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ABSTRACT

Structured pruning of large-scale Transformer models promises substantial ef-
ficiency gains by removing entire hidden units. However, such pruning often
degrades accuracy more than unstructured pruning, necessitating compensation
strategies such as supervised fine-tuning (SFT) or adapter modules (e.g., LoRA). In
this paper, we introduce TASP (Neural Tangent Kernel-Aware Structured Pruning),
a novel method that identifies and prunes low-saliency hidden units in Transformer.
Our approach computes a saliency score for each weight—as the product of the
weight and its partial derivative with respect to the network output—and aggregates
these scores to measure the contribution of each hidden unit. We prove, via a
piecewise-linear bounding argument, that pruning units with minimal saliency
preserves the network’s Neural Tangent Kernel (NTK) and, consequently, its train-
ing dynamics under Adam-based optimization. Empirical results on standard
benchmarks confirm that TASP achieves significant model compression while
maintaining training performance, offering a theoretically grounded and efficient
pathway for Transformer model compression.

1 INTRODUCTION

Transformer-based (Vaswani et al., 2017) large language models (LLMs) have demonstrated remark-
able performance across a range of tasks. Nevertheless, as these models grow in size and complexity,
so does their computational overhead. The resulting high computational requirements make these
sophisticated models inaccessible to the broader public. This limitation not only poses barriers to the
democratization of AI technology but also fosters misconceptions about the techniques among the
general public. A 7B parameter model in 16-bit precision occupies 14GB of memory, demanding
costly GPU resources for both training and inference. This resource burden stifles accessibility,
limiting broader adoption and exacerbating misconceptions about AI democratization.

Model compression, therefore, emerges as a crucial solution, aiming to make original LLMs more
manageable and accessible without compromising their efficacy. Specifically, pruning (LeCun et al.,
1989) focuses on eliminating non-essential weights from a model to yield a lighter, compressed
variant. Current approaches fall into three categories: (1) Unstructured pruning methods (e.g.,
SparseGPT (Frantar & Alistarh, 2023), Wanda (Sun et al., 2023)1) eliminate individual weights
but fail to achieve practical speedups due to irregular sparsity patterns incompatible with hardware
accelerators;(2) Semi-structured pruning (e.g., 2:4 block sparsity (Zheng et al., 2024)) removes fixed
weight patterns optimized for NVIDIA sparse tensor cores (Yang et al., 2023). While this improves
inference efficiency, such methods cannot accelerate supervised fine-tuning (SFT), as optimizer
updates disrupt the predefined sparsity structure during training;(3) Structured pruning techniques

1These two can also be applied for semi-structured pruning.
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like LLM-Pruner (Ma et al., 2023) and Sheared Llama (Xia et al., 2024) remove entire neurons or
layers, yet demonstrate weaker performance compared to Unstructured and Semi-structured pruning.

While unstructured pruning preserves accuracy better than structured alternatives, it offers minimal
practical speedup as a trade-off(Cheng et al., 2024). Conversely, structured pruning enables hardware-
friendly sparsity but requires costly compensation strategies like adapter modules (LoRA (Hu et al.,
2021)) or extended retuning. Critically, all existing methods focus on post-training optimization,
ignoring the SFT stage where backpropagation consumes 2x more resources than inference. Pruning
before SFT could dramatically reduce this overhead—if done without compromising learnability.

We address this challenge through the Neural Tangent Kernel (NTK) (Jacot et al., 2018), which
characterizes how parameter changes affect model outputs during training. By analyzing the NTK
spectrum, we identify neurons with minimal contribution to the learning trajectory. Removing these
neurons preserves the NTK’s dominant modes, ensuring the pruned model retains the original’s
trainability during SFT. Unlike vision-focused NTK pruning (Wang et al., 2023), which assumes
SGD optimization, our approach adapts to Adam’s dynamics, the de facto optimizer for LLMs.

We propose TASP (Neural Tangent Kernel-Aware Structured Pruning), the first method that syn-
ergizes structured pruning with SFT dynamics through NTK analysis. Unlike magnitude-based
heuristics, TASP leverages a first-order saliency measure to quantify each neuron’s contribution to
the NTK spectrum, thereby identifying and eliminating redundant units that have minimal impact on
model trainability. This approach enables three key advantages: (1) Hardware-efficient compression
through structured sparsity, (2) Training-aware pruning that preserves critical learning dynamics, and
(3) Seamless integration with standard SFT pipelines. Furthermore, our experiments on the T5 model
demonstrate that TASP not only preserves the training dynamics of the original model—as verified
by NTK analysis—but also maintains its performance on downstream tasks, thereby validating the
effectiveness of our approach.

