
Stochastic Gradient Descent on Tensors with Missing Data

Anna Ma1, Deanna Needell2, Alexander Xue2

1University of California, Irvine, Department of Mathematics
2University of California, Los Angeles, Department of Mathematics

Abstract

Large tensor linear systems of equations pose a challenge
due to the sheer amount of data stored. They quickly become
difficult to solve, due to either time constraints or memory
constraints, and they become even more challenging when
some of the data is missing. We present a stochastic iterative
method to address both of these issues by adapting Stochastic
Gradient Descent to the tensor case and adding a correction
term to debias the gradient for missing data. We prove conver-
gence results for our method and experimentally verify these
results on synthetic data.

Introduction
Due to the ever-increasing need to store and process large
datasets in fields like computer vision and machine learning,
the need to store data in multidimensional arrays, called ten-
sors, has become essential. Tensors allow for efficient rep-
resentation and manipulation of complex, high-dimensional
data, enabling algorithms that can take advantage of the mul-
tidimensional structure.

In (Kilmer and Martin 2011), the authors define a t-
product between tensors. This t-product allows one to adapt
concepts from linear algebra in the matrix case to tensors.
As a linear operator, the t-product preserves the multidimen-
sional structure of the tensors and thus avoids any structural
loss that would occur by naively flattening tensors into a ma-
trix and performing matrix multiplication. The t-product has
seen applications in computer vision (Yin et al. 2019), in
neural networks (Newman et al. 2018), and in data comple-
tion (Hu et al. 2017), among many others.

In this paper, we consider the problem of solving linear
systems for third-order tensors assuming that some of the
data in a tensor is missing. This is a common problem in ap-
plications where e.g. the data stems from inactive sensors,
incomplete survey data, collaborative filtering, or memory
needs. This extends (Ma and Needell 2018), where the au-
thors address a similar problem but in the matrix setting.

Background on Tensors
We focus on third-order tensors throughout. Let
A ∈ Rm×ℓ×n be a third-order tensor. We use the

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

notations Ai:: ∈ R1×ℓ×n and A::k ∈ Rm×ℓ×1 to denote the
ith row slice and kth frontal slice of A, respectively. We
use the bold capital letter notation Ak ∈ Rm×ℓ to mean the
frontal slice A::k viewed as a matrix.

Define bcirc (A) to be the block-circulant matrix created
from the frontal slices of A. That is,

bcirc (A) :=


A0 An−1 An−2 . . . A1

A1 A0 An−1 . . . A2

...
...

...
. . .

...
An−1 An−2 An−3 . . . A0

 .

Next, define unfold (A) to be the flattened matrix version of
A, i.e. it is the mn× ℓ matrix

unfold (A) :=


A0

A1

...
An−1

 .

Also let fold (·) be the function that reverses unfold (·), so
that fold (unfold (A)) = A. Note that fold requires the num-
ber of frontal slices n in order to do the unfolding. All of our
tensors will have the same number n of frontal slices, so
there is no ambiguity in how fold works.

We can now define the t-product. Let X be a Rℓ×q×n ten-
sor. The t-product, as defined in (Kilmer and Martin 2011),
between A and X is

A ∗ X := fold (bcirc (A) unfold (X)) ,

where the product bcirc (A) unfold (X) is the usual matrix-
matrix product.

Next, the conjugate transpose of a tensor is denoted by
A∗, and it is the tensor obtained by taking the conjugate
transpose of every frontal slice and also reversing the order
of the frontal slices 1, 2, . . . , n− 1. In other words,

unfold (A∗) =


A∗

0
A∗

n−1
...

A∗
1

 .

When using both slice and transpose notation, we apply the
slice first then apply the transpose, e.g. A∗

i:: := (Ai::)
∗.

Lastly, we define the inner product of two tensors of the
same dimension as the sum of the elementwise products of
the tensors,

⟨A,B⟩ =
∑
i,j,k

AijkBijk,

and we define the norm ∥A∥ to be the Frobenius norm,

∥A∥ =
∑
i,j,k

|Aijk|2.

Tensor Linear Systems with Missing Data
Let A ∈ Rm×ℓ×n,X ∈ Rℓ×q×n, and B ∈ Rm×q×n be
third-order tensors. A represents the data, X represents the
unknown variables, and B represents the measurements. We
are interested in solving the tensor linear system A∗X = B
given B and only partial knowledge of A. In particular, we
assume that every entry of A is missing independently with
a probability 1 − p, a reasonable assumption to make in the
scenarios mentioned above.

Formally, let D ∈ {0, 1}m×ℓ×n be a binary mask indicat-
ing which elements of A we observe, where the entries of D
are i.i.d. Bernoulli random variables with parameter p. The
tensor Ã of observed elements satisfies Ã = D ◦ A, where
◦ indicates the element-wise product. Then, we aim to solve
the optimization program

Given Ã = D ◦ A,B, and p

Find X⋆ = argminX∈W
1

2m
∥A ∗ X − B∥2,

where W is a convex domain containing the solution X⋆ of
A ∗ X = B.

