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ABSTRACT

Developing a contemporary optimal transport (OT) solver requires navigating trade-
offs among several critical requirements: GPU parallelization, scalability to high-
dimensional problems, theoretical convergence guarantees, empirical performance
in terms of precision versus runtime, and numerical stability in practice. With these
challenges in mind, we introduce a specialized truncated Newton algorithm for
entropic regularized OT. In addition to proving that locally quadratic convergence is
possible without assuming a Lipschitz Hessian, we provide strategies to maximally
exploit the high rate of local convergence in practice. Our GPU-parallel algorithm
exhibits exceptionally favorable runtime performance, achieving high precision
orders of magnitude faster than many existing alternatives. This is evidenced
by wall-clock time experiments on 4096-dimensional MNIST and color transfer
problems. The scalability of the algorithm is showcased on an extremely large OT
problem with n =~ 109, solved approximately under weak entopric regularization.

1 INTRODUCTION

The optimal transportation problem has long been a cornerstone of various disciplines, ranging
from physics (Bokanowski & Grébert, 1996; Léonard, 2012; Levy et al., 2021) to machine learning
and computer vision (Ferns et al., 2004; Pitie et al., 2005; Gulrajani et al., 2017; Genevay et al.,
2018). Traditional approaches (Pele & Werman, 2009; Lee & Sidford, 2014), while exact and
theoretically robust, encounter significant computational hurdles in high-dimensional settings. The
(re-)introduction of entropic regularized OT (EOT), as pioneered by Cuturi (2013), has mitigated
challenges in scalability by regularizing the classical problem, thereby enabling solutions via the
GPU-friendly Sinkhorn-Knopp matrix scaling algorithm. This advancement has yielded substantial
speed improvements, making it several orders of magnitude faster in high dimensions than traditional
solvers. However, EOT methods necessitate a delicate balance between regularization strength and
convergence speed, a trade-off that can compromise the precision of the solution.

Despite significant recent progress towards improving this trade-off, many state-of-the-art solvers
still struggle to outperform aggressively tuned Sinkhorn iterations in practice (Jambulapati et al.,
2019; Lin et al., 2019). While they offer superior theoretical guarantees, their practical performance
is often less compelling, particularly in terms of speed and scalability. Existing algorithms either
suffer from high computational complexity or fail to leverage modern hardware capabilities, such
as GPU parallelization, effectively. To bridge this gap, we develop a new algorithm that remains
numerically stable and converges rapidly even at extremely weak regularization levels, thereby
enhancing precision in practice. By simultaneously exploiting the inherent parallelism of GPUs and
superlinear local convergence of truncated Newton algorithms, our method scales effortlessly to
high-dimensional problems, offering a pragmatic yet theoretically sound solution to the OT problem.

Our contributions are as follows: (i) we develop a specialized (linear) conjugate gradient algorithm
for obtaining an approximation of the Newton direction for the EOT dual problem and analyze its
convergence properties, (ii) we use the approximate (truncated) Newton direction in conjunction
with a helper routine to develop a solver for the EOT dual problem and prove its superlinear local
convergence, as well as per iteration computational cost, (iii) we develop an adaptive temperature
annealing approach, based on the MDOT framework of Kemertas et al. (2023), to maximally
exploit this fast local rate, and finally (iv) present compelling empirical results via wall-clock time
benchmarking in a GPU setting against a large suite of alternative algorithms in n = 4096 dimensions.
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2 BACKGROUND AND RELATED WORK

Notation and Definitions. In this work, we are concerned with discrete OT. A,, C RZ, denotes
the (n—1)-simplex. The row sum of an n x n matrix P is given by 7(P) := P1 and the column
sum by ¢(P) := PT1. Given target marginals 7,c € A,, the transportation polytope is written
asU(r,c) = {P € RLS" | (P) = r,c(P) = c}. Division, exp and log over vectors or matrices
indicate element-wise operations. Vectors in R™ are taken to be column vectors and concatenation of
two column vectors x, y is (x, y). Elementwise minimum and maximum of a vector x is written as
ZTmin and Tyax. Matrix and vector inner products alike are given by (-, -). Ann X n diagonal matrix
with z € R™ along the diagonal is written as D(z). We write x?(y|z) for the x?-divergence given
by (, (y/x)°) — 1 > ||y — |°. For the square root of x2(y|x), we write x(y|z) with a slight
abuse of notation. The Shannon entropy of r € A, is denoted H(r) = — ", r;logr;. We write
Dxy(zly) = >, xilog(xi/yi) + >, yi — >, =i for the KL divergence between =,y € RZ,. We
denote LogSumExp reductions along the rows and columns of X by LSE,. (X)) := log (exp{X }1)
and LSE(X) := log (exp{X "}1).

2.1 OPTIMAL TRANSPORT AND ENTROPIC REGULARIZATION

We study the discrete optimal transport problem, formulated as the following linear program:

minimize P .C),
panmize, (B.C) ()

where we assume the n X n cost matrix has entries C;; € [0, 1]. Cuturi (2013) re-popularized EOT,
showing that entropic regularization can help quickly approximate the solution of (1) on GPUs:

Pmeing;?;?ec ) (P,C) - %H (P), )

where the regularization weight y~! € R is called the temperature. It can be shown with ease that
since the objective in (2) is strictly convex in P, problem (2) has a unique solution of the form

P(u,v;v) = exp{ul’ +1v' —C}. 3)

Using the form of the solution of (2), the following unconstrained dual problem can be solved instead:
minimize g(uw,v;vy) = P(u,v;7v);; — 1 —(u,r) — (v, c),

mininige g )ZZJ_< )i — 1= () = (v,¢) @

where we keep the constant —1 as a convention. Solving (4) given some initial u, v amounts to a
Bregman projection onto U(r, c) in the sense that P(u*,v*) = arg minpey(y o) DxL(P|P(u, v));
see derivations in Appx. A.1.2. Noting that V,,g = r(P) — r and V,g = ¢(P) — ¢, we write:

2, _ (D(r(P)) P
v 7= ( PT D(C(P))>2n><2n’ (5)

where the Hessian is positive semi-definite (PSD) with one zero eigenvalue.'

Related Work. The SK algorithm has long been known to enjoy an exponential convergence rate
for minimizing (4) (Franklin & Lorenz, 1989; Knight, 2008). However, at low temperatures, this
fast rate does not predict non-asymptotic behavior well due to a large constant. Altschuler et al.
(2017) provided a simple analysis, in which they proved a rate O(n?c~?) for the SK algorithm, where
(P —P*,C) < e. A simple routine for rounding near-feasible plans onto I/ (7, ¢) was introduced and
is now widely adopted. They also proposed a new algorithm, Greenkhorn, and showed a matching
complexity bound. Unlike SK, Greenkhorn scales one greedily selected row/column at a time,
which limits GPU utilization unless n is extremely large. The complexity bounds for Sinkhorn and
Greenkhorn were later improved to O(nzs*Q) (Dvurechensky et al., 2018; Lin et al., 2019). However,

our experiments suggest Sinkhorn typically behaves like O(s~1). Moreover, Kemertas et al. (2023)
showed it can enjoy better performance at lower temperatures if tuned.

'Since (P) = P1 = D(r(P))1 and ¢(P) = P"1 = D(c(P))1, we have VZg(1,—1) = 0.
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Dvurechensky et al. (2018) proposed an Adaptive Primal-Dual Accelerated Gradient Descent
(APDAGD) algorithm for solving the dual EOT problem (4). Lin et al. (2019) provided a refined rate

of 5(77,5/ 2¢=1) for APDAGD and proposed a generalization APDAMD, which applied mirror descent

to (4). The complexity for APDAMD was shown to be O(n?/c/¢), where ¢ € (0, n] is a constant.
Following Altschuler et al. (2017), Lin et al. (2019) measured speed in terms of the number of row/col
updates in their experiments (rather than wall-clock time) and only considered a strong regularization
(low precision) setting. Targeting higher precision, Jambulapati et al. (2019) proposed an algorithm
for the OT problem that is not based on entropic regularization, with complexity O(n2s~1). While
this rate is theoretically state-of-the-art, Jambulapati et al. (2019) noted that Sinkhorn iteration, when
aggressively tuned, outperforms all other methods empirically (including their own). Guminov et al.
(2021) proposed an Accelerated Alternating Minimization (AAM) algorithm, combining Nesterov’s
momentum and Sinkhorn-type block coordinate descent, with complexity O(n°/2~1).

While APDAMD applied mirror descent to (4), MDOT of Kemertas et al. (2023) applied it to (1) and
recovered connections to temperature annealing methods (see details in Sec. 2.2), such as those of
Schmitzer (2019) and Feydy (2020). For instance, Alg. 3.5. of Feydy (2020) takes a single Sinkhorn
update every time the temperature is decayed; while this can compute rough approximations quickly
at high temperatures, a single Sinkhorn update is insufficient for keeping the dual objective value in
check, so that their approach hits a precision wall as we empirically show; see also Xie et al. (2020).
Ballu & Berthet (2023) derive a similar algorithm, but they guarantee convergence by maintaining
a running average of plans P computed this way. While effective at low precision and easy to
implement on a GPU, this algorithm exhibits O(n?c~?2) dependence on error. Most closely related
to ours is the work of Kemertas et al. (2023), as we build on MDOT. In addition to the temperature
annealing framework, Kemertas et al. (2023) proposed an algorithm (PNCG) to minimize (4) at
each new value of the temperature, based on a non-linear conjugate gradient method (Fletcher &
Reeves, 1964). The approach introduced here has several benefits over PNCG, including added ease
of theoretical analysis, faster runtime in practice and minimal line search overhead. While second
order methods have been considered for OT (Mérigot, 2011; Blondel et al., 2018), they have not
been implemented on GPUs with strong empirical performance in high dimensions to our knowledge.
Indeed, Tang et al. (2024) also developed a 2nd order method recently, but their Hessian sparsification
strategy is more amenable to a CPU setting, and as such was only tested on CPUs for n = 784.

2.2 TEMPERATURE ANNEALING AS MIRROR DESCENT

A well-known strategy to deal with the difficulty of solving (4) under weak regularization is annealing
the temperature ' in (3) gradually towards zero. When viewed as mirror descent on (2), temperature
annealing strategies (e.g., see Schmitzer (2019)) amount to a particular initialization of the dual
variables (u, v) in successive instances of (4) given approximate solutions at prior v (Kemertas et al.,
2023). Each dual problem (4) at a given y(**1) for t > 1 is warm-started in some neighborhood of the
solution given some near-optimal 2z =(u®, v®)) € R?". The MDOT framework of Kemertas et al.
(2023) specifically initializes z(**1) via a Taylor approximation with respect to v under backward
finite differencing. Further, they proposed to use a more stringent tolerance O(y~?) for ||V g||, (given
some p > 1), whereas prior work used O(’y’l) (Altschuler et al., 2017; Lin et al., 2019). Their tuned
choice p = 1.5 was shown to improve performance under weak regularization.

