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ABSTRACT

Reward models are crucial for aligning large language models (LLMs) with human
values and intentions. Existing approaches follow either Generative (GRMs)
or Discriminative (DRMs) paradigms, yet both suffer from limitations: GRMs
typically demand costly point-wise supervision, while DRMs produce uncalibrated
relative scores that lack probabilistic interpretation. To address these challenges,
we introduce a novel reward modeling paradigm: Probabilistic Reward Model
(PRM). Instead of modeling reward as a deterministic scalar, our approach treats it
as a random variable, learning a full probability distribution for the quality of each
response. To make this paradigm practical, we present its closed-form, discrete
realization: the Ordinal Probabilistic Reward Model (OPRM), which discretizes
the quality score into a finite set of ordinal ratings. Building on OPRM, we
propose a data-efficient training strategy called Region Flooding Tuning (RgFT).
It enables rewards to better reflect absolute text quality by incorporating quality-
level annotations, which guide the model to concentrate the probability mass
within corresponding rating sub-regions. Experiments on various reward model
benchmarks show that our method improves accuracy by 2.9% ~7.4% compared
to prior reward models, demonstrating strong performance and data efficiency.
Analysis of the score distribution provides evidence that our method captures not
only relative rankings but also absolute quality. Our models, data, and code will be
released and open-sourced.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal technique for
aligning Large Language Models (LLMs) with human values and intentions (Achiam et al., 2023;
Ouyang et al., 2022). As a critical component of the RLHF process (Bai et al., 2022), the reward
model is trained to assign scores that quantify the degree of alignment between the model’s outputs
and human preferences. Recent advances (Guo et al., 2025a; Lightman et al., 2024) have shown that
well-designed reward signals, whether applied during training or inference, can significantly enhance
LLM performance across diverse domains (Shao et al., 2024; Huang et al., 2025; Jin et al., 2025).
However, learning a reward model that can accurately capture human preference signals remains a
significant challenge (Gao et al., 2023; Sun et al., 2025a; Zhong et al., 2025). Most recent efforts
typically follow either the generative or discriminative paradigm, yet both approaches exhibit inherent
limitations that hinder their effectiveness in practice.

Discriminative Reward Models (DRMs), which append an MLP-based value head to a base model, are
commonly optimized with the Bradley-Terry objective to output a scalar reward (Liu et al., 2024b; Cai
et al., 2024; Lou et al., 2024). A key limitation of this paradigm is that its reward scores reflect only
relative preferences, not intrinsic quality. It indicates that one response is preferred but fails to explain
why, making it difficult to establish a trusted acceptance threshold to discern high-quality responses
from low-quality ones. In response, Generative Reward Models (GRMs) have emerged (Mahan
et al., 2024; Zhang et al., 2024). These models leverage the native generative capabilities of LLMs to
produce Chain-of-Thought critiques before rendering a preference judgment, conceptually aligning
with the LLM-as-a-Judge paradigm (Zheng et al., 2023). While GRMs offer superior interpretability
through their critique generation, they often rely on rigid pairwise input formats that limit flexibility
in Best-of-N (BoN) scenarios. Moreover, achieving performance comparable to DRMs frequently
requires costly pointwise supervision for calibration, substantially increasing the annotation burden.
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Table 1: Comparison of OPRM with baseline reward models across multiple dimensions.
Margin Sensitivity (whether distinguish samples with subtle preference differences), Require Training
(whether requires training on preference data), Value Head Free (whether eliminates the need for
additional value head), and Input Flexibility (whether supports rating single and multiple responses).

. Margin Require Value Input
Baselines Input Format Output Format Sensitigvity Tra(zning Head Free Flefib]e
Bradley-Terry (Bradley & Terry, 1952)  Single Response Continuous Score v v X v
PairRM (Jiang et al., 2023) Response Pairs Continuous Score v v X X
CLoud (Ankner et al., 2024) Single Response  Critique + Continuous Score v v X v
LLM-as-a-Judge (Zheng et al., 2023) Response Pairs Discrete Score X X 4 X
Pointwise GRM (Liu et al., 2025b) Single Response Critique + Discrete Score X v 4 v
OPRM (Ours) Single Response Continuous Score v v 4 v

Consequently, the field faces a critical trade-off: choosing between the efficiency of DRMs and the
interpretability of GRMs, with neither approach offering a complete solution.

To transcend this trade-off, we introduce a novel reward modeling paradigm: Probabilistic Reward
Model (PRM). Instead of approximating rewards with a deterministic scalar value like the Bradley-
Terry model (Bradley & Terry, 1952), PRM reframes the task as learning a full probability distribution
over the reward space. Since learning this continuous distribution is computationally intractable, we
translate it into a discrete realization: Ordinal Probabilistic Reward Model (OPRM). Specifically,
OPRM discretizes the reward space into a finite set of ordinal ratings (Liu et al., 2025a; Wang et al.,
2025), thereby replacing the intractable integration with a closed-form summation that makes our
paradigm more practical. Thus, OPRM resolves the core trade-off. By providing a full reward
distribution, it unlocks richer interpretability and uncertainty estimation than DRMs, while its flexible
input format enables efficient scoring of single or multiple responses, making it better suited than
GRMs for modern evaluations like Best-of-N (BoN). Table | summarizes the advantages of OPRM
over existing reward modeling baselines.

Building upon the OPRM paradigm, we further propose Region Flooding Tuning (RgFT), a novel
training strategy designed to calibrate the reward distribution to reflect absolute textual quality. The
core principle of RgFT is to leverage quality-level annotations (i.e., good, normal, and bad) on
preference data. Rather than optimizing over the full distribution of ordinal ratings, RgFT guides the
model to concentrate probability mass within rating sub-regions corresponding to the quality-level
labels. While simply restricting scores to specific quality intervals can lead to optimization stagnation
due to constant gradients, RgFT floods these rigid constraints into a triangular probability landscape.
This restores the gradient incentives, guiding the model to not only locate the correct quality region
but also maximize the preference margin by pushing scores towards the extremes of their respective
ranges. Critically, RgFT facilitates semi-supervised training by jointly leveraging a mixture of
quality-labeled and preference-only data, obviating the need for costly large-scale annotation.

Before delving into details, we summarize our contributions as follows:

* We propose a novel reward modeling paradigm, the Ordinal Probabilistic Reward Model. By
learning a full probability distribution for a response’s quality, OPRM mitigates the core trade-off
between the efficiency of DRMs and the interpretability of GRMs.

* We design a data-efficient training strategy, Region Flooding Tuning, which grounds the reward
distribution in an absolute quality scale by guiding the model to concentrate probability mass within
correct rating sub-regions.

* We conduct extensive experiments on four benchmarks covering over ten tasks, demonstrating the
effectiveness of OPRM in precise reward modeling across diverse scenarios. Additional studies
confirm that RgFT significantly improves the accuracy, robustness, and interpretability of OPRM.

2 RELATED WORK

Discriminative Reward Model. Discriminative reward model typically consists of a base model
and a MLP-based reward head (classifier) that outputs a scalar score for a given input. These models
are commonly trained using the Bradley-Terry (BT) (Bradley & Terry, 1952) loss to maximize the
reward margin between chosen and rejected responses. While the core BT loss remains a standard
component, considerable research has focused on enhancing data quality and refining the modeling



Under review as a conference paper at ICLR 2026

framework (e.g. Skywork-reward (Liu et al., 2024b), InternLM2-reward (Cai et al., 2024), Helpsteer2-
preference (Wang et al., 2024b), QRM (Dorka, 2024), URM (Lou et al., 2024), CLoud (Ankner
et al., 2024), ArmoRM (Wang et al., 2024a), and PURM (Sun et al., 2025b)), further boosting
DRM performance. Nonetheless, these methods are limited to learning a pairwise ranking, yielding
scores that are unbounded and difficult to interpret. In contrast, our approach learns a probabilistic
distribution over scores, which enables more reliable and calibrated outputs.

Generative Reward Model. Generative reward models directly leverage LLM-generated outputs
to evaluate preference, which is aligned with the LLM-as-a-Judge paradigm (Zheng et al., 2023).
These models output chain-of-thought reasoning (critiques) before generating preference judgments
(e.g., Critic-RM (Yu et al., 2024), PROMETHEUS (Kim et al., 2023), CLoud (Ankner et al., 2024),
GenRM (Zhang et al., 2024; Mahan et al., 2024), Synthetic Critique (Ye et al., 2024), and RISE (Yu
et al., 2025)), enhancing the interpretability of the reward signals. Recent advances have employed
reinforcement learning to construct reasoning-based reward models (SPCT (Liu et al., 2025b), RM-
R1 (Chen et al., 2025b), J1 (Whitehouse et al., 2025), RRM (Guo et al., 2025b), and JudgeLRM (Chen
et al., 2025a)), demonstrating promising scalability in inference-time computation. However, these
approaches often struggle to outperform DRMs under computational constraints. Conversely, our
approach achieves comparable efficiency and performance while preserving interpretability.

Ordinal Regression and Distribution Learning. Deep ordinal regression has evolved from simple
continuous discretization (Fu et al., 2018; Rothe et al., 2018) to distribution ordering learning (Wang
et al., 2025). Prominent methods like SORD (Diaz & Marathe, 2019), ALDL (Li et al., 2022), and
POE (Li et al., 2021) model label distributions or latent uncertainty to capture ordinal relationships
effectively. While OPRM draws inspiration from these probabilistic frameworks to construct reward
distributions over the LLLM vocabulary, it is conceptually distinct from RLHF approaches utilizing
ordinal feedback (Liu et al., 2025a). Prior RLHF works typically focus on refining the granularity
of input supervision (e.g., "significantly better") for continuous regressors. In contrast, OPRM
enforces ordinality within the output representation space, treating rewards as discrete variables
on a statistically ordinal scale anchored to semantic quality, thereby bridging distributional ordinal
regression with pairwise preference optimization.

