

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING ORDINAL PROBABILISTIC REWARD FROM PREFERENCES

Anonymous authors

Paper under double-blind review

ABSTRACT

Reward models are crucial for aligning large language models (LLMs) with human values and intentions. Existing approaches follow either Generative (GRMs) or Discriminative (DRMs) paradigms, yet both suffer from limitations: GRMs typically demand costly point-wise supervision, while DRMs produce uncalibrated relative scores that lack probabilistic interpretation. To address these challenges, we introduce a novel reward modeling paradigm: *Probabilistic Reward Model* (PRM). Instead of modeling reward as a deterministic scalar, our approach treats it as a random variable, learning a full probability distribution for the quality of each response. To make this paradigm practical, we present its closed-form, discrete realization: the *Ordinal Probabilistic Reward Model* (OPRM), which discretizes the quality score into a finite set of ordinal ratings. Building on OPRM, we propose a data-efficient training strategy called *Region Flooding Tuning* (RgFT). It enables rewards to better reflect absolute text quality by incorporating quality-level annotations, which guide the model to concentrate the probability mass within corresponding rating sub-regions. Experiments on various reward model benchmarks show that our method improves accuracy by **2.9%~7.4%** compared to prior reward models, demonstrating strong performance and data efficiency. Analysis of the score distribution provides evidence that our method captures not only relative rankings but also absolute quality. Our models, data, and code will be released and open-sourced.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal technique for aligning Large Language Models (LLMs) with human values and intentions (Achiam et al., 2023; Ouyang et al., 2022). As a critical component of the RLHF process (Bai et al., 2022), the reward model is trained to assign scores that quantify the degree of alignment between the model’s outputs and human preferences. Recent advances (Guo et al., 2025a; Lightman et al., 2024) have shown that well-designed reward signals, whether applied during training or inference, can significantly enhance LLM performance across diverse domains (Shao et al., 2024; Huang et al., 2025; Jin et al., 2025). However, learning a reward model that can accurately capture human preference signals remains a significant challenge (Gao et al., 2023; Sun et al., 2025a; Zhong et al., 2025). Most recent efforts typically follow either the generative or discriminative paradigm, yet both approaches exhibit inherent limitations that hinder their effectiveness in practice.

Discriminative Reward Models (DRMs), which append an MLP-based value head to a base model, are commonly optimized with the Bradley-Terry objective to output a scalar reward (Liu et al., 2024b; Cai et al., 2024; Lou et al., 2024). A key limitation of this paradigm is that its reward scores reflect only relative preferences, not intrinsic quality. It indicates that one response is preferred but fails to explain why, making it difficult to establish a trusted acceptance threshold to discern high-quality responses from low-quality ones. In response, *Generative Reward Models* (GRMs) have emerged (Mahan et al., 2024; Zhang et al., 2024). These models leverage the native generative capabilities of LLMs to produce Chain-of-Thought critiques before rendering a preference judgment, conceptually aligning with the LLM-as-a-Judge paradigm (Zheng et al., 2023). While GRMs offer superior interpretability through their critique generation, they often rely on rigid pairwise input formats that limit flexibility in Best-of-N (BoN) scenarios. Moreover, achieving performance comparable to DRMs frequently requires costly pointwise supervision for calibration, substantially increasing the annotation burden.

054
 055 **Table 1: Comparison of OPRM with baseline reward models across multiple dimensions.**
 056 Margin Sensitivity (whether distinguish samples with subtle preference differences), Require Training
 057 (whether requires training on preference data), Value Head Free (whether eliminates the need for
 058 additional value head), and Input Flexibility (whether supports rating single and multiple responses).

059 Baselines	060 Input Format	061 Output Format	062 Margin Sensitivity	063 Require Training	064 Value Head Free	065 Input Flexible
Bradley-Terry (Bradley & Terry, 1952)	Single Response	Continuous Score	✓	✓	✗	✓
PairRM (Jiang et al., 2023)	Response Pairs	Continuous Score	✓	✓	✗	✗
Cloud (Ankner et al., 2024)	Single Response	Critique + Continuous Score	✓	✓	✗	✓
LLM-as-a-Judge (Zheng et al., 2023)	Response Pairs	Discrete Score	✗	✗	✓	✗
Pointwise GRM (Liu et al., 2025b)	Single Response	Critique + Discrete Score	✗	✓	✓	✓
OPRM (Ours)	Single Response	Continuous Score	✓	✓	✓	✓

066 Consequently, the field faces a critical trade-off: choosing between the efficiency of DRMs and the
 067 interpretability of GRMs, with neither approach offering a complete solution.

068 To transcend this trade-off, we introduce a novel reward modeling paradigm: **Probabilistic Reward**
 069 **Model** (PRM). Instead of approximating rewards with a deterministic scalar value like the Bradley-
 070 Terry model (Bradley & Terry, 1952), PRM reframes the task as learning a full probability distribution
 071 over the reward space. Since learning this continuous distribution is computationally intractable, we
 072 translate it into a discrete realization: **Ordinal Probabilistic Reward Model** (OPRM). Specifically,
 073 OPRM discretizes the reward space into a finite set of ordinal ratings (Liu et al., 2025a; Wang et al.,
 074 2025), thereby replacing the intractable integration with a closed-form summation that makes our
 075 paradigm more practical. Thus, OPRM resolves the core trade-off. By providing a full reward
 076 distribution, it unlocks richer interpretability and uncertainty estimation than DRMs, while its flexible
 077 input format enables efficient scoring of single or multiple responses, making it better suited than
 078 GRMs for modern evaluations like Best-of-N (BoN). Table 1 summarizes the advantages of OPRM
 079 over existing reward modeling baselines.

080 Building upon the OPRM paradigm, we further propose **Region Flooding Tuning** (RgFT), a novel
 081 training strategy designed to calibrate the reward distribution to reflect absolute textual quality. The
 082 core principle of RgFT is to leverage quality-level annotations (i.e., **good**, **normal**, and **bad**) on
 083 preference data. Rather than optimizing over the full distribution of ordinal ratings, RgFT guides the
 084 model to concentrate probability mass within rating sub-regions corresponding to the quality-level
 085 labels. **While simply restricting scores to specific quality intervals can lead to optimization stagnation**
 086 **due to constant gradients, RgFT floods** these rigid constraints into a triangular probability landscape.
 087 **This restores the gradient incentives, guiding the model to not only locate the correct quality region**
 088 **but also maximize the preference margin by pushing scores towards the extremes of their respective**
 089 **ranges.** Critically, RgFT facilitates semi-supervised training by jointly leveraging a mixture of
 090 quality-labeled and preference-only data, obviating the need for costly large-scale annotation.

091 Before delving into details, we summarize our contributions as follows:

- 092 • We propose a novel reward modeling paradigm, the Ordinal Probabilistic Reward Model. By
 093 learning a full probability distribution for a response’s quality, OPRM mitigates the core trade-off
 094 between the efficiency of DRMs and the interpretability of GRMs.
- 095 • We design a data-efficient training strategy, Region Flooding Tuning, which grounds the reward
 096 distribution in an absolute quality scale by guiding the model to concentrate probability mass within
 097 correct rating sub-regions.
- 098 • We conduct extensive experiments on four benchmarks covering over ten tasks, demonstrating the
 099 effectiveness of OPRM in precise reward modeling across diverse scenarios. Additional studies
 100 confirm that RgFT significantly improves the accuracy, robustness, and interpretability of OPRM.