The pseudo-code for MDOT is shown in Alg. 1, where some routines are defined with “---” as a
placeholder for extra parameters that may be required by specific implementations. Given v(*) in each
iteration ¢t > 1, the algorithm picks a tolerance €4 for the dual gradient norm (L4). Then, marginals
7, ¢ are smoothed in L5 for numerical stability or improved convergence by mixing in the uniform
distribution (with a combined weight of at most £4/2) to stay away from the boundary of U (r, ¢).
L6 initializes the transport plan P to be the independence coupling 7¢ ', i.e., the solution of (2) for
~v — 0 over U(7, ¢). In L7, minimizing (4) to £4/2 tolerance for the smoothed marginals guarantees
[IVg(2;7)|l; < ea by triangle inequality. Next, we add an AdjustSchedule routine in L8, whereas
Kemertas et al. (2023) used a fixed decay rate, setting ¢(*T1) < ¢(*). After the temperature decay
(L9), the dual variables are warm-started in L10 via an approximate 1st order expansion for the next
iteration. Finally, the plan as given by (3) is rounded onto (7, ¢) in L14 via Alg. 2 of Altschuler
et al. (2017). Then, given that | Vg(z;7¢)|, < 7; ' min(H(r), H(c)) the user is guaranteed error
(P — P*,C) < 2v; ' min(H(r), H(c)) in the worst case (assuming 7(P) = r or ¢(P) = c at loop
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termination). In Section 3, we develop and tune specific algorithms in tandem to carry out L5, 7 and
8 of Alg. 1 to maximize efficiency, and maintain GPU parallelization and numerical stability.

2.3 TRUNCATED NEWTON METHODS

For minimizing (4) in L7 of Alg. 1, .
we will rely on truncated Newton Algorithm 1 MDOT(C, r, ¢, i, 7, p > 1,4 > 1)

methods, which are briefly reviewed 1. ¢ « 1, done « false, YD =y A, gD = g, 7@ 0
here (see Ch. 7 of Nocedal & 1. while not done do

Wright (2006) and Nash (2000) for 3. done < ) = ~;

a survey). While Newton’s method c4 < min (H(r), H(c))/(v(t))p

for non-linear optimization seeks an
exact solution dj, of the linear sys- 7, ¢ < SmoothMarginals(r, c,eq4/2; - - )
if t = 1 then 20 « (log#,log &), z2(1) + 2(©)

tem V2g;, di, = —V gy, at each opti-
mization step k (typically combined 2() « BregmanProject(z®),y(®) C, 7 &, eq /2)
q“*tY) « AdjustSchedule(q™®); - - )

with line search or trust-region
,Y(t—i-l) — q(H'l)’y(t) A e

methods), truncated Newton meth-
ods find an approximate/inexact so- (t4+1) (1)

lution by “truncating” an iterative 10 20D 20 4 W (Z(t) - z(tfl))
solver of the linear system (LS), e.g., 11: t—t+1

a linear conjugate gradient (linear 12: end while

CG) algorithm. The particular ter- 13: (u,v) < 2=V, P < exp{ul,] +1,v7 —1C}
mination criteria for the LS solver 14: Output P <— Round(P, 7, ¢)

dictates the order of convergence;
more stringent criteria yields higher order of convergence (up to quadratic), but requires more
iterations for the LS solver (inner-most loop).

R A A S

In particular, define the residual ey, :== V2gy, dj, + Vg, of the system in step k for the approximate
Newton direction dy,. Given n, € (0, 1), the LS solver is terminated when

lexll <[Vl ©)

for some norm. If the Hessian is continuous in some neighborhood of the solution and we start
sufficiently close to the solution, we have ||Vgri1|| < (mx + o(1)) || Vgrl||. Then, choosing the
forcing sequence {n,} such that n, = O(||Vgx|"™") for r € (1,2), one obtains Q-superlinear local
convergence of order r assuming limy_,, 7 = 0 (Nocedal & Wright, 2006).

3 MIXING TRUNCATED NEWTON & SINKHORN FOR BREGMAN PROJECTIONS

This section is organized as follows. In Section 3.1, we first develop a technique for obtaining the
truncated Newton direction with convergence guarantees (Alg. 2) and introduce a helper routine (Alg.
3) to improve the convergence rate of this algorithm. In Sec. 3.2, we integrate this approach with
backtracking line search to arrive at a Bregman projection algorithm (L7 of Alg. 1). Its per-step cost
and local convergence properties are shown theoretically. Then, in Sec. 3.3 an adaptive temperature
decay schedule (L8 of Alg. 1) is proposed to maximally exploit the high rate of local convergence
and its use is empirically demonstrated. Lastly, in Sec. 3.4, we discuss precautionary measures for
numerical stability of this technique in practice via marginal smoothing as in L5 of Alg. 1.

3.1 THE DISCOUNTED HESSIAN AND THE BELLMAN EQUATIONS

Suppose we are interested in finding an approximate solution to the Newton system for the dual
(Bregman projection) problem (4) with a linear CG solver. In this section, we propose a particular
positive-definite (PD) approximation of the PSD Hessian in (5) for two reasons. First, although linear
CG should converge in theory despite the presence of a zero eigenvalue (Axelsson, 2003), infinitesimal
numerical errors along this zero-eigendirection, as well as other unknown near-zero eigendirections,
may compound and lead to numerical instabilities due to machine precision limits. Second, since our
PD substitute for the Hessian allows for the use of matrix inversion, this is convenient for obtaining
theoretical guarantees. This approach also yields connections to reinforcement learning that may be
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of separate interest. Henceforth, we define the p-discounted Hessian for p € [0,1):
D(r(P))  \pP )
v? = . 7
g(p) ( \/ﬁPT D(c(P)) @)
By the Gerschgorin Circle Theorem, all eigenvalues X;(V2g(p)) > (1—/p) min(7(P)min, ¢(P)min)
are positive, so that V2g(p) is invertible. The block matrix inversion formula yields:
- Fe(p)™ _ —Fe(p) 'R
v2 1 _ ( r /| r 3 c , (8)
=R eT Rl
where we used the following definitions:
P, =D(r(P))"'P, P,:=D(c(P))"'PT
Prc::P'r'Pm Pep = PP, &)
Fr(p) == D(r(P))(I — pPre), Felp) = D(e(P))(I — pPer).
Here, P,., P., Py and P,, are irreducible row-stochastic matrices since all their entries are positive
and we have P.1 = D(r(P))"'P1 = D(r(P))"'r(P) = 1 (likewise for P.).”> Now, multiplying
on the left by (8) both sides of the discounted Newton system V?g(p) d = —V g and re-arranging,
we arrive at the well-known Bellman equations central in reinforcement learning:
dy = Syp + pP'r'cdu7 dy = Syu + ch'r'd'm (10)
where P,.. and P, serve as “transition matrices”, and “reward vectors” are given by
Suv = D(r(P)) M (P) Vog — Vug),  Svuw=D(c(P)) (P Vug—Vug). (11
That is, the discounted Newton direction d = (d.,, d,,) corresponds to the fixed point of the Bellman
equations (or, “state-value function” of the finite Markov reward processes) in (10) and can be written
as two n-variable PD linear systems rather than a single 2n-variable PSD linear system. Further,
without loss of generality, assuming that V,,g = 0 (or equivalently ¢(P) = ¢, for example, following

a single Sinkhorn update) yields a more intuitive understanding and a practical advantage. Using the
form of the inverse discounted Hessian in (8), it can be shown that in this case (10) reduces to:

dy = (r/r(P)— 1)+ pPredy, dy = —Pedy, (12)
where the second system is solved via a single matrix-vector product (effectively for free), thus reduc-
ing the problem further to a single n-variable PD linear system. Moreover, an intuitive interpretation
of the reward vector emerges, as the system now assigns a reward r; /r(P); — 1 to row index (state) i.
Next, we provide a theorem on the sufficiency of solving the discounted Newton system as a proxy
for the undiscounted system (see Appx. A.1.3 for a more technical version of the following).
Theorem 3.1 (Forcing sequence under discounting). Assuming ¢ = ¢(P) and d.,, = — P.d,,, define
residuals e, (p):=Fy(p)dy + Vg (cf (12)), and e .= V?g d + Vg (i.e., the Newton residual). For
every 7] < n/2, 3pg € [0, 1) such that ¥p € [po, 1],

lew(p)lly <@ Valy = llelly <nlVyll; - (13)

In other words, discounting can be adopted while still enjoying the local convergence guarantees of
truncated Newton methods (discussed in Sec. 2.3) for the original problem.

To find a suitable discount factor, we propose Algorithm 2, which anneals 1 — p, approximately
solving a sequence of linear systems to satisfy the forcing inequality (6). Note that CG in L3 is
terminated when the L; norm of the residual is below 77 = 7/4. While the specific selection 77 = 7/4
in L3 is only for simplicity, the decay factor 4 in L4 minimizes a theoretical upper bound on the
number of operations until convergence (see proof of Thm. 3.2 in Appx. A.1.4). The following
provides a rate on the overall cost of obtaining the truncated Newton direction with this approach.

Theorem 3.2 (Convergence of Algorithm 2). Suppose 7(P)min > €4/(4n) given eq > 0 and each

step of Alg. 2 runs diagonally-preconditioned CG initialized with dSLO ) =0. Alg. 2 terminates in

(o [P e
O( ¢ T lr(P)—rl, %% ) (9

operations, where )y < 1 is the 2% largest eigenvalue of Py and p < 1 its smallest diagonal entry.