2 PROBLEM DEFINITION

2.1 PROBLEM FORMULATION

We use lowercase letters to denote scalars, boldface lowercase letters to denote vectors, and boldface
uppercase letters to denote matrices. The element-wise product is denoted by ⊙. The neural network
is denoted by f , parameterized by W, and x represents the input data. We assume that the output
f(x;W) is a single value, as is common in classification or next-token generation tasks.2 We focus
on pruning the MLP sub-layer inside a Transformer block, which is parameterized by two weight
matrices: W1 ∈ Rd×h andW2 ∈ Rh×d. For an input token x ∈ Rd, the MLP output is computed as

H(x) = σ
(
xW1

)
W2, (1)

where the activation function σ(·) is applied elementwise, and biases are omitted for simplicity (either
because modern designs often exclude them or their contribution is marginal). While most previous
work has focused on pruning entire models, we restrict our analysis to the MLP sub-layer due to its
simpler structure, which facilitates clearer theoretical insights.

2.2 NEURAL TANGENT KERNEL (NTK)

SGD Perspective. Consider training via continuous-time gradient descent (GD) with learning rate η,
where the parameter vector Wt evolves over time t. For a neural network f(x;W) with training loss
L, one can write(Lee et al., 2019a):

Ẇt = − η∇Wtf(x;Wt)
⊤∇f(x;Wt)L,

L̇ = ∇f(x;Wt)L
⊤∇Wt

f(x;Wt)Ẇt

= −η∇fL⊤
[
∇Wf(x;Wt)∇Wf(x;Wt)

⊤
]
∇fL.

2Without loss of generality, our analysis can be extended to the vector-output case.
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The factor ∇Wf(x;Wt)∇Wf(x;Wt)
⊤ is called the Neural Tangent Kernel (NTK)(Jacot et al.,

2018) under SGD, denoted

Θ̂SGD(x,x) = ∇Wf(x;W)∇Wf(x;W)⊤ =
〈
∇Wf(x;W),∇Wf(x;W)

〉
.

Adam (SignGD) Perspective. Modern Transformer-based language models commonly use Adam
rather than plain SGD. Considering Adam’s exact analysis is more complicated, existing work (Li
et al., 2024; Zou et al., 2021; Kunstner et al., 2023; Wei et al., 2023) suggests that Sign Gradient
Descent (SignGD) often behaves similarly in training dynamics. Hence, as a proxy for Adam, we
consider a sign-based update:

Ẇt = −η sign
(
∇Wf(x;Wt)

⊤∇f(x;Wt)L
)
.

By the chain rule,

L̇ = ∇f(x;Wt)L
⊤∇Wf(x;Wt)Ẇt

= −η∇fL⊤
[
∇Wf(x;Wt) sign

(
∇Wf(x;Wt)

)⊤]∇fL.

Following the NTK viewpoint, we define the asymmetric SignGD kernel as

Θ̂A-Sign(x,x) = ∇Wf(x;W) sign
(
∇Wf(x;W)

)⊤
=

〈
∇Wf(x;W), sign

(
∇Wf(x;W)

)〉
.

For simplicity, we write Θ = Θ̂A-Sign in what follows.

3 METHOD

3.1 SALIENCY SCORE AND ITS CONNECTION TO THE ADAM NTK

A saliency score is an indicator of measuring the importance of a weight to the model. In our method,
for each weight Wi,j we define the saliency score as:

S(Wi,j) =
∣∣∣∂f(x;W)

∂Wi,j
·Wi,j

∣∣∣. (2)

This score reflects a first-order measure of how much training dynamics (as captured by the NTK)
is affected when we remove that weight (i.e. set it to zero).In particular, when using Adam, the
NTK is defined as: Θ(x,x) =

〈
∇Wf(x;W), sign

(
∇Wf(x;W)

)〉
. For each weight Wi,j , this is

essentially the absolute value of the derivation
∣∣ ∂f
∂Wi,j

∣∣. Multiplying by Wi,j further encodes how
large that weight is, providing generalization to the method, avoiding the condition that even the
gradient is small but the magnitude of the weights is big. A weight with a small gradient—and hence
a small saliency score—contributes minimally to the NTK. Consequently, pruning such low-saliency
weights should only slightly perturb Θ, leaving the essential training dynamics intact.