101 2 RELATED WORK

102 **Discriminative Reward Model.** Discriminative reward model typically consists of a base model
 103 and a MLP-based reward head (classifier) that outputs a scalar score for a given input. These models
 104 are commonly trained using the Bradley-Terry (BT) (Bradley & Terry, 1952) loss to maximize the
 105 reward margin between chosen and rejected responses. While the core BT loss remains a standard
 106 component, considerable research has focused on enhancing data quality and refining the modeling

108 framework (e.g. Skywork-reward (Liu et al., 2024b), InternLM2-reward (Cai et al., 2024), Helpsteer2-
 109 preference (Wang et al., 2024b), QRM (Dorka, 2024), URM (Lou et al., 2024), CLoud (Ankner
 110 et al., 2024), ArmoRM (Wang et al., 2024a), and PURM (Sun et al., 2025b)), further boosting
 111 DRM performance. Nonetheless, these methods are limited to learning a pairwise ranking, yielding
 112 scores that are unbounded and difficult to interpret. In contrast, our approach learns a probabilistic
 113 distribution over scores, which enables more reliable and calibrated outputs.

114 **Generative Reward Model.** Generative reward models directly leverage LLM-generated outputs
 115 to evaluate preference, which is aligned with the LLM-as-a-Judge paradigm (Zheng et al., 2023).
 116 These models output chain-of-thought reasoning (critiques) before generating preference judgments
 117 (e.g., Critic-RM (Yu et al., 2024), PROMETHEUS (Kim et al., 2023), CLoud (Ankner et al., 2024),
 118 GenRM (Zhang et al., 2024; Mahan et al., 2024), Synthetic Critique (Ye et al., 2024), and RISE (Yu
 119 et al., 2025)), enhancing the interpretability of the reward signals. Recent advances have employed
 120 reinforcement learning to construct reasoning-based reward models (SPCT (Liu et al., 2025b), RM-
 121 R1 (Chen et al., 2025b), J1 (Whitehouse et al., 2025), RRM (Guo et al., 2025b), and JudgeLRM (Chen
 122 et al., 2025a)), demonstrating promising scalability in inference-time computation. However, these
 123 approaches often struggle to outperform DRMs under computational constraints. Conversely, our
 124 approach achieves comparable efficiency and performance while preserving interpretability.

125 **Ordinal Regression and Distribution Learning.** Deep ordinal regression has evolved from simple
 126 continuous discretization (Fu et al., 2018; Rothe et al., 2018) to distribution ordering learning (Wang
 127 et al., 2025). Prominent methods like SORD (Diaz & Marathe, 2019), ALDL (Li et al., 2022), and
 128 POE (Li et al., 2021) model label distributions or latent uncertainty to capture ordinal relationships
 129 effectively. While OPRM draws inspiration from these probabilistic frameworks to construct reward
 130 distributions over the LLM vocabulary, it is conceptually distinct from RLHF approaches utilizing
 131 ordinal feedback (Liu et al., 2025a). Prior RLHF works typically focus on refining the granularity
 132 of input supervision (e.g., "significantly better") for continuous regressors. In contrast, OPRM
 133 enforces ordinality within the output representation space, treating rewards as discrete variables
 134 on a statistically ordinal scale anchored to semantic quality, thereby bridging distributional ordinal
 135 regression with pairwise preference optimization.

3 PRELIMINARIES

136 **Preference data annotation.** To annotate the preference data, the SFT model π^{SFT} is given prompts
 137 x to two distinct outputs $(y_1, y_2) \sim \pi^{\text{SFT}}(y \mid x)$. These output pairs are then presented to human
 138 labelers, who express their preference for one output. This preference can be denoted as $y_c \succ y_r \mid x$,
 139 where y_c and y_r represent the chosen and rejected outputs, respectively, from the pair (y_1, y_2) .

140 **Standard Bradley-Terry Reward Modeling.** Following the Bradley-Terry model (Bradley &
 141 Terry, 1952), we model the probability of preferring response y_c over y_r based on their underlying
 142 scalar rewards, which are provided by a reward function $r_\psi(x, y)$. This preference distribution is
 143 formulated as follows:

$$144 \quad P_\psi(y_c \succ y_r \mid x) = \frac{\exp(r_\psi(x, y_c))}{\exp(r_\psi(x, y_c)) + \exp(r_\psi(x, y_r))}, \quad (1)$$

$$145 \quad = \sigma(r_\psi(x, y_c) - r_\psi(x, y_r)),$$

146 which σ is the logistic function. Treating the problem as a binary classification task yields the negative
 147 log-likelihood loss function:

$$148 \quad \mathcal{L}(r_\psi) = -\mathbb{E}_{(x, y_c, y_r) \sim \mathcal{D}_{\text{rm}}} [\log P_\psi(y_c \succ y_r \mid x)], \quad (2)$$

$$149 \quad = -\mathbb{E}_{(x, y_c, y_r) \sim \mathcal{D}_{\text{rm}}} [\log \sigma(r_\psi(x, y_c) - r_\psi(x, y_r))],$$

150 where dataset is composed of comparisons denoted as $\mathcal{D}_{\text{rm}} = \{x^{(i)}, y_c^{(i)}, y_r^{(i)}\}_{i=1}^N$. In the realm
 151 of LLMs, the network $r_\psi(x, y)$ is often initialized using the SFT model $\pi^{\text{SFT}}(y \mid x)$. It then
 152 incorporates an additional linear layer on the final transformer layer to generate a singular scalar
 153 prediction representing the reward value.

Figure 1: **The architectures of Ordinal Probabilistic Reward Model.** Given a problem and a pair of responses, designated as **chosen** and **rejected**, the OPRM utilizes its language model (LM) head to obtain the ordinal rating probabilities for each response. A joint probability matrix is then constructed by computing the Cartesian product of these two sets of probabilities for optimization.

4 ORDINAL PROBABILISTIC REWARD MODEL

In this section, we introduce **Ordinal Probabilistic Reward Model**, a novel reward modeling paradigm that learns a probability distribution over response quality. We begin by outlining the continuous form of our reward modeling optimization paradigm, the **Probabilistic Reward Modeling** (§ 4.1). We then discretize this formulation into a tractable form, termed OPRM (§ 4.2) and conclude by presenting the complete training and inference pipeline for OPRM (§ 4.3).

4.1 PROBABILISTIC REWARD MODELING

Departing from the conventional Bradley-Terry reward model (Section 3), which estimates a single scalar value for each response, we propose a reward modeling objective derived from Random Utility Model theory (Manski, 1977; Cascetta, 2009). Our objective enables the model to learn a probability distribution over the quality of each response. Concretely, we model the quality score of a response y for a given input x as a continuous random variable S . This random variable is supported on a bounded interval $[a, b] \subset \mathbb{R}$. Our reward model, parameterized by ψ , learns the conditional probability density function (PDF) $p_\psi(s | x, y)$ of this variable, where s is a realization of S . This density must satisfy $\int_a^b p_\psi(s | x, y) ds = 1$.