3 PRELIMINARIES

Preference data annotation. To annotate the preference data, the SFT model 75T is given prompts

x to two distinct outputs (y1,%2) ~ 7 (y | ). These output pairs are then presented to human
labelers, who express their preference for one output. This preference can be denoted as y. > v, | ,
where y. and y, represent the chosen and rejected outputs, respectively, from the pair (y1, y2)-

Standard Bradley-Terry Reward Modeling. Following the Bradley-Terry model (Bradley &
Terry, 1952), we model the probability of preferring response y. over ¥, based on their underlying
scalar rewards, which are provided by a reward function ry(z, y). This preference distribution is
formulated as follows:

exp (ry (2, ye))
exp (ry (2, yc)) +exp (ry (2, 4r))’ (1
= U(qu(l’,yc) - qu(l',yr)),

P¢(yc>yr|m):

which o is the logistic function. Treating the problem as a binary classification task yields the negative
log-likelihood loss function:

L(ry) = =E(z,ye,y0)~Dom 108 Py (Ye = yr | 2)],

@)
= _E(w:ymyr)'\’prm [log U(r'l/) (Jj, yC) - Tw (x7 yl’))]?

where dataset is composed of comparisons denoted as D,,, = {:c(i), y((;i), yﬁz)}fil In the realm

of LLMs, the network 7, (z,y) is often initialized using the SFT model 75FT(y | x). It then
incorporates an additional linear layer on the final transformer layer to generate a singular scalar
prediction representing the reward value.
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Figure 1: The architectures of Ordinal Probabilistic Reward Model. Given a problem and a
pair of responses, designated as chosen and rejected, the OPRM utilizes its language model (LM)
head to obtain the ordinal rating probabilities for each response. A joint probability matrix is then
constructed by computing the Cartesian product of these two sets of probabilities for optimization.

4 ORDINAL PROBABILISTIC REWARD MODEL

In this section, we introduce Ordinal Probabilistic Reward Model, a novel reward modeling
paradigm that learns a probability distribution over response quality. We begin by outlining the
continuous form of our reward modeling optimization paradigm, the Probabilistic Reward Modeling
(§ 4.1). We then discretize this formulation into a tractable form, termed OPRM (§ 4.2) and conclude
by presenting the complete training and inference pipeline for OPRM (§ 4.3).

4.1 PROBABILISTIC REWARD MODELING

Departing from the conventional Bradley-Terry reward model (Section 3), which estimates a single
scalar value for each response, we propose a reward modeling objective derived from Random
Utility Model theory (Manski, 1977; Cascetta, 2009). Our objective enables the model to learn a
probability distribution over the quality of each response. Concretely, we model the quality score of a
response y for a given input x as a continuous random variable S. This random variable is supported
on a bounded interval [a,b] C R. Our reward model, parameterized by 1, learns the conditional
probability density function (PDF) p, (s | x,y) of this variable, where s is a realization of S. This

density must satisfy ff py(s|z,y)ds=1.

Given a preference pair (y., y) with a chosen and a rejected response, we model their quality scores
as two independent random variables, S, and .S,. Their scores are drawn from the distributions defined
by their respective conditional PDFs: s; ~ py (- | «,y.) and s, ~ py(- | z,y,). The probability
of the preference y. > ¥, is then modeled as the probability that the score of the chosen response
exceeds that of the rejected one:

Py(ye = ye | ©) = Eq_ s, [L(5c > 51)] 3)

where 1(-) denotes the indicator function. Expanding the expectation in integral form over the
bounded interval [a, b], we obtain:

b b
Pw(yc = Ur ‘ l’) = / / ]]-(Sc > Sr)pw(sc | xvyc)pw(Sr | x,yr) dsy ds. “@

This expression corresponds to computing the probability that a random score sampled from the
chosen response exceeds a random score from the rejected response, integrating over their joint
distribution constrained to the bounded interval. Since 1(s. > s,) = 1 only when s, > s, and 0
otherwise, so it effectively truncates the integral domain to (a, sc) for py (s, | «, yr). Thus, we can
equivalently restructure the double integral as follows:

b Sc
Pw(yc = Yr | m) = / Pw(sc ‘ xayc) </ pw(sr | xayr) dsr) ds. ©)

Finally, we can simply optimize the Eq. (5) by minimizing the negative log-likelihood loss. Notably,
the Bradley-Terry model is a special case of the Probabilistic Reward Modeling framework, arising
when the quality score distribution is constrained to a unimodal Gumbel distribution with fixed
shape parameters (see Appendix B for a detailed proof). However, this objective lacks a closed-form
analytical solution and requires estimation through Monte Carlo sampling. This computational
challenge motivates our transition from the continuous formulation to a more tractable discrete one.
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Figure 2: Region Flooding Tuning. To ensure the correctness of the reward modeling, region
flooding is applied to each of the three partition combinations, resulting in a lower triangular form.

4.2 FRrROM CONTINUOUS TO DISCRETE

To obtain a closed-form analytical solution, we adapt the continuous formulation in Eq. (5) by
modeling the scores as discrete random variables over a finite set of ordinal ratings {a,a + 1,...,b}.
This yields the following closed-form expression:

b Sc—1
Py(ye = ye | @) = Y pulse | 2, 4c) (Z Py (se | xyyr)> (©6)

Sc=a sr=a

As observed in Eq. (2), the Bradley-Terry model maximizes the score gap between chosen (y.)
and rejected (y,) responses, creating a steep reward landscape with pronounced gradients beneficial
for RL optimization. Similarly, our optimization objective in Eq. (6) inherits and generalizes this
desirable property. By operating over full reward distributions instead of single scalars, our objective
naturally shifts probability mass upward for chosen responses and downward for rejected ones,
thereby widening their separation.

This intuition is formally supported by the gradient dynamics of the probability mass functions
(PMFs). Specifically, the sensitivity of the objective JJ = Py (y. = v, | ) with respect to the mass at
score k is given by Eq. (7).
oJ oJ

——— =P(s; <k), ———=P(sc.>k). @)

Ope (k) Op: (k) ‘
These derivatives imply that increasing the probability mass for ¥, at score k is incentivized whenever
y; 1s likely to be lower than k. Consequently, shifting mass from a lower score k to a higher score
k + 1 for the chosen response yields a strictly non-negative gain proportional to p, (k). This creates a
consistent optimization pressure driving the distribution of y. towards the maximum score b and y;
towards the minimum score a. A detailed proof via gradient analysis can be found in Appendix C.

Ordinal Probabilistic Reward Modeling presents two key advantages: (1) Quantifying Uncertainty,
the variance of the output distribution serves as a measure of model confidence—wide distributions
for ambiguous comparisons indicate uncertainty, while sharp, peaked distributions reflect clear
preferences, enhancing interpretability. Our method thus explicitly captures the inherent uncertainty in
human preference judgments, a crucial aspect often overlooked by discriminative reward models. (2)
Handling Annotation Disagreement, our method can represent multimodal score distributions (e.g.,
Mixture of Gaussians), enabling it to capture disagreements among annotators. By explicitly capturing
conflicting signals within the score distribution, our model becomes robust to the performance
degradation often caused by inconsistent preference data (Sun et al., 2025a). This contrasts sharply
with traditional methods like the Bradley-Terry model, which are restricted to unimodal preferences.

4.3 PIPELINE

Our training pipeline, illustrated in Figure 1, begins by formatting the preference data pairs (z, yc, yr)
(see Section 3) into a structured input using a prompt template. The details of this template and criteria
are provided in Appendix H. As the next step in the pipeline, following the parameter-free technique
from prior work (Cui et al., 2023), we compute the distribution over quality score s € {a,a+1,...,b}
(where a, b € Z) by directly repurposing the LM head’s vocabulary probabilities, thus obviating the
need for a separate prediction head and avoiding any new parameters. In our implementation, we
set the quality score range from 1 to 9 (i.e., a = 1,b = 9) The score distribution is then formed by
directly extracting the vocabulary probabilities of the corresponding numeric tokens (i.e., ‘1’ to
*97). This approach allows the model to directly leverage its inherent ordinal knowledge of numbers.
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Table 2: Overall results of different methods and models on four RM benchmarks. bold numbers
indicate the best performance. Underlined numbers indicate the second best. The Overall* score is
the average performance excluding Reward Bench due to its known data contamination issues.

Model Reward Bench PPE-P PPE-C RMB Overall Overall*
Reported Results of Public Models
Skywork-Reward-Gemma-2-27B 93.8 56.6 56.6 60.2 66.8 57.8
DeepSeek-V2.5-0905 81.5 62.8 58.5 65.7 67.1 62.3
Gemini-1.5-Pro 86.8 66.1 59.8 56.5 67.3 60.8
ArmoRM-8B-v0.1 90.4 60.6 61.2 64.6 69.2 62.1
InternLM2-20B-Reward 90.2 61.0 63.0 62.9 69.3 62.3
LLaMA-3.1-70b-Instruct 84.1 65.3 59.2 68.9 69.4 64.5
Claude-3.5-sonnet 84.2 65.3 58.8 70.6 69.7 63.2
Nemotron-4-340B-Reward 92.0 59.3 60.8 69.9 70.5 63.3
GPT-40 86.7 67.1 57.6 73.8 71.3 66.2
Reproduced Results of Baseline Methods From DeepSeek
LLM-as-a-Judge 83.4 64.2 58.8 64.8 67.8 62.6
DeepSeek-BTRM-27B 81.7 68.3 66.7 57.9 68.6 64.3
CLoud-Gemma-2-27B 82.0 67.1 62.4 63.4 68.7 64.3
DeepSeek-PairRM-27B 87.1 65.8 64.8 58.2 69.0 62.9
DeepSeek-GRM-27B-RFT 84.5 64.1 59.6 67.0 68.8 63.6
DeepSeek-GRM-27B 86.9 64.7 59.8 69.0 69.9 64.5
Results of Our Method
OPRM-Qwen2.5-7B 87.8 61.1 61.3 71.5 70.4 64.6
OPRM-Qwen2.5-14B 89.3 63.0 64.3 73.8 72.6 67.0
OPRM-Qwen2.5-32B 91.3 63.9 66.1 75.6 74.2 68.5
OPRM-Qwen2.5-72B 89.3 65.1 64.3 73.5 73.1 67.6
Results of Our Method (w/ Region Flooding Tuning)
OPRM-RgFT-Qwen2.5-7B 86.2 62.3 62.4 70.1  70.3¢0.1)  64.9(10.3)
OPRM-RgFT-Qwen2.5-14B 87.3 63.4 65.6 72.8  72.3003) 67.3(10.3)
OPRM-RgFT-Qwen2.5-32B 88.9 64.6 67.3 74.8  73.9003)  68.9(10.4)
OPRM-RgFT-Qwen2.5-72B 89.1 65.3 66.4 742 73.8¢t0.7)  68.6(11.0)

