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ABSTRACT

Offline reinforcement learning could learn effective policies from a fixed dataset,
which is promising in real-world applications. However, in offline decentralized
multi-agent reinforcement learning, due to the discrepancy between the behavior
policy and learned policy, the transition dynamics in offline experiences do not
accord with the transition dynamics in online execution, which creates severe er-
rors in value estimates, leading to uncoordinated and suboptimal policies. One
way to overcome the transition bias is to bridge offline training and online tuning.
However, considering both deployment efficiency and sample efficiency, we could
only collect very limited online experiences, making it insufficient to use merely
online data for updating the agent policy. To utilize both offline and online ex-
periences to tune the policies of agents, we introduce online transition correction
(OTC) to implicitly correct the biased transition dynamics by modifying sampling
probabilities. We design two types of distances, i.e., embedding-based and value-
based distance, to measure the similarity between transitions, and further propose
an adaptive rank-based prioritization to sample transitions according to the transi-
tion similarity. OTC is simple yet effective to increase data efficiency and improve
agent policies in online tuning. Empirically, we show that OTC outperforms base-
lines in a variety of tasks.

1 INTRODUCTION

In fully decentralized multi-agent reinforcement learning (MARL) (de Witt et al., 2020a), agents
interact with the environment to obtain individual experiences and independently improve the poli-
cies to maximize the cumulative shared reward. Due to the scalability, decentralized learning would
be promising in real-world cooperative tasks. However, in many industrial applications, continu-
ously interacting with the environment to collect the experiences for learning is costly and risky,
e.g., autonomous driving. To overcome this challenge, offline decentralized MARL (Jiang & Lu,
2021) lets each agent learn its policy from a fixed dataset of experiences without interacting with the
environment. The dataset of each agent contains the individual action instead of the joint action of
all agents. There is no assumption on the data collection policies and the relationship between the
datasets of agents.

However, from the perspective of each individual agent, the transition dynamics depend on the
policies of other agents and will change as other agents improve the policies (Foerster et al., 2017).
Since the behavior policies of other agents during data collection would be inconsistent with their
learned policies, the transition dynamics in the dataset would be different from the real transition
dynamics in execution, which will cause extrapolation error, i.e., the error in value estimate incurred
by the mismatch between the experience distribution of the learned policy and the dataset (Fujimoto
et al., 2019). The extrapolation error makes the agent underestimate or overestimate state values,
which leads to uncoordinated and suboptimal policies (Jiang & Lu, 2021).

One way to reduce the extrapolation error caused by the mismatch of transition dynamics is to bridge
offline training and online tuning. However, since both deploying new policies and interacting with
the environment are costly and risky, we should consider the deployment efficiency (the number of
deployments) and sample efficiency (the number of interactions) in the collection of online experi-
ences (Matsushima et al., 2021). Due to the efficiency requirement, the collected online experiences
can be very limited. Thus, it is insufficient to tune the policies of agents merely using the online
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data, and the small online dataset may also cause overfitting. To increase data efficiency, it is better
to additionally exploit the offline data for online tuning. However, uniformly sampling from the
merged offline and online experiences (Nair et al., 2020) cannot address the transition mismatch
problem. Therefore, it is necessary to correct the transition dynamics in the offline data to make it
close to the online transition dynamics. Nevertheless, the requirement of efficiency also means it is
infeasible to accurately estimate the real transition dynamics from the limited online experiences,
thus explicit correction is impractical.

In this paper, we introduce a simple yet effective method to correct the transition dynamics of of-
fline data for online tuning, without explicitly modeling the transition dynamics. When sampling a
transition from the offline experiences, we first search for the best-matched transition in the online
experiences, which has the minimum state-action distance to the sampled transition. Then, we com-
pute the next-state distance between the sampled transition and the best-matched online transition
to represent the transition similarity. After that, a probability function maps the transition similarity
to the probability of accepting the sampled transition for update, which is equivalent to modifying
the transition probability. Therefore, the objective is to find the optimal probability function which
minimizes the KL-divergence between the online transition distribution and the modified transition
distribution, given the distance measure. We design two distance measures based on the embed-
ding and Q-value of transitions, respectively. The embedding-based distance captures the similarity
in feature space, and the value-based distance measures the isomorphism. Due to the limited on-
line experiences, it is hard to find the optimal probability function by gradient-based optimization,
but we empirically find that the rank-based prioritization in PER (Schaul et al., 2016) is a proper
choice of the probability function. Moreover, we propose an adaptive rank-based prioritization to
adjust the degree of the correction according to the difference between offline and online transition
distributions.

