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Abstract

We introduce TimePoint (TP), a self-supervised
model for fast and robust time series alignment,
trained entirely on synthetic data. Unlike prior
foundation models that focus on forecasting, TP
targets the critical but underexplored task of align-
ment by learning generalizable temporal land-
marks (keypoints and descriptors). To support
this, we propose SynthAlign, a synthetic data
generation pipeline using structured waveform
composition and CPAB-based time warping with
ground-truth correspondences. Despite no access
to real data during training, TP achieves zero-
shot generalization on 100+ real-world datasets,
outperforming DTW variants in both alignment
accuracy and efficiency. We position TP as an
alignment-centric foundation model, showing that
high-quality synthetic data and task-specific pre-
training can unlock scalable and transferable rep-
resentations for time series analysis beyond fore-
casting. Our code is available at https://
github.com/BGU-CS-VIL/TimePoint.

1. Introduction
Time series alignment is a core challenge in structured data
analysis, especially when sequences differ in length, sam-
pling rate, or exhibit temporal distortions. While methods
like Dynamic Time Warping (DTW) offer flexibility, they suf-
fer from O(L2) complexity and sensitivity to noise, limiting
their use in large-scale or high-throughput applications.

In contrast to recent progress in time-series foundation mod-
els focused on forecasting (Ansari et al., 2024; Fu et al.,
2024), alignment remains an underexplored but critical
task. Inspired by keypoint-based matching in computer vi-
sion (DeTone et al., 2018), we introduce TimePoint (TP): a
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Figure 1. TimePoint (TP): Keypoint Detection and Descriptors on
real-world, unseen, ECG data of length 2500 (TP was trained on
synthetic data of length 512). Each panel depicts (top-to-bottom)
the original signal and predicted keypoints, keypoint probability
map, and PCA of the learned descriptors (D = 256, using 5
principal components for visualization purposes).

self-supervised model that detects keypoints and descriptors
in 1D signals to enable sparse DTW over salient tempo-
ral landmarks. Figure 1 shows TP predicted features and
detected KPS for unseen ECG data.

To enable self-supervised training, we propose
SynthAlign, a synthetic dataset generation frame-
work that composes 1D waveforms, computes keypoints
(KPs), and applies nonlinear temporal distortions via
Continuous Piecewise Affine Based (CPAB) transfor-
mations (Freifeld et al., 2017), yielding ground-truth
correspondences. TP uses a fully convolutional encoder
with Wavelet Convolutional (WTConv) layers (Finder
et al., 2024), enabling efficient inference on long signals.
Despite being trained exclusively on synthetic data, TP
generalizes across over 100 real-world datasets from the
UCR archive (Dau et al., 2019), outperforming classical
and differentiable DTW variants in both alignment accuracy
and runtime. The entire framework is detailed in Figure 2.

Our contributions are as follows:
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Figure 2. Training and Inference overview. Left: signals and keypoints (KP) are synthetically generated and augmented using CPAB
warps (Section 3). Middle: TimePoint (TP) predicts KP location and descriptors using the known correspondence (Section 4). Right:
real-world, unseen data pairs are matched using DTW on TP descriptors at KP locations.

Figure 3. Samples from the synthetic dataset SynthAlign.

• A 1D Keypoint Detection and Description Frame-
work: We introduce TimePoint, a self-supervised KP
detection and description method for time series data.

• A Synthetic Dataset for Time Series Alignment: We
design a synthetic time series dataset (SynthAlign)
with known KPs and apply CPAB warps to generate
training pairs with ground-truth correspondences.

• Efficient Sparse Alignment via Multiscale Archi-
tectures: We adapt the WTConv architecture for 1D
signals to enable scalable keypoint and descriptor ex-
traction. Combined with sparse DTW over learned
features, this yields faster and more accurate alignment
at significantly reduced computational cost.
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Figure 4. Generating signals and keypoints pairs with known corre-
spondences using a CPAB transformation T θ , which was obtained
from a CPA velocity field, vθ , as proposed in (Freifeld et al., 2017)
and briefly explained in our Appendix.

2. Related Work
Time Series Alignment. DTW (Sakoe, 1971; Sakoe &
Chiba, 1978) is a classical method for aligning sequences
with phase or speed variations, but suffers from O(L2) com-
plexity and sensitivity to noise. Variants like SoftDTW (Cu-
turi & Blondel, 2017), ShapeDTW (Zhao & Itti, 2018), and
GI-DTW (Vayer et al., 2020) improve differentiability or
local structure modeling, but retain quadratic costs. Fast-
DTW (Salvador & Chan, 2007) offers approximate linear-
time alignment, though later shown to often be slower than
exact DTW (Wu & Keogh, 2020). Unlike these methods,
TimePoint uses sparse, learned KPs and descriptors to accel-
erate DTW while improving robustness.

CPAB Transformations. Modeling the nonlinear temporal
distortions that time series often exhibit is a non-trivial task.
Unlike image pairs, which can often be modeled via homo-
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graphies, there is no gold standard transformation family
for time series. CPAB transformations (Freifeld et al., 2017)
provide a flexible and efficient way to model diffeomorphic
time warping (Mumford & Desolneux, 2010). Prior works
used them for weakly supervised averaging (Weber et al.,
2019; Martinez et al., 2022), but not for learning KP-based
alignment representations.

Deep Learning for Alignment. Recent works (Weber &
Freifeld, 2023; Su & Wen, 2022; Xu et al., 2023; Zhang
et al., 2023) learn alignment paths directly, often with high
complexity or task-specific supervision. Related efforts in
video (Trigeorgis et al., 2016; Cao et al., 2020; Li et al.,
2022; Dwibedi et al., 2019) focus on few-shot action recog-
nition but do not produce reusable descriptors or support
zero-shot generalization.

TimePoint departs from prior work by learning temporal
KPs and descriptors from synthetic data alone. It enables
scalable, zero-shot alignment with sparse DTW, offering a
foundation-style alternative to previous approaches.

3. SynthAlign: Synthetic Data Generation for
Keypoint Learning

We first propose SynthAlign, a synthetic dataset gener-
ator for learning temporal keypoints and descriptors in a
self-supervised setting (see Figure 2, left). It addresses key
challenges in adapting 2D keypoint frameworks (e.g., Su-
perPoint (DeTone et al., 2018)) to 1D signals: (i) nonlinear
temporal distortions not captured by low-dimensional trans-
formations, and (ii) amplitude variations caused by noise or
changes in sampling rates, can obscure salient events and
complicate the task of identifying KPs.

3.1. Signal Generation

We synthesize pairs of time series with known keypoints
and correspondences. Each signal X ∈ RL (with KPs
Y ∈ {0, 1}L) is generated by composing basic waveform:

• Sine Wave Composition: A combination of sine
waves with varying frequencies and amplitudes to sim-
ulate oscillatory patterns.

• Block, Triangle, and Sawtooth Waves: Signals with
square, triangular, or sawtooth waveforms to represent
abrupt changes or linear ramps.

• Radial Basis Functions (RBF): Mixtures of Gaussian
blobs to model localized smooth events.