In summary, both the chosen and rejected inputs are fed into the LLM backbone and its LM head,
yielding the post-softmax vocabulary probability distributions p(w. | x,y.) and p(w, | x,y,) at
the last token position. The probabilities of all numeric tokens are then normalized to form the
distribution for our ordinal probabilistic reward modeling:

po(se =i | ye) = plwe = ‘i’ |z, ye) pulse =i | 2,00) = plw, = 1’ |z, )
c — s Yec) — . ) p\or = s Yr) = ;
Sy plwe =37 | @, yc) Sy plwe =37 | z,y,)
®)
Finally, we substitute the obtained py(s. = @ | #,y.) and py(s; = i | z,y,) into Eq. (6) and
maximize Py (y. > vy | «) using the negative log-likelihood loss. See Appendix L for a detailed
computational overhead analysis.

During the inference stage, we simply input a response ¢ given prompt x to obtain a quality score
distribution py (s | ,y). We can derive a scalar reward score through either argmax or weighted
averaging. For a discussion of other possible decoding strategies, see Appendix K.2. In our subsequent
experiments, we adopt the straightforward weighted averaging approach to compute the reward score:

ry(x,y) = Zg:a s - py(s | z,y), avoiding the tie-prone argmax method.
5 REGION FLOODING TUNING

While OPRM effectively captures relative preferences, precisely aligning its scoring distribution with
absolute quality judgments presents a further challenge. To address this, we introduce Region Tuning
(RgT), a cost-effective method that enhances the model’s fidelity to absolute quality scores using
minimal annotations (§ 5.1). Subsequently, we refine RgT to preserve the desirable properties (as
detailed in Appendix C), culminating in our final method: Region Flooding Tuning (RgFT) (§ 5.2).
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Table 3: Detailed results of different methods on the PPE Correctness benchmark. Bold numbers
indicate the best performance. Underlined numbers indicate the second best.

Model MMLU-Pro MATH GPQA MBPP-Plus IFEval PPE Correctness
Results of Our Method
OPRM-Qwen2.5-7B 65.2 70.1 56.3 59.0 56.1 61.3
OPRM-Qwen2.5-14B 66.7 70.7 57.1 67.4 59.5 64.3
OPRM-Qwen2.5-32B 71.2 73.2 57.9 66.2 62.2 66.1
OPRM-Qwen2.5-72B 73.4 75.9 58.6 54.1 59.5 64.3
Results of Our Method (w/ Region Flooding Tuning)

OPRM-RgFT-Qwen2.5-7B 64.8 71.6 55.9 63.0 56.8 62.411.1)
OPRM-RgFT-Qwen2.5-14B 69.5 74.0 57.3 67.0 60.0 65.6(11.3)
OPRM-RgFT-Qwen2.5-32B 73.3 76.8 58.5 67.2 60.6 67.311.2)
OPRM-RgFT-Qwen2.5-72B 72.8 77.1 59.0 62.0 61.2 66.4¢12.1)

5.1 REGION TUNING

Building upon the OPRM optimization objective from Eq. (6), which employs the finite set of ordinal
ratings S = {1,2,...,9} for all data, we introduce a more fine-grained partitioning based on the
absolute quality of each response, a technique we term Region Tuning (RgT).

Specifically, we further partition the finite set into three quality levels, guiding the model to concentrate
the probability mass within corresponding rating sub-region: Sy.q = {1, 2,3}, Shormar = {4, 5,6},
and Sy00q = {7,8,9}. Consequently, for a single preference data point consisting of a chosen and a
rejected response, there are six possible combinations of quality levels. These include pairs from dif-
ferent levels, as well as pairs where both responses fall into the same level, denoted as <Ichosen lrejected™:
<good, normal>, <good, bad>, <normal, bad>, <good, good>, <normal, normal>, <bad, bad>.

This partitioning allows us to redefine the preference probability by conditioning it on the quality
levels of the chosen and rejected responses. Thus, the optimization objective is formulated as:

P(/)(yc = Yr | x, lchosem lrejected) = Z pw(sc | x7yc) Z pz/;(Sr | x,yr)]l(sc > Sr)
S5cES) ENS

chosen rejected

C))

Details on the partition of the semantic regions (Spad, Snormal> Seood) are provided in Appendix E.

5.2 FROM REGION TUNING TO REGION FLOODING TUNING

As shown in Figure 2, when lchosen 7 lrejected, Eq. (9) optimizes a square-shaped joint probability

region, resulting in constant partial derivatives 3571(1) and 8571(1)' In this case, the optimization

objective no longer shifts the probability mass of the chosen response upwards and the rejected
response downwards to increase their separation. This leads to the loss of a desirable property of
OPRM, as mentioned in Section 4.2 (see Appendix C and G for a formal proof and analysis).

As shown in Figure 2, we propose region flooding to the optimized joint probability region, expanding
it into a lower triangular shape to preserve the desired property. As its expansion process closely
resembles breadth-first search algorithm, we term it Region Flooding Tuning (RgFT). RgFT provides
three key advantages: (1) Interpretability, RgFT constrains the model to concentrate probability
mass within the score regions correspond to pre-defined quality levels, enabling reward scores
to more accurately reflect the absolute quality of responses. (2) Semi-supervised Learning, RgFT
supports semi-supervised training by combining quality-labeled data with preference-only data. (3)
Customizability, RgFT allows for the flexible tailoring of rating sub-regions to their corresponding
quality levels, making the strategy adaptable to diverse application requirements (see Appendix K.1).

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

In our experiments, we curate a dataset of 130k samples for reward model training, drawn primarily
from publicly available open-source datasets: Skywork Reward Preference 80K (Liu et al., 2024b)
and UltraFeedback Binarized Preferences (Cui et al., 2023). We employ the Qwen2.5-Instruction
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Table 4: Detailed results of Qwen2.5-7B with different methods on the Role Play benchmark. Bold
numbers indicate the best performance. Underlined numbers indicate the second best.

Method Pair-Accuracy Best-of-N  Best-of-N-plus  Worst-of-N  Overall
Random Baseline 50.0 25.5 31.3 68.7 43.9
Training on Role Play Data Only
BT Model 70.4 48.6 51.3 83.6 63.5
BT Model - w/ Margin 71.0 49.3 52.3 84.2 64.2
OPRM (ours) 71.3 494 52.5 84.1 64.3
OPRM-RgFT (ours) 72.1(10.8) 50.7¢11.3) 53.6(11.1) 85.1¢11.0) 65.4(11.1)
Training on Mixed Role Play and General-Domain Data
BT Model 73.8 51.2 54.3 86.0 66.3
BT Model - w/ Margin 75.3 53.4 55.7 87.2 67.9
OPRM (ours) 74.4 54.1 56.1 87.8 68.1
OPRM-RgFT (ours) 75.8(11.4) 55.811.7) 59.3(13.2) 89.9(12.1) 70.2¢12.1)

series of models (7B, 14B, 32B, and 72B) (Team, 2024) as the backbone for training the OPRM. We
compare OPRM to different categories of baselines: Discriminative RMs, Generative RMs and
DeepSeek-RM. Following prior work, we evaluate the performance of different methods on various
RM benchmarks: Reward Bench (Lambert et al., 2024), PPE (Frick et al., 2024), RMB (Zhou et al.,
2024). We use the standard pair accuracy and Best-of-N evaluation metrics for each benchmark.
Detailed information on the data, baselines, benchmarks, and metrics is provided in Appendix D.

6.2 MAIN RESULTS

As shown in Table 2, we compares the overall results of OPRM with different baseline reward
models on RM benchmarks. We present the performance of OPRM with the reported results of public
models and the reproduced results of baseline methods from DeepSeek. We observe that OPRM
outperforms the baseline methods in overall performance, and achieves competitive results against
strong public RMs, such as Nemotron-4-340B-Reward and GPT-40. Notably, the 14B, 32b, and
72B models surpass all prior leading reward models, improving upon the previous best result by
1.3%, 2.9%, and 1.8%, respectively, despite being significantly smaller in scale. Moreover, the most
significant performance enhancement is observed on the RMB and PPE-Correctness benchmarks,
which utilize Best-of-N evaluation to better reflect practical effectiveness on downstream tasks. We
attribute the 32B model’s superior performance over the 72B model to the exceptional zero-shot
capability of Qwen2.5-32B. This enables it to outperform larger models on the RM benchmark
without any fine-tuning. The more detailed numbers on RewardBench, PPE Correctness, and RMB
are in Table 8, Table 9, and Table 10 in Appendix .

6.3 THE IMPACT OF REGION FLOODING TUNING

Building upon OPRM, we incorporate RgFT for further experimentation. We train the OPRM-
RgFT series of models using the preference data, further enriched with three defined quality level
annotations (good, normal, and bad). Consistent with the advantages of RgFT described in Section 5.