The proposed method, termed OTC (Online Transition Correction), could be applied to any offline
RL method for decentralized multi-agent learning. We construct the decentralized datasets from a
variety of D4RL tasks (Fu et al., 2020) and evaluate OTC on them. Experimental results show that
OTC outperforms baselines, and ablation studies demonstrate the effectiveness of the two distance
measures, the practicability of rank-based prioritization, and the improvement of adaptive prioritiza-
tion. To the best of our knowledge, OTC is the first method for bridging offline training and online
tuning in decentralized MARL.

2 RELATED WORK

2.1 OFFLINE RL

In offline RL, the agent could only access to a fixed dateset of single-step transitions collected by
a behavior policy, and no interactive experience collection is allowed during learning. Offline RL
easily suffers from the extrapolation error, which is mainly caused by out-of-distribution actions in
single-agent environments. To address this issue, constraint-based methods introduce policy con-
straints to enforce the learned policy to be close to the behavior policy, e.g., direct action constraint
(Fujimoto et al., 2019), kernel MMD (Kumar et al., 2019), Wasserstein distance (Wu et al., 2019),
and KL-divergence (Peng et al., 2019). Conservative methods (Kumar et al., 2020; He & Hou,
2020; Yu et al., 2021) train a Q-function pessimistic to out-of-distribution actions. Uncertainty-
based methods quantify the uncertainty by the learned environment model (Yu et al., 2020) or by
Monte Carlo dropout (Wu et al., 2021) of Q-function, and use it as a penalty or to weight the update
of Q-function, so as to avoid the overestimation of out-of-distribution actions.

In offline decentralized MARL, besides out-of-distribution actions, the extrapolation error is also
caused by the bias of transition dynamics. For each individual agent, since the transition dynamics
depend on other agents’ policies which are also updating, there will be a difference between the
transition dynamics in the offline dataset and the real transition dynamics during online deployment
(Jiang & Lu, 2021). To overcome this, MABCQ (Jiang & Lu, 2021) uses two importance weights to
modify the offline transition dynamics by normalizing the biased transition probabilities and increas-
ing the transition probabilities of high-value next states. However, the modified transition dynamics
in MABCQ are not theoretically guaranteed to be close to the real ones. Unlike MABCQ, OTC
focuses on online tuning and exploits online experiences to correct the bias of transition dynamics
to quickly adapt to the learned policies of other agents.
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Figure 1: Overview of offline training and online tuning. After each agent i learning its policy π0
i from offline

dataset B0
i , their policies are deployed in the environment to get the online datasetD1

i . Then, π0
i is finetuned to

obtain π1
i using the merged dataset B1

i . The online tuning is repeated for K times.

2.2 BRIDGING OFFLINE LEARNING AND ONLINE TUNING

Since the offline dataset is usually insufficient to cover the entire transition space, the extrapolation
error cannot be eliminated entirely in the fully offline learning. It is crucial to improve the policy
trained using offline data further with online reinforcement learning. Since the online interaction
is expensive, we must consider both the deployment efficiency (the number of policy deployments)
and sample efficiency (the number of interactions) in online tuning. The concept of deployment
efficiency is adopted in BREMEN (Matsushima et al., 2021) and MUSBO (Su et al., 2021), which,
however, do not aim to finetune the pre-trained policy but instead train the policy from scratch with
limited deployments. AWAC (Nair et al., 2020) employs an implicit constraint that could miti-
gate the extrapolation error while avoiding overly conservative updates in offline learning and thus
quickly performs online finetuning. Balanced Replay (Lee et al., 2021) adopts prioritized sampling
to encourage the use of near-on-policy samples from the offline dataset. However, they deploy the
policy frequently, ignoring the deployment efficiency. Moreover, these methods above are designed
for single-agent environments, where offline and online data follow the same transition dynamics,
thus they cannot deal with transition bias. Abiding by both deployment and sample efficiency, OTC
uses prioritized sampling to reduce the bias of transition dynamics in decentralized MARL, rather
than the state-action distribution shift considered in Balanced Replay.