KPs are derived from signal structure (e.g., peaks, endpoints,
derivative zero crossings). To improve diversity, we apply
augmentations such as Gaussian noise, linear trends, and
flips. See Figure 3 for examples.

3.2. Generating Correspondences via CPAB Warps

To simulate realistic temporal distortions, we apply CPAB
transformations (Freifeld et al., 2017), a parametric family
of diffeomorphisms constructed from continuous piecewise
affine (CPA) velocity fields. Given a signal X , we sample
a transformation T θ and generate a warped version X ′ =
X ◦ T θ, preserving known correspondences.

We sample θ ∼ N (0,ΣCPA) from a smoothness
prior (Freifeld et al., 2017), with σsmooth = 1 and σvar =
0.5, and use 16 CPA segments. This balances local ex-
pressiveness with realistic global structure. See Figure 4
and Appendix D for additional visualizations.

4. TimePoint Architecture
TimePoint is a self-supervised model that detects and de-
scribes KPs for alignment tasks. It consists of a shared
encoder and two task-specific decoders (see Figure 2).

4.1. Architecture

Encoder. The input X ∈ RL is processed by a fully
convolutional encoder built with 3 levels of WTConv lay-
ers (Finder et al., 2024), enabling multiscale representation
learning. Each block uses a stride of 2, yielding a downsam-
pling factor of 8 and producing a feature map F ∈ RDenc×L′

.

Keypoint Decoder. A conv layer maps F to R8×L′
, which

is reshaped to L and passed through a sigmoid to yield
scores S = (st)

L
t=1. We apply NMS to select top-K KPs.

Descriptor Decoder. This decoder maps F into descriptor
space (Ddesc = 256), which is upsampled to L and ℓ2-
normalized, yielding dense descriptors Fdesc ∈ RDdesc×L.
Sparse descriptors are extracted at predicted KPs locations.

4.2. Loss Functions

Detection Loss. We use binary cross-entropy over KP
scores and labels from SynthAlign:

Lkp(S, Y ) = − 1

L

L∑
t=1

[yt log(st) + (1− yt) log(1− st)].

(1)

Descriptor Loss. We apply a contrastive loss using cosine
similarity between corresponding KP descriptors from X
and X ′ = X ◦ T θ:

Ldesc(D,D′) =
1

N2

N∑
i,j=1

[
1G(i, j)max(0,mp − cos(Di, D

′
j))

2

+ (1− 1G(i, j))max(0, cos(Di, D
′
j)−mn)

2
]
,

(2)
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Figure 5. Runtime analysis. DTW KNN runtime between two
synthetic datasets of N = 500 and varying lengths (on GPU).

where mp = 1, mn = 0.1. The combined loss is

L(S, S′, Y, Y ′, D,D′) =

Lkp(S, Y )︸ ︷︷ ︸
kp detection in X

+ Lkp(S
′, Y ′)︸ ︷︷ ︸

kp detection in X′

+ Ldesc(D,D′)︸ ︷︷ ︸
descriptor matching

. (3)

DTW with Sparse Descriptors At inference time, we
extract descriptors D, D′ from two inputs X , X ′. DTW is
computed on descriptors using a cosine-based cost:

cost(t, t′) = 1− cos(D[t], D′[t′]). (4)

Critically, we can choose to compute DTW between D and
D′ restricted to the KPs. This drastically reduces the DTW
complexity from O(L · L′) to O(L̃ · L̃′) where L̃ < L and
L̃′ < L′ are numbers of KPs in X and X ′, respectively. For
example, if the number of KPs for each signal is 10% of the
length, this translates to a 100x speedup.

5. Experiments and Results
We evaluate TimePoint (TP) on real-world classification
tasks and runtime efficiency using DTW-kNN. All results
use TP trained solely on SynthAlign. Additional figures,
results, and an ablation study are presented in the appendix.

5.1. Classification Performance and Runtime

We evaluate TP’s kNN accuracy across 102 UCR datasets
using a critical difference diagram (Demšar, 2006; Mid-
dlehurst et al., 2024), which ranks each classifier based
on average rank and groups statistically indistinguishable
methods using Wilcoxon signed-rank tests with Holm cor-
rection. As shown in Figure 6, TP+DTW achieves the
highest average rank at both 100% and 20% KP usage, and
remains competitive at 10%. We also compare TP+DTW
and TP+SoftDTW to their full-length counterparts using
batch-wise kNN on GPU (Table 1). With 20% of the KPs,

Table 1. Comparison of DTW and SoftDTW on 102 UCR datasets
w/o TimePoint at various KP percentages. Top: 1-NN classification
accuracy. Bottom: total runtime in GPU hours.

Method TimePoint 1-NN Accuracy

Baseline 10% 20% 50% 100%

DTW 0.706 0.707 0.721 0.710 0.732
SoftDTW(γ = 0.1) 0.677 0.659 0.662 0.689 0.720
SoftDTW(γ = 1) 0.671 0.654 0.659 0.687 0.711
SoftDTW(γ = 10) 0.670 0.655 0.658 0.680 0.703

Method GPU Runtime (hours)

Baseline 10% 20% 50% 100%

DTW 192 0.71 2.88 19.59 193
SoftDTW(γ = 0.1) 2.10 0.65 0.70 1.00 2.17
SoftDTW(γ = 1) 1.98 0.52 0.56 0.86 2.16
SoftDTW(γ = 10) 1.94 0.50 0.55 0.85 2.02

12345678910111213

TP + DTW(1.0)4.706
TP + DTW(0.2)5.652
TP + DTW(0.5)6.128
DTW6.245
DTW-GI6.289
TP + DTW(0.1)6.549
ShapeDTW(raw)6.74

SoftDTW( =1) 6.853
SoftDTW( =10) 6.936
SoftDTW( =0.1) 7.015
ShapeDTW(hog) 7.902
ShapeDTW(dev) 8.471

Euclidean 11.515

Figure 6. Critical Difference Diagram. The scores represent the av-
erage rank (1-NN Acc.) of each method across 102 UCR datasets.

TP+DTW improves accuracy by 2% and achieves a ×65
speedup (3 vs. 192 hours). While SoftDTW performs best
with higher KP ratios due to its smoothness bias, using 50%
of the KPs still yields 1–2% higher accuracy at under half
the runtime. These results highlight TP’s ability to retain
accuracy while drastically reducing computational cost.

5.2. Runtime Analysis

Runtime analysis on synthetic data (Figure 5) confirms
that TP+DTW scales nearly linearly with sequence length,
in contrast to standard DTW’s quadratic behavior. At
L = 1000, TP+DTW with 20% KPs is nearly two orders of
magnitude faster than full-length DTW, highlighting TP’s
ability to maintain alignment quality while drastically re-
ducing computational cost.

5.3. Conclusion

We introduced TimePoint (TP), a self-supervised framework
for efficient time-series alignment. By leveraging synthetic
data and employing CPAB transformations, TP learns to
detect KPs and descriptors that enable sparse and accurate
alignments. Our approach addresses the scalability limita-
tion of traditional methods like DTW, achieving significant
computational speedups and improved alignment accuracy.
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TimePoint: Appendix

Table of Contents
• Appendix A: Ablation Study.