In (Ma and Needell 2018), the authors considered a sim-
ilar problem but in the matrix linear case Ax = b, where A
is a matrix and x and b are vectors. Like in our tensor case,
the entries of A are missing independently with probability
1 − p. The tensor problem is a generalization of this matrix
problem. Indeed, if we set A ∈ Rm×ℓ×1, X ∈ Rℓ×1×1, and
B ∈ Rm×1×1 to be the tensors satisfying A0 = A,X0 = x,
and B0 = b, then the tensor problem is exactly the same as
the matrix problem.

Furthermore, the tensor problem cannot be reduced to
the specific matrix problem solved by Ma and Needell. Al-
though the tensor equation A ∗ X = B can be reduced to
a matrix equation AX = B for some appropriate matrices
A,X , and B, the missing data model is different – entries
in A are missing independently, while entries in the cor-
responding matrix A are no longer missing independently,
since one entry missing in A corresponds to many missing
entries in A.

Similar to what was done in the matrix case, we will solve
the tensor case with Stochastic Gradient Descent.

Stochastic Gradient Descent for Tensors with
Missing Data

Stochastic Gradient Descent (SGD) is a popular iterative
method used to minimize a convex objective function F (X)
over a convex domain W . It works by using an unbiased es-
timate of the gradient to determine what direction to step

in at each iteration. If g is a random function satisfying
E[g(X)] = ∇F (X), then SGD proposes to update iterates
via

X t+1 = PW(X t − αtg(X t)), (1)

where αt is an appropriately chosen learning rate or step
size, and PW is the projection onto the convex set W .

Previous works have used variants of SGD for ten-
sor decomposition (Maehara, Hayashi, and Kawarabayashi
2016; Kolda and Hong 2020), completion (Papastergiou
and Megalooikonomou 2017), and recovery (Chen and Qin
2021; Ma and Molitor 2022). For example, (Grotheer et al.
2024) combines SGD with thresholding for sparse tensor re-
covery and (Papastergiou and Megalooikonomou 2017) in-
troduces proximal SGD-based algorithms for tensor comple-
tion. Randomized Kaczmarz, a special case of SGD, has also
been studied on tensors. (Chen and Qin 2021) applies a ten-
sor version of Kaczmarz using a learning rate proportional
to 1/∥A∥2 to solve tensor recovery problems, while (Ma and
Molitor 2022) proposes a more complex update step by in-
corporating a tensor inverse. It should be noted that these
works either solve tensor recovery with all data or deal with
missing data (e.g., via tensor completion) independently. In
this work, we tackle the recovery and missing data problems
simultaneously.

With SGD, we can obtain various convergence results de-
pending on additional properties on F or g. The following
previously proven theorem is what we use for one of our
convergence results. It is a powerful result that does not re-
quire many conditions on F or g.

Lemma 1. ((Shamir and Zhang 2013) Theorem 2) Sup-
pose that F is convex and W is a closed convex domain
containing the solution X⋆. Furthermore, suppose that for
some constants G,K, it holds that E[g(X)] = ∇F (X) and
E[∥g(X)∥2] ≤ G for all X ∈ W , and supW1,W2∈W ∥W1 −
W2∥ ≤ K. Using step size αt = C/

√
t where C > 0 is a

constant, and using the SGD update in equation 1, the re-
sulting iterates satisfy

E[F (X T)− F (X⋆)] ≤
(
K2

C
+ CG

)
2 + log(T)√

T
.

Here, C represents the step size constant factor, G gives
a bound on the expected squared norm of g, and K gives
a bound on the distance between any two elements W1 and
W2 of W , which can be interpreted as a bound on the size
of W.

The main challenge in applying this lemma to our missing
data setting is in choosing a suitable g that provides an un-
biased estimate for ∇F , as we cannot directly compute ∇F
without knowing A. Let

F (X) :=
1

2m
∥A ∗ X − B∥2

be our objective function and let fdiag (·) be the function that
zeroes out all the entries of a tensor except those on the main

diagonal of the zeroth frontal slice. Then, the choice

g(X) :=
1

p2

(
Ã∗

i:: ∗ (Ãi:: ∗ X − pBi::)
)

− 1− p

p2
fdiag

(
Ã∗

i:: ∗ Ãi::

)
∗ X

suffices.
Algorithm 1 straightforwardly uses this g for SGD for a

budget of T iterations. During each iteration, a row index
i ∈ [m] := {0, 1, . . . ,m − 1} is chosen uniformly at ran-
dom, g(X t) is computed based on the choice, and then X t

is updated via equation (1). We call this algorithm missing
data SGD for tensors (mSGDT).