3 METHOD

3.1 PRELIMINARIES

In offline and decentralized cooperative settings, each agent i could only access to an offline dataset
Bi, which is collected by a behavior policy and contains the tuples 〈s, ai, r, s′〉, where s is the state,
ai is the individual action of agent i, r is the shared reward, and s′ is the next state. Note that Bi dose
not contain the joint actions of all agents. Each agent i independently learns its policy πi using offline
RL algorithm, without information sharing among agents. The goal of all agents is to maximize
the expected return E

∑T
t=0 γ

trt when deploying their learned policies in the environment, where
γ is the discount factor and T is the time horizon of the episode. From the perspective of each
agent i, the transition probability in Bi, denoted by PBi

(s′|s, ai), depends on other agents’ behavior
policies during the collection of Bi, while the real transition probability in execution, denoted by
PEi (s

′|s, ai), depends on other agents’ learned policies. The difference between PBi
and PEi would

cause severe extrapolation errors, which eventually lead to uncoordinated and suboptimal policies
(Jiang & Lu, 2021).

To finetune the policies learned from offline datasets, we allow the agents to interact with the envi-
ronment to collect online experiences. As illustrated in Figure 1, after offline learning using initial
dataset B0i for each agent i, their learned policies 〈π0

i , π
0
−i〉, where π0

−i denotes the policies of all
agents except i, are deployed in the environment and interact with each other for M timesteps. Each
agent i obtains an online datasetD1

i withM transitions. D1
i still only contains the individual actions

of agent i rather than the joint actions. We merge D1
i and B0i to get B1i , and finetune the policy π0

i to
obtain π1

i using B1i . Then, we deploy the updated policies 〈π1
i , π

1
−i〉 in the environment and repeat

3



Under review as a conference paper at ICLR 2022

the procedures until K deployments. K represents the deployment efficiency, and K ×M repre-
sents the sample efficiency. Note that for presentation simplicity, we denote π−i as also updating,
but other agents may or may not be learning online, which however does not affect the following
problem formulation and our method. That said OTC does not have any assumptions on other agents.

3.2 PROBLEM FORMULATION

For agent i, given s and ai, the KL-divergence between the transition distributions of next state s′ in
the online dataset Dki and in the merged dataset Bki is

KL(PDk
i
‖PBk

i
) =

∑
s′

PDk
i
(s′|s, ai) log

PDk
i
(s′|s, ai)

PBk
i
(s′|s, ai)

. (1)

However, since KL(PDk
i
‖PBk

i
) is generally large, in order to use the merged dataset to finetune the

policy, we need to modify PBk
i

as P̃Bk
i

to minimize the KL-divergence between PDk
i

and P̃Bk
i

.

Since the difference of transition distributions means the difference of next-state distributions given
the same state-action pair, we first define two distance functions: d(s1, ai1 , s2, ai2) that measures
the similarity of state-action pairs, and d(s′1, s

′
2) that measures the similarity of next states. Once

sampling a transition 〈s, ai, s′, r〉 from Bki , we select the best-matched transition 〈s∗, a∗i , s′∗, r∗〉
from Dki , which has the minimum state-action distance to 〈s, ai, s′, r〉,

〈s∗, a∗i , s′∗, r∗〉 = argmin
Dk

i

d(s, ai, s
∗, a∗i ). (2)