An evaluation of the impact of architecture choices, similarity metrics, and NMS, showing that TimePoint’s wavelet-
based encoder and learned descriptors significantly boost accuracy over naive subsampling or dense features.

• Appendix B: Additional Results.
Additional figures depicting TimePoint keypoints and descriptors for signals of varying lengths, 1-NN classification
comparisons against other DTW-based methods, and a GPU RAM consumption analysis.

• Appendix C: SynthAlign.
Details on our synthetic dataset generation process, including waveform composition, keypoint extraction, and the
impact of synthetic training on real-world performance.

• Appendix D: CPAB Transformations.
Overview of the continuous piecewise-affine-based (CPAB) transformations used to generate nonlinear time deforma-
tions. Includes 1D-specific formulation and illustrative examples.

• Appendix E: TimePoint Architecture Details.
Description of the TimePoint encoder-decoder architecture, including layer specifications and parameter choices.

• Appendix F: Full UCR Archive Results.
Additional information on the UCR datasets used in our experiments, including train/test splits, signal lengths, and data
types. Complete accuracy tables for our method and competitor methods across the entire UCR dataset collection.
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A. Ablation Study
Table A.1 summarizes an ablation study over 27 datasets using a 1-NN accuracy metric. With the full sequence, the
standard DTW (baseline) achieves an accuracy of 0.797. Performing DTW with TP features improves performance for both
Dense Conv (∼400K parameters, 0.82) and WTConv (∼200K parameters, 0.815) encoders when using Euclidean distance.
Switching to cosine similarity further boosts performance to 0.835 for Dense Conv and 0.869 for WTConv, highlighting the
effectiveness of the wavelet-based encoder. Reducing the signal to just 20% of its length yields comparable trends: first,
using TP merely as subsampling (i.e., ignoring the descriptors and using DTW on the raw signals restricted to TimePoint’s
KPs) gives a 1-NN accuracy of 0.792, while switching to using TP’s descriptors, with either the Dense Conv or WTConv
encoders, reaches 0.826 or 0.865, respectively. This shows that TimePoint differs from naive subsampling methods by not
only learning an input-dependent KP detection scheme tailored to alignment but also providing descriptors that, crucially,
capture non-local context through a large receptive field. This leads to efficient DTW alignment without sacrificing accuracy.
Note also TP+WTConv nearly matches in accuracy the full-length setting even though far fewer KPs are used. Lastly,
dropping the NMS decreases TP+WTConv to 0.841.

Table A.1. Ablation Study
Encoder Dist. %L NMS 1-NN acc.
DTW (baseline) Euclidean 100% - 0.797
TP + Dense Conv Euclidean 100% - 0.82
TP + WTConv Euclidean 100% - 0.815
TP + Dense Conv Cosine Sim. 100% - 0.835
TP + WTConv Cosine Sim. 100% - 0.869
TP + DTW (no descriptors) Euclidean 20% ✓ 0.792
TP + Dense Conv Cosine Sim. 20% ✓ 0.826
TP + WTConv Cosine Sim. 20% ✗ 0.841
TP + WTConv Cosine Sim. 20% ✓ 0.865
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B. Additional Results
B.1. TimePoint Keypoints and Descriptors for Time Series of Different Lengths

(a) TimePoint keypoints and descriptors for the Coffee dataset (L = 286)

(b) TimePoint keypoints and descriptors for the BeetleFly dataset (L = 512)

(c) TimePoint keypoints and descriptors for the Phoneme dataset (L = 1024)
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B.2. 1-NN Classification Comparisons
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Figure B.2. TP with 100 Percentage of signal length vs. several DTW-based methods. Every dot represent a dataset
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Figure B.3. TP with 20 Percentage of the keypoints vs. several DTW-based methods. Every dot represent a dataset
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B.3. GPU RAM Consumption Analysis

Table B.1. Total GPU memory usage comparison. Summary of seven UCR datasets and the corresponding GPU memory usage (in GB,
rounded to integers) for 1-NN DTW. The TP + DTW columns represent the memory footprint at different keypoint ratios, while standard
DTW uses the full signal length.

Dataset DTW TP + DTW

Train Test Length 10% 20% 50% 100%

ChlorineConcentration 467 3840 166 186 2 8 47 186
Crop 7200 16800 46 996 17 46 260 996
ECG5000 500 4500 140 167 2 7 42 167
TwoPatterns 1000 4000 128 248 3 11 63 248
UWaveGestureLibraryX 896 3582 315 1194 13 49 302 1194
Wafer 1000 6164 152 538 6 22 136 538
Yoga 300 3000 426 611 7 25 154 611

Memory Consumption and Channel Independence. As shown in Table B.1, when both DTW and TP+DTW are applied
to the full sequence (keypoint ratio = 100%), the GPU memory consumption remains the same despite the fact that TP
features are 256-dimensional. The key reason lies in the memory structure of our DTW implementation.

Dynamic Programming (DP) Matrix. The largest tensor created during DTW is a 4D DP matrix D of shape[
batch size x, batch size y, length x + 1, length y + 1

]
. Notably, this matrix does not include any

channel dimension. As a result, increasing the feature dimensionality from, say, 1 to 256 does not change the DP matrix size.

Cost Computation Over Channels. At each time step (i, j), we compute a scalar cost by reducing across the channel
dimension, whether using cosine similarity or ℓ2 distance. Consequently, the DP matrix stores only a single cost value for
each pair (i, j), independent of the descriptor dimensionality.

Equal Memory Footprint at Full Length. When keypoint ratio = 100%, TP+DTW and plain DTW both operate on the
entire time series. Although TimePoint descriptors have a higher channel count (e.g., 256), that extra dimensionality is
collapsed into a single scalar during the pairwise cost computation, leading to an identical memory footprint for the DP
matrix. Hence, the total GPU RAM consumption scales only with the product of the sequence lengths and batch sizes, rather
than the descriptor dimensionality or number of channels.
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C. SynthAlign

Figure C.1. Left: Training losses on SynthAlign data. Right: DTW-KNN accuracy on unseen datasets. As the training losses decrease
the accuracy increases, indicating the loss functions, along with the synthetic training framework (SynthAlign) generalize well to
real-world data for the task of identifying keypoints and learning descriptors. Epochs are trimmed to 25K for visibility purposes.

Does synthetic training generalize to real-world data? A notable finding is that jointly minimizing the keypoint detection
and descriptor losses on the synthetic dataset leads to improved k-NN accuracy on unseen real-world data, as evident
from Figure C.1. This suggests that learning to detect salient points and produce consistent descriptors under controlled, yet
varied, synthetic data and distortions allows for alignment capabilities that transfer beyond the training distribution.

Data generation To train and evaluate our method under diverse temporal patterns and keypoint structures, we introduce
the SynthAlign dataset. Each sample comprises a univariate time series of length L and an associated keypoint (KP)
mask that marks salient events (e.g., peaks, start/end points). We generate data on-the-fly using a composition of procedurally
defined waveforms and optional augmentations.

SynthAlign randomly draws from four principal waveform generators with specified probabilities:

1. Sine Wave Composition: Superposes multiple sine waves (random frequency, amplitude, and phase), with derivative-
based KPs for local maxima or minima.