We refer the reader to Appx. A.1.3 for an intuitive description of the process represented by the stochastic
matrices Pr. and P.r, and their technical properties.
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The proof of this theorem uses (i) the O(v/k)  Algorithm 2 NewtonSol 2 P
convergence of linear CG (Shewchuk, 1994), gorithm 2 NewtonSolve(Vug, Pre, r(P),n)
i p0,dy + —D(r(P)) " Vauyg

where condition number x = O((1 — p) 1)
while || F.(1)dy + Vugll, > n([Vgl|; do

in our setting, and (ii) an observation
from the proof of Thm. 3.1 that d,, < LinearCGSolve(F.(p), —Vug,1/4)
p1—(1—p)/d

(1-p)~t=0((1 — X2)7!) at termination

in the worst-case. However, as we discuss in end while
more detail and validate empirically in Appx. ~ 6: Output d,,
F, this worst-case dependence on (1 — \y) ™1
can be overly pessimistic; (1 — p) can be
much better behaved than the spectral gap in
practice. In other words, the Newton system
can be discounted more aggressively than u < u + logr — logr(P)

the worst-case analysis allows, thereby mit- v + loge — LSE (ul] —~0C)

1
2
3:
igating possible large values of (1 — Xo)~ L. 4. logr(P) + u+ LSE,(1,v" —~C)
5
6

AN AN

Algorithm 3 ChiSinkhorn(u, v,v,C,r, ¢, 7(P), €y )
: while x*(r|r(P)) > ¢, do

Furthermore, the convergence of CG can be - end while

much faster when preconditioned eigenval- . Output u, v, 7(P)
ues are tightly clustered on R (Nocedal &
Wright, 2006). The rate in (14) captures this added efficiency only for the case when P,.. ~ I so that
its smallest diagonal entry p ~ 1; for example, if plan P is approximately a one-to-one mapping as
in the Monge discrete matching problem (Brezis, 2018).

Next, to control the possible dependence in (14) of the ratio x(7|r(P))/ ||r(P) — r||, on eq, we
propose to run Sinkhorn iteration before Alg. 2 is called until x(r|r(P)) is suitably bounded. Given
dual variables (u, v) and current row sum 7 (P) where ¢ = ¢(P) by assumption, Alg. 3 performs
this auxiliary task while maintaining ¢ = ¢(P).
Lemma 3.3 (Convergence of Algorithm 3). Assuming that ||r(P)/r|| ., < ocoand ||r/r(P)||,, < oo,
Algorithm 3 converges in O(n?/e,) operations.

3.2 PROJECTING ONTO THE FEASIBLE POLYTOPE

Combining Algorithms 2 and 3 with backtracking line search, we arrive at the TruncatedNewton-
Project algorithm shown in Alg. 4 for solving (4). The choice of 7 in L5 and the requirement that
2(rr(P)) < 5(21/5 by choosing €, = 5(21/5 in L4, to control the ratio in (14), together yield the
following corollary of Thm. 3.2 and Lemma 3.3 (see proof in Appx. A.1.5).

Corollary 3.4 (Per-step Cost of Algorithm 4). If the backtracking line search in Alg. 4 converges

in S iterations, then an iteration of Alg. 4 costs O(n2(S + 552/5(1 — X2)Y/2)) operations, where
Ao < 1 is the 2nd largest eigenvalue of Py defined as in (9) and evaluated at u, v (cf. (3)).

In the next section, we outline an adaptive temperature annealing strategy to minimize the added cost
of line search by initializing close to the solution. First, we pause for the next theorem, showing that
TruncatedNewtonProject enjoys local quadratic convergence if n = O(||Vg||;) as in L5 of Alg. 4.

Theorem 3.5 (Per-step Improvement of Algorithm 4). Given a descent direction d = (do,, — Ped.,)
such that |||, = ||V?grd + Vg Hl <n||Vygklly, let o € (0, 1] be the step size found via backtrack-

ing line search in the k'" step of Alg. 4. Then, Vgi11 = Vg(u + ady, v — aP.dy,) satisfies
IVgesally < (1= a+an) [|Vgel, + ava OV} (15)

The result differs from typical quadratic convergence results in two important ways: (i) we did not
assume a Lipschitz Hessian, but instead leveraged the Armijo condition and the specific form of our
descent direction, and (ii) we bounded the L; norm of the gradient (rather than L5), which is more
commonly used in optimal transport algorithms as stopping criteria. Given (15), we select n in L5
of Alg. 4 with the local quadratic rate in mind, but avoid over-solving the system when ||Vgl||, is
already close to the target £4 by taking 7 to be the maximum of ||Vg||; and 0.8¢4/ ||V g]|;-

3.3 INITIALIZING NEAR THE SOLUTION VIA ADAPTIVE MIRROR DESCENT

In this section, we outline a practical strategy for initializing the dual problem (4) sufficiently near
the solution so that (i) the cost of line search is minimized (o = 1 is almost always admissible),
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Algorithm 4 TruncatedNewtonProject(u, v, vy, C, 7, ¢, €q)

I: v« loge — LSE.(ul,] —~0O) > Ensure ¢(P) = c.
2: logr(P) < u + LSE, (1,07 —~C)
3: while | Vg, = ||r — r(P)||; > eq do

4 u, v, 7(P) + ChiSinkhorn(u,v,~,C,r, c,r(P), 5(21/5) > Choosing ¢, = 52/5.
5. < Vgl v0.85/ |Vl > Expect [Vgei1 |, < 11Vorl,.
6: dy, < NewtonSolve(Vyg, Pre, 7(P),n) > See Algorithm 2.
7: d, + —P.d, > Asin (12).
8: a1 > Initial guess for step size.
9: log ¢(P) < v + ady, + LSE.((u + ady,)1,) —y0)
10: while ||c(P)||; — 1 > 0.990(—V g, d,,) do > Armijo condition. See Appx. A.1.6.
11: a <+ 0.5a > Backtracking line search.
12: log ¢(P) + v + ady, + LSE.((u + ady,)1,) —y0)
13: end while
14: U U+ ady, v — v+ ad,
15: v < v+ loge — loge(P) > Ensure ¢(P) = c.

16:  logr(P) < u+LSE,(1,v" —~0O)

17: end while

18: u < u +logr — logr(P) > Since log r(P) is readily available, take a Sinkhorn step.
19: Output u, v

and (ii) the last term in (15) is negligible. In Table 1, we observe that with a sufficiently slow fixed
temperature decay schedule (i.e., setting ¢®**) < ¢(*) in L8 of Alg. 1), the extra cost of line search
(as well as ChiSinkhorn) disappears almost entirely (given small enough v(1)). However, with too
slow temperature decay schedules (g too close to 1), the overhead due to relatively costly LSE
reductions (in lines 1, 2, 9 and 16 of Alg. 4) may slow down the overall algorithm (see ¢ = 2!/% in
Table 1). To eliminate the need for tuning ¢, we develop an update rule to adjust the schedule as in L8
of Alg. 1; we seek to minimize the number of mirror descent steps while staying in the superlinear
convergence zone for consecutive instances of problem (4). To this end, we first define the following
parameter of interest, which is the ratio of the actual reduction in gradient norm to the predicted
reduction given by (15) for « = 1 (in the ideal case, dropping the last term) at step k of Alg. 4:

5. oz 1998l = 9001l
(=) Vol

This formula for dy, is inspired by trust-region methods, which update the trust-region size based on

the ratio of actual to predicted decrease under a model of the objective (rather than the gradient norm
as we use here) (Nocedal & Wright, 2006). Let zﬁgn be the smallest d;, among the iterates of Alg. 4

at step ¢ of Alg. 1. In L5 of Alg. 1, we heuristically set
@ (@) i 6, > 5/4
gD — /g ir §0) <45

(16)

q(tH) — q(t) otherwise.
q 1/8 1/4 1/2 1 2 :
Subroutine 2 2 2 2 2 Adaptive
NewtonSolve 1703 1592 1696 2108 3213 1501
Line Search 8 8 12 50 236 8
ChiSinkhorn 8 8 8 8 96 8
Mirror Descent 104 52 26 13 7 30
Total (operations) 4150 2993 2518 2898 4212 2409
Total (seconds) 266 182 146 1.67 2.39 1.36

Table 1: Breakdown of number of O(n?) operations per subroutine and total wall-clock time for the
upsampled MNIST dataset (n = 4096) with L, distance cost. Alg. 1 is called with 7; = 2°, ¢ = 218
and p = 1.5. For the adaptive approach, ¢ = 2 initially. Results show median over 60 problems.
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Figure 1: Ratio d;, of actual to theoretically predicted reduction in ||V gy ||, per step for fixed (left) and
adaptive (right) temperature decay (initialized with ¢(*) = ¢). Each d}, is the median at a given iter. ¢
of Alg. 1. Shaded areas show 80% confidence intervals around median over 60 random problems from
the upsampled MNIST dataset (n = 4096) with normalized L; distance cost ( max; ; |C; ;| = 1).

In Fig. 1 (left), we show that with a sufficiently slow fixed schedule, &, typically remains at or
above 1 throughout the execution of Alg. 1. Fig. 1 (right) further confirms that the adaptive update
rule arrives at such a schedule regardless of the initial value of ¢(!), thereby showing its utility in
eliminating the need for tuning. Table 1 verifies that the schedules found by the adaptive updating
perform similarly to the best fixed schedule across OT problems. Section 4 details the experimental
setup here, and further adds benchmarking against a suite of alternative algorithms in the literature.

3.4 ASYMMETRIC MARGINAL SMOOTHING FOR NUMERICAL STABILITY

Recall from (9) the form of the coefficient w,

matrix [5.(p) = D(r(P))(I — pPrc) of the  Total cost 025 0.35 045
n-variable PD linear system that we are in- -

terested in solving. Since the smallest diago- Median (ops.) 3540 2341 2414
nal entry of F.(p) can be almost as small as 90th %ile (ops.) 7810 3172 3156
(1 — p)7(P)min in the worst case, diagonal Median (sec.) 2.14 139 141
preconditioning used in Alg. 2 may cause nu- 90th %ile (sec.) 494 192 1.92

merical instabilities when solving the linear
system (due to infinitesimal entries in r(P)
for p =~ 1). To this end we require that, after
smoothing, 7, is bounded away from zero, and find that running Alg. 3 in advance to bound
X2 (7|r(P)) (i.e., the variance of 7/7(P) — 1) is sufficient for stable behavior in practice. Since
log-domain Sinkhorn updates to ensure ¢(P) = ¢ are numerically stable (Feydy, 2020), we allocate
our “smoothing budget” £4/2 mostly for the row-marginal r. Specifically, in L5 of Alg. 1, we set:

Table 2: Comparison of median and 90th percentile
performance for varying smoothing weight w;..

7 < (1 — wpeq)r + (wreq/n)1, €+ (1 —weea)e + (weea/n)1,
where w,. + we = 1/2 and w,. > w,. This is in contrast to the more standard symmetric smoothing
wy = we (Dvurechensky et al., 2018; Lin et al., 2019). We repeat the experiments in Table 1, but this
time ablating w,. (using the adaptive schedule introduced in Sec. 3.3); Table 2 confirms empirically
that asymmetric smoothing improves both stability and median performance of the overall algorithm.

4 EXPERIMENTS

In this section, we first provide the details of the MNIST experiments in Fig. 1 and Tables 1-2. Then
we describe an additional color transfer problem set that we use for wall-clock time benchmarking of
the combined MDOT-TruncatedNewton algorithm. Our setup follows that of Kemertas et al. (2023).
All experiments were run on an NVIDIA GeForce RTX 2080 Ti GPU with 64-bit precision. Appx.
E provides benchmarking on 10 additional datasets from Schrieber et al. (2017), showing similar
results with confidence intervals and including operation counts alongside wall-clock time.