6.3.1 BEYOND ACCURACY, RELIABLE CALIBRATION

While high accuracy is desirable, a reliable re- Table 5: Comparison of accuracy and calibration
ward model must also provide calibrated confi- (ECE-10) on the RewardBench.
dence, particularly for probabilistic approaches.

To strictly quantify this, we measure the Ex- Model Acc (%) ECE-10 (%, ])
pected Calibration Error (ECE) on the Reward- Qwen-2.5-32B 69.56 26.72
Bench dataset. Given the inherent noise in fine- OPRM-32B 81.04 10.62
grained ordinal ratings, we aggregate scores into~ QPRM-RgFT-32B  90.90 5.18

semantic tiers (bad, normal, good) to compute
a robust ECE against ground truth labels verified by GPT-40 and humans. As shown in Table 5,
OPRM-32B significantly outperforms the baseline, reducing ECE by over 60%. Crucially, OPRM-
RgFT-32B achieves a minimal ECE of 5.18%, an 80.6% relative reduction compared to the baseline.
This demonstrates that RgFT not only boosts ranking performance but also effectively regularizes
probability estimates, preventing overconfidence and ensuring alignment with empirical correctness.
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Figure 4: Ablation Study: (a) Assessing the superiority of OPRM over the BT Model. (b) Evaluating
the efficacy of Weighted Average Decoding. (c) Validating the necessity of Region Flooding.

6.3.2 FEWER ANNOTATIONS, BETTER RESULTS

As presented in Table 2 and Table 3, our evaluation of OPRM-RgFT on four RM benchmarks reveals
a notable performance divergence. On one hand, RgFT consistently improves performance across
all model sizes on the PPE benchmarks. Notably, OPRM-RgFT-32B achieves SOTA accuracy of
67.3% on the PPE-Correctness benchmark, surpassing all prior leading reward models. On the other
hand, its performance on other benchmarks is inconsistent. We hypothesize that this discrepancy
stems from biases introduced by our annotation strategy for general data (see Appendix J). This
process, involving coarse Al annotation with simple manual correction, is effective for verifiable
tasks with explicit correctness labels like PPE-Correctness but likely introduces label noise for other
tasks. Further supporting this claim, our subsequent experiments show that incorporating fine-grained
manual annotations leads to consistent performance improvements.

6.3.3 TOWARDS HUMAN-ALIGNED SCORE DISTRIBUTIONS.

BTRM-32B
OPRM-32B
OPRM-RgFT-32B

To evaluate the impact of Region Flooding Tuning on abso- 06
lute quality assessment, we analyze the score distributions 5,
produced by our models. Specifically, we curated two dis- 2
tinct datasets for this analysis: an Absolute-Good Set with  ~
100 high-quality prompt-response pairs and an Absolute-

Bad Set with 100 poor-quality pairs. These pairs are
manually selected by experts based on a multi-faceted

BTRM-32B
OPRM-32B
OPRM-RgFT-32B

evaluation across dimensions such as instruction follow-
ing, factual accuracy, and helpfulness. We then score both
datasets using three models: the baseline BTRM-32B, our
base model OPRM-32B, and its RgFT-enhanced version.
As illustrated in Figure 3, the base OPRM-32B already
exhibits a basic capacity for absolute quality assessment:
within its [1, 9] scoring range, it generally assigns scores
above 5 to good responses and below 5 to bad ones. Cru-
cially, OPRM-RgFT-32B significantly enhances this capa-
bility. The RgFT-enhanced model polarizes the score distributions, pushing scores for high-quality
responses into the [7, 9] range while confining low-quality ones to [1, 3]. This increased separation
makes the score itself a more reliable and interpretable indicator of absolute quality. Case stud-
ies in Appendix M provide detailed scoring examples that further corroborate these findings and
demonstrate the improved reliability of RgFT scores.

-10 -5 0 5 10
Reward Score

Figure 3: Comparison of score distribu-

tions for responses of high-quality (Top)

and low-quality (Bottom).

6.3.4 SEMI-SUPERVISED DOMAIN ADAPTATION

To simulate practical applications and reduce annotation costs, we investigate RgFT’s effectiveness
in a semi-supervised domain adaptation setting. Specifically, we curated a training set of 31K
role-playing instances with quality-level labels (see Appendix J for annotation details) and a mixed
dataset by combining these with an equal volume of unlabeled general-domain preference data.
For evaluation, we build a test set of 500 questions, each with 5-10 responses, and designed three
new metrics: Best-of-N (top-scoring is good-level), Worst-of-N (bottom-scoring is bad-level), and
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Best-of-N-plus(top-scoring is not bad-level). As shown in Table 4, we benchmark our models against
BT and BT-with-Margin baselines (see Appendix F for detailed formulas) under two settings: training
on role-play data only, and on the mixed dataset. In both settings, OPRM surpasses the baselines, and
OPRM-RgFT further improves upon OPRM. Crucially, incorporating unlabeled general-domain data
significantly boosts the performance of OPRM and OPRM-RgFT from 64.3% to 68.1% and 65.4%
to 70.2%, respectively. This demonstrates that RgFT can effectively leverage unlabeled preference
data in a semi-supervised manner, offering a cost-effective path for domain adaptation.

6.4 ABLATION STUDY

We ablate key components of our OPRM and RgFT to validate their contributions. As shown in
Figure 4, each component proves essential for optimal performance.

Effectiveness of OPRM Loss. We replace our OPRM loss with the standard Bradley-Terry (BT) loss,
training an identical 32B model. Figure 4(a) shows this change caused a 1.1% to 2.1% performance
drop across all benchmarks, validating the superiority of modeling reward as an ordinal variable.

Impact of Decoding Method. We compared our standard weighted averaging decoding with a
simpler Argmax approach, which directly selects the token with the highest probability. As shown in
Figure 4(b), Argmax decoding led to a substantial 8.7% to 17.5% performance drop. We attribute
this to Argmax’s inability to capture fine-grained quality differences, which resulted in excessive ties.

Necessity of the Flooding Mechanism. The flooding mechanism is designed to create desirable
lower triangular score regions (see Appendix C). Removing it resulted in a 1.0% to 2.9% performance
drop on the PPE Correctness benchmark (Figure 4(c)). The degradation are most pronounced when
distinguishing between responses of similar quality, confirming the mechanism’s critical role.

7 CONCLUSION

In this paper, we propose Ordinal Probabilistic Reward Model, a novel paradigm that learns a full
probability distribution over an ordinal reward space. To better anchor these rewards to absolute
quality, we further proposed Region Flooding Tuning, a training strategy that leverages quality-level
annotations to calibrate the model’s probability distribution. Extensive experiments on four diverse
reward modeling benchmarks show that our approach consistently improves performance by 2.9% to
7.4%. Furthermore, detailed analysis reveals that OPRM is superior to the conventional Bradley-Terry
model and that RgFT is crucial for discerning fine-grained quality differences. We believe OPRM
with RgFT offer a powerful framework for developing more accurate and reliable reward models, a
critical step towards building more capable and aligned large language models.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We utilize Large Language Models (LLMs) to aid in the writing and polishing of this manuscript.
Specifically, LLMs are employed to correct grammatical errors, improve sentence structure, and
enhance the clarity and conciseness of the text. This process is primarily applied to the Introduction,
Related Work, and Appendix sections. All scientific contributions, methodologies, and conclusions
presented in this paper are the original work of the authors. The LLMs serve solely as a writing-
enhancement tool.

B BRADLEY-TERRY AS A SPECIAL CASE OF PROBABILISTIC REWARD
MODELING

In this section, we demonstrate that the Bradley-Terry model for pairwise preferences can be derived
from a more general probabilistic reward modeling framework under a specific set of distributional
assumptions.

Let py (s | z,y) denote the probability density function of a score s assigned to a response y given a
context x, where the scoring mechanism is parameterized by . Consider two responses for the same
context x: a chosen response y. and a rejected response y,.. Let s. and s, be the random variables for
their respective scores, with distributions py(se | =, yc) and py (s, | z, ). We assume s and s, are
conditionally independent given x, yc, Y-

The probability that y. is preferred over y,, denoted Py, (Ye > yr | ), is the probability that the score
of the chosen response is greater than that of the rejected one, i.e., P(s. > s;). This can be expressed
generally as:

Pw(yc = Yr | l‘) :/ p¢($c I xayc) (/ 4 pw(sr | l‘,yr) dsr) dse. (10)

— 00 — 00

We show that this general formulation reduces to the Bradley-Terry model under specific assumptions.
For clarity, we first establish the functional form of the Bradley-Terry model in terms of the sigmoid
function.

Lemma B.1 (Bradley-Terry Model in Sigmoid Form). The Bradley-Terry (BT) model, which defines
the preference probability based on underlying quality scores Ty (x, yc) and ry(x, y) as

exp(ry (,Yc))

Pgr(ye = ye | x) = , (11)
e = 0 1) = ) + explr (7, 37)
is equivalent to the sigmoid function of the difference in scores:

PBT(yc = Yr | 17) = U(Tw(x, yc) - T¢(za yr))v (12)

where o(z) = 1/(1 4 e #) is the standard logistic sigmoid function.

Proof. We start from the standard definition of the BT model and manipulate it algebraically. By
dividing the numerator and the denominator of Eq. (equation 11) by exp(ry(x, yr)), we obtain:

exp(ry (2, yc)) - exp(=ry (v, yr))
exp(ry (2, Yc)) + exp(ry (x,3r))) - exp(—ry (2, yr))
exp(ry (7, ye) = Ty (@, 3r))
exp(ry (2, ye) — ry (T, ) + 1
_exp(ry (@, ye) — ry (@, 1))
1+ exp(ry (z,yc) — ry (@, 4r))

PBT(yc>yr|fL’)=(
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To bring this into the form of the sigmoid function o(z), we can divide the numerator and denominator
by exp(m, (.’I}, yC) — Ty (l‘, yr)):

1

1+exp(ry (#,yc) =Ty (%,yr))
exp(ry (T,yc) =7y (T,Yr))

1
exp(—(ry(z,ye) — ry (@, 4r))) + 1
= o(rw(m,yc) - Tw(%lh))-

Per(ye =y | x) =

This completes the proof of the lemma. O

With this lemma, we can prove the main proposition.