2. Block Wave: Creates square-wave-like segments with variable block sizes and amplitude, marking boundaries as KPs.

3. Sawtooth Wave: Forms a sawtooth signal of random frequency, designating signal resets as KPs.

4. Radial Basis Function (RBF): Summation of Gaussian “blobs,” entered at a random position; KPs appear at blob peaks.

Each generated signal has length L = 512 by default, though the code supports arbitrary lengths.

Composition and Augmentations. After selecting one or more waveform generators (drawn with probabilities
[0.6, 0.15, 0.05, 0.2] from the waveforms mentioned in the list above), the resulting signals are summed to form a fi-
nal sample. We also introduce:

• Linear Trends: Randomly superimposed slopes and intercepts to simulate mild non-stationarity.

• Flips: Inverts a random subsection of the signal.

• Noise: Adds Gaussian noise sampled from N (0, 0.1) to further diversify training samples.
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Keypoint Extraction. Keypoints originate from local maxima/minima (sine and sawtooth), block boundaries, Gaussian
centers (RBF), and explicit markings for flips and linear boundaries. We ensure start/end points are included only when
warranted by the signal design. This strategy provides a rich variety of salient events, allowing models to learn robust
keypoint detection across diverse waveform shapes. Overall, SynthAlign delivers a flexible pipeline for generating
synthetic time series with automatically labeled keypoints, serving as a valuable testbed for alignment, detection, and
descriptor-learning techniques. Figure C.2 shows additional sample drawn from SynthAlign

Figure C.2. More Samples from the SynthAlign.
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D. CPAB Transformations
Let T θ be a diffeomorphism parameterized by θ. The main reason we chose CPAB transformations (Freifeld et al., 2017)
as the parametric diffeomorphism family to be used within our method is that they are both expressive and efficient. Our
presentation of CPAB transformations below closely follows (Freifeld et al., 2017), though we restrict the discussion to the
1D case (for the more general case, see (Freifeld et al., 2017)).

Let Ω = [a, b] ⊂ R be a finite interval and let V be a space of continuous functions, from Ω to R, that are also piecewise-
affine w.r.t. some fixed partition of Ω into sub-intervals. Note that V is a finite-dimensional linear space. Let d = dim(V),
let θ ∈ Rd, and let vθ ∈ V denote the generic element of V , parameterized by θ. The space of CPAB transformations
obtained via the integration of elements of V , is defined as

T ≜
{
T θ : x 7→ ϕθ(x; 1) s.t. ϕθ(x; t) solves the integral equation ϕθ(x; t) = x+

∫ t

0

vθ(ϕθ(x; τ)) dτ where vθ ∈ V
}
.

(5)

Every T θ ∈ T is an order-preserving transformation (i.e., it is monotonically increasing) and a diffeomorphism (Freifeld
et al., 2017). Note that while vθ ∈ V is CPA, the CPAB T θ ∈ T is not (e.g., T θ is differentiable, unlike any non-trivial
CPA function). Equation 5 also implies that the elements of V are viewed as velocity fields. Particularly useful for us
are the following facts: 1) The finer the partition of Ω is, the more expressive the CPAB family becomes (which also
means that d increases). 2) CPAB transformations lend themselves to a fast and accurate computation in closed form of
x 7→ T θ(x) (Freifeld et al., 2017). Together, these facts mean that CPAB transformations provide us with a convenient
and an efficient way to parameterize nonlinear monotonically-increasing functions. Figure D.1 show random CPAB
transformation applied to synthetic data sampled from SynthAlign, while Figure D.2 shows the effect of increasing the
standard deviation (σvar) when sampling θ from the CPA smoothness prior.
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Figure D.1. Additional examples of the CPAB transformation.
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Figure D.2. SynthAlign synthetic data augmented with CPAB warps at increasing magnitude (top-to-bottom). Each panel shows the
original signal in blue and 3 random augmentations in gray.
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E. TimePoint Architecture Details

Table E.1. SuperPoint1D model architecture. Conv(Cin → Cout, k) denotes a 1D convolution from Cin to Cout channels with kernel
size k, followed by BatchNorm and ReLU. WTConv denotes the wavelet-based convolution with group splitting and scale modules.

Stage Layer Details

Encoder (WTConvEncoder1D)

layer1 ConvBlock1D • Conv(1 → 128, k = 3, stride=1, padding=same)
• BatchNorm(128), ReLU

layer2 WTConvBlock1D • WTConv1d(128 → 128, kernel=3, groups=128) + scale modules
• Conv(128 → 128, k = 1), BatchNorm(128), ReLU

layer3 WTConvBlock1D • WTConv1d(128 → 128, kernel=3, groups=128) + scale modules
• Conv(128 → 256, k = 1), BatchNorm(256), ReLU

layer4 WTConvBlock1D • WTConv1d(256 → 256, kernel=3, groups=256) + scale modules
• Conv(256 → 256, k = 1), BatchNorm(256), ReLU

Detector Head (DetectorHead1D)

Conv(256 → 8, k = 1) Outputs detector logits for keypoint heatmap.
Sigmoid Normalize the logits to probabilities

Descriptor Head (DescriptorHead1D)

Conv(256 → 256, k = 1) Descriptor feature map.
Upsample Upsample with scale factor = 8, mode=linear.
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F. Full UCR Archive Results
F.1. UCR Archive Details