4.1 EXPERIMENTAL SETUP

Upsampled MNIST. Each image is a probability distribution over pixels, with probabilities given by
Ly-normalized intensity values. The cost matrix C'is fixed across OT problems and constructed from
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Figure 2: Error vs. wall-clock time for various algorithms. Each marker shows the excess cost and
time taken (median across 18 problems) until termination at a given hyperparameter setting, followed
by rounding of the output onto U (7, ¢) via Alg. 2 of Altschuler et al. (2017). Upsampled MNIST
(top) and color transfer (bottom) problem sets (n = 4096) using L; (left) and L2 (right) distance
costs. MDOT-TruncatedNewton outperforms others by orders of magnitude at high precision and

exhibits much better practical dependence on error than best known theoretical rates 6(5_1).

pairwise L; and L3 distances between pixel locations in 2D space. Scalar division by the max. entry
ensures max;; |C;;| = 1. MNIST images are upsampled to 64 x 64 resolution for benchmarking
on higher dimensional problems (n = 4096). In contrast, Tang et al. (2024) benchmarked their
CPU-based algorithm on original MNIST images (n = 784). Luo et al. (2023) ran their PDASMD
algorithm on downsampled MNIST images for n = 100 at most; their code also runs on a CPU and
includes an inner for loop of 7 iterations which limits parallelization.

Color Transfer. We define the color transfer problem with all marginals set to the uniform distri-
bution over A,. The cost matrix C' varies across problems and is constructed from pairwise L;
and L3 distances between RGB values in 3D space. Scalar division by the max. entry ensures
max;; |C;;| = 1. We use the 20 images provided by Kemertas et al. (2023), which were generated
by prompting DALL-E 2 to produce vibrant, colorful images with intricate details. These are down-
sampled to 64 x 64 resolution for benchmarking on n = 4096 problems, except in the case of Fig 3,
where the scalability of our algorithm is visually demonstrated on the original 1024 x 1024 images
(n =~ 10) on an individual sample problem.

4.2 WALL-CLOCK TIME BENCHMARKING

While theoretical analysis and computational complexity provide valuable insights, it is the practical
performance, measured in wall-clock time, that often determines the viability and adoption of an
algorithm. In this section, we present wall-clock time benchmarking of the proposed algorithm
against a broad range of available alternatives. Here, we compare to Alg. 3.5 of Feydy (2020), the
Mirror Sinkhorn (MSK) algorithm of Ballu & Berthet (2023), Sinkhorn iteration with typical and
stringent tolerance settings (p = 1 and p = 1.5 resp. for MDOT-Sinkhorn called with ~; = +¢), the
APDAGD algorithm of Dvurechensky et al. (2018), the Mirror Prox Sherman Optimized algorithm of
Jambulapati et al. (2019) and the AAM algorithm of Guminov et al. (2021). We omit comparison to
APDAMD (Lin et al., 2019), APDRCD (Guo et al., 2020) and PDASMD (Luo et al., 2023), as they
exhibit significantly longer convergence times in our high-dimensional, GPU-parallel setting. See
Appx. D for sources and configuration details. In Appx. C, we also perform experiments with varying
problem size n and show that the dependence is no worse than O(n?) for the problems considered.
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Figure 3: The MDOT-TruncatedNewton algorithm applied to a large-scale color transfer problem on
1024 x 1024 images (n = 22°). For this visualization, the cost matrix is given by the L3 distance in
RGB color space, normalized so that max;; |C;;| = 1. Final temperature is 1/7¢ = 271°. Source
images (top row) were generated with DALL-E 2. This figure is best viewed digitally.

In Fig. 2, we observe that on a 2018-era GPU, MDOT-TruncatedNewton typically solves n = 4096
dimensional problems in 1-5 seconds to 6-decimal precision, demonstrating numerical stability up to
9-decimal precision across a range of realistic OT problems. In the highest precision range, it is more
than 10 x faster than the best alternative, MDOT-PNCG of Kemertas et al. (2023). In our implemen-
tation, we also include a scalable O(n) memory footprint version of MDOT-TruncatedNewton, which
computes via the PyKeOps package of Charlier et al. (2021) the cost matrix C' and the matrix P
on-the-fly every-time they are used in Alg. 4. As evidenced by Fig. 3, this implementation can solve
very high dimensional OT problems (n =~ 10°) to high precision. It leaves a memory footprint of
just = 600 MBs, but takes ~ 10 hours. Regardless, we believe that this is an important step towards
high-precision discrete OT in very high dimensions.

5 CONCLUSION

In this work, we set out to design a modular, practical algorithm to exploit the superlinear convergence
of truncated Newton methods in weakly-regularized EOT. To improve the conditioning of the dual
Hessian, rather than amplifying its diagonal entries as in Tikhonov regularization, we dampened
off-diagonal entries (discounting) with inspiration from reinforcement learning. Then, Alg. 2
was presented for approximately solving the modified Newton system. This method of Hessian
modification enabled a superlinear local convergence rate in terms of the L; norm of the gradient
for the custom truncated Newton routine (Alg. 4) that used Alg. 2. We additionally introduced
precautionary measures to improve the numerical stability of Alg. 4, which is crucial for reaching
high precision. Lastly, Alg. 4 was integrated into a temperature annealing framework, MDOT
(Kemertas et al., 2023), where adaptive temperature updates ensured superlinear convergence is
maintained, a hyperparameter (g in Alg. 1) is eliminated and line search overhead is minimized in
practice. We implemented the resulting algorithm on a GPU and showed that it outperforms many
recent algorithms by orders of magnitude in n = 4096 dimensions, exhibiting fast empirical rates
ranging from O(¢~'/%) to O(¢~'/2). Furthermore, as visualized in Fig. 3, the algorithm holds
potential to effortlessly scale to much larger problems (n =~ 10).

One avenue for future research is the development of a variant of Alg. 4 with a global convergence
rate, which may yield an explicit rate in terms of the error € for the overall algorithm. Another
direction could be a stochastic generalization of Alg. 4 that leaves an O(nm) memory footprint,
where m € [1,n] is a user-defined parameter given hardware constraints. This added flexibility may
enable a better trade-off between runtime and memory footprint in very high dimensions (n > 1000).

10
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A APPENDIX

A.1 PROOFS OF THEORETICAL RESULTS

A.1.1 ADDITIONAL NOTATION

Here, we describe additional notation used in the proofs that follow. Given a column vector

z cR"” > =T Ax. The operator norm of a matrix is denoted
[All, , = suPgern |Az||, / [[z]l,. To mean [[A]|,, ,, we use the notation || A|[ . For an element-wise

norm, we write [[vec(A)]|,,, where vec(A) is the vectorization of the matrix A. A vector formed by
diagonal entries of a matrix P is denoted diag(P).

A.1.2 DERIVATION OF THE EOT DUAL (4)

In this section, we provide the derivations for (3-4). Recall the EOT primal problem given by (2):

minimize  (P,C) — lH(P)
PelU(r,c) Y

Observe that we can replace negative Shannon entropy (P, log P) in (2) with the KL divergence
(written without assuming P € A,,«,,) to the uniform distribution U = ilnxn:

DkL(P|U) = (P,log P) — (P, log —1 ZPU
= (P,log P) — Z i+ 2logn + 1.

That is, replacing the negative Shannon entropy term with the above in the primal objective only
increases the objective by a constant 2 log n on the feasible set, since Z P;; =1forall P € U(r, c).
For convenience, we drop the 2log n term and take the primal problem given by

1
minimize P,C)+ — | (PlogP) — Pi+1
PeU(r,c) < ) Y Z !

To derive the dual problem, we write the (scaled) Lagrangian with dual variables u, v € R™ corre-
sponding to equality constraints r(P) = r and ¢(P) = ¢:
L(P,u,v) =v(P,C) + (Plog P) = >  Pij + 1+ (u,r — r(P)) + (v,c —¢(P)).  (I7)
ij

Taking the first derivative with respect to the ij*" entry P;j of P:

oL
78P” = ")/CZJ + 1 + IOgPZ’]’ —1- U; — ’U]'
= vCy; + log Pjj — u; — vj.
Setting the partial to 0:
oL
TPJ =0 < IOg.PZ'j = U, +’Uj — ’YCij

< P = exp{u; +v; —7Cj;},
where the last equation is the same as (3). Now, plugging the above P into the Lagrangian (17):
—g(u,v) =v(P,C) 4+ (P,ul’ +1v' — Z i+ 1+ (u,7 —r(P))+ (v,c— c(P))
= (u, P1) + (v, PT1) — ZPU +1+ <u,r —r(P)) + (v,c—c(P))
j

=1- ZP(U,’U)ij + (u,r) + (v, c).

14
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Maximizing —g(u, v) with respect to the dual variables, we obtain the dual problem (4):

minimize g¢(u,v) = P(u,v);; — 1 — (u,r) — (v, c),
minimige )%}( Jis — 1= {u,r) — (v,0)

where we kept the constant —1 as a convention.

As an aside, note that if one assumes instead an L; normalized form for P via the softmax function
(given that the feasible set (7, c) is a subset of the simplex):

by, — P —50,)
T rexplug 4+ v — yCij}

one obtains an alternative form for the dual objective by plugging the above into the Lagrangian (17):

g(u,v) = logZexp{ui +v; —vCi} — (u, ) — (v, ¢).
ij
Both the sum-of-exponents and log-sum-of-exponents forms of the dual appear in the literature; see
for instance Altschuler et al. (2017); Dvurechensky et al. (2018); Lin et al. (2019) for the former and
Lin et al. (2022) for the latter. Both objectives ¢ and § have the same value whenever P(u,v) as
defined in (3) is on the simplex, since z — 1 = log z = 0 for z = 1, which is why the constant —1 in
(4) was kept as a convention.

Lastly, we show that up to a constant shift, the objective (4) is equivalent to the Bregman projection
objective in the problem

minimize Dk, (P|P(u,v)),
Pel(r,c)

where u, v € R™. Indeed, given any P € U(r, ¢) and some initial u,v € R™, where P(u, v) need
not be on the simplex:

Dk (P|P(u,v)) = —H(P) — (P,log P(u, v)) + Z P(u,v)i; — 1

=—H(P)— (Pul” +1v" —4C) + Y P(u,v);; — 1
ij

=7(P,C) — H(P) = (u,P1) — (v, PT1) + Y P(u,v);; — 1

=P, C) = H(P) = (u,r) = (v,¢) + ZP(%U)U -1

where the first two terms are constant in u, v. Dropping these, we recover (4) for the Bregman
projection problem.