Algorithm 1 mSGDT

Input: X 0 ∈ Rℓ×q×n, Ã ∈ Rm×ℓ×n, B ∈ Rm×q×n,
p ∈ (0, 1).
procedure (Ã, B, T , p, {αt})

for t = 0, 1, . . . , T − 1 do
Choose row index i ∈ [m] uniformly at random
g(X t) = 1

p2

(
Ã∗

i:: ∗ (Ãi:: ∗ X t − pBi::)
)

− 1−p
p2 fdiag

(
Ã∗

i:: ∗ Ãi::

)
∗ X t

X t+1 = PW (X t − αtg(X t))
end for
Output X T

end procedure

There are two sources of randomness for g: the choice
of the row index i and the binary mask D. Let Ei[·] denote
the expectation with respect to the choice i, and let Eδ[·]
denote the expectation with respect to the mask D. Thus the
expectation of g(X) is the expectation over i and δ. That is,

E[g(X)] = Ei[Eδ[g(X)]].

We will the need the following assumption for when we cal-
culate Eδ[g(X)] later.

Assumption. Either every row of Ai:: is chosen at most
once during Algorithm 1, or the mask is redrawn at each
iteration, meaning the data that is available from each row
may change with time. If A has a large number of rows, it is
reasonable to assume that the first stipulation is satisfied.

Convergence Results
We present two convergence results, one result for a learning
rate proportional to 1/

√
t as Lemma 1 suggests and the other

result for a constant step size.
Theorem 1 handles the αt ∝ 1/

√
t case. It says that the

objective function will converge to 0 as the number of itera-
tions goes to infinity. The main tool we will use is Lemma 1.
As a remark, (Shamir and Zhang 2013) also proved a the-
oretically stronger result for a step size proportional to 1/t,
and the only extra ingredient we would need is to show that
F is µ-strongly convex for some µ > 0. In the supplemental
material, we outline when such a case would occur. How-
ever, we experimentally observed that the αt ∝ 1/

√
t step

size still performed better, despite the theoretical results.

Theorem 1. Let X⋆ ∈ Rℓ×q×n be such that A∗X⋆ = B, let
D be a binary mask with i.i.d. Bernoulli random variables
with parameter p, and let Ã = D◦A. Choosing αt = C/

√
t,

Algorithm 1 converges in expectation such that the error in
objective function F (X) = 1

2m∥A ∗ X − B∥2 satisfies

E[F (X t+1)− F (X⋆)] ≤
(
K2

C
+ CG

)
2 + log(T)√

T
,

where G = 2R2(n2+(1−p)2n)
mp3

∑
i ∥Ai::∥4 +

4n3/2R
mp

∑
i ∥Ai::∥3∥Bi::∥ + 2n

m

∑
i ∥Ai::∥2∥Bi::∥2,

R = maxX∈W ∥X∥, and K is a constant satisfying
supW1,W2∈W ∥W1 −W2∥ ≤ K.

Proof. To use Lemma 1, we need to prove three facts about
F (X) = 1

2m∥A ∗ X − B∥2 and g(X).

1. F (X) is convex. This is straightforward.
2. E[g(X)] = ∇F (X). This is computed in the supplemen-

tal material in Lemma 3.
3. E[∥g(X)∥2] ≤ G. Note that since W is bounded,

E[∥g(X)∥2] is necessarily bounded. But we explicitly
calculate G to make the discovered bound more clear.
This is done in the supplemental material in Lemma 4.

We now prove a theorem that explores the behavior of
mSGDT in the case of a fixed step size. Theorem 2 shows
that the error in the algorithm decreases quickly until it
reaches a convergence horizon. Thus, the optimal way to
apply the algorithm may be to first set a fixed step size and
change it to a decreasing step size proportional to 1/

√
t after

the convergence horizon is reached.

Theorem 2. Let X⋆ ∈ Rℓ×q×n be such that A ∗ X⋆ = B,
let D be a binary mask with i.i.d. Bernoulli random vari-
ables with parameter p, and let Ã = D ◦ A. Suppose F is
µ-strongly convex for some µ > 0. Also let Lg be a Lips-
chitz constant for the update function g in Algorithm 1 over
all possible binary masks D. Lastly, let G⋆ be such that
E[∥g(X⋆)∥2] ≤ G⋆.

Then, with fixed step size α < 1/Lg , Algorithm 1 con-
verges with expected error, for all t > 0,

E[∥X t −X⋆∥2] ≤ rt∥X 0 −X⋆∥2 +
αG⋆

µ(1− αLg)
,

where r := (1− 2αµ(1− αLg)).

The three components µ,Lg, and G⋆ are investigated in
the supplemental material. For G⋆ in particular, we again
remark that such a G⋆ must exist because X⋆ is contained
within the bounded W.

We need the following elementary lemma to rewrite
∥g(X t)− g(X⋆)∥2 later.

Lemma 2 ((Needell, Ward, and Srebro 2014) Lemma A.1).
If g is a function such that there exists a smooth f with ∇f =
g, and g has Lipschitz constant L, then

∥g(X)− g(Y)∥2 ≤ L⟨X − Y, g(X)− g(Y)⟩.