ID Type Name Train Test Class Length

1 Image Adiac 390 391 37 176
2 Image ArrowHead 36 175 3 251
3 Spectro Beef 30 30 5 470
4 Image BeetleFly 20 20 2 512
5 Image BirdChicken 20 20 2 512
6 Sensor Car 60 60 4 577
7 Simulated CBF 30 900 3 128
8 Sensor ChlorineConcentration 467 3840 3 166
9 Sensor CinCECGTorso 40 1380 4 1639
10 Spectro Coffee 28 28 2 286
11 Device Computers 250 250 2 720
12 Motion CricketX 390 390 12 300
13 Motion CricketY 390 390 12 300
14 Motion CricketZ 390 390 12 300
15 Image DiatomSizeReduction 16 306 4 345
16 Image DistalPhalanxOutlineAgeGroup 400 139 3 80
17 Image DistalPhalanxOutlineCorrect 600 276 2 80
18 Image DistalPhalanxTW 400 139 6 80
19 Sensor Earthquakes 322 139 2 512
20 ECG ECG200 100 100 2 96
21 ECG ECG5000 500 4500 5 140
22 ECG ECGFiveDays 23 861 2 136
23 Device ElectricDevices 8926 7711 7 96
24 Image FaceAll 560 1690 14 131
25 Image FaceFour 24 88 4 350
26 Image FacesUCR 200 2050 14 131
27 Image FiftyWords 450 455 50 270
28 Image Fish 175 175 7 463
29 Sensor FordA 3601 1320 2 500
30 Sensor FordB 3636 810 2 500
31 Motion GunPoint 50 150 2 150
32 Spectro Ham 109 105 2 431
33 Image HandOutlines 1000 370 2 2709
34 Motion Haptics 155 308 5 1092
35 Image Herring 64 64 2 512
36 Motion InlineSkate 100 550 7 1882
37 Sensor InsectWingbeatSound 220 1980 11 256
38 Sensor ItalyPowerDemand 67 1029 2 24
39 Device LargeKitchenAppliances 375 375 3 720
40 Sensor Lightning2 60 61 2 637
41 Sensor Lightning7 70 73 7 319
42 Simulated Mallat 55 2345 8 1024
43 Spectro Meat 60 60 3 448
44 Image MedicalImages 381 760 10 99
45 Image MiddlePhalanxOutlineAgeGroup 400 154 3 80
46 Image MiddlePhalanxOutlineCorrect 600 291 2 80
47 Image MiddlePhalanxTW 399 154 6 80
48 Sensor MoteStrain 20 1252 2 84
49 ECG NonInvasiveFetalECGThorax1 1800 1965 42 750
50 ECG NonInvasiveFetalECGThorax2 1800 1965 42 750
51 Spectro OliveOil 30 30 4 570
52 Image OSULeaf 200 242 6 427
53 Image PhalangesOutlinesCorrect 1800 858 2 80
54 Sensor Phoneme 214 1896 39 1024
55 Sensor Plane 105 105 7 144
56 Image ProximalPhalanxOutlineAgeGroup 400 205 3 80
57 Image ProximalPhalanxOutlineCorrect 600 291 2 80
58 Image ProximalPhalanxTW 400 205 6 80
59 Device RefrigerationDevices 375 375 3 720
60 Device ScreenType 375 375 3 720
61 Simulated ShapeletSim 20 180 2 500
62 Image ShapesAll 600 600 60 512
63 Device SmallKitchenAppliances 375 375 3 720
64 Sensor SonyAIBORobotSurface1 20 601 2 70
65 Sensor SonyAIBORobotSurface2 27 953 2 65
66 Sensor StarLightCurves 1000 8236 3 1024
67 Spectro Strawberry 613 370 2 235
68 Image SwedishLeaf 500 625 15 128
69 Image Symbols 25 995 6 398
70 Simulated SyntheticControl 300 300 6 60
71 Motion ToeSegmentation1 40 228 2 277
72 Motion ToeSegmentation2 36 130 2 343
73 Sensor Trace 100 100 4 275
74 ECG TwoLeadECG 23 1139 2 82
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ID Type Name Train Test Class Length

75 Simulated TwoPatterns 1000 4000 4 128
76 Motion UWaveGestureLibraryAll 896 3582 8 945
77 Motion UWaveGestureLibraryX 896 3582 8 315
78 Motion UWaveGestureLibraryY 896 3582 8 315
79 Motion UWaveGestureLibraryZ 896 3582 8 315
80 Sensor Wafer 1000 6164 2 152
81 Spectro Wine 57 54 2 234
82 Image WordSynonyms 267 638 25 270
83 Motion Worms 181 77 5 900
84 Motion WormsTwoClass 181 77 2 900
85 Image Yoga 300 3000 2 426
86 Device ACSF1 100 100 10 1460
87 Sensor AllGestureWiimoteX 300 700 10 Vary
88 Sensor AllGestureWiimoteY 300 700 10 Vary
89 Sensor AllGestureWiimoteZ 300 700 10 Vary
90 Simulated BME 30 150 3 128
91 Traffic Chinatown 20 343 2 24
92 Image Crop 7200 16800 24 46
93 Sensor DodgerLoopDay 78 80 7 288
94 Sensor DodgerLoopGame 20 138 2 288
95 Sensor DodgerLoopWeekend 20 138 2 288
96 EOG EOGHorizontalSignal 362 362 12 1250
97 EOG EOGVerticalSignal 362 362 12 1250
98 Spectro EthanolLevel 504 500 4 1751
99 Sensor FreezerRegularTrain 150 2850 2 301
100 Sensor FreezerSmallTrain 28 2850 2 301
101 HRM Fungi 18 186 18 201
102 Trajectory GestureMidAirD1 208 130 26 Vary
103 Trajectory GestureMidAirD2 208 130 26 Vary
104 Trajectory GestureMidAirD3 208 130 26 Vary
105 Sensor GesturePebbleZ1 132 172 6 Vary
106 Sensor GesturePebbleZ2 146 158 6 Vary
107 Motion GunPointAgeSpan 135 316 2 150
108 Motion GunPointMaleVersusFemale 135 316 2 150
109 Motion GunPointOldVersusYoung 136 315 2 150
110 Device HouseTwenty 40 119 2 2000
111 EPG InsectEPGRegularTrain 62 249 3 601
112 EPG InsectEPGSmallTrain 17 249 3 601
113 Traffic MelbournePedestrian 1194 2439 10 24
114 Image MixedShapesRegularTrain 500 2425 5 1024
115 Image MixedShapesSmallTrain 100 2425 5 1024
116 Sensor PickupGestureWiimoteZ 50 50 10 Vary
117 Hemodynamics PigAirwayPressure 104 208 52 2000
118 Hemodynamics PigArtPressure 104 208 52 2000
119 Hemodynamics PigCVP 104 208 52 2000
120 Device PLAID 537 537 11 Vary
121 Power PowerCons 180 180 2 144
122 Spectrum Rock 20 50 4 2844
123 Spectrum SemgHandGenderCh2 300 600 2 1500
124 Spectrum SemgHandMovementCh2 450 450 6 1500
125 Spectrum SemgHandSubjectCh2 450 450 5 1500
126 Sensor ShakeGestureWiimoteZ 50 50 10 Vary
127 Simulated SmoothSubspace 150 150 3 15
128 Simulated UMD 36 144 3 150

F.2. UCR Archive Details
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Table F.2: Accuracy Comparison Between TimePoint Configurations

Dataset/Method TP+DTW TP+SoftDTW (γ = 1)

(0.1) (0.2) (0.5) (1) (0.1) (0.2) (0.5) (1)

