Í . Then the pixel-level 
loss function LP in the form of L1 on N samples can be calculated as 
follows: 

LP =
∑N

i=1
‖ Iʹi − Ii ‖ (12) 

3.3.2. SSIM loss
The Structure Similarity Index Measure (SSIM) is an important 

reference image quality evaluation index [25], which comprehensively 
considers differences in brightness, contrast and structure. It accurately 
reflects the image quality of human perception so as widely used in the 
algorithm performance evaluation of computer vision tasks. In our 
method, SSIM can be calculated as follows: 

SSIM(Iʹ, I) =
(2μÍ μI + C1)(2σIʹI + C2)

(μ2
Iʹ + μ2

I + C1)(σ2
Iʹ + σ2

I + C2)
(13) 

whereμand σ2are the average value and the variance, respectively. σis 
the covariance. C1,C2are constants used to maintain stability. SSIM 
ranges from 0 to 1 and the SSIM loss is defined as follows: 

LSSIM = 1 − SSIM(Iʹ, I) (14) 

3.3.3. Adversarial loss
The adversarial loss encourages the generator to continuously 

improve the sample quality by minimizing the differences between 
generated and real samples, while maximizing the ability of the 
discriminator. We integrate the adversarial mechanism into the training 
process, enabling the model to learn more effective representations and 
features, thereby achieving better performance and robustness. In our 
method, the hazy images combined with high and low sub-bands sam
ples are expressed asI ∪ IH ∪ IL, then the adversarial loss can be 
expressed as follows: 

LAdv = log(1 − D(G(I ∪ IH ∪ IL))) (15) 

3.3.4. Pseudo airlight coefficient supervision loss
Airlight is closely related to the hazy image through the atmospheric 

scattering model, which directly affects the brightness and the distri
bution of fog. Therefore, the more similar the synthetic hazy image of 
generator is to the real hazy image, the more similar the dehazing image 
generated by PGAN-J is to the real clear image. Accurate airlight esti
mation can significantly improve the defogging effect, make the recov
ered image clearer and reduce artifacts. We expect to penalize 
differences of airlight between the original and synthetic hazy images in 
the network by designing the pseudo airlight coefficient supervision 
loss. Arlight can be estimated from the low-frequency sub-band after 
frequency decomposition in the discriminator. We regard the low- 
frequency subbands of the synthetic and original hazy images con
strained by Eq. (8) as airlight, denoted asAʹand A, respectively. 
Following the pixel-level loss, we force airlight to converge by MAE loss. 
Then the pseudo airlight coefficient supervision loss on the N samples is 
defined as 
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LA =
∑N

i=1
‖ Aʹ

i − Ai ‖ (16) 

Finally, the loss function of the whole network consists of the pixel- 
level loss, SSIM loss, adversarial loss, and pseudo airlight coefficient 
supervision loss, and it can be expressed as 

L = λPLP + λSSIMLSSIM + λAdvLAdv + λALA (17) 

whereλrepresent the weight coefficient of the corresponding loss.

4. Experimental results

4.1. Datasets construction and parameters settings

Dataset. Most of the existing hazy image datasets are synthetic, 
which often fail to accurately reflect real-world haze distribution, 
particularly under strong wind conditions. Additionally, there are also 
many problems in a limited number of real-world datasets which 
creating artificial haze using a smoking generator. For a long time, the 
disclosure of datasets in the field of polarization dehazing has not 
attracted enough attention from the research community, which has 
severely hindered the widespread adoption and application of 

polarization methods.
In order to efficiently collect polarization data, we built different 

polarization data collection platforms with polarization cameras, and 
carried out long-term data collection work from November 2021. We 
have collected >30,000 hazy polarization images, and some of them 
have been open in the form of datasets, as shown in Fig. 6. We selected 
600 polarization images from each of three different haze concentra
tions in the horizontal direction. The haze concentration of image was 
based on the value of no reference image quality index FADE [26] and 
visibly: thin haze (0 < FADE≤6.7, 1km< visibility ≤3 km), heavy haze 
(6.7 < FADE≤7.9, 200 m < visibility ≤1 km), and dense haze (7.9 <
FADE≤9.0, visibility ≤200 m). In addition to the horizontal data, ver
tical data also holds significant experimental value, as it enables the 
evaluation of dehazing methods in aerial scenarios. Therefore, we also 
tilized 600 polarization images captured vertical direction using our 
unmanned aerial vehicle (UAV) platform, as illustrated in Fig. 7.