For our function g, choosing f(X) := 1
2p2 ∥Ãi:: ∗ X −

pBi::∥2 − 1−p
2p2 ∥

√
fdiag

(
Ã∗

i:: ∗ Ãi::

)
∗ X∥2 satisfies the re-

quirement ∇f(X) = g(X) (see the supplemental material),
where

√
· refers to the elementwise square root.

Proof of Theorem 2. Let Et = X t − X⋆ denote the error
at iteration t. Let Et−1[·] denote the expected value condi-
tioned on the previous t− 1 iterations. We have

Et−1∥Et+1∥2

≤ Et−1

[
∥X t − αg(X t)−X⋆∥2

]
= ∥Et∥2 − 2α⟨Et,Et−1

[
g(X t)

]
⟩

+ α2Et−1

[
∥g(X t)∥2

]
= ∥Et∥2 − 2α⟨Et,∇F (X t)−∇F (X⋆)⟩
+ α2Et−1

[
∥g(X t)∥2

]
≤ ∥Et∥2 − 2α⟨Et,∇F (X t)−∇F (X⋆)⟩
+ 2α2Et−1

[
∥g(X t)− g(X⋆)∥2

]
+ 2α2Et−1

[
∥g(X⋆)∥2

]
≤ ∥Et∥2 − 2α⟨Et,∇F (X t)−∇F (X⋆)⟩
+ 2α2Lg⟨Et,Et−1[g(X t)]− Et−1[g(X⋆)]⟩+ 2α2G⋆

≤ ∥Et∥2 − 2α(1− αLg)⟨Et,∇F (X t)−∇F (X⋆)⟩
+ 2α2G⋆

≤ ∥Et∥2 − 2α(1− αLg)µ∥Et∥2 + 2α2G⋆

= (1− 2αµ(1− αLg)) ∥Et∥2 + 2α2G⋆

= r∥Et∥2 + 2α2G⋆.

The desired bound follows by iteratively applying this result.

Experiments
In this section, we demonstrate the performance of mSGDT
on synthetic data. We generate elements of A ∈ R500×20×10

and X ∈ R20×10×10 by drawing i.i.d. from a standard
Gaussian distribution. Then, to simulate the missing data,
whenever we draw a row Ai:: from A, we sample a new
binary mask Di:: ∈ R1×20×10 with entries drawn i.i.d.
from a Bernoulli distribution with parameter p and compute
Ãi:: = Di:: ◦ Ai::. Note that when we sample the same row
repeatedly, a new mask is generated each time. This ensures
that our assumption used in calculating Eδ[g(X)] is satisfied.

Figures 1 and 2 both have the x-axis as the iteration and
the y-axis as the approximation error, ∥X t − X⋆∥. We also
vary the parameter p in the two figures, taking on values in
{0.3, 0.5, 0.7, 0.99}.

Figure 1 presents the results for using a step size propor-
tional to 1/

√
t as suggested by Theorem 1. We specifically

used a step size of αt = p2/(10
√
t). The size of the factor

here depends on p, as with a larger p value, a more aggres-
sive step size can be chosen, while with a lower p value, a
less aggressive step size should be chosen.

Figure 2 shows the results for using a constant step size
as suggested by Theorem 2. We chose a step size of α =
p2/3000, again including a p2 factor so that we use more ag-

Figure 1: Step size is p2/(10
√
t). N = 106 iterations are

used. For all values of p, we see convergence, with larger
values of p corresponding to faster convergence.

gressive step sizes for larger values of p. The Lipschitz con-
stant Lg was computed to be approximately 2600p2, hence
the choice of α = p2/3000 < 1/Lg. Experimentally, we
found that larger step sizes as large as α = p2/100 also
achieved a convergence horizon. Significantly larger step
sizes, such as α = p2/10, led to divergence.

Figure 2: Step size is p2/3000. N = 106 iterations are used.
For all values of p, we see that a convergence horizon is
quickly reached, with larger values of p corresponding to a
smaller convergence horizon.

Conclusion
In this paper, we presented mSGDT, a stochastic iterative
method to solve tensor linear systems with missing data. We
showed two theoretical convergence results. With a step size
proportional to 1/

√
t, mSGDT converges to the correct so-

lution, with faster progress for large values of p. With a con-
stant step size, mSGDT quickly approaches a convergence
horizon but does not converge to the desired solution. Our
experiments on synthetic data support these two results.