Adiac 0.645 0.678 0.734 0.742 0.519 0.445 0.598 0.737
AllGestureWiimoteX 0.55 0.454 0.552 0.542 0.461 0.421 0.454 0.437
ArrowHead 0.869 0.851 0.874 0.857 0.669 0.657 0.806 0.840
BME 0.960 0.940 0.893 0.953 0.953 0.893 0.860 0.947
Beef 0.733 0.767 0.700 0.800 0.600 0.500 0.700 0.833
BeetleFly 0.950 0.850 0.900 0.900 0.850 0.950 0.850 0.950
BirdChicken 0.900 0.750 0.800 0.850 0.900 0.750 0.950 0.750
CBF 0.940 0.990 0.940 0.993 0.930 0.970 0.988 0.996
Car 0.850 0.850 0.767 0.867 0.633 0.733 0.783 0.817
Chinatown 0.831 0.924 0.915 0.945 0.828 0.901 0.974 0.942
ChlorineConcentration 0.574 0.624 0.648 0.632 0.527 0.538 0.574 0.635
Coffee 1.000 1.000 1.000 1.000 0.750 0.714 0.893 1.000
Computers 0.668 0.676 0.664 0.676 0.628 0.664 0.620 0.552
CricketX 0.715 0.703 0.551 0.754 0.610 0.585 0.685 0.685
CricketY 0.664 0.731 0.582 0.759 0.590 0.628 0.705 0.715
CricketZ 0.726 0.723 0.590 0.756 0.654 0.592 0.713 0.708
Crop 0.665 0.693 0.682 0.705 0.658 0.670 0.693 0.705
DiatomSizeReduction 0.967 0.958 0.967 0.958 0.850 0.794 0.905 0.958
DistalPhalanxOutlineAgeGroup 0.583 0.619 0.633 0.583 0.583 0.604 0.612 0.547
DistalPhalanxOutlineCorrect 0.652 0.692 0.699 0.717 0.616 0.685 0.678 0.714
DistalPhalanxTW 0.511 0.590 0.583 0.590 0.554 0.532 0.540 0.576
ECG200 0.850 0.820 0.820 0.820 0.820 0.820 0.900 0.800
ECG5000 0.921 0.924 0.921 0.924 0.922 0.916 0.922 0.924
ECGFiveDays 0.812 0.897 0.942 0.897 0.659 0.683 0.676 0.895
Earthquakes 0.669 0.662 0.691 0.691 0.676 0.662 0.619 0.676
ElectricDevices 0.593 0.607 0.616 0.613 0.588 0.592 0.602 0.615
FaceAll 0.676 0.717 0.720 0.734 0.634 0.667 0.691 0.730
FaceFour 0.807 0.932 0.886 0.932 0.693 0.727 0.932 0.943
FacesUCR 0.735 0.840 0.802 0.859 0.682 0.762 0.831 0.852
FiftyWords 0.745 0.760 0.736 0.802 0.684 0.668 0.677 0.754
Fish 0.874 0.903 0.880 0.914 0.731 0.709 0.834 0.891
FordA 0.780 0.775 0.768 0.791 0.717 0.729 0.754 0.782
FordB 0.641 0.640 0.647 0.662 0.586 0.633 0.640 0.623
FreezerRegularTrain 0.913 0.927 0.876 0.924 0.891 0.876 0.981 0.920
FreezerSmallTrain 0.780 0.793 0.760 0.798 0.758 0.783 0.862 0.771
Fungi 0.957 0.995 0.925 0.995 0.839 0.731 0.957 0.984
GestureMidAirD1 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038
GestureMidAirD2 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038
GestureMidAirD3 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038
GesturePebbleZ1 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163
GesturePebbleZ2 0.152 0.152 0.152 0.152 0.152 0.152 0.152 0.152
GunPoint 0.973 0.993 0.973 0.993 0.913 0.860 0.980 0.993
GunPointAgeSpan 0.981 0.975 0.972 0.978 0.953 0.924 0.972 0.965
GunPointMaleVersusFemale 0.994 1.000 0.997 1.000 0.978 0.994 1.000 1.000
GunPointOldVersusYoung 0.968 0.971 0.959 0.981 0.895 0.940 0.971 0.971
Ham 0.514 0.533 0.457 0.552 0.562 0.524 0.600 0.533
Herring 0.469 0.547 0.531 0.531 0.594 0.625 0.453 0.516
InsectEPGRegularTrain 0.964 0.932 0.876 0.928 0.855 0.827 0.807 0.819
AllGestureWiimoteY 0.558 0.564 0.578 0.558 0.492 0.47 0.47 0.457
AllGestureWiimoteZ 0.282 0.237 0.287 0.28 0.212 0.227 0.177 0.172
InsectEPGSmallTrain 0.815 0.795 0.703 0.803 0.622 0.755 0.711 0.747
InsectWingbeatSound 0.468 0.534 0.504 0.534 0.427 0.487 0.554 0.563
ItalyPowerDemand 0.941 0.934 0.957 0.945 0.943 0.939 0.944 0.949
LargeKitchenAppliances 0.757 0.744 0.709 0.755 0.640 0.613 0.589 0.560
Lightning2 0.836 0.869 0.852 0.820 0.738 0.803 0.820 0.852
Lightning7 0.671 0.740 0.808 0.767 0.616 0.658 0.658 0.740
Mallat 0.912 0.865 0.807 0.897 0.664 0.630 0.782 0.900
Meat 0.900 0.900 0.883 0.917 0.783 0.800 0.800 0.883
MedicalImages 0.687 0.714 0.729 0.728 0.674 0.672 0.722 0.714
MiddlePhalanxOutlineAgeGroup 0.422 0.390 0.461 0.396 0.364 0.429 0.396 0.442
MiddlePhalanxOutlineCorrect 0.663 0.729 0.694 0.722 0.625 0.601 0.622 0.722
MiddlePhalanxTW 0.442 0.474 0.539 0.539 0.422 0.487 0.526 0.578
MixedShapesSmallTrain 0.884 0.912 0.889 0.914 0.798 0.874 0.831 0.836
MoteStrain 0.826 0.861 0.852 0.862 0.807 0.863 0.865 0.856
NonInvasiveFetalECGThorax1 0.814 0.798 0.769 0.823 0.583 0.593 0.751 0.814
NonInvasiveFetalECGThorax2 0.847 0.867 0.846 0.872 0.693 0.677 0.825 0.860
OSULeaf 0.789 0.793 0.769 0.810 0.657 0.686 0.661 0.715
OliveOil 0.567 0.700 0.900 0.933 0.633 0.400 0.600 0.633
PhalangesOutlinesCorrect 0.690 0.727 0.748 0.741 0.671 0.697 0.681 0.754
Phoneme 0.267 0.268 0.261 0.284 0.212 0.203 0.166 0.165
PickupGestureWiimoteZ 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
Plane 1.000 0.990 1.000 1.000 1.000 0.981 1.000 0.990
PowerCons 0.856 0.906 0.878 0.894 0.811 0.867 0.911 0.861
ProximalPhalanxOutlineAgeGroup 0.790 0.805 0.805 0.795 0.810 0.780 0.800 0.800
ProximalPhalanxOutlineCorrect 0.818 0.821 0.825 0.852 0.832 0.821 0.818 0.845
ProximalPhalanxTW 0.673 0.693 0.712 0.727 0.683 0.727 0.751 0.712
RefrigerationDevices 0.525 0.491 0.504 0.483 0.461 0.451 0.429 0.483
ScreenType 0.413 0.419 0.411 0.416 0.376 0.397 0.387 0.384
ShakeGestureWiimoteZ 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
ShapeletSim 0.600 0.644 0.617 0.711 0.533 0.578 0.550 0.644
ShapesAll 0.860 0.873 0.862 0.878 0.728 0.782 0.777 0.803
SmallKitchenAppliances 0.555 0.579 0.600 0.552 0.557 0.576 0.507 0.475
SmoothSubspace 0.800 0.793 0.807 0.813 0.793 0.807 0.807 0.793
SonyAIBORobotSurface1 0.839 0.764 0.760 0.745 0.844 0.800 0.785 0.737
SonyAIBORobotSurface2 0.860 0.886 0.890 0.866 0.848 0.871 0.855 0.860
Strawberry 0.932 0.951 0.943 0.949 0.870 0.889 0.927 0.951
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TimePoint