Proposition B.2. The general preference probability Py(y. = y. | x) defined in Eq. (10) is
equivalent to the Bradley-Terry model if the following assumptions hold:

1. The score difference As,, £ s, — s, follows a logistic distribution.

2. The mean of this logistic distribution is the difference of deterministic underlying quality
scores: =Ty (x,Yc) — T (T, Yr).

3. The scale parameter of the logistic distribution is unity (s = 1).

Proof. The preference probability is the probability that the score of the chosen response exceeds
that of the rejected one. This can be expressed in terms of the score difference random variable
Asy = 8¢ — 5t

Py(ye > yr | ®) = P(sc > sy) = P(Asy > 0). (13)
Assumption 1 states that As,, follows a logistic distribution. The cumulative distribution func-

tion (CDF) of a logistic random variable Z with mean p and scale s is given by Fz(z) =
(14 e~(=1)/5)=1 Therefore, we can compute the preference probability as:

P(AS¢>O):17P(A8¢,§0)
=1— Fa,,(0)
1
1
S 1den/s
(Ier/s)—1  er/s
Lten/s — 1+en/s

1
= Trews (9

This final expression is precisely the sigmoid function, o(u/s).

Then, we apply the remaining assumptions. Assumption 2 posits that the mean of the distribution
is = ry(z,yo) — ry(x, yr). Assumption 3 sets the scale parameter to unity, s = 1. Substituting
these into our result from Eq. (14) yields:

1
L+ e ro@ue)—ry@m)

Pﬂf(yc ~ Yr | LC) = U(Tw(xayc) —Tw(%yr)) (15)
From Lemma B.1, we know that the Bradley-Terry model also simplifies to o (ry (x, yc) — 7 (2, Yr)).
Since the probabilistic reward model under the specified assumptions and the Bradley-Terry model
both yield the identical functional form, we have shown that the latter is a special case of the
former. =
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C GRADIENT ANALYSIS OF THE PREFERENCE PROBABILITY

In this section, we conduct a formal gradient-based analysis to demonstrate that maximizing the
preference probability, Py (y. > y» | ), incentivizes the underlying probabilistic model to maximally
separate the score distributions of the chosen and rejected responses.

Proposition C.1 (Optimization Incentive of Preference Maximization). Let the scores for responses
be drawn from a discrete set {a,a+1,...,b}. Let pc(k) £ py(sc = k | 2,y.) and p, (k) £ py (s, =
k| x,y;) be the respective probability mass functions (PMFs). Maximizing the preference probability
P(s. > s;) with respect to the variables {p.(k)} and {p.(k)} under the constraints ), p.(k) = 1
and ), p:(k) = 1 creates the following incentives:

1. For the chosen response ., shifting probability mass from any score k to a higher score
k + 1 will increase or maintain the objective value.

2. For the rejected response 1y, shifting probability mass from any score k + 1 to a lower score
k will increase or maintain the objective value.

This implies that the optimization process drives the PMF of y. towards the maximum score b and the
PMF of y, towards the minimum score a.

Proof. The preference probability P = Py (yc = y: | ) for discrete scores is given by:

b b i—1
P = ZPC(i)P(Sr < Z) = ZPC(i) Zpr(]) . (16)

We analyze the gradient of P with respect to the probability mass at each score for y. and y;
separately.

Part 1: Incentive for the Chosen Response Score (y.). We first compute the partial derivative of
P with respect to p.(k) for some score k € {a,...,b}. From Eq. (16), only the term where i = k
depends on p.(k), so:

oP
Ipe(k)

k-1 k—1
= i [P0 )| = i) = Pl < 1) an

This derivative represents the sensitivity of the objective to an increase in probability mass at score k.
To understand the incentive for shifting mass, consider moving an infinitesimal probability mass € > 0
from a score k to a higher score k + 1. This corresponds to a change in the PMF: p.(k) — p.(k) — €
and p.(k + 1) = pc(k + 1) + e. The resulting change in P, denoted AP, can be approximated by
the first-order Taylor expansion (which is exact since P is linear in p.):

N oP oP

T Opek+ 1) pek)

=e(P(sy <k+1)—P(sy <k)) (usingEq.equation 17)

=e¢-P(s; =k)

= e p(k). (18)
Since probabilities are non-negative, p,(k) > 0, and we defined e > 0, it follows that AP > 0.
This demonstrates that any shift of probability mass to a higher score for y. is guaranteed to be a

non-decreasing change in the objective function. This creates a persistent optimization pressure to
move the entire distribution p. towards the maximum score b.

AP

Part 2: Incentive for the Rejected Response Score (y,). To analyze the effect of p,(k), it is more
convenient to rewrite Eq. (16) by swapping the order of summation:

b

b—1
P:Zpr(]) Z pc(i) : (19)

i=j+1
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The partial derivative of P with respect to p, (k) for k € {a,...,b— 1} is:

b b

oP o NI N
m - m l e (k) i_zkglpc(l)‘| = i:%;rlpc( ) = P(s. > k). (20)

Now, consider shifting an infinitesimal probability mass € > 0 from a score k£ + 1 to a lower score k.
This corresponds to the change: p,(k) — pr(k) + € and p,(k + 1) — p.(k + 1) — €. The resulting
change in P is:

oP oP
ape(k)  “Ope(k+ 1)
=e(P(sc > k) —P(sc >k+1)) (using Eq. equation 20)
e-Plsc=k+1)
€-pe(k+1). 21

AP ~ ¢

Since p.(k + 1) > 0 and € > 0, we have AP > 0. This shows that shifting probability mass to a
lower score for y; is always a non-decreasing change. This creates a consistent optimization pressure
to move the distribution p, towards the minimum score a.

Combining both parts, we have formally shown that maximizing the preference probability P(s. > s;)
drives the model to separate the score distributions by pushing the mass of p. towards the highest
possible score and the mass of p, towards the lowest possible score. O

D DETAILED EXPERIMENTAL SETUP

Training Preference Data. We curate a dataset of 130k samples for reward model training, drawn
primarily from publicly available open-source datasets: Skywork Reward Preference 80K (Liu
et al., 2024b) is a high-quality, pairwise preference dataset that spans multiple domains, including
chat, safety, mathematics, and code. It employs advanced data filtering techniques to ensure the
reliability of preferences across different tasks. UltraFeedback Binarized Preferences (Cui et al.,
2023) is a large-scale, fine-grained, and diverse preference dataset designed for training powerful
reward and critic models. It comprises approximately 64k prompts from various sources, including
UltraChat (Ding et al., 2023), ShareGPT, Evol-Instruct (Xu et al., 2024), TruthfulQA (Lin et al.,
2021), FalseQA (Hu et al., 2023), and FLAN (Wei et al., 2021). Each prompt is used to query multiple
LLMs to generate four distinct responses, resulting in a total of 256k samples.

Baselines. In our main experiments, we employ the Qwen2.5-Instruction series of models (7B, 14B,
32B, and 72B) (Team, 2024) as the backbone for training the OPRM. We compare OPRM to different
categories of baselines: (1) Discriminative RMs, including Skywork-Reward (Liu et al., 2024b),
ArmoRM (Wang et al., 2024a), InternLM-20B-Reward (Cai et al., 2024), and Nemotron-4-340B-
Reward (Wang et al., 2024c). (2) Generative RMs, including DeepSeek-V2.5 (Liu et al., 2024a),
Gemini-1.5-Pro (Team et al., 2024), LLaMA-3.1-70B (Grattafiori et al., 2024), Claude-3.5-sonnet,
and GPT-40 (Hurst et al., 2024). (3) DeepSeek-RM, a collection of baselines re-implemented by
DeepSeek, including LLM-as-A-Judge (Zheng et al., 2023), DeepSeek-BTRM (Bradley & Terry,
1952), DeepSeek-PairRM (Jiang et al., 2023), CLoud-Gemma-2 (Ankner et al., 2024) and DeepSeek-
GRM (Liu et al., 2025b).

Benchmarks and Evaluation Metrics. Following prior work, we evaluate the performance of
different methods on various RM benchmarks of different domains: Reward Bench (Lambert et al.,
2024), PPE-Preference, PPE-Correctness (Frick et al., 2024), RMB (Zhou et al., 2024). We use
the standard Best-of-N evaluation metrics for each benchmark: the accuracy of picking the best
response from a set of responses. Specifically, Reward Bench and PPE Preference involve pairwise
comparisons, with each prompt featuring two candidate responses. In contrast, PPE Correctness is
designed for a large-scale Best-of-N evaluation, presenting 32 responses for each prompt. RMB is a
hybrid, incorporating both pairwise comparison tasks and a Best-of-5 selection format.
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E SENSITIVITY ANALYSIS ON BOUNDARY AND BIN CONFIGURATIONS

In this section, we investigate the robustness of OPRM-RgFT to variations in ordinal bin definitions
and boundary placements. Specifically, we aim to verify that the method’s performance is primar-
ily driven by the underlying probabilistic framework rather than specific hyperparameter choices
regarding the ordinal scale.

To this end, we trained a variant of OPRM-RgFT-32B using an expanded scale 5" = {0, ...,9} with
irregular boundaries: bad {0,1, 2,3}, normal {4, 5}, and good {6, 7, 8,9}. This setup introduces
asymmetry and changes the cardinality of the semantic sets, contrasting with our default uniform
configuration which employs a symmetric partition of the scale S = {1,...,9} (bad {1,2, 3},
normal {4,5,6}, good {7,8,9}).