Given a preference pair (y_c, y_r) with a chosen and a rejected response, we model their quality scores as two independent random variables, S_c and S_r . Their scores are drawn from the distributions defined by their respective conditional PDFs: $s_c \sim p_\psi(\cdot | x, y_c)$ and $s_r \sim p_\psi(\cdot | x, y_r)$. The probability of the preference $y_c \succ y_r$ is then modeled as the probability that the score of the chosen response exceeds that of the rejected one:

$$P_\psi(y_c \succ y_r | x) = \mathbb{E}_{s_c, s_r} [\mathbb{1}(s_c > s_r)] \quad (3)$$

where $\mathbb{1}(\cdot)$ denotes the indicator function. Expanding the expectation in integral form over the bounded interval $[a, b]$, we obtain:

$$P_\psi(y_c \succ y_r | x) = \int_a^b \int_a^b \mathbb{1}(s_c > s_r) p_\psi(s_c | x, y_c) p_\psi(s_r | x, y_r) ds_r ds_c \quad (4)$$

This expression corresponds to computing the probability that a random score sampled from the chosen response exceeds a random score from the rejected response, integrating over their joint distribution constrained to the bounded interval. Since $\mathbb{1}(s_c > s_r) = 1$ only when $s_c > s_r$ and 0 otherwise, so it effectively truncates the integral domain to (a, s_c) for $p_\psi(s_r | x, y_r)$. Thus, we can equivalently restructure the double integral as follows:

$$P_\psi(y_c \succ y_r | x) = \int_a^b p_\psi(s_c | x, y_c) \left(\int_a^{s_c} p_\psi(s_r | x, y_r) ds_r \right) ds_c \quad (5)$$

Finally, we can simply optimize the Eq. (5) by minimizing the negative log-likelihood loss. Notably, the Bradley-Terry model is a special case of the Probabilistic Reward Modeling framework, arising when the quality score distribution is constrained to a unimodal Gumbel distribution with fixed shape parameters (see Appendix B for a detailed proof). However, this objective lacks a closed-form analytical solution and requires estimation through Monte Carlo sampling. This computational challenge motivates our transition from the continuous formulation to a more tractable discrete one.

Figure 2: **Region Flooding Tuning.** To ensure the correctness of the reward modeling, region flooding is applied to each of the three partition combinations, resulting in a lower triangular form.

4.2 FROM CONTINUOUS TO DISCRETE

To obtain a closed-form analytical solution, we adapt the continuous formulation in Eq. (5) by modeling the scores as discrete random variables over a finite set of ordinal ratings $\{a, a+1, \dots, b\}$. This yields the following closed-form expression:

$$P_\psi(y_c \succ y_r | x) = \sum_{s_c=a}^b p_\psi(s_c | x, y_c) \left(\sum_{s_r=a}^{s_c-1} p_\psi(s_r | x, y_r) \right) \quad (6)$$

As observed in Eq. (2), the Bradley-Terry model maximizes the score gap between chosen (y_c) and rejected (y_r) responses, creating a steep reward landscape with pronounced gradients beneficial for RL optimization. Similarly, our optimization objective in Eq. (6) inherits and generalizes this desirable property. By operating over full reward distributions instead of single scalars, our objective naturally shifts probability mass upward for chosen responses and downward for rejected ones, thereby widening their separation.

This intuition is formally supported by the gradient dynamics of the probability mass functions (PMFs). Specifically, the sensitivity of the objective $J \triangleq P_\psi(y_c \succ y_r | x)$ with respect to the mass at score k is given by Eq. (7).

$$\frac{\partial J}{\partial p_c(k)} = P(s_r < k), \quad \frac{\partial J}{\partial p_r(k)} = P(s_c > k). \quad (7)$$

These derivatives imply that increasing the probability mass for y_c at score k is incentivized whenever y_r is likely to be lower than k . Consequently, shifting mass from a lower score k to a higher score $k+1$ for the chosen response yields a strictly non-negative gain proportional to $p_r(k)$. This creates a consistent optimization pressure driving the distribution of y_c towards the maximum score b and y_r towards the minimum score a . A detailed proof via gradient analysis can be found in Appendix C.

Ordinal Probabilistic Reward Modeling presents two key advantages: (1) *Quantifying Uncertainty*, the variance of the output distribution serves as a measure of model confidence—wide distributions for ambiguous comparisons indicate uncertainty, while sharp, peaked distributions reflect clear preferences, enhancing interpretability. Our method thus explicitly captures the inherent uncertainty in human preference judgments, a crucial aspect often overlooked by discriminative reward models. (2) *Handling Annotation Disagreement*, our method can represent multimodal score distributions (e.g., Mixture of Gaussians), enabling it to capture disagreements among annotators. By explicitly capturing conflicting signals within the score distribution, our model becomes robust to the performance degradation often caused by inconsistent preference data (Sun et al., 2025a). This contrasts sharply with traditional methods like the Bradley-Terry model, which are restricted to unimodal preferences.

4.3 PIPELINE

Our training pipeline, illustrated in Figure 1, begins by formatting the preference data pairs (x, y_c, y_r) (see Section 3) into a structured input using a prompt template. The details of this template and criteria are provided in Appendix H. As the next step in the pipeline, following the parameter-free technique from prior work (Cui et al., 2023), we compute the distribution over quality score $s \in \{a, a+1, \dots, b\}$ (where $a, b \in \mathbb{Z}$) by directly repurposing the LM head’s vocabulary probabilities, thus obviating the need for a separate prediction head and avoiding any new parameters. In our implementation, we set the quality score range from 1 to 9 (i.e., $a = 1, b = 9$). The score distribution is then formed by directly extracting the vocabulary probabilities of the corresponding numeric tokens (i.e., ‘1’ to ‘9’). This approach allows the model to directly leverage its inherent ordinal knowledge of numbers.

270 Table 2: Overall results of different methods and models on four RM benchmarks. **bold numbers**
 271 indicate the best performance. Underlined numbers indicate the second best. The Overall* score is
 272 the average performance excluding Reward Bench due to its known data contamination issues.

274 Model	274 Reward Bench	274 PPE-P	274 PPE-C	274 RMB	274 Overall	274 Overall*
<i>Reported Results of Public Models</i>						
Skywork-Reward-Gemma-2-27B	93.8	56.6	56.6	60.2	66.8	57.8
DeepSeek-V2.5-0905	81.5	62.8	58.5	65.7	67.1	62.3
Gemini-1.5-Pro	86.8	66.1	59.8	56.5	67.3	60.8
ArmoRM-8B-v0.1	90.4	60.6	61.2	64.6	69.2	62.1
InternLM2-20B-Reward	90.2	61.0	63.0	62.9	69.3	62.3
LLaMA-3.1-70b-Instruct	84.1	65.3	59.2	68.9	69.4	64.5
Claude-3.5-sonnet	84.2	65.3	58.8	70.6	69.7	63.2
Nemotron-4-340B-Reward	92.0	59.3	60.8	69.9	70.5	63.3
GPT-4o	86.7	67.1	57.6	73.8	71.3	66.2
<i>Reproduced Results of Baseline Methods From DeepSeek</i>						
LLM-as-a-Judge	83.4	64.2	58.8	64.8	67.8	62.6
DeepSeek-BTRM-27B	81.7	68.3	66.7	57.9	68.6	64.3
Cloud-Gemma-2-27B	82.0	67.1	62.4	63.4	68.7	64.3
DeepSeek-PairRM-27B	87.1	65.8	64.8	58.2	69.0	62.9
DeepSeek-GRM-27B-RFT	84.5	64.1	59.6	67.0	68.8	63.6
DeepSeek-GRM-27B	86.9	64.7	59.8	69.0	69.9	64.5
<i>Results of Our Method</i>						
OPRM-Qwen2.5-7B	87.8	61.1	61.3	71.5	70.4	64.6
OPRM-Qwen2.5-14B	89.3	63.0	64.3	73.8	72.6	67.0
OPRM-Qwen2.5-32B	91.3	63.9	66.1	75.6	74.2	68.5
OPRM-Qwen2.5-72B	89.3	65.1	64.3	73.5	73.1	67.6
<i>Results of Our Method (w/ Region Flooding Tuning)</i>						
OPRM-RgFT-Qwen2.5-7B	86.2	62.3	62.4	70.1	70.3(\downarrow 0.1)	64.9(\uparrow 0.3)
OPRM-RgFT-Qwen2.5-14B	87.3	63.4	65.6	72.8	72.3(\downarrow 0.3)	67.3(\uparrow 0.3)
OPRM-RgFT-Qwen2.5-32B	88.9	64.6	67.3	74.8	73.9(\downarrow 0.3)	68.9(\uparrow 0.4)
OPRM-RgFT-Qwen2.5-72B	89.1	65.3	66.4	74.2	73.8(\uparrow 0.7)	68.6(\uparrow 1.0)