Dataset/Method TP+DTW TP+SoftDTW (γ = 1)

(0.1) (0.2) (0.5) (1) (0.1) (0.2) (0.5) (1)

SwedishLeaf 0.875 0.904 0.888 0.899 0.790 0.811 0.866 0.904
Symbols 0.949 0.955 0.939 0.965 0.897 0.912 0.860 0.930
SyntheticControl 0.957 0.977 0.967 0.983 0.967 0.967 0.970 0.980
ToeSegmentation1 0.846 0.838 0.855 0.882 0.789 0.785 0.789 0.829
ToeSegmentation2 0.823 0.885 0.831 0.900 0.777 0.800 0.862 0.869
Trace 0.990 0.990 0.990 0.990 1.000 0.980 0.920 0.990
TwoLeadECG 0.830 0.816 0.801 0.834 0.789 0.695 0.785 0.837
TwoPatterns 0.729 0.771 0.687 0.778 0.681 0.676 0.602 0.756
UMD 0.910 0.889 0.840 0.889 0.854 0.819 0.812 0.854
UWaveGestureLibraryAll 0.917 0.956 0.927 0.968 0.784 0.913 0.910 0.905
UWaveGestureLibraryX 0.758 0.791 0.786 0.797 0.715 0.753 0.740 0.788
UWaveGestureLibraryY 0.703 0.730 0.716 0.743 0.643 0.682 0.660 0.711
UWaveGestureLibraryZ 0.689 0.728 0.701 0.738 0.652 0.693 0.688 0.714
Wafer 0.994 0.993 0.989 0.994 0.990 0.990 0.995 0.994
Wine 0.611 0.722 0.741 0.593 0.481 0.611 0.574 0.630
WordSynonyms 0.688 0.721 0.694 0.737 0.594 0.605 0.589 0.694
Worms 0.662 0.584 0.610 0.584 0.649 0.519 0.558 0.597
WormsTwoClass 0.727 0.636 0.649 0.675 0.688 0.649 0.623 0.688
Yoga 0.858 0.866 0.853 0.871 0.768 0.760 0.832 0.856

Table F.3: Accuracy Comparison Between Competitors.

Dataset/Method DTW DTW-GI Euc. ShapeDTW SoftDTW

(dev) (hog) (raw) (γ = 0.1) (γ = 1) (γ = 10)

Adiac 0.588 0.604 0.066 0.652 0.251 0.637 1.000 0.513 0.750
AllGestureWiimoteX 0.135 0.611 0.101 0.327 0.377 0.613 0.662 0.833 0.576
ArrowHead 0.680 0.703 0.229 0.674 0.800 0.817 0.712 0.550 0.761
BME 0.900 0.900 0.493 0.760 0.707 0.860 0.783 0.800 0.696
Beef 0.567 0.633 0.267 0.700 0.733 0.667 0.935 0.714 0.341
BeetleFly 0.700 0.700 0.450 0.650 0.750 0.750 0.880 0.784 0.769
BirdChicken 0.750 0.750 0.800 0.700 0.550 0.550 0.797 0.880 0.784
CBF 1.000 0.997 0.658 0.360 0.434 0.906 0.626 0.783 0.800
Car 0.750 0.733 0.600 0.717 0.717 0.817 0.610 0.046 0.925
Chinatown 0.965 0.956 0.805 0.933 0.948 0.962 0.764 0.907 0.120
ChlorineConcentration 0.627 0.648 0.231 0.709 0.668 0.628 0.513 0.750 0.680
Coffee 0.964 1.000 0.536 0.964 1.000 1.000 0.752 0.913 0.808
Computers 0.668 0.696 0.672 0.528 0.624 0.556 0.933 0.948 0.046
CricketX 0.772 0.754 0.097 0.282 0.400 0.669 0.747 0.867 0.577
CricketY 0.749 0.744 0.074 0.226 0.431 0.651 0.567 0.747 0.867
CricketZ 0.787 0.754 0.092 0.297 0.387 0.682 0.733 0.567 0.747
Crop 0.676 0.664 0.052 0.719 0.524 0.716 0.995 0.953 0.899
DiatomSizeReduction 0.961 0.967 0.431 0.922 0.958 0.889 0.676 0.551 0.663
DistalPhalanxOutlineAgeGroup 0.748 0.770 0.604 0.597 0.633 0.576 0.521 0.650 0.955
DistalPhalanxOutlineCorrect 0.725 0.717 0.478 0.757 0.721 0.659 0.809 0.521 0.650
DistalPhalanxTW 0.640 0.590 0.468 0.590 0.612 0.511 0.611 0.809 0.521
ECG200 0.800 0.770 0.350 0.880 0.870 0.840 0.152 0.946 0.859
ECG5000 0.930 0.925 0.137 0.921 0.928 0.926 0.633 0.665 0.631
ECGFiveDays 0.775 0.768 0.551 0.747 0.920 0.830 0.665 0.631 0.717
Earthquakes 0.669 0.719 0.698 0.259 0.734 0.662 0.046 0.797 0.880
ElectricDevices 0.653 0.592 0.232 0.495 0.519 0.574 0.696 0.152 0.946
FaceAll 0.772 0.808 0.019 0.762 0.630 0.809 0.717 0.667 0.562
FaceFour 0.841 0.830 0.364 0.534 0.852 0.864 0.754 0.676 0.551
FacesUCR 0.934 0.905 0.143 0.778 0.639 0.885 0.631 0.717 0.667
FiftyWords 0.716 0.690 0.022 0.556 0.484 0.692 0.819 0.785 0.712
Fish 0.863 0.823 0.257 0.874 0.829 0.840 0.714 0.341 0.808
FordA 0.571 0.555 0.484 0.696 0.699 0.661 0.829 0.935 0.714
FordB 0.606 0.620 0.505 0.615 0.619 0.562 0.769 0.829 0.935
FreezerRegularTrain 0.917 0.899 0.546 0.692 0.801 0.804 0.879 0.733 0.567
FreezerSmallTrain 0.720 0.759 0.703 0.605 0.742 0.676 0.587 0.879 0.733
Fungi 0.909 0.839 0.038 0.860 0.973 0.941 0.550 1.000 0.513
GestureMidAirD1 0.046 0.538 0.046 0.485 0.400 0.508 0.684 0.754 0.676
GestureMidAirD2 0.046 0.438 0.046 0.338 0.431 0.454 0.739 0.684 0.754
GestureMidAirD3 0.046 0.169 0.046 0.346 0.300 0.292 0.576 0.739 0.684
GesturePebbleZ1 0.174 0.616 0.174 0.174 0.581 0.750 0.808 0.907 0.360
GesturePebbleZ2 0.152 0.563 0.152 0.203 0.563 0.722 0.341 0.808 0.907
GunPoint 0.880 0.907 0.513 0.960 0.913 0.960 0.519 0.606 0.618
GunPointAgeSpan 0.915 0.918 0.690 0.956 0.953 0.984 0.760 0.519 0.606
GunPointMaleVersusFemale 0.997 0.997 0.867 0.997 0.991 1.000 0.539 0.760 0.519
GunPointOldVersusYoung 0.841 0.838 0.514 0.997 0.984 1.000 0.766 0.539 0.760
Ham 0.562 0.467 0.486 0.543 0.533 0.600 0.360 0.575 0.789
Herring 0.547 0.531 0.406 0.531 0.594 0.531 0.455 0.046 0.797
InsectEPGRegularTrain 0.867 0.871 0.703 0.530 0.743 1.000 0.962 0.610 0.046
AllGestureWiimoteY 0.154 0.558 0.1 Nan Nan Nan 0.493 0.661 0.833
AllGestureWiimoteZ 0.094 0.288 0.11 Nan Nan Nan 0.493 0.661 0.852
InsectEPGSmallTrain 0.719 0.735 0.691 0.546 0.679 1.000 0.046 0.962 0.610
InsectWingbeatSound 0.431 0.355 0.091 0.523 0.552 0.567 0.785 0.712 0.550
ItalyPowerDemand 0.946 0.950 0.532 0.954 0.881 0.965 0.899 0.764 0.907
LargeKitchenAppliances 0.837 0.795 0.355 0.480 0.475 0.565 0.120 0.933 0.948
Lightning2 0.803 0.869 0.541 0.475 0.574 0.803 0.948 0.046 0.962
Lightning7 0.767 0.726 0.151 0.356 0.260 0.589 0.663 0.805 0.880
Mallat 0.914 0.934 0.244 0.857 0.589 0.914 0.100 0.975 0.109
Meat 0.933 0.933 0.333 0.733 0.733 0.933 0.907 0.360 0.575
MedicalImages 0.754 0.737 0.478 0.604 0.536 0.716 0.800 0.696 0.152
MiddlePhalanxOutlineAgeGroup 0.506 0.500 0.208 0.552 0.448 0.513 0.600 0.611 0.809
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TimePoint