Our datasets do not explicitly use different scene names as classifi
cation criteria to reflect data diversity. Instead, different objects and 
backgrounds in the large view field of data acquisition equipment 
(masonry buildings, metal windows and tarmac pavement, etc.,) are 
used to reflect the diversity. We can evaluate the effects of different 
degree of scattering degradation on scenes with different polarization 
characteristics in the same view field, and the restoration effects of 

Fig. 6. Example images of our constructed dataset. We collect color images with polarization angles of 0◦, 60◦, and 120◦, as well as color hazy image I. The image 
resolution is 2480×1860.The obtained hazy images are divided into three concentration levels: dense, heavy, and thin. In addition, the dataset covers both horizontal 
and vertical directions, effectively solving the problem of a single perspective in existing datasets.
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related algorithms on various targets and backgrounds with different 
polarization characteristics.

Parameters. We set the four weight parameters λP, λSSIM, λAdv, λA to 1, 
0.5, 0.1 and 1, respectively. The Nonsubsampled Pyramid (NSP) was 
used in all frequency domain decomposition modules, and the layer of 
decomposition was set to 4. In terms of the size of the input image, the 
original size captured by the polarization camera is 2480×1860×3. The 
polarization image and the original fog image have been downsampled, 
and the downsampled image size is 320×240×3. The training of the 
entire network is conducted on one Nvidia RTX A6000 GPU.

4.2. Qualitative experimental results in the horizontal and vertical 
directions

We chose dehazing algorithms based on priors and polarization 
including DCP [2] and PBD [17]. We also chose two dehazing algorithms 
based on deep learning including YOLY [32], D4 [24] and Dehamer 
[11], DehazeFormer [33] and DEA-Net [35]. Our method is defined as 

Fig. 7. The UAV for vertical direction data acquisition.

Fig. 8. Qualitative experimental results of the data in horizontal direction. It can be observed that our proposed PGAN demonstrates a better dehazing effect than 
other polarization-based and deep-learning-based state-of-the-art methods. Especially in the dense haze scenes, PGAN presents a strong dehazing ability.
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PGAN. The experimental results of two groups are shown in Figs. 8 and 
Fig. 9, respectively.

In the horizontal experimental design, the haze concentration in the 
selected experimental scenarios (1) to (6) showed an increasing trend, in 
order to facilitate the testing of the performance of various algorithms 
under different haze concentrations. In the selection of scenes, we 
deliberately arranged many areas that are difficult to handle in the al
gorithm, such as water surfaces, bright white buildings, white trucks, 
etc., and some of these scenes were specifically shot under low light 
conditions. This test data organization is significantly different from the 
overly single data organization form in existing work. We hope that 
through this experimental data organization form, the performance of 
various algorithms can be more comprehensively reflected.

Horizontal direction comparison. The results of DCP and PBD are 
very different in thin haze scenes or containing white objects, such as 
scenes 1 and 2. This can be attribute to the reason that DCP is prone to 
estimating a higher airlight radiance from the infinite distance. In the 

dense haze condition, such as scenes 5 and 6, their results are similar due 
to the strong haze coverage.

It is obvious that PGAN has achieved excellent results in all hori
zontal direction images. Even in dark light and dense haze conditions, 
such as scenes 4 to 6, the improvement of visibility is very effective. This 
is made possible by the introduction of polarization calculation module 
and frequency information, which constrains the model to recover the 
hazy image as clearly and reasonably as possible under the atmospheric 
scattering model. Other image noises are inevitably generated in the 
experimental results of each method. We constantly adjust the polari
zation degree correction factor of PBD, but the appearance of local color 
shift cannot be avoided. Deep-learning based methods can better restore 
image details in thin haze scenes, but YOLY and D4 are worse than the 
advanced DEA-Net and DehazeFormer in brightness recovery. In heavy 
and dense haze scenes, almost all deep-learning based methods 
demonstrate a poor dehazing effect. Dehamer got heavier color shift in 
scene 5, even a seriously mistake result in scene 6. In addition to 

Fig. 9. Qualitative experimental results of the data in vertical direction. It can be observed that our proposed PGAN demonstrates a better dehazing effect than other 
polarization-based and deep-learning-based state-of-the-art methods. Data-driven deep learning-based method lacks physical model constraints and demonstrates 
poorer dehazing results in the absence of vertical view training data. However, PGAN exhibits a robust dehazing capability in different views.
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restoring clearer dehazed images under dense haze condition, PGAN can 
also enhance the visibility of targets under low light conditions. 
Although it seems to have some haze residue and saturation reduce, it 
does not affect the first visual feeling of human eyes.