300 In summary, both the chosen and rejected inputs are fed into the LLM backbone and its LM head,
 301 yielding the post-softmax vocabulary probability distributions $p(w_c | x, y_c)$ and $p(w_r | x, y_r)$ at
 302 the last token position. The probabilities of all numeric tokens are then normalized to form the
 303 distribution for our ordinal probabilistic reward modeling:

$$p_\psi(s_c = i | x, y_c) = \frac{p(w_c = 'i' | x, y_c)}{\sum_{j=1}^9 p(w_c = 'j' | x, y_c)}, \quad p_\psi(s_r = i | x, y_r) = \frac{p(w_r = 'i' | x, y_r)}{\sum_{j=1}^9 p(w_r = 'j' | x, y_r)} \quad (8)$$

308 Finally, we substitute the obtained $p_\psi(s_c = i | x, y_c)$ and $p_\psi(s_r = i | x, y_r)$ into Eq. (6) and
 309 maximize $P_\psi(y_c \succ y_r | x)$ using the negative log-likelihood loss. [See Appendix L for a detailed](#)
 310 [computational overhead analysis](#).

311 During the inference stage, we simply input a response y given prompt x to obtain a quality score
 312 distribution $p_\psi(s | x, y)$. We can derive a scalar reward score through either argmax or weighted
 313 averaging. For a discussion of other possible decoding strategies, see Appendix K.2. In our subsequent
 314 experiments, we adopt the straightforward weighted averaging approach to compute the reward score:
 315 $r_\psi(x, y) = \sum_{s=a}^b s \cdot p_\psi(s | x, y)$, avoiding the tie-prone argmax method.

317 5 REGION FLOODING TUNING

320 While OPRM effectively captures relative preferences, precisely aligning its scoring distribution with
 321 absolute quality judgments presents a further challenge. To address this, we introduce **Region Tuning**
 322 (RgT), a cost-effective method that enhances the model’s fidelity to absolute quality scores using
 323 minimal annotations (§ 5.1). Subsequently, we refine RgT to preserve the desirable properties (as
 324 detailed in Appendix C), culminating in our final method: **Region Flooding Tuning** (RgFT) (§ 5.2).

324 Table 3: Detailed results of different methods on the PPE Correctness benchmark. **Bold numbers**
 325 indicate the best performance. Underlined numbers indicate the second best.

327 Model	MMLU-Pro	MATH	GPQA	MBPP-Plus	IFEval	PPE Correctness
<i>Results of Our Method</i>						
329 OPRM-Qwen2.5-7B	65.2	70.1	56.3	59.0	56.1	61.3
330 OPRM-Qwen2.5-14B	66.7	70.7	57.1	67.4	59.5	64.3
331 OPRM-Qwen2.5-32B	71.2	73.2	57.9	66.2	62.2	66.1
332 OPRM-Qwen2.5-72B	73.4	75.9	58.6	54.1	59.5	64.3
<i>Results of Our Method (w/ Region Flooding Tuning)</i>						
333 OPRM-RgFT-Qwen2.5-7B	64.8	71.6	55.9	63.0	56.8	62.4($\uparrow 1.1$)
334 OPRM-RgFT-Qwen2.5-14B	69.5	74.0	57.3	67.0	60.0	65.6($\uparrow 1.3$)
335 OPRM-RgFT-Qwen2.5-32B	73.3	76.8	58.5	67.2	60.6	67.3($\uparrow 1.2$)
336 OPRM-RgFT-Qwen2.5-72B	72.8	77.1	59.0	62.0	61.2	66.4($\uparrow 2.1$)

337 5.1 REGION TUNING

339 Building upon the OPRM optimization objective from Eq. (6), which employs the finite set of ordinal
 340 ratings $S = \{1, 2, \dots, 9\}$ for all data, we introduce a more fine-grained partitioning based on the
 341 absolute quality of each response, a technique we term **Region Tuning** (RgT).

342 Specifically, we further partition the finite set into three quality levels, guiding the model to concentrate
 343 the probability mass within corresponding rating sub-region: $S_{\text{bad}} = \{1, 2, 3\}$, $S_{\text{normal}} = \{4, 5, 6\}$,
 344 and $S_{\text{good}} = \{7, 8, 9\}$. Consequently, for a single preference data point consisting of a chosen and a
 345 rejected response, there are six possible combinations of quality levels. These include pairs from dif-
 346 ferent levels, as well as pairs where both responses fall into the same level, denoted as $\langle l_{\text{chosen}}, l_{\text{rejected}} \rangle$:
 347 $\langle \text{good, normal} \rangle, \langle \text{good, bad} \rangle, \langle \text{normal, bad} \rangle, \langle \text{good, good} \rangle, \langle \text{normal, normal} \rangle, \langle \text{bad, bad} \rangle$.

348 This partitioning allows us to redefine the preference probability by conditioning it on the quality
 349 levels of the chosen and rejected responses. Thus, the optimization objective is formulated as:

$$351 P_{\psi}(y_c \succ y_r \mid x, l_{\text{chosen}}, l_{\text{rejected}}) = \sum_{s_c \in S_{l_{\text{chosen}}}} p_{\psi}(s_c \mid x, y_c) \left(\sum_{s_r \in S_{l_{\text{rejected}}}} p_{\psi}(s_r \mid x, y_r) \mathbb{1}(s_c > s_r) \right) \quad (9)$$

354 Details on the partition of the semantic regions (S_{bad} , S_{normal} , S_{good}) are provided in Appendix E.

356 5.2 FROM REGION TUNING TO REGION FLOODING TUNING

358 As shown in Figure 2, when $l_{\text{chosen}} \neq l_{\text{rejected}}$, Eq. (9) optimizes a square-shaped joint probability
 359 region, resulting in constant partial derivatives $\frac{\partial P}{\partial p_c(k)}$ and $\frac{\partial P}{\partial p_r(k)}$. In this case, the optimization
 360 objective no longer shifts the probability mass of the chosen response upwards and the rejected
 361 response downwards to increase their separation. This leads to the loss of a desirable property of
 362 OPRM, as mentioned in Section 4.2 (see Appendix C and G for a formal proof and analysis).

364 As shown in Figure 2, we propose region flooding to the optimized joint probability region, expanding
 365 it into a lower triangular shape to preserve the desired property. As its expansion process closely
 366 resembles breadth-first search algorithm, we term it **Region Flooding Tuning** (RgFT). RgFT provides
 367 three key advantages: (1) *Interpretability*, RgFT constrains the model to concentrate probability
 368 mass within the score regions correspond to pre-defined quality levels, enabling reward scores
 369 to more accurately reflect the absolute quality of responses. (2) *Semi-supervised Learning*, RgFT
 370 supports semi-supervised training by combining quality-labeled data with preference-only data. (3)
 371 *Customizability*, RgFT allows for the flexible tailoring of rating sub-regions to their corresponding
 372 quality levels, making the strategy adaptable to diverse application requirements (see Appendix K.1).