Proposition 3.1 (Short version of Proposition D.1). For a Transformer model, if the MLP unit is
pruned with TASP, denote the NTK after pruning as Θ̃, for a sufficiently small ϵ > 0, we have

|Θ̃−Θ| ≤ O(ϵ) (3)

This result indicates that by selectively removing low-saliency weights, the overall NTK—and thus
the training dynamics—remains nearly unchanged. This allows us to reduce model size while
preserving the network’s core behavior.

3.2 STRUCTURED PRUNING VIA GROUPING OF HIDDEN UNITS

To achieve practical efficiency gains, we perform structured pruning by grouping weights according
to hidden units—a strategy that aligns with the dependency graph approach in (Fang et al., 2023).
Specifically, we treat each hidden unit u ∈ {1, . . . , h} as a group. In the MLP sub-layer, this group
consists of all weights in the u-th column of W1 (incoming weights) and the u-th row of W2
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(outgoing weights). For each hidden unit, we compute a cumulative saliency score by summing the
saliency scores of its associated weights:

S(unit u) =
d∑

i=1

∣∣∣∣ ∂f

∂(W1)i,u
· (W1)i,u

∣∣∣∣+ d∑
i=1

∣∣∣∣ ∂f

∂(W2)u,i
· (W2)u,i

∣∣∣∣ . (4)

We then rank all hidden units by their aggregated saliency scores and prune the bottom v% of groups.
In practice, this means that any hidden unit u with a cumulative saliency S(unit u) below a chosen
threshold (set according to the overall sparsity ratio) is pruned—that is, its corresponding column
in W1 and row in W2 are zeroed out. This grouping-based pruning ensures that the network’s
dependency structure is respected and that entire units are removed together, leading to real efficiency
gains by reducing the MLP’s intermediate dimensionality.

The remainder of our analysis and experiments will show that TASP’s structured, saliency-based
pruning preserves the MLP’s essential capacity, including theoretical guarantees via NTK arguments,
empirically performance preserved, while yielding true speedups on modern hardware.

4 EXPERIMENTS

We begin by detailing the experimental setup, then compare our method to several baselines, conclud-
ing with the efficiency analysis.

4.1 EXPERIMENT SETTINGS

We perform the experiments on t5-base (Raffel et al., 2023) on the MLP unit. All MLPs are pruned
structurally by a global sparsity of 50%. We compare our method against several baselines, including
foresight pruning methods originally designed for vision models—namely SNIP (Lee et al., 2019b),
SynFlow (Tanaka et al., 2020), and NTK-SAP (Wang et al., 2023)—and LLM-specific pruning
methods such as Wanda and LLM-Pruner. For the foresight methods, we adapt their saliency score
within our framework (detailed in Appendix A.3), while for Wanda and LLM-Pruner we strictly
follow the original code. In the case of LLM-Pruner, we evaluate the Element-mix variant. All
experiments are conducted on a single NVIDIA V100 GPU. Additional zero-shot evaluations on
LLaMa3-1B are provided in Appendix B.

4.2 RESULTS ON GLUE DATASET

Table 1: Evaluation results (accuracy) of t5-base on
GLUE datasets. Bold indicates the best results while
underline indicates the second-best.

MRPC CoLA SST2 MNLI

t5-base 91.42 83.89 94.84 86.27

Magnitude 84.80 71.81 92.43 83.74
SNIP 90.20 82.17 94.50 85.86
SynFlow 85.29 78.04 90.94 80.97
NTK-SAP 88.24 81.30 93.35 85.16
Wanda 83.33 69.32 88.19 80.33
LLM-Pruner 90.20 81.20 93.58 85.37

Ours 90.69 82.45 94.27 85.99

Table 1 presents the fine-tuning perfor-
mance of TASP and baseline methods on se-
lected GLUE tasks. We observe the follow-
ing: (1)TASP consistently outperforms the
baseline methods. This empirically proves
our theory that using NTK-based pruning
criteria leads to better preservation of the
model’s learning dynamics compared to
other baselines. (2)While SynFlow consid-
ers gradients with respect to the model’s
output, its reliance on synthetic inputs leads
to suboptimal results. Similarly, NTK-SAP
approximates NTK using first-order Taylor
expansion in a weight-agnostic way, weak-
ening the performance under the pre-trained
language model scenario. (3)Wanda, as an
unstructured method, performs worse under structured pruning constraints. Since Wanda is designed
for weight-level sparsity, its performance degrades when applied to structured pruning.