As presented in Table 6, the performance deviation between the default uniform setting and the
irregular variant is negligible, with the difference in the Overall score being less than 0.1%. This
empirical evidence demonstrates that OPRM-RgFT is robust to boundary shifts and does not rely on
uniform partitions to achieve high performance.

Table 6: Performance comparison between the default uniform configuration and an irregular bound-
ary variant. The results indicate that the method is highly robust to binning strategies.

Configuration RewardBench PPE-P PPE-C RMB Overall
Irregular Variant (Scale 0...9)

bad {0, 1,2, 3}, normal {4, 5}, good {6, 7,8,9} 89.1 64.1 67.7 74.4 73.8
Default Uniform (Scale 1...9)

bad {1, 2,3}, normal {4,5,6}, good {7, 8,9} 88.9 64.6 67.3 74.8 73.9

Despite the demonstrated robustness to irregular boundaries, we adhere to the default uniform config-
uration for two principled reasons related to efficiency and priors. First, regarding computational
efficiency, we utilize the range [1, 9] to maximize granularity while ensuring each ordinal score maps
to a single token. Mainstream LLM tokenizers typically treat digits {0, ..., 9} as individual tokens,
whereas values > 10 are decomposed into multiple tokens. Restricting the support set to single
tokens allows OPRM to compute the full probability distribution in a single forward pass, avoiding
the prohibitive computational costs associated with computing joint probabilities over multi-token
sequences. Second, concerning geometric simplicity, we employ a uniform partition (3 x 3 regions)
as a neutral prior to minimize inductive bias. This uniformity aligns with the theoretical design
of Region Flooding Tuning, allowing probability mass to flood into a symmetric lower triangular
geometry of consistent size. In the absence of domain-specific knowledge suggesting that good
samples require finer granularity than bad ones, a symmetric division simplifies hyperparameter
selection and ensures balanced gradient pressure across different quality levels.

F BRADLEY-TERRY LOSS WITH MARGIN

Inspired by INF-ORM (Yang et al., 2024), which employs GPT-4o0 to evaluate the preference margin
between chosen and rejected responses, we annotate each pair in our dataset with a margin label.
The original evaluation in INF-ORM follows these rules: (1) If the chosen answer is much better
than rejected answer, set margin to 10; (2) If the chosen answer is better than the rejected answer, set
margin to 3; (3) If the chosen answer is slightly better than rejected answer, set margin to 1.

Analogously, we define margins based on the combination of quality-level annotations. Specifically,
pairs with the same quality level, such as <good, good>, <normal, normal>, and <bad, bad>, are
assigned a margin of 1. Pairs with adjacent quality levels, namely <good, normal> and <normal,
bad>, are assigned a margin of 3. Finally, a margin of 10 is assigned to pairs with distant quality
levels, like <good, bad>.

After that, the Bradley-Terry Loss with Margin is defined as:
['(Tw) = _E(w,ymyr)~Drm [m(x, Ye, yr) -log 0'(7‘1[, (x, Z/C) — Ty (337 yl’))]a (22)
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Here, m(z, y., yr) stands for the margin value between chosen and rejected responses. This formula
helps the model to better understand which responses are preferred over others, based on the scores
we gave them.

G DISENTANGLING THE IMPACT OF REGION FLOODING FROM LABEL
AUGMENTATION

A central hypothesis of this work is that the Region Flooding Tuning (RgFT) framework provides
methodological benefits beyond the simple inclusion of absolute quality labels. To verify whether the
observed performance gains stem from the architecture itself or merely from data augmentation, we
conducted controlled experiments comparing OPRM-RgFT against standard classification paradigms
trained on identical data (comprising both preference pairs and semantic quality labels).

We formulate two baseline approaches to isolate the contribution of the modeling strategy:

* Baseline A (Hard Classification): A standard multi-class classification model optimizing for
three discrete quality tiers (good, normal, bad). Inference is performed via maximum a posteriori
estimation, selecting the class with the highest probability.

* Baseline B (Scalar-Weighted Classification): A regression-oriented approach designed to provide
finer granularity than hard classification. Here, the reward score is computed as the expected value
over class probabilities: E[s] = >_ . (s00d normal,paa} £(¢) - Ve, Where v, represents the centroid of

the corresponding semantic region (e.g., values mapped to 2, 5, and 8).

Table 7: Comparative analysis of OPRM-RgFT against standard classification baselines utilizing
identical supervision signals. The results demonstrate that the proposed region flooding mechanism
yields significant gains over pure classification approaches.

Method RewardBench PPE-P PPE-C RMB Overall
Baseline A (Hard Classification) 71.0 439 46.6 55.7 54.3
Baseline B (Scalar-Weighted Classification) 85.4 61.5 64.3 71.3 70.6
OPRM-RgFT-32B (Ours) 88.9 64.6 67.3 74.8 73.9

The empirical results, detailed in Table 7, indicate a clear performance hierarchy. Hard Classification
significantly outperforms Scalar-Weighted Classification, underscoring the necessity of continuous
score representations for ranking tasks. However, it consistently underperforms OPRM-RgFT across
all benchmarks (e.g., a 3.3% deficit in the Overall score). This performance gap substantiates that
the efficacy of our method is not solely attributable to the availability of absolute labels. Rather,
the Region Flooding strategy effectively harmonizes discriminative pairwise ranking with absolute
semantic constraints. Unlike standard classification, which treats labels as independent categories,
RgFT anchors the preference distribution within a continuous ordinal space, thereby achieving
superior calibration and ranking fidelity.

H OPRM’S PROMPT TEMPLATES

As shown in Prompt H.1, we present the prompt templates used during the OPRM training process.
Furthermore, we designed distinct scoring criteria for general-domain and domain-specific data.
Specifically, the general-domain preference data is evaluated using the OpenAl 3H Criteria, as
detailed in Prompt H.2. In contrast, the role-play data used in our experiments is assessed against our
custom Role Play Criteria, presented in Prompt H.2.
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H.1 PRrROMPT

Ordinal Distributional Reward Modeling Prompt

## Evaluation Guidelines

You are an expert text quality evaluator.

Your task is to carefully assess and score the Al-generated candidate response based on the
specific criteria provided below.

#+# Scoring Criteria
{criteria}

## Context of Interaction
The following represents a historical conversation between a user and an Al assistant:

{prompt}
#+# Al Response to Evaluate
Below is the candidate response generated by the AI that needs to be evaluated:

{response}

## Evaluation Instructions

Please score the response according to the criteria on a scale from 1 to 9, where:
- 1-3: Bad performance

- 4-6: Normal performance

- 7-9: Good performance

Use the following format for your final assessment: “Score: <total points>".

Score:

H.2 CRITERIA

Role Play Criteria

Relevant: Responses should not be irrelevant. Responses should be coherent and reasonable
within the given context, without containing logical flaws.

Credible: Responses should be credible, meet the prompt requirements and provide
accurate information. In role-playing or storytelling, responses should be consistent with
the given character and background.

Interesting: Responses should be engaging and able to capture the user’s attention.
Responses that are self-aware, thought-provoking, or captivating will be more interesting.

Openai 3H Criteria

Helpfulness: The content generated should aim to be of assistance to the user. It should
provide accurate information, answer questions to the best of the model’s knowledge, and
offer solutions that are practical and relevant to the user’s queries. The model should not
generate content that is intentionally misleading or unhelpful.

Truthfulness: The model should strive to provide information that is truthful and
based on the most accurate data available up to its knowledge cutoff. It should not fabricate
information or present opinions as facts. When uncertain, the model should acknowledge
the limitations of its knowledge.

Harmlessness: The content should not cause harm to individuals or groups. It should avoid
generating content that is offensive, discriminatory, or promotes harmful behaviors. The
model should be programmed to refuse to generate content that could be used for malicious
purposes, including but not limited to generating false information, engaging in deception,
or promoting illegal activities.
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I DETAILED EXPERIMENT RESULTS

We report the detailed per-subset experiment results on RewardBench 8, PPE Correctness 9, and
RMB 10. The results for the baseline methods are sourced from their original papers.

Table 8: Detailed results of different methods on the Reward Bench benchmark.

Method Chat Chat Hard Safety Reasoning Reward Bench
Reported Results of Public Models
Skywork-Reward-Gemma-2-27B  95.8 91.4 91.9 96.1 93.8
DeepSeek-V2.5-0905 - - - - 81.5
Gemini-1.5-Pro 94.1 77.0 85.8 90.2 86.8
ArmoRM-8B-v0.1 96.9 76.8 90.5 97.3 90.4
InternLM2-20B-Reward 98.9 76.5 89.5 95.8 90.2
LLaMA-3.1-70b-Instruct 97.2 70.2 82.8 86.0 84.1
Claude-3.5-sonnet 96.4 74.0 81.6 84.7 84.2
Nemotron-4-340B-Reward 95.8 87.1 91.5 93.6 92.0
GPT-40 96.1 76.1 88.1 86.6 86.7
Reproduced Results of Baseline Methods From DeepSeek
LLM-as-a-Judge 96.7 69.3 83.5 84.3 83.4
DeepSeek-BTRM-27B 96.7 86.2 75.7 89.8 81.7
CLoud-Gemma-2-27B 96.7 69.3 83.5 84.3 82.0
DeepSeek-PairRM-27B 95.5 86.8 52.3 92.0 87.1
DeepSeek-GRM-27B-RFT 94.7 77.2 87.0 79.2 84.5
DeepSeek-GRM-27B 94.1 78.3 88.0 83.8 86.0
Results of Our Method
OPRM-Qwen2.5-7B 96.4 76.3 86.2 92.2 87.8
OPRM-Qwen2.5-14B 96.6 78.1 86.1 96.2 89.3
OPRM-Qwen2.5-32B 96.9 81.8 89.6 96.7 91.3
OPRM-Qwen2.5-72B 96.4 79.6 88.1 93.0 89.3
Results of Our Method (w/ Region Flooding Tuning)
OPRM-RgFT-Qwen2.5-7B 95.5 76.5 86.4 86.5 86.2
OPRM-RgFT-Qwen2.5-14B 96.9 79.4 88.1 84.6 87.3
OPRM-RgFT-Qwen2.5-32B 95.3 82.7 89.2 88.4 88.9
OPRM-RgFT-Qwen2.5-72B 96.9 82.7 89.7 87.1 89.1

J  QUALITY-LEVEL ANNOTATION

J.1 GENERAL-DOMAIN DATA

For the acquisition of quality-level annotations, we follow the methodology of UltraFeedback (Cui
et al., 2023). The process involves two main steps. First, we employ the gpt-4o model (Hurst et al.,
2024) to annotate each prompt-response pair with fine-grained scores across multiple dimensions,
such as instruction-following, truthfulness, and helpfulness. Second, these scores are averaged,
and the resulting value is mapped to one of our three predefined quality levels—good, normal, or
bad—based on specific score intervals.