A.1.3 PROOF OF THM. 3.1

We start this section with an intuitive example describing the role of the row-stochastic matrix Pp..
that was defined in (9). The discussion carries over to P, by symmetry. Next, we will list some
mathematical properties that will be useful in the proofs that follow.

Suppose r and c are disjointly supported on two sets of particles 1, - ,Zp, and Yp, 41, ,Yn
respectively, and let no := n — nq. That is, an n; X ng transport plan P € U(r,c) maps dis-
tributions over « and y particles. Recall the definition of P.. = P,.P. in (9) as a product
of P, =D(r)"'P € RZY™ and P, = D(c)" !PT € R12*™. Given some initial distribution
q € A, over z-particles, P,/ ¢ € A, is a distribution over y-particles after transportation accord-

ing to P. Indeed, we can show easily that P,/ q is on the simplex:
1TP7,Tq = 1TPTD(r)_1q = rTD(r)_lq =1'g=1.

Similarly, P} P,l ¢ = P,l.q € A,, is again a distribution over x-particles after transporting back

according to P. This is the stochastic process represented by P,... Given any initial distribution g,

15
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the process converges to the row-marginal r of P if P,.. is applied repeatedly (as the next lemma
shows). The second largest eigenvalue A, of P,.. determines how quickly this convergence occurs

(see Lemma A.3 below).

Now, we list useful technical properties of P,.. in our setting. Analogous claims hold for the stochastic

matrix Pp, and the column sum ¢(P) by symmetry, but are omitted for brevity.

Lemma A.1 (Properties of P..). Given a matrix P € R™*™ with strictly positive finite entries define

Pye = P.P. = D(r(P))"*PD(c(P)) "1 P". The following are true:

1.

4.
5.

P, is an irreducible row-stochastic matrix. Its second largest eigenvalue \s is strictly less

than one.

The stationary distribution of Py is v(P).

P, is reversible in the sense that D(r(P)) Py = P,l.D(r(P)), which implies all eigen-

values of Py are real.

PrcD(r(P))~! =D(r(P) "' Pl

Given some p € [0,1), we have (I — pPre) *D(r(P))~! = D(r(P))~Y(I — pP,l.) "%

Proof. We prove each claim in order.

1.

The vector of ones is a right-eigenvector of P,.. with eigenvalue 1:
Pl =D(r(P))"'PD(¢(P))"'PT1

=D(r(P))”' PD(c(P)) " 'c(P)
=D(r(P))"'P1
=D(r(P))"'r(P)

=1.

Since all entries of P are strictly positive, the same is true of P,... The claim follows.

. The vector r(P) is a left-eigenvector of P,.. with eigenvalue 1:

r(P)" Pre = 7(P)'D(r(P))"'PD(c(P))"'P"
=1"PD(¢(P))tPT
=¢(P)'D(c(P))'PT
—17pT
=r(P)".

. The claim holds since

D(r(P))Pre = D(?“(P))D(?“(P))_1PD(C(P))_11’3T
= PD(c(P))"'P
= PD(c(P))"'P'D(r(P))"'D(r(P))
= P,.D(r(P)).

. The claim follows similarly as the previous claim.

. First, notice that Claims 3 and 4 apply analogously to all powers of P_._ for [ > 0. Indeed,

for Claim 4 we have:

P..D(r(P))"!' = PI.'P..D(r(P))!
= P.'D(r(P) "' Py, (by Claim 4)
= PP .D(r(P))~ 1PT
= P, *D(r(P)) (P)? (again, by Claim 4)
=D(r(P) Y (P (by repeated application of Claim 4)

16
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Then, from the Neumann series (I — pPr.) " 'D(r(P)) ™' = (372, p' PLo)D(r(P)) 71,
we obtain the claim by applying the above equality to each element of the sum. |

Lemma A.2 (Properties of the coefficient matrix Fy.(p)). Let p € [0,1), Ppc be a row-stochastic
matrix with strictly positive entries and min; r(P); > 0 for all i € [n]. Given an n X n matrix
F.(p) =D(r(P))(I — pPrc), the following hold true:

(,O) isa symmetrlc pOSlth@ deﬁmte matrix.
* /\mWX( ( )) S (1 + p)T(P)Inax
( ( )) 2 (1 - p)r(P)min-

Proof. Observe that

° A1’1’1111

Fu(p) = D(r(P))(I — pPre) = D(r(P)) — pPPs
— D(r(P)) - pPD(c(P)) "' P,

is a sum of two symmetric matrices, which is also symmetric. The eigenvalue bounds follow from the
Gerschgorin Circle Theorem. Since the smallest eigenvalue is positive, Fi.(p) is positive-definite. W

Before we move on to the proof of Thm. 3.1, we state the following Lemma, which follows
immediately from Thm. 2.7 of Fill (1991) given that P,.. is reversible by Claim 3 of Lemma A.1.

Lemma A.3 (Convergence to the stationary distribution under Py..). Given some r € A,
|(P)ir —r(P Hl N (el (P)), (18)
where Ao < 1 is the second largest eigenvalue \s of Pyc.

Now, we provide a more formal version of Thm. 3.1 presented in the main text followed by a proof.

Theorem 3.1 (continuing from p.5). Assuming ¢ = ¢(P) and d.,, = —P.d,, define residuals
ew(p)=Fp(p)dy + Vug, and e = V2g d + Vg. Further, let Ay € (0,1) be the 2nd largest eigen-
value of Pre and ¢ == ||Vyg|, /x(r|r(P)) < 1. Forany (3 € (0,1), suppose:

max <0,1—E\12(_1/12);{)) <p<l, 19)
lewlo)l, < T3 01Vl @0)

where K = (fn < 1. Then,
lel, = leu ()l < 7194l e

Proof. To establish necessary conditions for bounding ||e||,, first, we write it out explicitly:

e=V’gd+ Vg
(R e (@) + (725)
- <D(]";(T f(’P > ( gcu u) ( > (by construction)
_ (D(”‘(P PFe u) n ( 9) (since D(¢(P))P. = PT by definition.)
_ (D( r(P))( 1 Py du) o (Vu 9)7 22)
4

17
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which proves the equality on the LHS of (21), where the last equality holds given the definitions
ew(p)=Fr(p)dy + Vyg and Fy.(p) = D(r(P))(I — pPrc). Hence, bounding ||e,(1)]|; suffices.
Now, given the definition of e,,(p) and the invertibility of F,.(p) for p < 1 by Lemma A.2, we have:

du = Fr(p) " (eu(p) = Vug).
Plugging into the top half of (22), we observe that:

eu(1) = Fr(1)Fr(p) " (eu(p) = Vug) + Vaug
= I(p)eulp) + (I~ 1(p))Vug,
where we defined I(p) := F,.(1)F,(p)~'. Then, we have

lealy < [ 70|, lewlp)lly + |[( = () Vs (23)
First, we prove that the operator norm Hf (p) H <2.
1

1(p) = D(r(P))(I = Pre)(I = pPre) ' D(r(P))~"
=1~ (1— p)D(r(P))Pre(I — pPre) ' D(r(P)) "
=I1—(1-p)P(I-pP.)"", (24)

where the last equality follows from claims 3 and 5 of Lemma A.1. Recalling that ||A||, is the
maximum absolute column sum of matrix A:

|Tw)|, <1+ = |PLl, =P,
=1+ (1—p) (I = pPe) ",

1

<14+(1-p Zp| ARLIR

=0

=2. (since P!, is a stochastic matrix for all [ > 0)
Hence, (23) simplifies to
lea(ll, < 2llew@lly + | (1 = T(p)Vag| - ©5)
Next, we turn to the second term on the RHS:
(I =1(p))Vug = (1 - )PT (I = pPe) ' Vug (From (24))

Zp PTH—I )—’I”)

Zp< — (P r )

where the last equality is due to the fact that 7(P) is the stationary distribution of P,.. by Claim 2 of

Lemma A.1. Then,
( PT )l+1 )

( PT)l+1r)

| =T(o)vug|| <

1

Zp

1

—p) Z PN X (e (P)) (By Lemma A 3)
= L2222 (oo

18
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Plugging this bound back into (25) and continuing with the main conditions given in the theorem:

1—p)A
lew(Dll < 2llew(l + =22 x(rir(p)
PA2
(1—p)Ao . .
<1 -pB)n|Vyl, + ﬁx(ﬂr(P)) (Since (20) holds by construction)
— pA2
< (1 -=pB)n|IVyll, + Bn1Vyll, (Since (19) holds by construction)

=1Vl

which concludes the proof. Above, the parameter 3 € (0,1) controls a trade-off between how
precisely the discounted system is solved and how aggressively the original system is discounted. In
Algorithm 2 of the main text, § was fixed at 1/2 for simplicity. Also, for intuition on the effect of Ao,
observe that the second term vanishes as Ay — 0 (if P,.. mixes quickly) so that the Hessian can be
discounted more aggressively with a smaller p. As we see next, this improves our guarantees on the
condition number of the linear system. |

A.1.4 PROOF OF THM. 3.2

Lemma A.4 (Spectrum after preconditioning). Let Fy(p) :== M ~/2F,(p)M~'/2 be the diagonally
preconditioned coefficient matrix, where M = D(diag(F,.(p))). Further, let p = dlag( c) be the

diagonal entries of the stochastic matrix P, € RZ5"™. Then, eigenvalues \;(p) of F,,( ) satisfy

1-— min 1- min .
_p( [ )S)\z‘( )<1+7( fimin) Vi € [n] (26)
1—- PHmin 1- PHmin
)\max (P) 1- Hmin 2
=—F—=<2 min < 27
0= Nl St 1—p e

Proof. The proof of (26) follows straightforwardly from the Gerschgorin Circle Theorem. Due to
diagonal similarity, the spectrum of F.(p) coincides with that of Fy.(p) = M ~1F,.(p). Clearly,

diagonal entries of }7',, (p) all equal to 1, so that all Gerschgorin disks are centered around unity. Then,
all eigenvalues must be inside the biggest disk, which contains all of the smaller disks. First, consider
row i of Fr.(p) = D(r(P))(I — pPre):

D 1E(p)ij| = r(Pip(1 — i)
J#i
Since M;; = Fr.(p)ii = r(P);(1 — pu;), we then have:

o ( Mt)
;'F Plisl = (1—ppi)’

where the biggest Gerschgorin disk corresponds to fimin, S0 that (26) holds for all ¢ € [n]. Then,