For the convenience of theoretical analysis, we assume there is always 〈s∗, a∗i , s′∗, r∗〉 in Dki that
meets d(s, ai, s∗, a∗i ) = 0, i.e., s = s∗ and ai = a∗i . If there is more than one transition, we
uniformly select one from them. Then, we adopt a probability function f which maps the dis-
tance d(s′, s′∗) to the probability of accepting the sampled transition 〈s, ai, s′, r〉 for update, i.e.,
f(d(s′, s′∗)). Therefore, the transition probability can be modified as

P̃Bk
i
(s′|s, ai) = PBk

i
(s′|s, ai) ∗

∑
ŝ′ PDk

i
(ŝ′|s, ai)f(d(s′, ŝ′))
Z(s, ai)

, (3)

whereZ(s, ai) is a normalization term to make sure
∑
s′ P̃Bk

i
(s′|s, ai) = 1. Thus the KL-divergence

between PDk
i

and P̃Bk
i

is

KL(PDk
i
‖P̃Bk

i
) = KL(PDk

i
‖PBk

i
)−

∑
s′

PDk
i
(s′|s, ai) log

∑
ŝ′ PDk

i
(ŝ′|s, ai)f(d(s′, ŝ′))
Z(s, ai)

. (4)

To minimize the KL-divergence, we need to design appropriate d-functions to accurately mea-
sure the distances between transitions and find the optimal f -function which properly satisfies
maxf

∑
s′ PDk

i
(s′|s, ai) log(

∑
ŝ′ PDk

i
(ŝ′|s,ai)f(d(s′,ŝ′))/Z(s,ai)).

3.3 d-FUNCTIONS

Due to the limitations of computational complexity and representation ability, directly measuring the
distances in the original space is impractical, especially in high-dimensional environments. There-
fore, we design two types of d-functions. The first type is the distance in the embedding space. We
employ VAE (Kingma & Welling, 2013) to encode the state-action pair and next state into e(s, ai)
and e(s′), and define the d-functions as l1 distance in the embedding space,

de(s, ai, s
∗, a∗i ) = ‖e(s, ai)− e(s∗, a∗i )‖ , de(s

′, s′∗) = ‖e(s′)− e(s′∗)‖ . (5)

Due to the requirement of sample efficiency, it is impossible that we could always find the transition
from Di with the same state-action pair as the given transition. Relying on the generalization ability
of the encoder, similar inputs will be encoded into similar embeddings. We could search for the
best-matched transition with the most similar state-action pair in terms of de(s, ai, s∗, a∗i ) and then
evaluate the transition similarity using de(s′, s′∗).
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Agents Other agents Landmark

Transition Transition Transition 

Figure 2: In this navigation task, the agents are learning to cover all the landmarks. For the transition a from
Bk

i , the best-matched transition b selected from Dk
i using de is still much different from transition a. However,

the value-based distance dq will select the nearly isomorphic transition c, which is more helpful for evaluating
the trainsition similarity.

The embedding-based distance measures the similarity in feature space. However, since the limited
online experiences cannot cover all state-action pairs in offline dataset, there must be some transi-
tions in the offline dataset which are still much different from the transition with the most similar
state-action feature, e.g., transition a and b in Figure 2. In such cases, we cannot accurately evalu-
ate the transition similarity using de. Inspired by state representation learning (Gelada et al., 2019;
Zhang et al., 2020a;b), we notice that some state-action pairs may have common latent structure,
e.g., transition a and c in Figure 2. Although they are different in feature space, the topologies of
agents are isomorphic. As pointed by DeepMDP (Gelada et al., 2019), nearly isomorphic state-
action pairs would have similar Q-values. Therefore, we use the difference in Q-values to evaluate
the isomorphism in state-action pairs and select the best-matched transition from the online dataset,

dq(s, ai, s
∗, a∗i ) = ‖Q(s, ai)−Q(s∗, a∗i )‖ . (6)

On the other hand, we use the expected Q-value to measure the distance of next states,

dq(s
′, s′∗) =

∥∥∥∥ V (s′)

Es′V (s′)
− V (s′∗)

Es′∗V (s′∗)
)

∥∥∥∥ , where V (s′) = EaiQ(s′, ai). (7)

V (s′)/Es′V (s′) is the deviation from the expected value, which could mitigate the influence of absolute
value. The value-based distance dq has stronger representation ability than the embedding-based
distance de. The transitions that are close in embedding space will also have small value difference,
and the value-based distance could also represent the isomorphism of transitions.