Vertical direction comparison. The visibility of hazy images taken in 
the vertical direction is related to the height of the UAV. Most of the 
methods such as PBD, DeahzeFormer and PGAN achieve good results 
from scenes 1 to 3, because these hazy images are collected in sunny 
days. But in scenes 4 to 6, only PBD and PGAN can keep high brightness, 
because there are many areas with very weak light illumination or ob
jects with weak reflective effects in these scenes. For example, the trees 
under the tall buildings are shielded from most of the light in scene 5, 
and the asphalt road with low light reflection in scene 4 and 6. 
Compared with all other methods, the experimental results of PGAN are 
clearer, and the target recovery of the low light scene is excellent, 
especially the details of the blue dome of scene 5 is well restored. The 
trees and paths are also clearly visible. These results demonstrate that 
our method maintains excellent dehazing capability in a variety of 
scenarios.

4.3. Quantitative experimental results

We employ the widely recognized no-reference image quality 
assessment to quantitatively evaluate the dehazing results of our method 
in comparison to other dehazing methods. It is important to note that, 
unlike dehazing algorithms that can utilize synthetic data, polarization- 
based dehazing algorithms cannot directly apply reference image qual
ity assessments for quantitative evaluation of dehazed images. Although 
some works have suggested collecting haze-free data at different times 
in the same scene or using experimental results of a certain algorithm as 
ground-truth, the ground-truth obtained through this method is not 
strict, so these practices have not yet been widely recognized. Our 
selected no-reference image quality assessments include Fog Aware 
Density Evaluator (FADE) [26], Blind Image Quality Index (BIQI) [28], 
Blind Image Spatial Quality Evaluator (BRISQUE) [29] and Nature 
Image Quality Evaluator (NIQE) [30]. These indexes based on the nat
ural scene statistics have different priorities, allowing them to compre
hensively reflect the dehazing performance rather than focusing on 
visibility improvement. US represents the percentage of votes in user 
study. The mean score of each dehazing algorithm in different groups is 
listed in Table 1 and Table 2. The best scores are marked in bold font.

In the horizontal direction, PGAN has achieved significant advan
tages in all evaluation metrics. Physical model-based methods such as 
PBD and DCP achieved better FADE than deep learning-based methods, 
indicating higher visibility in dehazing images. This proves that physical 
constraints are the key factor in dehazing, therefore our PGAN can 
achieve optimal FADE after introducing polarization information 
constraint. Similarly, deep learning-based methods perform poorly on 
BRISQUE, with a score of 16.19 indicating that our method achieves 
minimal image distortion and achieves the best human visual effects. 

The optimal NIQE shows that our method can preserve the natural at
tributes of the image (e.g. contrast, clarity) during the dehazing process.

While in the vertical direction, PGAN has attained the best FADE, 
BRISQUE and NIQE. PGAN only achieve the second best BIQI, demon
strating that it contains some noise when generating dehazed images. 
This is an inevitable problem for generative-based method, such as the 
high BIQI value of D4. YOLY achieves the best BIQI through a layer 
disentanglement network that does not require training. The US scores 
reflect that the PGAN is the most recognized among user groups. These 
results demonstrate that our method can achieve robust dehazing per
formance in natural scenes with multiple perspectives and uneven haze.

4.4. Ablation study

The ablation experiments are performed to verify the effectiveness of 
our generator based on polarization and discriminator based on fre
quency distribution. For the generator, we remove the airlight Stokes 
calculation module in PGAN-A, and replace the input of PGAN-A with 
the original hazy image to estimate the airlight. This method is denoted 
as w/o SP. For the discriminator, we remove the frequency decompo
sition module, and only use the original and synthetic hazy images as 
input samples. Meanwhile, the pseudo airlight coefficient supervision 
loss is removed. This method is denoted as w/o FS.