K(p) < : 2

<
~ Amin(p) 71— (i

1- min
:2<H’mm+u>
I—p

1 — (s
:O<'umm> as p — 1. |
p

Lemma A.5 (Equivalence of norms). Suppose d, satisfies Fy.(p)dY, = —Vaug. Let ﬁ,,.(p) =
M=2E,(p)M /2 and M = D(diag(F,(p))) as in Lemma A.4. Define the reparametrization
d, = M'?d,, given some d,, € R"™, and the residual e,, = F.(p)dy + Vaug. We have,

1= D)7 (Phom < =il

in < (14 p)n. (28)
Hdu - d;kt

ﬁv‘ (P)

19



Under review as a conference paper at ICLR 2025

Proof. For this proof, we drop p from F,.(p) and ﬁT(p) for convenience. First, observe that
d, — d:, = F'e,. Then,
2 2

-}, = o]

Py
— el F-IM'V?F,M'?F e,
=e,F, 'FF ey
—e, Fle,
— 2
2 )‘min(Fr 1) HeuHQ
2
llewll
)\max(Fr)
2
[ewlls
(14 p)r(P)max
2
l[ewlls
—(I+p)
2
lewully
“n(l+p)’

Fr

(by Lemma A.2)

(since ||lz||, < /nllz],,Vx € R™)

which is equivalent to the upper bound of the desired result. The lower bound follows similarly in the
reverse direction, using Amin (F) and |||, < ||z||;. [ |

Lemma A.6 (Convergence of CG). Suppose diagonally-preconditioned conjugate gradient method
is initialized with d\2) = 0 for the linear system Fy.(p)d, = —V g, where p € [0,1). Let y be
the largest diagonal entry of Pr.c. Assuming that 7(P)min > €4/(4n) for all i € [n] given some
constant €4 > 0, the residual satisfies ||Fy.(p)dy + Vaugl|l; = |lew(p)ll; < 7| Vugll, after at most
ceil(k) steps, where

1—up\ ' 1/24-1_—1/2 ~ 1—wu
< — - ITH '
k< ( 1—,0) 10g<6n(1 ) N eq ) 0 =, asp—1 (29)

Proof. Once again, we drop p from F.(p) and ﬁr( p) for convenience. Using the same definitions as
Lemma A.5, recall the equivalence of the diagonally-preconditioned linear system:

Frdy = —Vaug
— M Y?F.d,=-M"1?V,g
= M VPE.M'PMYPd, = -M 2V ,g
e Fndy = -M"2V,qg.

To guarantee |le,|; < 77(|Vugl;, itis sufficient to have (given the upper bound in Lemma A.5)

< 77||Vu9||1

Fu(p) — y/n(1+p)

It is well-known the that linear conjugate gradient method ensures HJu — J;:

HJu —d = 2. (30)

< 2¢ after at

Fr(p)

most ceil(k) steps (Shewchuk, 1994), where
1 ol 700) Tk
k= 5\ k(Fr)log Hdu —d

20
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Then, we have

1
k< \/n(Ey 1ogHJ<0> a a7
W H e |
<= ») log (by the lower bound in Lemma A.5)
2 T(P)mm
1/ IIVung ince d© (0)
= —\/K lo (sinced,,’ =0 — He H = ||V )
9 (£7) L u u || Vuglly
L/ & o1 (1+p)n -
= -/ k(F,)log2n —_ (using € from (30))
2 ( ) (1 - ,O)T(P)min
1 ol 1/201 _ \—1/2-—1 —1/2 TP
< 3 K(Fp)log3n/=(1 —p) 71 (P) i (simplifying constants)
1 ~ —
< 3 K(Fp) log 6n(1 — p) =127~ e 1/2, (since 7(P)min > €4/ (4n) by assumption)
— Kp —1/25-1_—1/2
< /=———=logbn(l—p n e (by Lemma A.4)
which concludes the proof. u

Theorem 3.2 (Convergence of Algorithm 2). Suppose r(P)min > €4/(4n) given eq > 0 and each
step of Alg. 2 runs diagonally-preconditioned CG initialized with d( ) 0. Alg. 2 terminates in

5 ( n2 (1 —p)x(r|r(P)) 12
¢ ( \/(1 — o) ||[r(P) —rl|, logeg ) (14)

operations, where \y < 1 is the 2" largest eigenvalue of Py and j1 < 1 its smallest diagonal entry.

Proof. An easy way to see why Thm. 3.2 holds is by noticing that the lower bound condition on p
given in (19) will hold after a finite number of iterations depending logarithmically on remaining
problem parameters. Then, since by Lemma A.6 each iteration requires O((1 — p)~*/?) steps of CG
(with each step costing O(n?)), and 1 — p will be at most O(1 — \3), the result follows. Now, we
provide a more detailed analysis.

First, define 50 = 1 — p( for the [*" iteration of Alg. 2. Since p® =0 = 5(9) = 1, we have
p) = 4~ given the update rule in L5. Then, by (19) of Thm. 3.1, Alg. 1 performs the final iteration
(in the worst case) when

50 g4l < (1-A)K

T = (1- \)K.
= )\2(1 — K) ( 2)
That is, in the worst case we terminate after [ steps, where
log(1 — A2)K
= ceil [ 108 = M) ) 32)
log(4)
In the worst case, we are guaranteed by the final step final that,
1—M)K .
p =47te <(42) (1 AQ)K] : (33)
Thus, for each integer I’ € [I], we have
P =47 > (1= A K4l (34)
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Then, the condition number at a given step I’ > 0 satisfies:

L—p

k@) <p+——m (From Lemma A.4)
1— p(l )
<1z (From (34))
= (1-\)K
_ 41+l/_l,‘<;/07
where
]_ _
no()<ll~)zmA2>1 (35)
(1-\)K

By Lemma A.6, a given step I’ < [ of Alg. 2 takes at most
B(I') = 21 g log (/o2 e V?)
< 2= /et log <6n\//<;077_15;1/2) (since I’ < 1)
= 2MO( ko),

steps of the conjugate gradient algorithm. Taking a sum over [’:

l

l
> k() =O(vro)2 ™' Y 2"
I'=0

I'=0

21
(Vro)(4 =27

O(Vro) (4 — /(1 = X)K) (due to (32))
( (37)

Note that the choice of decay factor 4 is not arbitrary; if one chooses instead a factor L > 1 and
repeats the above steps, one arrives at (cf. (32)):

[ = ceil —71(%(1 — /\Q)K
log(L) ’

I+1
S k() = OV (ﬁl>

~ (2 -1
O(yi)? () (36)

IAN
(o}

I
o)
B

and the following (cf. (36))

I'=0 ‘E* 1
- L—1/(1-X\)K
< O(vko) — 77—
< 6<¢%)¢ELI,

and L = 4 is the global minimizer of h(x) = x/(y/x — 1). The last inequality is strong when
convergence is bottlenecked by Ay ~ 1, so that the choice L. = 4 becomes near-optimal when
optimality is most needed.

Continuing from (37), the overall complexity is:
O(yra) =0 [\ ——~
K = S ——— .
0 (1-\)K
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The result follows by explicitly writing and simplifying K1

~ A2(1 — K)
1 N2
Ko=""%

= w (Since we choose 3 = 0.5, where K = (1)

n
2
n
_xrir(P)
IVugllin’

<

where the last equality holds by definition of (. ]

A.1.5 PROOFS OF LEMMA 3.3 AND COROLLARY 3.4

Lemma 3.3 (Convergence of Algorithm 3). Assuming that ||v(P)/r|| ., < ocoand ||r/r(P)||,, < oo,

Algorithm 3 converges in O(n?/e,.) operations.

o0

Proof. First, recall that by Eq. (169) of Sason & Verdi (2016), the ratio % is bounded both

above and below by constants depending on ||r(P) /||, < oo and ||r/r(P)||,, < oco. Notably, the
ratio converges to 1/2 as r(P) — r as shown in Thm. 4.1 of (Csiszdr & Shields, 2004).

Since we know that after k steps of Sinkhorn iteration,

for some constant A > 0 (see Corollary 6.12 of Nutz (2021)) and x?(r|r(P)) = O(Dkw(r|r(P))),
we conclude that after k steps, x*(r|r(P)) = O(k™!). The result follows as each Sinkhorn iteration
costs O(n?) and Alg. 2 terminates when x?(r|r(P)) < e,. [ |

Corollary 3.4 (Per-step Cost of Algorithm 4). If the backtracking line search in Alg. 4 converges
in S iterations, then an iteration of Alg. 4 costs O(n?(S + 6;2/5(1 — X2)~Y?)) operations, where
Ao < 1 is the 2nd largest eigenvalue of Py defined as in (9) and evaluated at u, v (cf. (3)).

Proof. First, from Lemma 3.3, the ChiSinkhorn routine in L6 of Alg. 4 has complexity O(n%f/ 5)

as we chose ¢, = 5(21/ °. Lines L9 and L18 each cost O(n?), which leaves the cost of line search
between lines L12-14 and the NewtonSolve routine in L8. Since the former is assumed to take S
steps, each costing O(n?), it remains to show the cost of NewtonSolve (or Alg. 2).

First, consider the case when 1 = 0.4eq/ || V4g/|; as per L7. From Thm. 3.2, after dropping the
logarithmic terms and the linear n? term, we have the following linear term:

\/ (1= wx(rlr(P) _ wl —x(rir(P) _ [0 s e

C—omlr@) =, 7 T=rea  —V T-N) “d

/5

since x2(r|r(P)) < si Next, consider the case when ||Vg|; > 0.4eq/||Vuyg
HVung > 0.4eq, so that L7 assigns 7 = ||V,g||, instead. Inserting 7 into the denominator on
the LHS above and applying HVung > 0.4eq yields the same complexity. [ |

> e,

A.1.6 PROOF OF THM. 3.5

First, we present a simple lemma on the line search condition used in L12 of Algorithm 4.