Following this automatic annotation, we perform a manual verification step. For verifiable tasks,
such as mathematics and coding, we check the responses against the ground truth. If a response is
found to be incorrect, its quality level is manually downgraded to bad. We acknowledge that for
more subjective tasks, this per-instance verification is not always feasible, which may introduce some
annotation noise.

Finally, to ensure logical consistency, we filter out all pairs where the chosen response is not strictly
better than the rejected one. This includes invalid combinations of <l¢hogen, lrejectea™ Such as <normal,
good>, <bad, normal>, and <bad, good>. The remaining data constitutes our final training set.
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Table 9: Detailed results of different methods on the PPE Correctness benchmark.

Method MMLU-Pro MATH GPQA MBPP-Plus IFEval PPE Correctness
Reported Results of Public Models
Skywork-Reward-Gemma-2-27B 54.0 63.0 53.0 59.0 54.0 56.6
DeepSeek-V2.5-0905 - - - - - 58.5
Gemini-1.5-Pro - - - - - 59.8
ArmoRM-8B-v0.1 66.0 71.0 57.0 54.0 58.0 61.2
InternLM2-20B-Reward 68.0 70.0 57.0 58.0 62.0 63.0
LLaMA-3.1-70b-Instruct - - - - - 59.2
Claude-3.5-sonnet 66.0 63.0 56.0 52.0 57.0 58.8
Nemotron-4-340B-Reward 70.0 65.0 57.0 49.0 63.0 60.8
GPT-40 - - - - - 57.6
Reproduced Results of Baseline Methods From DeepSeek
LLM-as-a-Judge 66.0 68.0 52.8 50.2 56.8 58.8
DeepSeek-BTRM-27B 68.8 73.2 56.8 68.8 66.0 66.7
CLoud-Gemma-2-27B 68.7 68.8 53.5 59.0 62.0 62.4
DeepSeek-PairRM-27B 68.3 74.7 55.0 63.1 62.9 64.8
DeepSeek-GRM-27B-RFT 64.8 68.7 55.5 49.0 60.2 59.6
DeepSeek-GRM-27B 64.8 68.8 55.6 50.1 59.8 59.8
Results of Our Method
OPRM-Qwen2.5-7B 65.2 70.1 56.3 59.0 56.1 61.3
OPRM-Qwen2.5-14B 66.7 70.7 57.1 67.4 59.5 64.3
OPRM-Qwen2.5-32B 71.2 73.2 57.9 66.2 62.2 66.1
OPRM-Qwen2.5-72B 73.4 75.9 58.6 54.1 59.5 64.3
Results of Our Method (w/ Region Flooding Tuning)
OPRM-RgFT-Qwen2.5-7B 64.8 71.6 55.9 63.0 56.8 62.4
OPRM-RgFT-Qwen2.5-14B 69.5 74.0 57.3 67.0 60.0 65.6
OPRM-RgFT-Qwen2.5-32B 73.3 76.8 58.5 67.2 60.6 67.3
OPRM-RgFT-Qwen2.5-72B 72.8 77.1 59.0 62.0 61.2 66.4

Table 10: Detailed results of different methods on the RMB benchmark.

Method Helpfulness BoN  Helpfulness Pair Harmlessness BoON Harmlessness Pair RMB
Reported Results of Public Models
Skywork-Reward-Gemma-2-27B 472 65.3 56.1 72.1 60.2
DeepSeek-V2.5-0905 - - - - 65.7
Gemini-1.5-Pro 53.6 76.3 29.9 66.1 56.5
ArmoRM-8B-v0.1 63.6 78.7 49.7 66.3 64.6
InternLM2-20B-Reward 58.5 76.3 49.9 67.0 62.9
LLaMA-3.1-70b-Instruct 64.8 81.1 55.8 73.9 68.9
Claude-3.5-sonnet 70.5 83.8 51.8 76.4 70.6
Nemotron-4-340B-Reward - - - - 69.9
GPT-40 63.9 81.5 68.2 81.4 73.8
Reproduced Results of Baseline Methods From DeepSeek
LLM-as-a-Judge 55.8 78.5 50.8 73.9 64.8
DeepSeek-BTRM-27B 64.0 83.0 33.6 51.0 57.9
CLoud-Gemma-2-27B 64.7 81.1 41.7 66.1 63.4
DeepSeek-PairRM-27B 59.9 83.3 34.1 55.5 58.2
DeepSeek-GRM-27B-RFT 58.4 79.3 54.2 76.0 67.0
DeepSeek-GRM-27B 62.3 80.5 57.0 76.1 69.0
Results of Our Method
OPRM-Qwen2.5-7B 63.1 78.4 65.7 78.8 71.5
OPRM-Qwen2.5-14B 65.8 80.7 68.2 80.5 73.8
OPRM-Qwen2.5-32B 69.2 82.1 68.9 82.0 75.6
OPRM-Qwen2.5-72B 68.7 82.4 64.2 78.5 73.5
Results of Our Method (w/ Region Flooding Tuning)
OPRM-RgFT-Qwen2.5-7B 63.4 79.0 62.4 75.6 70.1
OPRM-RgFT-Qwen2.5-14B 66.3 81.3 65.3 78.2 72.8
OPRM-RgFT-Qwen2.5-32B 67.6 81.4 69.1 81.2 74.8
OPRM-RgFT-Qwen2.5-72B 67.9 823 67.1 79.5 74.2

J.2  ROLE-PLAY DATA

For the domain-specific data, we employe a team of six human experts to perform accurate quality-
level annotation. The data consists of Role-Play Dialogues, for which the experts assessed each
prompt-response pair against four core dimensions: Core Role-Playing Consistency, Interactivity
& Narrative Progression, Fundamental Linguistic Quality, and Immersion. Based on this multi-
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dimensional evaluation, they directly assigned a quality level of good, normal, or bad to each
prompt-response pair. To ensure high annotation quality and consistency, a label was only accepted
if at least two experts reached a consensus. We consider this high-fidelity annotation process to be
crucial for fully leveraging the capabilities of our Region Flooding Tuning method.

J.3 DISTINGUISHING ANNOTATION ERROR FROM DISAGREEMENT

Our methodology emphasizes robustness to inconsistent preference data and the ability to handle
annotation disagreement. To provide clarity on our data processing pipeline, it is crucial to distin-
guish between two fundamentally different types of label conflicts: Annotation Errors (Logical
Inconsistency) and Annotation Disagreements (Subjective Ambiguity).

Annotation Errors (Logical Inconsistency). Our training paradigm relies on preference pairs
(Y, yr) where the chosen response . is preferred over the rejected response y,. A semantic label
configuration such as <normal, good> (where the chosen response has a lower semantic quality than
the rejected one) constitutes a direct violation of the preference premise (y. > y.). We classify such
cases as logical inconsistencies or annotation errors rather than subjective disagreements. Empirical
analysis of our dataset reveals that these contradictions are extremely rare, accounting for less than
0.1% of the total samples. Consequently, our decision to filter these instances represents a standard
data preprocessing aimed at eliminating verifiable noise, rather than an evasion of challenges.

Annotation Disagreements (Subjective Ambiguity). In contrast, the disagreement that our prob-
abilistic framework aims to model refers to valid variations in semantic judgment where the core
preference relationship remains intact. For instance, given a valid preference pair (y. > y:), one
annotator might assign the labels <good, normal>, while another might assign <good, bad>. Both
annotations respect the ordinal constraint (3. is superior to y,) but differ in the perceived margin of
quality. This type of variation reflects genuine subjective ambiguity in reward assessment. Unlike
point-estimate models that are forced to regress to a single mean value, OPRM is specifically designed
to capture this aleatoric uncertainty by learning a full probability distribution over the reward space.

In summary, the filtering step mentioned in prior sections is strictly limited to removing logical
contradictions that violate the definition of a preference pair. It does not compromise our claim of
robustness; rather, it ensures that the model focuses on learning meaningful distributional patterns
from legitimate subjective variations.

K FUTURE WORK

In this section, we outline several promising directions for future research that build upon the OPRM
framework, such as customized Region Flooding Tuning method and customized decoding method.

K.1 CuUsTOMIZED REGION FLOODING TUNING

Rejected Rejected Rejected Rejected Rejected Rejected
12345673809 1234567809 1234567809 12345673809 1234567809 12345673809

:
v
1
v
i
v
i
v
|
vV

<Good, Bad> <Good+Normal, Bad>

Figure 5: Annotation Region Flooding Tuning. As annotation ambiguity increases, the target
optimization region "floods" to encompass a wider set of plausible outcomes. A more uncertain
annotation results in a larger target region than a more certain one.

As discussed in Section 5.2, a core advantage of Region Flooding Tuning is its customizability. In this
section, we demonstrate a novel application of this feature. Annotator inconsistency is a well-known
challenge in preference data collection, an issue that is exacerbated at finer annotation granularities
and leads to increased label ambiguity. To address this, we propose a method that explicitly models
this ambiguity by permitting a single prompt-response pair to be associated with multiple potential
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quality levels. For instance, a response might be considered both good and normal, or even all
three levels in cases of extreme uncertainty. As illustrated in Figure 5, our approach handles this by
optimizing over an expanded set of joint probabilities, corresponding to all plausible quality-level
assignments for a given pair.