References
Chen, X.; and Qin, J. 2021. Regularized Kaczmarz Algo-
rithms for Tensor Recovery. SIAM Journal on Imaging Sci-
ences, 14(4): 1439–1471.
Grotheer, R.; Li, S.; Ma, A.; Needell, D.; and Qin, J. 2024.
Iterative singular tube hard thresholding algorithms for ten-
sor recovery. Inverse Problems and Imaging, 18(4): 889–
907.
Hu, W.; Tao, D.; Zhang, W.; Xie, Y.; and Yang, Y. 2017. The
Twist Tensor Nuclear Norm for Video Completion. IEEE
Transactions on Neural Networks and Learning Systems,
28(12): 2961–2973.
Kilmer, M. E.; and Martin, C. D. 2011. Factorization strate-
gies for third-order tensors. Linear Algebra and its Appli-
cations, 435(3): 641–658. Special Issue: Dedication to Pete
Stewart on the occasion of his 70th birthday.
Kolda, T. G.; and Hong, D. 2020. Stochastic gradients for
large-scale tensor decomposition. SIAM Journal on Mathe-
matics of Data Science, 2(4): 1066–1095.
Ma, A.; and Molitor, D. 2022. Randomized Kaczmarz for
tensor linear systems. BIT Numerical Mathematics, 62(1):
171–194.
Ma, A.; and Needell, D. 2018. Stochastic Gradient Descent
for Linear Systems with Missing Data. Numerical Mathe-
matics: Theory, Methods and Applications, 12(1): 1–20.
Maehara, T.; Hayashi, K.; and Kawarabayashi, K.-i. 2016.
Expected tensor decomposition with stochastic gradient de-
scent. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30(1).
Needell, D.; Ward, R.; and Srebro, N. 2014. Stochastic gra-
dient descent, weighted sampling, and the randomized Kacz-
marz algorithm. Advances in neural information processing
systems, 27.
Newman, E.; Horesh, L.; Avron, H.; and Kilmer, M. 2018.
Stable Tensor Neural Networks for Rapid Deep Learning.
arXiv:1811.06569.
Papastergiou, T.; and Megalooikonomou, V. 2017. A dis-
tributed proximal gradient descent method for tensor com-
pletion. In 2017 IEEE International Conference on Big Data
(Big Data), 2056–2065.
Shamir, O.; and Zhang, T. 2013. Stochastic gradient descent
for non-smooth optimization: Convergence results and opti-
mal averaging schemes. Proc. Int. Conf. Machine Learning,
71–79.
Yin, M.; Gao, J.; Xie, S.; and Guo, Y. 2019. Multiview
Subspace Clustering via Tensorial t-Product Representation.
IEEE Transactions on Neural Networks and Learning Sys-
tems, 30(3): 851–864.

Supplement
We collect a few lemmas that describe the constants or terms
we use in our theorems, or are otherwise heavy in computa-
tion. Lemma 3 checks that E[g(X)] = ∇F (X). Lemma 4
gives a bound on E[∥g(X)∥2], Lemma 5 gives a bound on
E[∥g(X⋆)∥2], Lemma 6 gives a Lipschitz constant for g,

and Lemma 7 gives a description for the strongly convex
parameter of the objective function F . Lemma 8 verifies
∇f(X) = g(X).

Lemma 3. We have that E[g(X)] = ∇F (X).

Proof. One can verify that ∇F (X) = 1
mA∗ ∗ (A∗X −B).

Hence, we want to show that

E[g(X)] = Ei[Eδ[g(X)]] =
1

m
A∗ ∗ (A ∗ X − B). (2)

We first focus on the expectation with respect to the bi-
nary mask. Given a row index i, denote the frontal slices of
the ith row slice of A (resp. Ã) by a0, a1, . . . , an−1 (resp.
ã0, ã1, . . . , ãn−1). Note that these are vectors, hence the
lowercase notation. Observe that

Ã∗
i:: ∗ Ãi:: = fold


ã∗0ã0 + ã∗1ã1 + · · ·+ ã∗n−1ãn−1

ã∗n−1ã0 + ã∗0ã1 + · · ·+ ã∗n−2ãn−1

...
ã∗1ã0 + ã∗2ã1 + · · ·+ ã∗0ãn−1

 .

Inside the fold (·), we have many outer products of vectors,
which are easy to analyze. In general,

Eδ[(ã
∗
j ãk)xy] =

{
p2(a∗jak)xy, j ̸= k or x ̸= y

p(a∗jak)xy, j = k and x = y.

Therefore,

Eδ[Ã∗
i:: ∗ Ãi::] = p2A∗

i:: ∗Ai:: +(p− p2)fdiag (A∗
i:: ∗ Ai::) ,

where one should think of fdiag (A∗
i:: ∗ Ai::) as a correc-

tion term for those cases of x, y where Eδ[(ã
∗
j ãk)xy] equals

p(a∗jak)xy instead of p2(a∗jak)xy. Then,

Eδ[Ã∗
i:: ∗ (Ãi:: ∗ X − pBi::)]

=(p2A∗
i:: ∗ Ai:: + (p− p2)fdiag (A∗

i:: ∗ Ai::)) ∗ X
− pEδ[Ã∗

i:: ∗ Bi::]

=(p2A∗
i:: ∗ Ai:: + (p− p2)fdiag (A∗

i:: ∗ Ai::)) ∗ X
− p2Ai:: ∗ Bi::.