3.4 f -FUNCTION

The optimal f -function is to maximize
∑
s′ PDk

i
(s′|s, ai) log

∑
ŝ′ PDk

i
(ŝ′|s,ai)f(d(s′,ŝ′))/Z(s,ai). How-

ever, since the online experiences are limited, it is hard to solve the optimal f -function by
gradient-based optimization. Nevertheless, there must exist such f -functions which do not increase
KL(PDk

i
‖P̃Bk

i
), and a trivial example is the constant function. Therefore, we try to find a heuris-

tic and practical f -function which is able to reduce the KL-divergence and extrapolation error. An
important prior is that f -function should be monotonic, which will produce a larger acceptance
probability when fed with a smaller distance of next states. The intuition is that if the next state
of the transition from Bki is more similar to the next state of the online experience with the same
state-action pair, the transition is more likely to follow the transition dynamics inDki . Therefore, we
should give it a larger acceptance probability, which eventually leads to a larger transition probabil-
ity. Empirically, we find the rank-based prioritized sampling in PER (Schaul et al., 2016) is a good
solution. Concretely, the probability of accepting transition j is

P (j) =
pαj∑
m p

α
m

, (8)

where the priority pj = 1/rank(j), and rank(j) is the rank of transition j when the transitions are
sorted according to d(s′, s′∗). The exponent α determines the degree of modifying the transition
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Algorithm 1 OTC for Agent i

1: Initialize the RL model and the modification degree α0
i

2: Train the RL model using B0i to obtain the policy π0
i

3: for k = 1, . . . ,K do
4: Deploy the policy πk−1i in the environment
5: Collect the online dataset Dki with M transitions
6: Merge the experiences Bki = Bk−1i ∪ Dki
7: if k > 1 then
8: Adjust αki by (9)
9: end if

10: for t = 1, . . . ,max update do
11: Sample a minibatch B from Bki and a minibatch D from Dki
12: for each transition in B do
13: find the best-matched transition in D (2) and compute the transition similarity
14: end for
15: Sample transitions from B by rank-based prioritization (8)
16: Update the RL model using the sampled transitions
17: end for
18: end for

probability, with α = 0 meaning the f -function degrades into a constant function. The rank-based
prioritization ensures that the probability of being accepted is monotonic in terms of transition sim-
ilarity, and is robust as it is insensitive to outliers.

Another prior is that the modification degree should depend on the distribution difference between
Dki and Bki . We should adopt a weaker modification degree when the transition dynamics in Bki is
more similar to that in Dki , and vice versa. Inspired by that, we propose to adaptively adjust α at
each deployment k (k > 1) as

αki = αk−1i × Dki
Dk−1i

, where Dki = Es,a,s′∼Bk
i
d(s′, s′∗ ∼ argmin

Dk
i

d(s, ai, s
∗, a∗i )). (9)

Dki is the expected transition similarity for agent i at deployment k. As the difference between
offline and online transition distributions would change along with the update of agents, a fixed α is
not an optimal solution. On the contrary, for example, if the distribution difference grows, adaptive
α is likely to take on large value, and thus more aggressively modifies the transition dynamics.

3.5 IMPLEMENTATION DETAILS

For the embedding-based distance de, we do not maintain two embeddings e(s, ai) and e(s′),
but train a conditional VAE Gi = {Ei (µ, σ|s, ai, s′) , Di (ai|s, s′, z ∼ (µ, σ))} which encodes
〈s, ai, s′〉 into the embedding µ(s, ai, s′). We take the embedding µ(s, ai, s′) as a substitute for
both e(s, ai) and e(s′), which is more effective and computationally efficient in practice. Moreover,
it is costly to sample transitions from Bki and then search the best-match transitions from Dki for
every update. To reduce the complexity, for each update we uniformly sample two minibatches, B
and D respectively from Bki and Dki , and perform the rank-based prioritized sampling on the two
minibatches. The complete training procedure is summarized in Algorithm 1.