K.2 CUSTOMIZED DECODING METHOD

The full probability distribution py (s | z,y) produced by OPRM allows us to go beyond a simple
expected score. To fully leverage this rich distributional information, we introduce Uncertainty-
aware Decoding. This method adjusts the expected score by penalizing predictive uncertainty,
thereby favoring responses that are predicted to be high-quality with high confidence. The final
reward score 7y (z,y) is calculated as:

b
ro(,y) =Y s pyls | z,y) — A ulz,y) (23)

s=a )
Uncertainty Term

Expected Score

where the first term is the standard expected score. The second term, u(x,y), is an uncertainty
measure of the distribution, such as its Shannon entropy or variance. The hyperparameter A > 0
controls the strength of the uncertainty penalty.

L COMPUTATIONAL OVERHEAD ANALYSIS

A key consideration for advanced reward modeling frameworks is the potential trade-off between
performance gains and computational costs. To rigorously evaluate this, we conducted a systematic
benchmark comparing the computational overhead of OPRM against a standard Bradley-Terry model
under identical experimental conditions. Both models employ the Qwen2.5-32B architecture as the
backbone. Benchmarks were executed using 32xNVIDIA H200 GPUs for training and 4 xH200
GPUs for inference, with results reported as the average wall-clock time over three independent runs.

Table 11: Computational efficiency comparison between BTRM and OPRM.

Method Training Time Inference Time Hardware (Train) Hardware (Infer)
BTRM (Standard DRM) 7.3h 5.5 min 32 x H200 4 x H200
OPRM (Ours) 6.9h 2.1 min 32 x H200 4 x H200

As summarized in Table 11, OPRM exhibits training efficiency comparable to, and slightly superior
to, the BTRM baseline (6.9 hours vs. 7.3 hours). This result empirically confirms that our ordinal
preference modeling approach captures richer distributional information without imposing additional
computational burdens during the training phase.

More notably, OPRM demonstrates a substantial advantage in inference latency, achieving a 2.6 x
speedup over BTRM (2.1 min vs. 5.5 min). This efficiency gain stems directly from OPRM’s
architectural design: by eliminating the need for an external scalar value head, OPRM remains
strictly within the standard vocabulary space of the LLM. Consequently, it is natively compatible
with highly optimized inference engines (e.g., vVLLM, SGLang) without requiring custom kernel
modifications or specialized implementations. This characteristic renders OPRM particularly suitable
for high-throughput applications, such as online RLHF and large-scale preference ranking tasks like
Best-of-N sampling, where inference speed is a critical bottleneck.

M CASE STUDY

We present several case studies in Table 12, Table 13, and Table 14, along with the scoring results
from BTRM, OPRM, and OPRM-RgFT for comparative analysis. A key finding is that by being
grounded in absolute quality assessment, OPRM and OPRM-RgFT exhibit a reduced susceptibility to
length bias, a known issue in purely relative models like BTRM. Moreover, for tasks with verifiable
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answers, our models consistently prioritize factual correctness, whereas BTRM can be misled by
other stylistic attributes.

Table 12: Case 1

Example

Question: You are a highly skilled mathematician tasked with solving complex math problems. Your goal is to
provide clear, step-by-step solutions that can be easily parsed and evaluated.

Here is the math problem you need to solve:

<problem> The length of a rectangle is twice its width. Given the length of the diagonal is 5+/5, find the area of
the rectangle. </problem>

Box your final answer using LaTeX, for example: $x =\boxed{[Your final numerical or algebraic answer]}$.
Now, please solve the given math problem and provide your solution in the specified format.

Chosen Response: Here’s my solution to the problem:

Let the width of the rectangle be w. Since the length is twice the width, the length of the rectangle is 2w.

We are given that the length of the diagonal is 5 v/5. Using the Pythagorean theorem, we can write: (5\/5)2 =
w? + (2w)?

Simplifying the equation, we get: 25 - 5 = w? + 4w?

Combine like terms: 25 - 5 = 5w?

Divide both sides by 5: 25 = w?

Take the square root of both sides: w = /25 =15

Now that we have the width, we can find the length: 2w =2 -5 =10

The area of the rectangle is the product of the width and length: A = w - 2w =5-10 =
Therefore, the area of the rectangle is 50.

Rejected Response: To solve this problem, we can start by using the Pythagorean theorem to relate the length
and width of the rectangle to the length of the diagonal: d* = I + w

where d is the length of the diagonal, [ is the length of the rectangle, and w is the width of the rectangle. Since
the length of the rectangle is twice its width, we can write: | = 2w

Substituting this into the Pythagorean theorem, we get: d> = (2w)? + w?

Simplifying this expression, we get: d* = 5w?

Since we are given that the length of the diagonal is 51/5, we can set up the equation: d = 5v/5

Substituting this into the equation above, we get: 5\/52 = 5w?

Simplifying this expression, we get: 25 - 5 = Hw?>

Simplifying further, we get: 125 = w?

Taking the square root of both sides, we get: w = /125 = 5v/5

Now that we have found the width, we can find the length by substituting this value back into the equation:
1 =2w=2(5V5) = 10v5

The area of the rectangle is given by: A = lw = (10v/5)(5v/5) = 50v/5° =505 =
Final Answer: The final answer is 250.

BTRM-Qwen2.5-32B
Chosen Score: 0.03
Rejected Score: -2.70

OPRM-Qwen2.5-32B (Ours)
Chosen Score: 7.04
Rejected Score: 3.63

OPRM-RgFT-Qwen2.5-32B (Ours)
Chosen Score: 8.06
Rejected Score: 3.13
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Table 13: Case 2

Example

Question: is (z¥)* = (z*)¥?

Chosen Response: Yes, the equation (z¥)* = (2%)? is indeed true, and it is a direct consequence of the
properties of exponents in mathematics.

To see why this is true, let’s consider the equation on both sides:

Left side: (z¥)*

Right side: (%)Y

First, we can simplify the left side by applying the power of a power rule, which states that (a™)" = alm™);
Left side: (2¥)* = (¥

Now, let’s simplify the right side using the same power of a power rule:

Right side: (z%)Y = z*¥)

Now we can see that both sides of the equation are equal:

22 — L (=z9)

Since the bases (z) are the same and the exponents (yz) and (zy) are also the same, we can conclude that the
equation (z¥)* = («*)Y is true. This property holds for any real numbers z, y, and z, as long as = # 0 and y
and z are non-zero.

Rejected Response: A classic question about exponentiation!
nfortunately, the answer is no, (¥)” is not necessarily equal to (z*)¥ in general.
Unfortunately, th v)® t ly equal to (z*)Y in g 1
To see why, let’s break it down:
(z¥)? means “raise x to the power of y, and then raise the result to the power of 2. This can be written as:
(x¥)* = 2W*z)
On the other hand, (z*)¥ means “raise « to the power of z, and then raise the result to the power of 3”. This can
be written as:
(%)Y = 2(Z¥Y)
As you can see, the two expressions are not equal in general, because y * z is not necessarily equal to z * y. For
example, if x = 2, y = 3, and z = 4, then:
(23)4 — 2(3*4) _ 212 — 4096
while
(24)3 — 2(4*3) _ 212 — 4096
But in this case, it just so happens that y * 2 = z * y, so the two expressions are equal. However, this is not
always the case.
For example, if x = 2, y = 2, and z = 3, then:
(22)5 — 2(2*3) _ 2() — 64
while ‘
(23)2 — 2(3*2) _ 26 — 64
Again, it just so happens that the two expressions are equal in this case, but this is not a general rule.
So, to summarize: (z¥)* is not necessarily equal to (z*)Y, unless y and z commute, i.e., y * z = z * y.

BTRM-Qwen2.5-32B
Chosen Score: -0.96
Rejected Score: -0.39

OPRM-Qwen2.5-32B (Ours)
Chosen Score: 7.85
Rejected Score: 3.84

OPRM-RgFT-Qwen2.5-32B (Ours)
Chosen Score: 8.03
Rejected Score: 2.05
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Table 14: Case 3

Example

Question: Anita ____ some application letters to the company but they never call her.
A.has send

B.have sent

C.have send

D.have sending

E.has sent

Chosen Response: The correct answer is E. "has sent".

Explanation:

In this sentence, we need to use the present perfect tense, which is formed by "has/have + past participle". The
past participle of the verb "send" is "sent".

A. "has send" is incorrect because "send" is the base form of the verb, not the past participle.

B. "have sent" is incorrect because the subject "Anita" is singular, so we should use "has" instead of "have".
C. "have send" is incorrect for two reasons: "have" is used with a plural subject, and "send" is not the past
participle.

D. "have sending" is incorrect because "sending" is the present participle, not the past participle.

E. "has sent" is the correct form, using "has" for the singular subject "Anita" and the past participle "sent".
Therefore, the correct sentence should be: "Anita has sent some application letters to the company, but they
never call her."

Rejected Response: The correct option is E. "has sent."

The sentence should read: "Anita has sent some application letters to the company but they never call her."
The verb "has sent" is used because the subject of the sentence, "Anita," is singular and the action of sending the
letters happened in the past. The present perfect tense is used to indicate that the action was completed in the
past, but its effects are still being felt in the present. Therefore, "has sent" is the appropriate form of the verb to
use in this sentence.

BTRM-Qwen2.5-32B
Chosen Score: (.24
Rejected Score: -1.12

OPRM-Qwen2.5-32B (Ours)
Chosen Score: 8.08
Rejected Score: 6.76

OPRM-RgFT-Qwen2.5-32B (Ours)
Chosen Score: 8.81
Rejected Score: 8.14
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