4.3 EFFICIENCY ANALYSIS
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Table 2: Model statistics after pruning, tested on one
round of SST2 (batch size = 16).

# Params (M) Time (s) Memory (GB)

t5-base 223.50 927.91 6.78
SNIP 166.87 928.63 6.79
TASP 166.87 732.80 5.48

Fine-tuning Efficiency. Table 2 shows the im-
pact of pruning on computational cost. TASP
reduces memory usage by 19.2% and achieves
a 1.3× speedup in fine-tuning, demonstrat-
ing its practical advantage over dense models.
In contrast, although SNIP utilizes a similar
saliency score, it applies unstructured prun-
ing, which is not easily exploitable by standard
hardware or deep learning libraries for runtime acceleration. As a result, SNIP’s fine-tuning time and
memory usage remain nearly identical to the dense model.

5 CONCLUSION

In this paper, we proposed TASP, a novel method that leverages NTK analysis and saliency scores to
guide structured pruning of Transformer MLP layers. TASP effectively removes redundant hidden
units while preserving the training dynamics and performance of the original model, as demonstrated
by our experiments on the T5 model. Our approach offers an efficient compression strategy that
integrates seamlessly with standard SFT pipelines without necessitating extensive retuning.

For future work, we plan to further validate the scalability of TASP through additional experiments
on the T5 family. Moreover, while our current method is applied exclusively to the simpler MLP
module, we aim to extend our approach to the more complex attention modules, thereby broadening
its applicability in Transformer model compression.
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A RELATED WORK

A.1 NOTATIONS

We use lowercase letters to denote scalars, boldface lowercase letters for vectors, and boldface
uppercase letters for matrices. The element-wise product is denoted by ⊙. Let f(x;W ⊙M) denote
the neural network function, where x are the inputs, W the weights (or connections), and M the
sparse mask matrix with sparsity v (density d = 1− v). Additionally, let L be the loss function, and
let

D = {(xk,yk)}Nk=1 ⊂ Rn × Rm

denote the dataset with N data points (with x as the input features and y as the labels). Finally, let A
be the optimizer that, given the initial weights of the network before supervised fine-tuning (SFT)
W(0), returns the weights after SFT, i.e., W(final) = A(W(0)).

A.2 POST-TRAIN PRUNING

Post-train pruning compresses a fully trained dense model by removing unimportant weights or struc-
tures. A common formulation minimizes the discrepancy between the outputs of the uncompressed
and pruned layers. Given an input x, the objective is to solve:

argminŴ,ML
(
W(final)x, (Ŵ ⊙M)x

)
=argminŴ,M

1

N

N∑
k=1

L
(
W(final)xk, (Ŵ ⊙M)xk

)
,

where M is a mask matrix enforcing a fixed sparsity v.

Directly solving this joint optimization over Ŵ and M is NP-hard. Consequently, popular practices
include fixing the weights (i.e., setting Ŵ = W) and searching for M only (one-shot pruning
(Frankle & Carbin, 2019; Frantar & Alistarh, 2023; Sun et al., 2023; Chen et al., 2021)), or selecting
M first and then optimizing Ŵ (which typically requires further fine-tuning or re-training (Kwon
et al., 2022; Ma et al., 2023)).

Recent works such as SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al., 2023) have
explored efficient one-shot pruning methods that eliminate weights based on local reconstruction
or activation-aware criteria. In contrast, structured methods like LLM-Pruner (Ma et al., 2023)
and Sheared Llama (Xia et al., 2024) remove entire rows or columns. However, these approaches
generally do not consider the training dynamics explicitly and often fail to accelerate the SFT stage.