373 6 EXPERIMENTS

374 6.1 EXPERIMENTAL SETUP

376 In our experiments, we curate a dataset of 130k samples for reward model training, drawn primarily
 377 from publicly available open-source datasets: **Skywork Reward Preference 80K** (Liu et al., 2024b)
 and **UltraFeedback Binarized Preferences** (Cui et al., 2023). We employ the Qwen2.5-Instruction

378 Table 4: Detailed results of Qwen2.5-7B with different methods on the Role Play benchmark. Bold
 379 numbers indicate the best performance. Underlined numbers indicate the second best.
 380

Method	Pair-Accuracy	Best-of-N	Best-of-N-plus	Worst-of-N	Overall
Random Baseline	50.0	25.5	31.3	68.7	43.9
<i>Training on Role Play Data Only</i>					
BT Model	70.4	48.6	51.3	83.6	63.5
BT Model - w/ Margin	71.0	49.3	52.3	84.2	64.2
OPRM (ours)	71.3	49.4	52.5	84.1	64.3
OPRM-RgFT (ours)	72.1(^{↑0.8})	50.7(^{↑1.3})	53.6(^{↑1.1})	85.1(^{↑1.0})	65.4(^{↑1.1})
<i>Training on Mixed Role Play and General-Domain Data</i>					
BT Model	73.8	51.2	54.3	86.0	66.3
BT Model - w/ Margin	75.3	53.4	55.7	87.2	67.9
OPRM (ours)	74.4	54.1	56.1	87.8	68.1
OPRM-RgFT (ours)	75.8(^{↑1.4})	55.8(^{↑1.7})	59.3(^{↑3.2})	89.9(^{↑2.1})	70.2(^{↑2.1})

394 series of models (7B, 14B, 32B, and 72B) (Team, 2024) as the backbone for training the OPRM. We
 395 compare OPRM to different categories of baselines: **Discriminative RMs**, **Generative RMs** and
 396 **DeepSeek-RM**. Following prior work, we evaluate the performance of different methods on various
 397 RM benchmarks: **Reward Bench** (Lambert et al., 2024), **PPE** (Frick et al., 2024), **RMB** (Zhou et al.,
 398 2024). We use the standard pair accuracy and Best-of-N evaluation metrics for each benchmark.
 399 Detailed information on the data, baselines, benchmarks, and metrics is provided in Appendix D.

400 6.2 MAIN RESULTS

401 As shown in Table 2, we compares the overall results of OPRM with different baseline reward
 402 models on RM benchmarks. We present the performance of OPRM with the reported results of public
 403 models and the reproduced results of baseline methods from DeepSeek. We observe that OPRM
 404 outperforms the baseline methods in overall performance, and achieves competitive results against
 405 strong public RMs, such as Nemotron-4-340B-Reward and GPT-4o. Notably, the 14B, 32b, and
 406 72B models surpass all prior leading reward models, improving upon the previous best result by
 407 1.3%, 2.9%, and 1.8%, respectively, despite being significantly smaller in scale. Moreover, the most
 408 significant performance enhancement is observed on the RMB and PPE-Correctness benchmarks,
 409 which utilize Best-of-N evaluation to better reflect practical effectiveness on downstream tasks. We
 410 attribute the 32B model’s superior performance over the 72B model to the exceptional zero-shot
 411 capability of Qwen2.5-32B. This enables it to outperform larger models on the RM benchmark
 412 without any fine-tuning. The more detailed numbers on RewardBench, PPE Correctness, and RMB
 413 are in Table 8, Table 9, and Table 10 in Appendix I.

414 6.3 THE IMPACT OF REGION FLOODING TUNING

416 Building upon OPRM, we incorporate RgFT for further experimentation. We train the OPRM-
 417 RgFT series of models using the preference data, further enriched with three defined quality level
 418 annotations (**good**, **normal**, and **bad**). Consistent with the advantages of RgFT described in Section 5.

419 6.3.1 BEYOND ACCURACY, RELIABLE CALIBRATION

421 While high accuracy is desirable, a reliable re-
 422 ward model must also provide calibrated confi-
 423 dence, particularly for probabilistic approaches.
 424 To strictly quantify this, we measure the Ex-
 425 pected Calibration Error (ECE) on the Reward-
 426 Bench dataset. Given the inherent noise in fine-
 427 grained ordinal ratings, we aggregate scores into
 428 semantic tiers (**bad**, **normal**, **good**) to compute
 429 a robust ECE against ground truth labels verified by GPT-4o and humans. As shown in Table 5,
 430 OPRM-32B significantly outperforms the baseline, reducing ECE by over 60%. Crucially, OPRM-
 431 RgFT-32B achieves a minimal ECE of 5.18%, an 80.6% relative reduction compared to the baseline.
 432 This demonstrates that RgFT not only boosts ranking performance but also effectively regularizes
 433 probability estimates, preventing overconfidence and ensuring alignment with empirical correctness.

434 Table 5: Comparison of accuracy and calibration
 435 (ECE-10) on the RewardBench.

Model	Acc (%)	ECE-10 (%), ↓
Qwen-2.5-32B	69.56	26.72
OPRM-32B	81.04	10.62
OPRM-RgFT-32B	90.90	5.18

Figure 4: **Ablation Study:** (a) Assessing the superiority of OPRM over the BT Model. (b) Evaluating the efficacy of Weighted Average Decoding. (c) Validating the necessity of Region Flooding.

6.3.2 FEWER ANNOTATIONS, BETTER RESULTS

As presented in Table 2 and Table 3, our evaluation of OPRM-RgFT on four RM benchmarks reveals a notable performance divergence. On one hand, RgFT consistently improves performance across all model sizes on the PPE benchmarks. Notably, OPRM-RgFT-32B achieves SOTA accuracy of 67.3% on the PPE-Correctness benchmark, surpassing all prior leading reward models. On the other hand, its performance on other benchmarks is inconsistent. We hypothesize that this discrepancy stems from biases introduced by our annotation strategy for general data (see Appendix J). This process, involving coarse AI annotation with simple manual correction, is effective for verifiable tasks with explicit correctness labels like PPE-Correctness but likely introduces label noise for other tasks. Further supporting this claim, our subsequent experiments show that incorporating fine-grained manual annotations leads to consistent performance improvements.

6.3.3 TOWARDS HUMAN-ALIGNED SCORE DISTRIBUTIONS.

To evaluate the impact of Region Flooding Tuning on absolute quality assessment, we analyze the score distributions produced by our models. Specifically, we curated two distinct datasets for this analysis: an **Absolute-Good Set** with 100 high-quality prompt-response pairs and an **Absolute-Bad Set** with 100 poor-quality pairs. These pairs are manually selected by experts based on a multi-faceted evaluation across dimensions such as instruction following, factual accuracy, and helpfulness. We then score both datasets using three models: the baseline BTRM-32B, our base model OPRM-32B, and its RgFT-enhanced version. As illustrated in Figure 3, the base OPRM-32B already exhibits a basic capacity for absolute quality assessment: within its [1, 9] scoring range, it generally assigns scores above 5 to good responses and below 5 to bad ones. Crucially, OPRM-RgFT-32B significantly enhances this capability. The RgFT-enhanced model polarizes the score distributions into the [7, 9] range while confining low-quality ones to [1, 3]. This increased separation makes the score itself a more reliable and interpretable indicator of absolute quality. Case studies in Appendix M provide detailed scoring examples that further corroborate these findings and demonstrate the improved reliability of RgFT scores.