Lemma A.7 (Sufficient Decrease Condition). Assuming ¢ = ¢(P), given a descent direction
d = (dy, —Pcdy,), the Armijo condition for line search over objective g is satisfied for a step
size a € (0, 1] and constant parameter c¢; € (0,1) if and only if:

|[vec(P(u + ady, v — aPedy))||; —1 < (1 —c1)a(=Vyug,duy). (38)
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Proof. Recall that the Armijo condition requires (see Ch. 3.1 of Nocedal & Wright (2006)):
g(u+ ady,v — aPedy,) < g(u,v) + c;a(Vg, d). (39)

For brevity, let P(«) := P(u + ad,,, v — aP.d,,). We show the equivalence of the above statement
to (38) step by step:
g(u+ ady,v — aPedy,) < g(u,v) + c;a(Vyg,d).
< [vec(P(a))|l; =1 — (u+ ady,7) — (v — aPedy, c) < —(u,r) — (v,¢) + c1a(Vg,d)
( ))”1 -1 SO‘(<du7’r> <Pcduvc>) +cla<v97 >
= |[vec(P(a))|l; — 1 < a({du,7) — (du, P c)) + c1a(Vg.d)
@)y =1 < a((du,7) = (du,7(P))) + c1a(Vg,d) (Since P ¢ = r(P))
= |vec(P(®))|l; = 1 < a(du, —Vug) + c1a(Vyg,dy), (Since ¢(P) = ¢ by assumption)

< ||vec(P(a

< ||vec(P

which is equivalent to (38). |

Theorem 3.5 (Per-step Improvement of Algorithm 4). Given a descent direction d = (do,, — Ped.,)
such that |le||, = ||V2gxd + Var||, <1 lIVgrll,, let o € (0,1] be the step size found via backrack-
ing line search in the k'" step of Alg. 4. Then, Vgi+1 = Vg(u + ady, v — aP.dy,) satisfies

IVgrsll, < (1= a+an) |V, +av/a O(|Vgell7)- (15)

Proof. For convenience, let z := (u,v) given some (u,v) € R?" and V3g(t) == V3g(z + tad).
Recall that from Taylor’s Theorem, we have:

Vg(z + ad) = Vg(z) + a/O (V2g(t)]d dt

= Vg(z) + aV3g(0)d + a/o [V2g(t) — V?g(0)] d dt

=(1-a)Vyg(z)+ ae+ a/o [V2g(t) — V3g(0)] d dt.

Now, we define the following:

1
n(e) = [ [7(0) - Vg(0)] d

/0 1 h(t)dt
/O 1 h(t)d|

1
<(I—a+an)[[Ve(2)l, +a/0 [R(t)]], dt (40)

Then,

IVg(z + ad)ll; < (1 - ) [[Vg(2)ll; + alell; +a

1

<{I-a+an)||Vy2)|, +« (By construction)

We will bound ||h(t)||; in terms of ¢ € [0,1] and evaluate the integral. Again, define
P(t) .= P(z + tad) for convenience, and let AP(t) := P(t) — P, where P = P(0). Then,

= (P50 biearion) ()
= (_DD((g((AAJIDD((tt))))))JgI:du) + (_AAJJDD((tt))%fu>
= () + (069).
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where we have ||h(t)]|, < 3/, [|hu(t)]),. Consider hl(t)
[ha (@), = ZIT (AP(t))i(du)il

< ldul.c Z AP

= lldullo Ir(AP@),
< ldull o [Ivec(AP@))]; -
Since we have || P.d, ||, < ||du||,. the same bound holds for ||ha(t)||, by symmetry. Next,

IRa(®)]l, = |AP() " dul],
= Z [{AP(t).5, du)l (A.; denotes the ' column of A.)

< lldull Y 1AP()l,

j
= [ldull [[vec(AP(B))]]; -
Similarly, the same bound holds for ||3(t)||; by symmetry. Then,

IRy < 4ldull [[vec(AP(), (41)
From Pinsker’s inequality, we have:
% |[vec(AP(t)) ||§ < Dy(P|P(t)) (Bregman divergence under negative entropy)
|lvec(P(t))|l, — 1+ (P,log(P/P(t))) (Given c = c(P),vec(P) € A,2.)
[vec(P(t))ll; =1 —ta ({r(P),du) + (¢, —Fedu))
Ivee(Pt)l, = 1 —ta ((r(P), du) — (P ¢, du))
= ||vec(P(t))]|; — 1 (Since P] ¢ = PD(c)"tc = P1 =r(P).)

<0.99%ta(—Vyg,dy),

where the last inequality is due to (38) as we assumed « satisfies the Armijo condition, and if step
size « is feasible, so is any step size ta € [0, ] given that the objective is convex. Plugging the
above into (41):

IRy < 4ldulloe V2% 0.99t0(~Vug, du)))

< 4V2a|dy | ¥ |Vugllt Vi

Hence,
1
/ B0l di < 42 [l L2 Vsl [ VEar
8V 3/2 1/2
a2 Vgl
3/2 1/2
<f4||d 4 ||vug||/
_ 3/2 1/2
:\/a4||Fr (p)_vug Hoo ”vung/
<Val2||F.(p) 1H3/2 HVugH1 (Since Alg. 2 ensures ||e,(p)]]; < 777”V“g”1)
= VaO(||Vugl})-
Plugging the above into (40) yields the desired result (15). ]

B ADAPTIVE INITIALIZATION OF THE DISCOUNT FACTOR

Recall that in Alg. 2, we initialize the discount factor p at 0 and anneal (1 — p) by taking:
pe1—-(1-p)/4
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in L4 of the algorithm until the forcing inequality (6) is satisfied. Here, we describe a simple, practical
strategy to reduce the overhead associated with this annealing procedure and the solving of a sequence
of linear systems (see also the proof of Thm. 3.2 in Appx. A.1.4).

In particular, we initialize NewtonSolve (Alg. 2) with an initial guess pg (rather than 0) in practice.
Each call to NewtonSolve returns the final discount factor p found by the algorithm in addition to the
descent direction d,,. Then, the next time NewtonSolve is called, we call it with

07" = max (0, 1—(1—p°d)« 4), (42)

where p°'9 is the discount factor returned by the previous NewtonSolve call. That is, the annealing

starts from the second last annealing step of the previous call. As the linear system has changed since
the previous call, this allows for a smaller discount factor to potentially replace the previously feasible
one, if appropriate. We find that this simple change in the implementation improves performance
empirically, as shown in Table 3. This version of the algorithm is used in the main experiments
presented in Sec. 4.

C PROBLEM SI1ZE EXPERIMENTS

Here, we conduct experiments with varying problem size n to empirically study the dependence of
MDOT-TruncatedNewton on n. Fig. 4 shows the behavior over MNIST and color transfer problems
with L; and L2 cost functions, and problem size adjusted by down- or up-sampling the images. In
all experiments here, we fix regularization weight at v = 2'2. In addition to empirical behavior of
MDOT-TruncatedNewton, we include a polynomial f(n) = an? passing through the empirical curve
at the largest n; the curve explains the behavior of the algorithm well for large n. It performs no
worse than O(n?) empirically for the problems considered in Fig. 2.

D DETAILS OF BASELINE ALGORITHM IMPLEMENTATIONS

Here, we provide details and sources on the implementation of various algorithms shown in Fig. 2.

Mirror Prox Sherman Optimized (Jambulapati et al., 2019). For this algorithm, the source code is
originated in the NumPy code at this repository. The owner of the repository notes that this NumPy
implementation is based on a Julia implementation by the original authors, which was provided in
a private exchange. The code used in this paper is a PyTorch adaptation of the NumPy code and
has been verified to produce identical output as the NumPy version over multiple problems. The
algorithm was called with entropy factor parameter set to the default 2.75 in all experiments. The
number of iterations for the algorithm was varied from 2 to 2'° to achieve different levels of precision.

APDAGD (Dvurechensky et al., 2018). For APDAGD, a similar strategy was used, except with this
code repository. A PyTorch version of the original NumPy code was written and verified to produce
identical output. For different levels of precision, the € parameter of the algorithm was varied from
2= 1 t0 276, For smaller ¢, non-convergence was observed.

AAM (Guminov et al., 2021). The implementation is based on NumPy code by the original authors
at this repository. A PyTorch version was verified to produce identical output for GPU execution.
The € parameter was varied from 271 t0 2710, For smaller &, numerical errors were encountered.

Cost | Wall-clock time (s) | Adaptive | py =0

Median 2.09 6.26
L, dist. 90th %ile 3.12 12.07
10th %ile 1.48 4.70
Median 5.49 25.74
L3 dist. ‘ 90th %ile 10.18 48.27
10th %ile 1.40 4.56

Table 3: Comparison of median, 90th and 10th percentile performance for adaptively and
naively initialized p over 30 problems from the upsampled MNIST dataset with L; and L3 costs
(y; = 24,7 = 2'8. p = 1.5, and ¢(!) = 2 initially).
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Wall-clock time vs. problem size (upsampled MNIST, L; cost) Wall-clock time vs. problem size (upsampled MNIST, L3 cost)
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Figure 4: Log-log plot of wall-clock time for MDOT-TruncatedNewton vs. problem size n. Each
marker shows the median over 60 random problems from the MNIST (top) and color transfer (bottom)
problem sets with normalized L, (left) and L% (right) distance costs. Error bars show 10*"* and 90"
percentiles. For all problems, v; = 2!2. Dashed lines show a polynomial f(n) = an?, where a is
selected so that an? equals the median time taken at the largest n considered. Above, the algorithm
behaves no worse than O(n?).

Feydy, Alg. 3.5 (Feydy, 2020). The implementation is based on the algorithm as presented in the
original work. For different levels of precision, the number of total iterations was varied from 2 to
212, Beyond the upper bound, numerical errors were observed. As it produced better estimates than
the alternative, the algorithm was called with debiasing turned on; hence, the error (P — P*, C) was
instead measured in absolute value as |(P — P*, C')| for this algorithm only. Scaling ratio was set to
an intermediate 0.7, which is between the listed 0.5 (fast) and 0.9 (safe) settings.

MDOT (Kemertas et al., 2023). The implementation is based on code written by the original authors.
For both MDOT-Sinkhorn and MDOT-PNCG, input parameters p = 1.5,7; = 16 and ¢ = 2%/3
were used. For different precision levels, 7; was varied from 2° to 218.

Sinkhorn (Cuturi, 2013). A log-domain stabilized implementation was used. For different precision
levels, y was varied from 25 to 2 for L; distance cost and to 2% for L3 distance cost. Stopping
criteria were given by Kemertas et al. (2023) formulas as in Alg. 1.

Mirror Sinkhorn (MSK) (Ballu & Berthet, 2023). The implementation is based on the algorithm
presented in the original paper. For different levels of precision, the number of total iterations was
varied from 2° to 216,
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E ADDITIONAL BENCHMARKING ON DOTMARK

In this section, we extend the study in Fig. 2 with 10 more datasets from the DOTmark benchmark
introduced by Schrieber et al. (2017) for benchmarking of discrete OT solvers. Schrieber et al. (2017)
proposed 10 different image sets, “fo represent a wide range of theoretically different structures, while
incorporating typical images that are used in praxis and/or have been used for previous performance
tests in the literature”. Example image sets include various kinds of randomly generated images,
classical test images and real data from microscopy; each dataset consists of 10 grayscale images,
yielding a total of 45 discrete OT problems, where the marginals 7, c are formed based on pixel values
(Schrieber et al., 2017). The cost matrix is constructed similarly to the MNIST dataset from distances
in 2D pixel locations. While Schrieber et al. (2017) proposed only to use the L3 cost function, we
evaluate on both L; and L% costs functions for consistency with Fig. 2 and for the sake of broader
evaluation. Once again, for consistency with Fig. 2, we take 64 x 64 images, which yield n = 4096.