4 EXPERIMENTS

4.1 SETTINGS

We evaluate OTC in D4RL (Fu et al., 2020) datasets with three types: random, medium, and
medium-replay. Following the settings in multi-agent mujoco (de Witt et al., 2020b; Jiang & Lu,
2021), we split the original action space of three mujoco tasks (Todorov et al., 2012), i.e., HalfChee-
tah, Walker2d, and Hopper, into several sub-spaces. As illustrated in Figure 3, different colors
indicate different agents. Each agent obtains the state and reward of the robot and independently
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(a) HalfCheetah (b) Walker2d (c) Hopper

Figure 3: Illustrations of multi-agent mujoco tasks. Different colors mean different agents (Jiang & Lu, 2021).

controls one or some joints of the robot. For each agent i, we delete the actions of other agents
from the original dataset and take the modified dataset as B0i . During online tuning, we perform
K = 10 deployments. For each deployment k, the agent collects a very limited online dataset Dki ,
of which the size is only one percent of the initial offline dataset (|Dki | = 1%|B0i |). After online data
collection, we finetune the agents by L updates and deploy the updated policies in the environment
for next deployment.

We instantiate OTC respectively on two offline RL algorithms, BCQ (Fujimoto et al., 2019) and
AWAC (Nair et al., 2020), and also take them as the baselines. During online tuning, the baselines
uniformly and randomly sample transitions from the merged offline and online dataset, and they
also have the same neural network architectures and hyperparameters as OTC. All the models are
trained for five runs with different random seeds, and results are presented using mean and standard
deviation. More details about hyperparameters are available in Appendix A.

4.2 EVALUATING d-FUNCTIONS

We summarize the performance of the last deployment of OTC with de (embedding-based distance)
and dq (value-based distance) on BCQ in Table 1 and on AWAC in Table 2, and plot the learning
curves along with the number of deployments for a part of tasks in Figure 4. The empirical results
show that OTC with de or dq performs more than one standard deviation better than BCQ and
AWAC, which verifies that de and dq are capable of properly measuring the transition similarity.
Since the online experiences are limited, uniformly sampling from the merged dataset is not effective

Table 1: Performance of OTC on BCQ.

de + BCQ dq + BCQ BCQ

halfcheetah-random 1242± 11 1170± 16 1078± 23
walker2d-random 446± 24 444± 24 374± 32
hopper-random 328± 4 325± 8 309± 39

halfcheetah-medium-replay 2828± 65 2724± 35 2624± 55
walker2d-medium-replay 634± 40 730± 72 581± 128
hopper-medium-replay 753± 63 777± 271 568± 22

halfcheetah-medium 3725± 134 3732± 34 3638± 97
walker2d-medium 1449± 247 1406± 89 982± 49
hopper-medium 1286± 47 1405± 33 1169± 87

Table 2: Performance of OTC on AWAC.

de + AWAC dq + AWAC AWAC

halfcheetah-random 296± 276 301± 243 59± 110
walker2d-random 660± 270 278± 21 262± 8
hopper-random 552± 79 459± 65 261± 61

halfcheetah-medium-replay 2990± 216 3263± 97 2578± 188
walker2d-medium-replay 409± 67 459± 37 368± 60
hopper-medium-replay 2943± 130 1877± 703 1741± 455

halfcheetah-medium 4253± 56 4176± 115 4090± 76
walker2d-medium 2027± 310 2099± 588 1059± 673
hopper-medium 2561± 533 2275± 785 1403± 384
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Figure 4: Learning curves of OTC on BCQ and AWAC.

in correcting the transition bias. The value-based distance dq has a stronger representation ability
than the embedding-based distance de, since it could represent both the similarity in feature and
isomorphism. However, dq does not commonly outperform de. The reason might be that dq would
mistakenly judge the state-action pairs, which are different in feature and isomorphism but have
similar values, as best-matched pairs. Moreover, since the Q-values are updating, dq is inconsistent
during the tuning process.