6.3.4 SEMI-SUPERVISED DOMAIN ADAPTATION

To simulate practical applications and reduce annotation costs, we investigate RgFT’s effectiveness in a semi-supervised domain adaptation setting. Specifically, we curated a training set of 31K role-playing instances with quality-level labels (see Appendix J for annotation details) and a mixed dataset by combining these with an equal volume of unlabeled general-domain preference data. For evaluation, we build a test set of 500 questions, each with 5-10 responses, and designed three new metrics: **Best-of-N** (top-scoring is **good**-level), **Worst-of-N** (bottom-scoring is **bad**-level), and

Figure 3: Comparison of score distributions for responses of high-quality (**Top**) and low-quality (**Bottom**).

distributions, pushing scores for high-quality responses into the [7, 9] range while confining low-quality ones to [1, 3]. This increased separation makes the score itself a more reliable and interpretable indicator of absolute quality. Case studies in Appendix M provide detailed scoring examples that further corroborate these findings and demonstrate the improved reliability of RgFT scores.

486 **Best-of-N-plus**(top-scoring is not **bad**-level). As shown in Table 4, we benchmark our models against
 487 BT and BT-with-Margin baselines (see Appendix F for detailed formulas) under two settings: training
 488 on role-play data only, and on the mixed dataset. In both settings, OPRM surpasses the baselines, and
 489 OPRM-RgFT further improves upon OPRM. Crucially, incorporating unlabeled general-domain data
 490 significantly boosts the performance of OPRM and OPRM-RgFT from 64.3% to 68.1% and 65.4%
 491 to 70.2%, respectively. This demonstrates that RgFT can effectively leverage unlabeled preference
 492 data in a semi-supervised manner, offering a cost-effective path for domain adaptation.

493 6.4 ABLATION STUDY

495 We ablate key components of our OPRM and RgFT to validate their contributions. As shown in
 496 Figure 4, each component proves essential for optimal performance.

497 **Effectiveness of OPRM Loss.** We replace our OPRM loss with the standard Bradley-Terry (BT) loss,
 498 training an identical 32B model. Figure 4(a) shows this change caused a 1.1% to 2.1% performance
 499 drop across all benchmarks, validating the superiority of modeling reward as an ordinal variable.

500 **Impact of Decoding Method.** We compared our standard weighted averaging decoding with a
 501 simpler Argmax approach, which directly selects the token with the highest probability. As shown in
 502 Figure 4(b), Argmax decoding led to a substantial 8.7% to 17.5% performance drop. We attribute
 503 this to Argmax’s inability to capture fine-grained quality differences, which resulted in excessive ties.

504 **Necessity of the Flooding Mechanism.** The flooding mechanism is designed to create desirable
 505 lower triangular score regions (see Appendix C). Removing it resulted in a 1.0% to 2.9% performance
 506 drop on the PPE Correctness benchmark (Figure 4(c)). The degradation are most pronounced when
 507 distinguishing between responses of similar quality, confirming the mechanism’s critical role.

509 7 CONCLUSION

510 In this paper, we propose *Ordinal Probabilistic Reward Model*, a novel paradigm that learns a full
 511 probability distribution over an ordinal reward space. To better anchor these rewards to absolute
 512 quality, we further proposed *Region Flooding Tuning*, a training strategy that leverages quality-level
 513 annotations to calibrate the model’s probability distribution. Extensive experiments on four diverse
 514 reward modeling benchmarks show that our approach consistently improves performance by 2.9% to
 515 7.4%. Furthermore, detailed analysis reveals that OPRM is superior to the conventional Bradley-Terry
 516 model and that RgFT is crucial for discerning fine-grained quality differences. We believe OPRM
 517 with RgFT offer a powerful framework for developing more accurate and reliable reward models, a
 518 critical step towards building more capable and aligned large language models.

520 REFERENCES

522 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
 523 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
 524 *arXiv preprint arXiv:2303.08774*, 2023. URL <https://arxiv.org/abs/2303.08774>.

525 Zachary Ankner, Mansheej Paul, Brandon Cui, Jonathan D Chang, and Prithviraj Ammanabrolu.
 526 Critique-out-loud reward models. *arXiv preprint arXiv:2408.11791*, 2024. URL <https://arxiv.org/abs/2408.11791>.

527 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
 528 Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant
 529 with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022. URL
 530 <https://arxiv.org/abs/2204.05862>.

531 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
 532 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

533 Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui Chen,
 534 Zhi Chen, Pei Chu, et al. Internlm2 technical report. *arXiv preprint arXiv:2403.17297*, 2024. URL
 535 <https://arxiv.org/abs/2403.17297>.

536 Ennio Cascetta. Random utility theory. In *Transportation systems analysis: models and applications*,
 537 pp. 89–167. Springer, 2009.

540 Nuo Chen, Zhiyuan Hu, Qingyun Zou, Jiaying Wu, Qian Wang, Bryan Hooi, and Bingsheng He.
 541 Judgelrm: Large reasoning models as a judge. *arXiv preprint arXiv:2504.00050*, 2025a. URL
 542 <https://arxiv.org/abs/2504.00050>.

543

544 Xiusi Chen, Gaotang Li, Ziqi Wang, Bowen Jin, Cheng Qian, Yu Wang, Hongru Wang, Yu Zhang,
 545 Denghui Zhang, Tong Zhang, et al. Rm-r1: Reward modeling as reasoning. *arXiv preprint*
 546 *arXiv:2505.02387*, 2025b. URL <https://arxiv.org/abs/2505.02387>.

547

548 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
 549 and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. *arXiv*
 550 *preprint arXiv:2310.01377*, 2023. URL <https://arxiv.org/abs/2310.01377>.

551

552 Raul Diaz and Amit Marathe. Soft labels for ordinal regression. In *Proceedings of the IEEE/CVF*
 553 *conference on computer vision and pattern recognition*, pp. 4738–4747, 2019.

554

555 Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
 556 Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
 557 conversations. *arXiv preprint arXiv:2305.14233*, 2023. URL <https://arxiv.org/abs/2305.14233>.

558

559 Nicolai Dorka. Quantile regression for distributional reward models in rlhf. *arXiv preprint*
 560 *arXiv:2409.10164*, 2024. URL <https://arxiv.org/abs/2409.10164>.

561

562 Evan Frick, Tianle Li, Connor Chen, Wei-Lin Chiang, Anastasios N Angelopoulos, Jiantao Jiao,
 563 Banghua Zhu, Joseph E Gonzalez, and Ion Stoica. How to evaluate reward models for rlhf. *arXiv*
 564 *preprint arXiv:2410.14872*, 2024. URL <https://arxiv.org/abs/2410.14872>.

565

566 Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, and Dacheng Tao. Deep ordinal
 567 regression network for monocular depth estimation. In *Proceedings of the IEEE conference on*
 568 *computer vision and pattern recognition*, pp. 2002–2011, 2018.

569

570 Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
 571 *International Conference on Machine Learning*, pp. 10835–10866. PMLR, 2023. URL <https://proceedings.mlr.press/v202/gao23h.html>.

572

573 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 574 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 575 of models. *arXiv preprint arXiv:2407.21783*, 2024. URL <https://arxiv.org/abs/2407.21783>.

576

577 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 578 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 579 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025a. URL <https://arxiv.org/abs/2501.12948>.

580

581 Jiaxin Guo, Zewen Chi, Li Dong, Qingxiu Dong, Xun Wu, Shaohan Huang, and Furu Wei. Reward
 582 reasoning model. *arXiv preprint arXiv:2505.14674*, 2025b. URL <https://arxiv.org/abs/2505.14674>.

583

584 Shengding Hu, Yifan Luo, Huadong Wang, Xingyi Cheng, Zhiyuan Liu, and Maosong Sun. Won’t
 585 get fooled again: Answering questions with false premises. *arXiv preprint arXiv:2307.02394*,
 586 2023. URL <https://arxiv.org/abs/2307.02394>.