A.3 FORESIGHT PRUNING

Foresight pruning, also known as pruning before training, seeks to identify and eliminate redundant
parameters at initialization, thereby reducing both training and inference costs. For a neural network
f parameterized by W and data (x,y), the objective is formulated as:

min
M
L
(
f
(
x;A(W(0) ⊙M)

)
,y

)
=min

M

1

N

N∑
k=1

L
(
f
(
xk;A(W(0) ⊙M)

)
,yk

)
,

(5)

where A returns the final weights W(final). As in the post-train case, solving Equation (5) exactly is
NP-hard because it involves joint optimization over the mask and the model parameters.

To bridge this gap, popular approaches define a saliency score Si,j for each weight, which estimates
the impact of removing the connection Wi,j . A general form of the saliency score is:

S
(
W

(0)
i,j

)
=

∂I
∂W

(0)
i,j

·W(0)
i,j , (6)
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where I is a function that measures the importance of the weight W to the network f . Once these
scores are computed, the mask is obtained by selecting the top κ% of weights:

Mi,j = Topκ(S)i,j =

{
1, if Si,j is among the top κ%,

0, otherwise.

A.4 REVISITING SALIENCY METHODS

Several representative methods use different formulations of the saliency score to approximate weight
importance:

SNIP (Lee et al., 2019b) proposes a data-dependent saliency:

SSNIP =
∣∣∣∂L(x;W)

∂Wi,j
·Wi,j

∣∣∣.
GraSP (Wang et al., 2020) employs a second-order (Hessian) metric:

SGraSP = −
(
H

∂L(x;W)

∂Wi,j

)
·Wi,j ,

where H denotes the Hessian of the loss.

SynFlow (Tanaka et al., 2020) introduces a data-agnostic approach by defining saliency on constant
inputs (e.g., 1) and absolute weights:

SSynFlow =
∣∣∣∂f(1; |W|)

∂|Wi,j |

∣∣∣ · ∣∣Wi,j

∣∣.
Although SynFlow’s formulation is similar to our approach, using absolute values may not fully
capture the true gradient flow in the model.

NTK-SAP (Wang et al., 2023) adopts a data-agnostic perspective by injecting a small perturbation
∆Wi,j ∼ N (0, ϵ I):

SNTK-SAP =
∣∣∣∂ ∥f(z;W)− f(z;W +∆W)∥22

∂Wi,j

∣∣∣,
with z drawn from a standard normal distribution.

PX-Pruning (Iurada et al., 2024) introduces an auxiliary function R computed by two helper
networks g and h (sharing the original architecture):

SPX =
∣∣∣∂R(x,W,a)

∂(W2
i,j)

·W2
i,j

∣∣∣,
where

R(x,W,a) = g
(
x2,1,a

)
h
(
1,W2,1

)
,

and a tracks the activation status. Backpropagation through R yields a saliency score for each
parameter.

While these foresight methods have shown promise, they are not commonly applied to LLMs due to
the models’ scale and sensitivity during fine-tuning. Moreover, the inherent nature of unstructured
pruning in these methods often limits their ability to reduce training costs. In contrast, our work
focuses on the MLP module in LLMs and develops an NTK-aware saliency score tailored to preserve
training dynamics.

B ADDITIONAL RESULTS ON ZERO-SHOT

While our primary focus is on reducing the cost of supervised fine-tuning (SFT), we also report
zero-shot performance of TASP without any further tuning. Due to resource constraints, we apply
a 25% sparsity ratio on Llama3-1B. The results, summarized in Table 3, indicate that although
LLM-Pruner slightly outperforms TASP on the WikiText dataset, TASP achieves significantly better
performance on PTB.

9
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Table 3: Zero-shot Perplexity Results on LLama3-1B.

WikiText PTB

LLama3-1B 22.67 43.70

LLM-Pruner 48.09 91.79
TASP 48.66 84.23

C PSEUDOCODE OF TASP

Algorithm 1 outlines the pseudocode for our proposed TASP method. The algorithm takes as input
the parameters of the MLP sub-layer (i.e., W1 and W2 ), the target sparsity ratio, and a mini-batch
of input data.