After noticing that

Eδ

[
fdiag

(
Ã∗

i:: ∗ Ãi::

)]
= p fdiag (A∗

i:: ∗ Ai::) ,

it readily follows that

Eδ[g(X)] = A∗
i:: ∗ (Ai:: ∗ X − Bi::).

Finally, one can check that equation (2) follows.

Lemma 4. E[∥g(X)∥2] ≤ G, where G =
2R2(n2+(1−p)2n)

mp3

∑
i ∥Ai::∥4 + 4n3/2R

mp

∑
i ∥Ai::∥3∥Bi::∥ +

2n
m

∑
i ∥Ai::∥2∥Bi::∥2.

Proof. We have

E[∥g(X)∥2] = E
[∥∥∥∥ 1

p2

(
Ã∗

i:: ∗ (Ãi:: ∗ X − pBi::)
)

− (1− p)

p2
fdiag

(
Ã∗

i:: ∗ Ãi::

)
∗ X
∥∥∥∥2]

≤ 2

p4
E
[∥∥∥Ã∗

i:: ∗ (Ãi:: ∗ X − pBi::)
∥∥∥2]

+
2(1− p)2

p4
E
[
∥fdiag

(
Ã∗

i:: ∗ Ãi::

)
∗ X∥2

]
≤2n

p4
E
[
∥Ãi::∥2∥Ãi:: ∗ X − pBi::∥2

]
+

2(1− p)2

p4
E
[
∥fdiag

(
Ã∗

i:: ∗ Ãi::

)
∗ X∥2

]
≤2n

p4
E
[
∥Ai::∥2 ∥Ãi:: ∗ X − pBi::∥2

]
+

2(1− p)2

p4
E
[
∥fdiag

(
Ã∗

i:: ∗ Ãi::

)
∗ X∥2

]
=

2n

p4
Ei

[
∥Ai::∥2 Eδ[∥Ãi:: ∗ X − pBi::∥2]︸ ︷︷ ︸

(A)

]
+

2(1− p)2

p4
Ei

[
Eδ

[
∥fdiag

(
Ã∗

i:: ∗ Ãi::

)
∗ X∥2

]
︸ ︷︷ ︸

(B)

]
.

(3)

Let’s compute (A) first. We first rewrite (A) to have
∥Ai::X − pBi::∥2 as a term. Let U ∈ Rℓ×1×n,V ∈ R1×1×n

be tensors. Since the frontal slices of U (resp. V) are vec-
tors (resp. scalars), we denote them by lowercase notation
u0, . . . , un−1 (resp. v0, . . . , vn−1). Observe

∥Ãi:: ∗ U − pV∥2

=

∥∥∥∥∥∥∥∥
 ã0 . . . ã1

...
. . .

...
ãn−1 . . . ã0




u0

u1

...
un−1

− p


v0
v1
...

vn−1


∥∥∥∥∥∥∥∥
2

=

n−1∑
k=0

(ãku0 + · · ·+ ãk+1un−1 − pvk)
2.

When we take the expectation of the expansion of this sum
over δ, we see that every term has a coefficient of p2, ex-
cept for the terms (ãku0)

2, . . . , (ãk+1un−1)
2, which have a

coefficient of p. Therefore,

Eδ[∥Ãi:: ∗ U − pV∥2]
= p2∥Ai:: ∗ U − pV∥2

+ (p− p2)

n−1∑
k=0

[
(aku0)

2 + · · ·+ (ak+1un−1)
2
]

≤ p2∥Ai:: ∗ U − pV∥2 + (p− p2)∥Ai::∥2∥U∥2.

Hence, setting U to be a jth column slice of X and ranging

over j,

Eδ[∥Ãi:: ∗ X − pBi::∥2]

=

ℓ−1∑
j=0

Eδ[∥Ãi:: ∗ X:j: − pBij:∥2]

≤
ℓ−1∑
j=0

p2∥Ai:: ∗ X:j: − pBij:∥2 + (p− p2)∥Ai::∥2∥X:j:∥2

= p2∥Ai:: ∗ X − pBi::∥2 + (p− p2)∥Ai::∥2∥X∥2.

Then, by expanding some terms,

Eδ[∥Ãi:: ∗ X − pBi::∥2]
≤ p2∥Ai:: ∗ X∥2 − 2p3⟨Ai:: ∗ X ,Bi::⟩
+ p4∥Bi::∥2 + (p− p2)∥Ai::∥2∥X∥2

≤ (p2n+ p− p2)∥Ai::∥2∥X∥2

+ 2p3
√
n∥Ai::∥∥X∥∥Bi::∥+ p4∥Bi::∥2

≤ pnR2∥Ai::∥2 + 2p3
√
nR∥Ai::∥∥Bi::∥+ p4∥Bi::∥2.