4.3 EVALUATING f -FUNCTION

The hyperparameter α controls the strength of modifying the transition dynamics. Figure 5 shows
the learning curves of OTC (de) with different α. It is observed that if α is too small, OTC has
weak effects on correcting the transition dynamics. However, if α is too large, the overly modified
transition dynamics would deviate from the real transition dynamics and degrade the performance.
Since the agents are continuously updated, the difference between the transition dynamics in Bki and
Dki will also change every deployment, so a fixed α cannot deal with the nonstationarity. We test the
fixed α = 1.0 and our method for adaptive α where initial α0 = 1.0. Figure 6 shows that adaptive α
could improve the performance of online tuning. Figure 7 shows the curves of α during the online
tuning of OTC (de). In halfcheetah-medium-replay, α of both two agents grows, which means the
difference between Bki and Dki increases as the agents are further improved during online tuning,
and α becomes stable in the latter deployments, which means the convergence of online tuning. In
halfcheetah-random and walker2d-random, two agents have different trends of α, which means that
the agents are influenced differently by the update of other agent. Our adaptive α method could
discriminate the transition biases of agents rather than treat them equally.
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Figure 5: Learning curves of OTC (de) on BCQ with different α.
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Figure 6: Learning curves of OTC (de) on BCQ with adaptive α and fixed α (1.0).
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Figure 8: Learning curves of OTC, Balanced Replay, uniformly sampling from the merged dataset, and only
sampling from the online dataset.

We additionally provide ablation studies of different sampling strategies in Figure 8. Since the online
dataset is very limited, finetuning the agents with online samples only is insufficient, and the small
dataset could cause overfitting, e.g., Figure 8(b) and 8(c). Balanced Replay (Lee et al., 2021) and
uniformly sampling are susceptible to the transition bias. OTC obtains the performance gain over
the other three sampling strategies.

5 CONCLUSION

We have proposed OTC to effectively correct the transition dynamics during online interaction for
tuning decentralized multi-agent policies learned from offline datasets, given limited online experi-
ences. OTC consists of two types of distances to measure the transition similarity and an adaptive
rank-based prioritization to sample transitions for updating the agent policy according to the tran-
sition similarity. Experimental results show that OTC outperform baselines for online tuning in a
variety of tasks.
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A HYPERPARAMETERS

The hyperparameters are summarized in Table 3. For the results in Table 1 and Table 2, we use grid
search to find the optimal α from [0.6, 0.8, 1.0, 1.2, 1.4, 1.6].

Table 3: Experimental settings and hyperparameters

Hyperparameter BCQ AWAC

discount (γ) 0.99 0.99
|B| 512 512
|D| 2000 2000

batch size 128 128
hidden sizes (64, 64) (256, 256)

activation ReLU ReLU
actor learning rate 10−4 10−4

critic learning rate 10−4 5× 10−4

embedding dimension 10 10
finetuning updates (L) 4000 2000

B OTC ON MABCQ

As the transition distribution of the learned policy in MABCQ does not follow PBi
, MABCQ is not

a suitable backbone algorithm, though we additionally provides some results of OTC on MABCQ
in Figure 9. OTC+MABCQ could outperform MABCQ in online tuning. In halfcheetah-random,
MABCQ achieves better performance than BCQ in offline learning. However, since value deviation
in MABCQ has made the agent be optimistic toward other agents in offline training, the modified
transition dynamics in MABCQ is close to the real transition dynamics during the online interaction
with improved other agents, and thus MABCQ does not benefit from online tuning in halfcheetah-
random.

0 2 4 6 8 10

Deployment

950

1000

1050

1100

1150

1200

1250

R
ew

ar
d

OTC+MABCQ

MABCQ

BCQ

(a) halfcheetah-random

0 2 4 6 8 10

Deployment

275

300

325

350

375

400

425

450

R
ew

ar
d

OTC+MABCQ

MABCQ

BCQ

(b) walker2d-random
Figure 9: Learning curves of OTC (de) on MABCQ.
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