Algorithm 1 Pruning via Group (Hidden-Unit) Saliency
1: Input: Model weights W1 ∈ Rd×h, W2 ∈ Rh×d, sparsity ratio r, pruning set D, model f .
2: Output: Pruned weights W̃1 ∈ Rd×h·r, W̃2 ∈ Rh·r×d.
3: output← forward_pass(f,D)
4: grad← compute_gradients(output,W1,W2)
5: for u = 1 to h do
6: S(unit u)← 0
7: for i = 1 to d do
8: S(unit u) += |grad[W1(i, u)] ·W1(i, u)|+ |grad[W2(u, i)] ·W2(u, i)|
9: end for

10: end for
11: Upruned ← r%lowest_saliency_units(S(unit u), r)
12: for u in Upruned do
13: for i = 1 to d do
14: W1(i, u)← 0, W2(u, i)← 0
15: end for
16: end for
17: W̃1 ←W1, W̃2 ←W2

18: return the final weights W̃1,W̃2.

D PROOF OF PROPOSITION 3.1

Proposition D.1 (Full version of Proposition 3.1). Consider a Transformer’s MLP sublayer of the
form

H(X;W) = σ
(
XW1

)
W2,

where W = (W1,W2) are the parameters (no bias), X ∈ Rn×d is a batch of inputs, and the
activation function σ is applied elementwise. Let Θ denote the Neural Tangent Kernel (NTK) w.r.t.
W. Suppose we prune this MLP structuredly (removing entire hidden units) according to the saliency
measure

S
(
Wi,j

)
=

∣∣∣ ∂f(X;W)

∂Wi,j
· Wi,j

∣∣∣.
Denote the pruned parameter set as W̃ (i.e. we zero entire hidden columns/rows whose group saliency
is below a threshold) and let Θ̃ be the resulting NTK. Then for a sufficiently small ϵ > 0, if we prune
only low-saliency units so that the total pruned saliency is ϵ, we obtain∣∣Θ− Θ̃

∣∣ ≤ O(ϵ).

In other words, the NTK of the pruned MLP remains linearly within ϵ of the original.
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Proof. Recall Θ(X,Z) = ⟨∇Wf(X), sign(∇Wf(Z))⟩. Thus

∣∣Θ̃−Θ
∣∣ = ∣∣⟨∇W̃f(X), sign(∇W̃f(Z))⟩ − ⟨∇Wf(X), sign(∇Wf(Z))⟩

∣∣
≤

∣∣⟨(∇W̃f(X)−∇Wf(X)
)
, sign

(
∇W̃f(Z)

)
⟩
∣∣+ ∣∣⟨∇Wf(X),

(
sign(∇W̃f(Z))− sign(∇Wf(Z))

)
⟩
∣∣

≤ ∥∇W̃f(X)−∇Wf(X)∥ · ∥sign(∇W̃f(Z))∥︸ ︷︷ ︸
Term (i)

+ ∥∇Wf(X)∥ · ∥sign(∇W̃f(Z))− sign(∇Wf(Z)∥)︸ ︷︷ ︸
Term (ii)

Term (i). Note that sign(·) is a vector of±1 in each coordinate (ignoring coordinates exactly at zero,)
hence its Euclidean norm is at most

√
2dh.

(i) = ∥∇
W̃
f(X)−∇Wf(X)∥ · ∥sign(∇

W̃
f(Z))∥

≤
√
2dh ∥∇

W̃
f(X)−∇Wf(X)∥

=
√
2dh

∑
(i,j)∈P

|∇Wi,jf(X)|

Here, since we prune the parameters according to the salience score S, we assume that for the
parameters that are pruned in the set P , we have∑

(i,j)∈P

|∇Wi,j
f(X)| · |Wi,j | ≤ ϵ

Assuming weights are bounded |Wi,j | ≥ c for pruned parameters since the model is pre-trained, we
then have

∑
(i,j)∈P

|∇Wi,j
f(X)| ≤ ϵ

c

Hence

(i) ≤
√
2dh

c
ϵ

Term (ii). Similarly,
∥∥sign(∇

W̃
f(Z)) − sign(∇Wf(Z))

∥∥ = ∥sign(∇WPf(Z))
∥∥ ≤ √2dh. As

for ∥∇Wf(X)∥, since the activation function σ (usually ReLU) is 1-Lipschitz, and W is under-
controlled with weight-decay in Adam, it is safe to assume ∥∇Wf(X)∥ ≤ G for a small constant G.
Consequently,

(ii) ≤ G
√
2dh

Combine Term (i) & (ii).

∣∣Θ̃−Θ
∣∣ ≤ Term (i) + Term (ii)

≤
√
2dh(

ϵ

c
+G)

= O(ϵ)

♢
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