Dataset/Method DTW DTW-GI Euc. ShapeDTW SoftDTW

(dev) (hog) (raw) (γ = 0.1) (γ = 1) (γ = 10)

MiddlePhalanxOutlineCorrect 0.704 0.698 0.584 0.766 0.643 0.766 0.712 0.600 0.611
MiddlePhalanxTW 0.494 0.506 0.448 0.487 0.494 0.487 0.823 0.712 0.600
MixedShapesSmallTrain 0.779 0.780 0.223 0.619 0.808 0.836 0.849 0.100 0.975
MoteStrain 0.891 0.835 0.570 0.761 0.892 0.879 0.946 0.859 0.174
NonInvasiveFetalECGThorax1 0.772 0.790 0.024 0.550 0.833 0.532 0.835 0.101 0.913
NonInvasiveFetalECGThorax2 0.851 0.864 0.032 0.787 0.891 0.689 0.899 0.835 0.101
OSULeaf 0.636 0.591 0.198 0.417 0.512 0.566 0.575 0.789 0.395
OliveOil 0.833 0.833 0.133 0.833 0.667 0.867 0.046 0.925 0.455
PhalangesOutlinesCorrect 0.719 0.728 0.503 0.790 0.760 0.669 0.933 0.823 0.712
Phoneme 0.272 0.228 0.011 0.082 0.047 0.117 0.952 0.849 0.100
PickupGestureWiimoteZ 0.120 0.220 0.120 0.280 0.480 0.700 0.833 0.576 0.739
Plane 1.000 1.000 0.095 0.971 0.952 0.971 0.618 0.633 0.665
PowerCons 0.872 0.878 0.506 0.728 0.806 0.972 0.606 0.618 0.633
ProximalPhalanxOutlineAgeGroup 0.776 0.805 0.820 0.829 0.780 0.780 0.880 0.933 0.823
ProximalPhalanxOutlineCorrect 0.763 0.784 0.550 0.849 0.742 0.790 0.611 0.880 0.933
ProximalPhalanxTW 0.751 0.756 0.737 0.737 0.668 0.702 0.174 0.611 0.880
RefrigerationDevices 0.480 0.461 0.384 0.341 0.485 0.424 0.914 0.120 0.933
ScreenType 0.416 0.395 0.400 0.333 0.320 0.373 0.913 0.914 0.120
ShakeGestureWiimoteZ 0.120 0.400 0.120 0.500 0.680 0.700 0.650 0.852 0.493
ShapeletSim 0.756 0.650 0.506 0.494 0.650 0.522 0.784 0.769 0.829
ShapesAll 0.773 0.768 0.058 0.615 0.720 0.778 0.925 0.455 0.046
SmallKitchenAppliances 0.707 0.643 0.336 0.357 0.480 0.405 0.101 0.913 0.914
SmoothSubspace 0.893 0.827 0.740 0.680 0.820 0.667 0.907 0.120 0.952
SonyAIBORobotSurface1 0.712 0.725 0.696 0.704 0.622 0.729 0.650 0.955 0.830
SonyAIBORobotSurface2 0.843 0.831 0.643 0.837 0.728 0.885 0.955 0.830 0.995
Strawberry 0.943 0.941 0.643 0.959 0.935 0.941 0.550 0.761 0.550
SwedishLeaf 0.790 0.792 0.088 0.701 0.706 0.830 0.562 0.626 0.783
Symbols 0.953 0.950 0.370 0.822 0.907 0.918 0.395 0.650 0.852
SyntheticControl 0.987 0.867 0.203 0.440 0.380 0.907 0.830 0.995 0.953
ToeSegmentation1 0.798 0.772 0.649 0.645 0.610 0.737 0.913 0.808 0.516
ToeSegmentation2 0.846 0.838 0.838 0.423 0.723 0.862 0.551 0.663 0.805
Trace 0.990 1.000 0.190 0.880 0.570 0.900 0.808 0.516 0.819
TwoLeadECG 0.931 0.904 0.500 0.969 0.651 0.848 0.859 0.174 0.611
TwoPatterns 1.000 1.000 0.255 0.496 0.964 0.562 0.667 0.562 0.626
UMD 0.972 0.993 0.792 0.806 0.701 0.854 0.680 0.766 0.539
UWaveGestureLibraryAll 0.916 0.891 0.138 0.529 0.948 0.845 0.974 0.780 0.928
UWaveGestureLibraryX 0.731 0.671 0.162 0.625 0.749 0.574 0.679 0.587 0.879
UWaveGestureLibraryY 0.645 0.606 0.149 0.439 0.671 0.523 0.880 0.679 0.587
UWaveGestureLibraryZ 0.659 0.615 0.129 0.566 0.658 0.523 0.805 0.880 0.679
Wafer 0.984 0.980 0.834 0.996 0.996 0.999 0.750 0.680 0.766
Wine 0.593 0.574 0.500 0.519 0.611 0.593 0.761 0.550 1.000
WordSynonyms 0.676 0.649 0.045 0.522 0.491 0.639 0.516 0.819 0.785
Worms 0.519 0.584 0.416 0.377 0.494 0.455 0.101 0.899 0.835
WormsTwoClass 0.636 0.623 0.429 0.571 0.597 0.610 0.109 0.101 0.899
Yoga 0.839 0.836 0.455 0.780 0.797 0.852 0.789 0.395 0.650
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