Denote diag (·) to be the diagonal matrix that has the same
diagonal elements as the input matrix. For (B), we note

Eδ

[
∥fdiag

(
Ã∗

i:: ∗ Ãi::

)
∗ X∥2

]
= p ∥fdiag (A∗

i:: ∗ Ai::) ∗ X∥2

≤ pn∥fdiag (A∗
i:: ∗ Ai::) ∥2∥X∥2

≤ pn∥diag
(
a∗0a0 + a∗1a1 + · · ·+ a∗n−1an−1

)
∥2R2

≤ pn

(∑
k

a2k

)2

R2

= pn(∥Ai::∥2)2R2 = pn∥Ai::∥4R2. (4)

Thus,

E
[
∥g(X)∥2

]
≤ 2n

p4
Ei[∥Ai::∥2(pnR2∥Ai::∥2

+ 2p3
√
nR∥Ai::∥∥Bi::∥+ p4∥Bi::∥2)]

+
2(1− p)2

p4
Ei

[
pn∥Ai::∥4R2

]
=

2n2R2

mp3

∑
i

∥Ai::∥4 +
4n3/2R

mp

∑
i

∥Ai::∥3∥Bi::∥

+
2n

m

∑
i

∥Ai::∥2∥Bi::∥2 +
2(1− p)2nR2

mp3

∑
i

∥Ai::∥4

=
2R2(n2 + (1− p)2n)

mp3

∑
i

∥Ai::∥4

+
4n3/2R

mp

∑
i

∥Ai::∥3∥Bi::∥+
2n

m

∑
i

∥Ai::∥2∥Bi::∥2.

Lemma 5. E[∥g(X⋆)∥2] ≤ G⋆, where G⋆ =
2(1−p)(2−p)nR2

mp3

∑
i ∥Ai::∥4.

Proof. In Lemma 4 we obtained (3), and we later found
that (A) could be rewritten as p2∥Ai:: ∗ X − pBi::∥2 + (p−
p2)∥Ai::∥2∥X∥2. For (B), we again use (4), which bounds
(B) by pn∥Ai::∥4R2.

Using (3) by substituting in X = X⋆ so that ∥Ai:: ∗ X −
pBi::∥2 becomes 0, we deduce

E[∥g(X⋆)∥2]

≤ 2n

p4
Ei

[
(p− p2)∥Ai::∥2∥Ai::∥2∥X⋆∥2

]
+

2(1− p)2nR2

p3
Ei[∥Ai::∥4]

≤ 2(1− p)n

p3
Ei

[
∥Ai::∥4∥X⋆∥2

]
+

2(1− p)2nR2

p3
Ei[∥Ai::∥4]

≤ 2(1− p)nR2

mp3

∑
i

∥Ai::∥4

+
2(1− p)2nR2

mp3

∑
i

∥Ai::∥4

=
2(1− p)(2− p)nR2

mp3

∑
i

∥Ai::∥4.

Lemma 6. The update function g(X) of Algorithm 1 is
Lipschitz continuous, with the supremum of the Lipschitz
constant over all possible binary masks bounded above by
Lg := na2max/p

2, where amax is the maximum Frobenius
norm of a row slice of A.

Proof. We have

∥g(X)− g(Y)∥

=

∥∥∥∥(1

p2
Ã∗

i:: ∗ Ãi:: −
1− p

p2
fdiag

(
Ã∗

i:: ∗ Ãi::

))
∗ (X − Y)

∥∥∥∥
≤

√
n

p2

∥∥∥Ã∗
i:: ∗ Ãi:: − (1− p)fdiag

(
Ã∗

i:: ∗ Ãi::

)∥∥∥
∥X − Y∥

≤
√
n

p2

∥∥∥Ã∗
i:: ∗ Ãi::

∥∥∥ ∥X − Y∥

≤ n

p2
∥Ãi::∥2∥X − Y∥

≤ n

p2
∥Ai::∥2∥X − Y∥

=
na2max

p2
∥X − Y∥.

The next lemma describes the strongly convex parameter
of the objective function in terms of bdiag

(
Â
)
, where Â

is the tensor obtained by applying the discrete Fourier trans-
form to the tubes of A, and bdiag (·) returns the block diago-
nal matrix formed by the frontal slices of the input tensor. A
tube of a tensor is obtained by fixing the first two indices and
varying the third index. We view tubes as (column) vectors
in Rn. We denote the (i, j)th tube of A as Aij:.

Lemma 7. Recall our objective function F (X) = 1
2m∥A ∗

X − B∥2. Let A = U ∗ S ∗ V∗ be the T-SVD of A (Kilmer
and Martin 2011). Assume that A is tall, i.e. m > ℓ. Let
σmin be the smallest singular value of bdiag

(
Â
)

. Then F

is σ2
min/m-strongly convex.