As shown in Fig. 10, in the absence of the Stokes calculation module, 
the calculation accuracy of the airlight decreases after losing the po
larization information. As a result, the dehazing performance of w/o SP 
is very limited. In fact, this is similar to most dehazing methods based on 
generative adversarial networks. If only the frequency decomposition 
module of our discriminator is removed, although the visibility of the 
scene can be improved overall, the experimental results of w/o FS are 
obviously less restored than PGAN in detail. It can be observed that 
details of trees and buildings marked by red boxes are blurred, and these 
details are restored in the experimental results of PGAN.

Quantitative analysis of experimental results for the three protocols 
on published datasets is shown in Table 3. It is not difficult to find that 

Table 1 
Quantitative experimental results of the data in horizontal direction. No-reference image quality assessments are calculated.

Type Methods Publication FADE↓ BIQI↓ BRISQUE↓ NIQE↓ US↑

Original image Hazy - 6.73 85.16 45.81 9.78 -
Prior DCP [2] TPAMI’10 0.67 58.86 18.74 5.4 0.15

PBD [17] AO’03 0.65 59.9 16.74 4.81 0.27
CAP [4] TIP’15 3.48 78.63 20.01 7.71 0.12

Deep-Learning AOD-Net [6] ICCV’17 3.06 66.94 24.49 9.16 0.18
FD-GAN [9] AAAI’20 1.66 71.41 26.06 6.07 0.11
YOLY [32] IJCV’21 2.08 71.55 33.1 7.47 0.25
D4 [24] CVPR’22 1.54 75.18 33.68 7.58 0.09
Dehamer [11] CVPR’22 1.5 53.94 30.62 6.54 0.2
DehazeFormer [33] TIP’23 1.89 82.98 40.4 9.15 0.17
SGDRL [34] NN’24 2.76 79.77 34.58 8.36 0.12
DEA-Net [35] TIP’24 2.52 83.31 37.46 9.28 0.08
PGAN Ours 0.43 50.01 16.19 4.73 0.43

Table 2 
Quantitative experimental results of the data in vertical direction. No-reference 
image quality assessments are calculated.

Methods FADE↓ BIQI↓ BRISQUE↓ NIQE↓ US↑

Hazy 1.98 75.63 34.88 7.00 -
DCP [2] 0.58 53.44 26.62 5.84 0.12
PBD [17] 1.18 52.14 29.37 5.71 0.10
YOLY [32] 0.47 42.02 38.16 5.26 0.23
D4 [24] 0.92 61.20 29.56 6.04 0.19
Dehamer [11] 0.79 42.27 42.17 5.93 0.07
DehazeFormer [33] 1.04 73.60 31.59 6.54 0.08
SGDRL [34] 1.12 72.46 30.32 6.17 0.10
DEA-Net [35] 1.18 73.23 31.07 6.56 0.07
PGAN (Ours) 0.37 44.24 22.01 5.22 0.52
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the introduction of polarization characteristics is the greatest improve
ment on the fog removal performance of the method while the frequency 
domain decomposition module can further optimize the overall perfor
mance of the network. This is consistent with our original intention of 
adopting the frequency decomposition module, and the accurate airlight 
helps to restore the image clearer and reduce the distortion.

5. Conclusion

In this work, to address the limitations of real-world labels and 
improve the robustness of deep learning-based dehazing methods, we 
propose a self-supervised polarization image dehazing framework using 
frequency domain generative adversarial networks, referred to as PGAN. 
The polarization-based generator reconstructs the synthetic hazy image 
using Stokes parameters and the dehazed image produced by the densely 
connected encoder-decoder, enabling self-supervised learning. The fre
quency distribution-based discriminator is more effective due to the 
frequency separated samples and pseudo airlight coefficient supervision 
loss. Benefit from incorporating the polarization and frequency infor
mation, PGAN can more accurately estimate the airlight, producing 
more detailed dehazed images even without real-word clear images. In 
experiments, PGAN has achieved advanced performance in real-world 
datasets, and the ablation experiments have verified the effectiveness 
of each module.

However, our method has limitations. Despite achieving good detail 
dehazing effects, certain color deviations may occur in some scenes due 
to the lack of supervision from ground truth.Further optimization is 
required to recover the image more naturally. Moreover, the proposed 
method lacks dynamic processing capabilities, such as video dehazing. 
In the future, we will delve into research to improve the dehazing ability 
of the model in complex scenes with varying depths.
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