For each of 20 problem sets (corresponding to a class of images and a cost function), we sample 20
random problems out of the 45 possible problems. Figs. 5-14 show the median time to converge
for each algorithm at a given hyperparameter setting, and the error (P — P*, C) after rounding the
output of the algorithm onto U(r, ¢) — with the exception of Alg. 3.5 of Feydy (2020); see Appx.
D. The wall-clock time plots for the respective cost functions (L1 and L32) follow the same trends
seen in the two datasets considered in Fig. 2. Differently from Fig. 2, we include 75% confidence
intervals along both axes here, and also show that MDOT-TruncatedNewton is generally robust even
at high precision, where maintaining numerical stability can be more challenging. Our conclusions
based on Fig. 2 regarding the wall-clock time convergence behavior of MDOT-TruncatedNewton and
how it compares to baselines remain unchanged.

Operation Counts. In addition to wall-clock time, we count here the number of primitive operations
costing O(n?) for each algorithm. Examples of such primitive operations involving n x n matrices
include row/column sums of matrices, matrix-vector products, element-wise multiplication of matri-
ces, element-wise exponentiation/logarithm of matrices, addition/subtraction/multiplication/division
between a matrix and a scalar, max over all entries of a matrix, summation over all entries of a matrix,
etc. We count the number of primitive operations rather than a higher level function call such as
the number of gradient evaluations due to inherent differences in the design of the various baseline
algorithms; e.g., some methods require costly line search or inner loops between gradient evaluations.
For all 20 problem sets displayed in Figs. 5-14, we find that the total number of O(n?) operations
predict wall-clock time very well (high correlation), especially when the algorithms are run for long
enough, as seen visually upon comparing top and bottom rows of the same column. All algorithms
follow the same trend seen in Fig. 2, so that our conclusions once again remain the same.
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Figure 5: CauchyDensity problem with L; (left) and L3 (right) costs, showing excess cost (error)
vs. clock time (top) and number of O(n?) operations (bottom). Each marker shows the median over
20 problems at a given hyperparameter setting and a 75% confidence interval along both axes.
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Figure 6: ClassicImage problem with L (left) and L3 (right) costs, showing excess cost (error)
vs. clock time (top) and number of O(n2) operations (bottom). Each marker shows the median over
20 problems at a given hyperparameter setting and a 75% confidence interval along both axes.
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20 problems at a given hyperparameter setting and a 75% confidence interval along both axes.
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Figure 9: GRFRough problem with L; (left) and L2 (right) costs, showing excess cost (error) vs.
clock time (top) and number of O(n?) operations (bottom). Each marker shows the median over 20
problems at a given hyperparameter setting and a 75% confidence interval along both axes.
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Figure 10: LogGRF problem with L; (left) and L3 (right) costs, showing excess cost (error) vs.
clock time (top) and number of O(n?) operations (bottom). Each marker shows the median over 20
problems at a given hyperparameter setting and a 75% confidence interval along both axes.
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Figure 11: LogitGRF problem with L (left) and L2 (right) costs, showing excess cost (error) vs.
clock time (top) and number of O(n?) operations (bottom). Each marker shows the median over 20
problems at a given hyperparameter setting and a 75% confidence interval along both axes.

Error vs. Wall-clock time (s) (Microscopylmages, L, cost) Error vs. Wall-clock time (s) (Microscopylmages, L% cost)
1014 !\\ 1071 4
1021 R s et ¥ 1072 4 R - 1 i <
103 4 ; 5 5
-4 ]
G 10 e MDOT:S gt i
2 “Sinkhorn N = MDOT-Sinkhorn
a s MDOT-PNCG ' @ ;] s MDOT-PNCG
1075 4
o 1075 { mmm= MDOT-TruncatedNewton o s MDOT-TruncatedNewton
== Jambulapati et al. (2019) 10-6 ] === Jambulapati et al. (2019)
1076 { === Sinkhorn (p=1.0) s Sinkhorn (p=1.0)
e Sinkhorn (p=1.5) 107 = Sinkhorn (p=1.5)
10-7 4 == MSK  m—MSK
s APDAGD s APDAGD
10-5 ] Feydy Alg. 3.5 107% 4 Feydy Alg. 3.5
— AAM o AAM
1072 107! 10° 10! 102 102 1071 10° 10! 102
Wall-clock time (s) Wall-clock time (s)
Error vs. Number of O(n?) ops (Microscopylmages, L; cost) Error vs. Number of O(n?) ops (Microscopylmages, L2 cost)
0] 101
1072 4 107 4
1074 1074
T 10744 G107y i
< = MDOT-Sinkhorn N = MDOT-Sinkhorn
a s MDOT-PNCG a s MDOT-PNCG
10-5 1
o 1075 { mmm= MDOT-TruncatedNewton o s MDOT-TruncatedNewton
== Jambulapati et al. (2019) 10-6 ] === Jambulapati et al. (2019)
1076 { === Sinkhorn (p=1.0) s Sinkhorn (p=1.0)
e Sinkhorn (p=1.5) 107 s Sinkhorn (p=1.5)
10-7 4 == MSK s MSK
s APDAGD s APDAGD
108 Feydy Alg. 3.5 107 4 Feydy Alg. 3.5
— AAM s AAM
102 10° 10° 10° 102 10° 10 10°
Number of O(n?) ops Number of O(n?) ops

Figure 12: MicroscopyImage problem with L; (left) and L3 (right) costs, showing excess cost
(error) vs. clock time (top) and number of O(n2) operations (bottom). Each marker shows the median
over 20 problems at a given hyperparameter setting and a 75% confidence interval along both axes.
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clock time (top) and number of O(n?) operations (bottom). Each marker shows the median over 20
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F ON THE SPECTRAL GAP 1 — Ay, AND DISCOUNTING

In Section 3, we demonstrated that the convergence of Algorithm 2, as established in Theorem 3.2
(and subsequently in Corollary 3.4), exhibits a worst-case dependence of O((1 — Xo)~'/?) on the
spectral gap 1 — \o. In this section, we first explain why this dependence may be overly pessimistic.
We then illustrate this observation through the experiments presented in Fig. 16.

Recall from Lemma A.6 that the convergence of CG for solving a p-discounted Newton/Bellman
system dy, = Sup + PPredy is in fact O((1 — p)~1/2). In Thm. 3.2 we expressed the overall
complexity of Alg. 2 in terms of A, using the fact that the largest p found by Alg. 2 via annealing
satisfies (1 — p) =1 = O(1 — \2) ! in the worst-case; see (19) and the proof of Thm. 3.2. However,
1 — p tends to be much better behaved in practice and effectively mitigates this worst-case dependence
on 1 — 5. We introduce the rationale for this behavior via an example.

Suppose, given n = 4 the stochastic matrix P € ]R4>B4 has the form:

075 025 0 0
025 075 0 0

Pre=Q+A, Q=17 o o075 025"
0 0 02 075

where A € R**4 is an appropriately selected, tiny perturbation matrix with infinitesimal entries, and
the Markov process given by P,.. can be (approximately) decoupled into two separate processes
corresponding to the top-left and bottom-right blocks; the spectral gap of P, is tiny.

Consider also, for convenience, a stationary distribution »(P) = [0.25 0.25 0.25 0.25]T, and

an initial distribution » = [0.5 0 0 O.5]T, which already assigns to each partition the correct
amount of total mass as the stationary distribution 7(P). For such a pair, »(P) — r would be

orthogonal to the first two eigenvectorsv; =[1 1 0 O]T andvy=[0 0 1 1]T of Q). We
can then easily show that the convergence of 7 to r(P) via repeated application of P,.. would be

governed by (1 — A3)~! ~ 2 rather than (1 — X\5)~! = O(||A| ™). Indeed, we can write:
Q = vy, + vy +0.5030, + 0500, ,
which implies (with simple calculations):
[r(P)T =" Prcll, = [[(r(P) = )T Prell, < [|(r(P) =) TQ"||, + O(IAl [I(r(P) = )II,)
= 0.5'x(r[r(P)) + O(|All, [lr(P) = (P)]l,).

The idea here applies more generally to multiple eigenvalues near one, i.e., when the Markov process
may be approximately separated into a larger number of groups. Since we call Alg. 2: NewtonSolve
near the solution, where ||Vg||; = ||r(P) — r||, is small, the gradient (i.e., the RHS of the Newton
system) tends to be nearly orthogonal to the subspace corresponding to near-zero eigenvalues of
I — P,... Consequently, the Newton/Bellman system can be discounted more aggressively than the
worst-case suggested by the condition in (19), ultimately yielding (1 — p)~! < (1 — Xo) L.

In Fig. 16, we demonstrate this effect via ex-
periments over 4 datasets from the DOTmark
benchmark (Schrieber et al., 2017), where we dis-
play (1 — p)~'/2,(1 — \3)~'/2 and the number
of CG iterations until convergence in the same
plot. Since P tends to get sparser with increasing
v (Tang et al., 2024), we generally observe a de-
creasing spectral gap of P,.. with higher v (across
all problem sets) as communication between par-
ticle groups is increasingly bottlenecked. In all
cases, (1 — p)~1/2 predicts the total number of
CG iterations better than (1 — \y)~'/2. Espe-
cially for the Shapes problem, the marginals
T, c contain lots of near-zeros and often yield non-communicating particle groups. Even though
(1 — A2)~ /2 explodes quickly in this case, the method remains robust and (1 — p)~'/2 continues to
be predictive of good performance.

Figure 15: Sample images from Shapes.
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Figure 16: Over 4 tasks from DOTmark (n = 1024) with L, (left) and L2 (right) costs, we run
MDOT-TruncatedNewton with a fixed temperature decay rate of ¢ = 2'/16 and compute the spectral
gap 1 — \g explicitly via eigenvalue decomposition every-time Alg. 2: NewtonSolve is called (at
fixed intervals of y on a log-scale). On the LHS of the y-axis, the (1 — \2)~!/? term seen in Thm.
3.2 and Cor. 3.4 and (1 — p)~'/? are displayed, where p is the discount factor found by Alg. 2. On
the RHS of the y-axis the total number of CG iterations taken by NewtonSolve is shown. While
the (1 — Xo)~ /2 term shown in Sec. 3 may be adversely affected by extremely large values (see
bottom row), the practical rate dictated by 1 — p is much better and more accurately describes the
convergence of the algorithm. Lines show the median over all 45 problems and shaded areas show
90% confidence intervals. See Appx. F for further discussion.
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