Proof. We have

⟨∇F (X)−∇F (Y),X − Y⟩

= ⟨ 1
m
A∗ ∗ A ∗ (X − Y),X − Y)

=
1

m
⟨A ∗ (X − Y),A ∗ (X − Y)⟩

=
1

m
∥A ∗ (X − Y)∥2

=
1

m
∥U ∗ S ∗ V∗ ∗ (X − Y)∥2

=
1

m
∥S ∗ V∗ ∗ (X − Y)∥2.

Since V is orthogonal, ∥V∗ ∗ (X − Y)∥ = ∥X − Y∥. So
we will derive a bound on the norm of S ∗ Z, where Z ∈
Rℓ×q×n is such that ∥Z∥ = ∥X − Y∥. We will do so by
examining each tube of S ∗ Z.

The kth frontal slice of S ∗Z is SkZ0 +Sk−1Z1 + · · ·+
Sk+1Zn−1. For all 0 ≤ i < ℓ, 0 ≤ j < q, we then have

(S∗Z)ijk

= (SkZ0)ij + (Sk−1Z1)ij + · · ·+ (Sk+1Zn−1)ij

= SiikZij0 + Sii(k−1)Zij1 + · · ·+ Sii(k+1)Zij(n−1)

=
(
Siik Sii(k−1) . . . Sii(k+1)

)
Zij:.

Therefore,

(S ∗ Z)ij: =


Sii0 Sii(n−1) . . . Sii1

Sii1 Sii0 . . . Sii2

...
...

. . .
...

Sii(n−1) Sii(n−2) . . . Sii0

Zij:

= circ (Sii:)Zij:.

Let σ(·) denote the singular values of the input matrix, and
let σmin = min0≤i<ℓ σ(Sii:). By the above calculation, we
deduce

∥(S ∗ Z)ij:∥2F ≥ σ2
min∥Zij:∥2F .

Summing over 0 ≤ i < ℓ and 0 ≤ j < q yields

∥S ∗ Z∥2 ≥ σ2
min∥Z∥2,

which means that F is σ2
min/m-strongly convex.

It suffices to show that the singular values of the circ (Sii:)

are the singular values of bdiag
(
Â
)
. Let

Σ =
⋃

0≤i<ℓ

σ(circ (Sii:)).

It is well-known that circulant matrices can be diagonal-
ized by the DFT. In particular, we get that circ (Sii:) is uni-
tarily similar to diag (dft (Sii:)) . Thus the singular values of
circ (Sii:) are equal to the norms of the entries in dft (Sii:) .

In other words, the singular values of all the circ (Sii:) are
all the norms of the diagonal entries of

bdiag
(
Ŝ
)
=


Ŝ0

Ŝ1

. . .
Ŝn−1

 ,

Since bdiag
(
Ŝ
)

is itself a diagonal matrix, we deduce that

Σ = σ(bdiag
(
Ŝ
)
).

From (Kilmer and Martin 2011, Fact 2), with ⊗ being the
Kronecker product,

bdiag
(
Ŝ
)
= (Fn ⊗ Im)bcirc (S) (F∗

n ⊗ Il),

so
σ(bdiag

(
Ŝ
)
) = σ(bcirc (S)).

Moreover,

bdiag
(
Â
)

= (Fn ⊗ Im)bcirc (A) (F∗
n ⊗ Il)

= (Fn ⊗ Im)bcirc (U ∗ S ∗ V∗) (F∗
n ⊗ Il)

= (Fn ⊗ Im)bcirc (U) bcirc (S) bcirc (V∗) (F∗
n ⊗ Il)

since bcirc (·) is multiplicative (Ma and Molitor 2022, Fact
1). Finally, because bcirc (U) and bcirc (V∗) are orthogonal
(Ma and Molitor 2022, Lemma 4), we deduce that, as de-
sired:

Σ = σ
(

bdiag
(
Ŝ
))

= σ(bcirc (S)) = σ
(

bdiag
(
Â
))

.

Lemma 8. With f(X) = 1
2p2 ∥Ãi:: ∗ X − pBi::∥2 −

1−p
2p2 ∥

√
fdiag

(
Ã∗

i:: ∗ Ãi::

)
∗X∥2, we have ∇f(X) = g(X).

Proof. Recall that ∇(12∥U ∗ V −Z∥2) = U∗ ∗ (U ∗ V −Z)
for any tensors U ,V,Z . Hence

∇
(

1

2p2
∥Ãi:: ∗ X − pBi::∥2

)
=

1

p2
Ã∗

i::∗(Ãi::∗X −pBi::).

(5)

For the second term in f(X), let U = fdiag
(
Ã∗

i:: ∗ Ãi::

)
.

Since the only nonzero frontal slice of U is potentially its
zeroth one, we deduce

√
U

∗
∗
√
U = U .

Thus,

∇
(
1− p

2p2
∥
√
U ∗ X∥2

)
=

1− p

p2

√
U

∗
∗
√
U ∗ X

=
1− p

p2
U ∗ X . (6)

Combining (5) and (6) yields ∇f(X) = g(X).