587

588 Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
 589 Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models.
 590 *arXiv preprint arXiv:2503.06749*, 2025. URL <https://arxiv.org/abs/2503.06749>.

591

592 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 593 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 594 *arXiv:2410.21276*, 2024. URL <https://arxiv.org/abs/2410.21276>.

594 Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. LLM-blender: Ensembling large language mod-
 595 els with pairwise ranking and generative fusion. In Anna Rogers, Jordan Boyd-Graber, and
 596 Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for Com-
 597 putational Linguistics (Volume 1: Long Papers)*, pp. 14165–14178, Toronto, Canada, July
 598 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.792. URL
 599 <https://aclanthology.org/2023.acl-long.792/>.

600 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 601 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
 602 learning. *arXiv preprint arXiv:2503.09516*, 2025. URL <https://arxiv.org/abs/2503.09516>.

603 Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun,
 604 Seongjin Shin, Sungdong Kim, James Thorne, et al. Prometheus: Inducing fine-grained eval-
 605 uation capability in language models. In *The Twelfth International Conference on Learning
 606 Representations*, 2023. URL <https://openreview.net/forum?id=8euJaTveKw>.

607 Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
 608 Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward models
 609 for language modeling. *arXiv preprint arXiv:2403.13787*, 2024. URL <https://arxiv.org/abs/2403.13787>.

610 Qiang Li, Jingjing Wang, Zhaoliang Yao, Yachun Li, Pengju Yang, Jingwei Yan, Chunmao Wang,
 611 and Shiliang Pu. Unimodal-concentrated loss: Fully adaptive label distribution learning for
 612 ordinal regression. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 613 Recognition*, pp. 20513–20522, 2022.

614 Wanhua Li, Xiaoke Huang, Jiwen Lu, Jianjiang Feng, and Jie Zhou. Learning probabilistic ordinal
 615 embeddings for uncertainty-aware regression. In *Proceedings of the IEEE/CVF conference on
 616 computer vision and pattern recognition*, pp. 13896–13905, 2021.

617 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 618 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth
 619 International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=v8L0pN6EOi>.

620 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 621 falsehoods. *arXiv preprint arXiv:2109.07958*, 2021. URL <https://arxiv.org/abs/2109.07958>.

622 Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
 623 Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
 624 of-experts language model. *arXiv preprint arXiv:2405.04434*, 2024a. URL <https://arxiv.org/abs/2405.04434>.

625 Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
 626 Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. *arXiv preprint
 627 arXiv:2410.18451*, 2024b. URL <https://arxiv.org/abs/2410.18451>.

628 Shang Liu, Yu Pan, Guanting Chen, and Xiaocheng Li. Reward modeling with ordinal feedback:
 629 Wisdom of the crowd. In *Proceedings of the 42nd International Conference on Machine Learning*,
 630 2025a. URL <https://proceedings.mlr.press/v267/liu25az.html>.

631 Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
 632 Inference-time scaling for generalist reward modeling. *arXiv preprint arXiv:2504.02495*, 2025b.
 633 URL <https://arxiv.org/abs/2504.02495>.

634 Xingzhou Lou, Dong Yan, Wei Shen, Yuzi Yan, Jian Xie, and Junge Zhang. Uncertainty-aware reward
 635 model: Teaching reward models to know what is unknown. *arXiv preprint arXiv:2410.00847*,
 636 2024. URL <https://arxiv.org/abs/2410.00847>.

637 Dakota Mahan, Duy Van Phung, Rafael Rafailov, Chase Blagden, Nathan Lile, Louis Castricato,
 638 Jan-Philipp Fränken, Chelsea Finn, and Alon Albalak. Generative reward models. *arXiv preprint
 639 arXiv:2410.12832*, 2024. URL <https://arxiv.org/abs/2410.12832>.

648 Charles F Manski. The structure of random utility models. *Theory and decision*, 8(3):229, 1977.
649

650 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
651 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
652 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
653 27744, 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html.
654
655

656 Rasmus Rothe, Radu Timofte, and Luc Van Gool. Deep expectation of real and apparent age from a
657 single image without facial landmarks. *International Journal of Computer Vision*, 126(2):144–157,
658 2018.
659

660 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Huawei Zhang,
661 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
662 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024. URL
663 <https://arxiv.org/abs/2402.03300>.
664
665

666 Hao Sun, Yunyi Shen, and Jean-Francois Ton. Rethinking reward modeling in preference-based large
667 language model alignment. In *The Thirteenth International Conference on Learning Representations*, 2025a. URL <https://openreview.net/forum?id=rfdblE10qm>.
668
669

670 Wangtao Sun, Xiang Cheng, Xing Yu, Haotian Xu, Zhao Yang, Shizhu He, Jun Zhao, and Kang
671 Liu. Probabilistic uncertain reward model. *arXiv preprint arXiv:2503.22480*, 2025b. URL
672 <https://arxiv.org/abs/2503.22480>.
673
674 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
675 Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
676 understanding across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024. URL
677 <https://arxiv.org/abs/2403.05530>.
678
679 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024. URL
680 <https://metaso-static.oss-accelerate.aliyuncs.com/metaso/document/64a141da-f885-44ab-9883-94b03b737cdf.pdf>.
681
682 Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences
683 via multi-objective reward modeling and mixture-of-experts. In Yaser Al-Onaizan, Mohit Bansal,
684 and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP*
685 2024, pp. 10582–10592, Miami, Florida, USA, November 2024a. Association for Computational
686 Linguistics. doi: 10.18653/v1/2024.findings-emnlp.620. URL <https://aclanthology.org/2024.findings-emnlp.620>.
687
688 Jinhong Wang, Jintai Chen, Jian Liu, Dongqi Tang, Danny Z Chen, and Jian Wu. A survey on ordinal
689 regression: Applications, advances and prospects. *arXiv preprint arXiv:2503.00952*, 2025.
690
691 Zhilin Wang, Alexander Bukharin, Olivier Delalleau, Daniel Egert, Gerald Shen, Jiaqi Zeng, Oleksii
692 Kuchaiev, and Yi Dong. Helpsteer2-preference: Complementing ratings with preferences. *arXiv*
693 *preprint arXiv:2410.01257*, 2024b. URL <https://arxiv.org/abs/2410.01257>.
694
695 Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy J Zhang,
696 Makesh Narasimhan Sreedhar, and Oleksii Kuchaiev. Helpsteer2: Open-source dataset for training
697 top-performing reward models. *arXiv preprint arXiv:2406.08673*, 2024c. URL <https://arxiv.org/abs/2406.08673>.
698
699 Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
700 Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. *arXiv preprint*
701 *arXiv:2109.01652*, 2021. URL <https://arxiv.org/abs/2109.01652>.
702
703 Chenxi Whitehouse, Tianlu Wang, Ping Yu, Xian Li, Jason Weston, Ilia Kulikov, and Swarnadeep
704 Saha. J1: Incentivizing thinking in llm-as-a-judge via reinforcement learning. *arXiv preprint*
705 *arXiv:2505.10320*, 2025. URL <https://arxiv.org/abs/2505.10320>.

702 Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
 703 Lin, and Daxin Jiang. Wizardlm: Empowering large pre-trained language models to follow complex
 704 instructions. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 705 <https://openreview.net/forum?id=CfXh93NDgH>.

706 Minghao Yang, Chao Qu, and Xiaoyu Tan. Inf-orm-llama3.1-70b, 2024. URL
 707 [<https://huggingface.co/infly/INF-ORM-Llama3.1-70B>] (<https://huggingface.co/infly/INF-ORM-Llama3.1-70B>).

708
 709
 710 Zihuiwen Ye, Fraser Greenlee-Scott, Max Bartolo, Phil Blunsom, Jon Ander Campos, and Matthias
 711 Gallé. Improving reward models with synthetic critiques. *arXiv preprint arXiv:2405.20850*, 2024.
 712 URL <https://arxiv.org/abs/2405.20850>.

713 Jiachen Yu, Shaoning Sun, Xiaohui Hu, Jiaxu Yan, Kaidong Yu, and Xuelong Li. Improve llm-
 714 as-a-judge ability as a general ability. *arXiv preprint arXiv:2502.11689*, 2025. URL <https://arxiv.org/abs/2502.11689>.

715
 716 Yue Yu, Zhengxing Chen, Aston Zhang, Liang Tan, Chenguang Zhu, Richard Yuanzhe Pang, Yundi
 717 Qian, Xuewei Wang, Suchin Gururangan, Chao Zhang, et al. Self-generated critiques boost
 718 reward modeling for language models. *arXiv preprint arXiv:2411.16646*, 2024. URL <https://arxiv.org/abs/2411.16646>.

719
 720 Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
 721 Generative verifiers: Reward modeling as next-token prediction. *arXiv preprint arXiv:2408.15240*,
 722 2024. URL <https://arxiv.org/abs/2408.15240>.

723
 724 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 725 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench
 726 and chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623,
 727 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html.

728
 729
 730 Jialun Zhong, Wei Shen, Yanzeng Li, Songyang Gao, Hua Lu, Yicheng Chen, Yang Zhang, Wei
 731 Zhou, Jinjie Gu, and Lei Zou. A comprehensive survey of reward models: Taxonomy, applications,
 732 challenges, and future. *arXiv preprint arXiv:2504.12328*, 2025. URL <https://arxiv.org/abs/2504.12328>.

733
 734 Enyu Zhou, Guodong Zheng, Binghai Wang, Zhiheng Xi, Shihan Dou, Rong Bao, Wei Shen, Limao
 735 Xiong, Jessica Fan, Yurong Mou, et al. Rmb: Comprehensively benchmarking reward models in
 736 llm alignment. *arXiv preprint arXiv:2410.09893*, 2024. URL <https://arxiv.org/abs/2410.09893>.

737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMs)

We utilize Large Language Models (LLMs) to aid in the writing and polishing of this manuscript. Specifically, LLMs are employed to correct grammatical errors, improve sentence structure, and enhance the clarity and conciseness of the text. This process is primarily applied to the Introduction, Related Work, and Appendix sections. All scientific contributions, methodologies, and conclusions presented in this paper are the original work of the authors. The LLMs serve solely as a writing-enhancement tool.

B BRADLEY-TERRY AS A SPECIAL CASE OF PROBABILISTIC REWARD MODELING

In this section, we demonstrate that the Bradley-Terry model for pairwise preferences can be derived from a more general probabilistic reward modeling framework under a specific set of distributional assumptions.

Let $p_\psi(s | x, y)$ denote the probability density function of a score s assigned to a response y given a context x , where the scoring mechanism is parameterized by ψ . Consider two responses for the same context x : a chosen response y_c and a rejected response y_r . Let s_c and s_r be the random variables for their respective scores, with distributions $p_\psi(s_c | x, y_c)$ and $p_\psi(s_r | x, y_r)$. We assume s_c and s_r are conditionally independent given x, y_c, y_r .

The probability that y_c is preferred over y_r , denoted $P_\psi(y_c \succ y_r | x)$, is the probability that the score of the chosen response is greater than that of the rejected one, i.e., $P(s_c > s_r)$. This can be expressed generally as:

$$P_\psi(y_c \succ y_r | x) = \int_{-\infty}^{\infty} p_\psi(s_c | x, y_c) \left(\int_{-\infty}^{s_c} p_\psi(s_r | x, y_r) ds_r \right) ds_c. \quad (10)$$

We show that this general formulation reduces to the Bradley-Terry model under specific assumptions. For clarity, we first establish the functional form of the Bradley-Terry model in terms of the sigmoid function.

Lemma B.1 (Bradley-Terry Model in Sigmoid Form). *The Bradley-Terry (BT) model, which defines the preference probability based on underlying quality scores $r_\psi(x, y_c)$ and $r_\psi(x, y_r)$ as*

$$P_{BT}(y_c \succ y_r | x) = \frac{\exp(r_\psi(x, y_c))}{\exp(r_\psi(x, y_c)) + \exp(r_\psi(x, y_r))}, \quad (11)$$

is equivalent to the sigmoid function of the difference in scores:

$$P_{BT}(y_c \succ y_r | x) = \sigma(r_\psi(x, y_c) - r_\psi(x, y_r)), \quad (12)$$

where $\sigma(z) = 1/(1 + e^{-z})$ is the standard logistic sigmoid function.

Proof. We start from the standard definition of the BT model and manipulate it algebraically. By dividing the numerator and the denominator of Eq. (equation 11) by $\exp(r_\psi(x, y_r))$, we obtain:

$$\begin{aligned} P_{BT}(y_c \succ y_r | x) &= \frac{\exp(r_\psi(x, y_c)) \cdot \exp(-r_\psi(x, y_r))}{(\exp(r_\psi(x, y_c)) + \exp(r_\psi(x, y_r))) \cdot \exp(-r_\psi(x, y_r))} \\ &= \frac{\exp(r_\psi(x, y_c) - r_\psi(x, y_r))}{\exp(r_\psi(x, y_c) - r_\psi(x, y_r)) + 1} \\ &= \frac{\exp(r_\psi(x, y_c) - r_\psi(x, y_r))}{1 + \exp(r_\psi(x, y_c) - r_\psi(x, y_r))}. \end{aligned}$$

To bring this into the form of the sigmoid function $\sigma(z)$, we can divide the numerator and denominator by $\exp(r_\psi(x, y_c) - r_\psi(x, y_r))$:

$$\begin{aligned} P_{\text{BT}}(y_c \succ y_r \mid x) &= \frac{1}{\frac{1+\exp(r_\psi(x, y_c)-r_\psi(x, y_r))}{\exp(r_\psi(x, y_c)-r_\psi(x, y_r))}} \\ &= \frac{1}{\exp(-(r_\psi(x, y_c) - r_\psi(x, y_r))) + 1} \\ &= \sigma(r_\psi(x, y_c) - r_\psi(x, y_r)). \end{aligned}$$

This completes the proof of the lemma. \square

With this lemma, we can prove the main proposition.

Proposition B.2. *The general preference probability $P_\psi(y_c \succ y_r \mid x)$ defined in Eq. (10) is equivalent to the Bradley-Terry model if the following assumptions hold:*

1. *The score difference $\Delta s_\psi \triangleq s_c - s_r$ follows a logistic distribution.*
2. *The mean of this logistic distribution is the difference of deterministic underlying quality scores: $\mu = r_\psi(x, y_c) - r_\psi(x, y_r)$.*
3. *The scale parameter of the logistic distribution is unity ($s = 1$).*

Proof. The preference probability is the probability that the score of the chosen response exceeds that of the rejected one. This can be expressed in terms of the score difference random variable $\Delta s_\psi = s_c - s_r$:

$$P_\psi(y_c \succ y_r \mid x) = P(s_c > s_r) = P(\Delta s_\psi > 0). \quad (13)$$

Assumption 1 states that Δs_ψ follows a logistic distribution. The cumulative distribution function (CDF) of a logistic random variable Z with mean μ and scale s is given by $F_Z(z) = (1 + e^{-(z-\mu)/s})^{-1}$. Therefore, we can compute the preference probability as:

$$\begin{aligned} P(\Delta s_\psi > 0) &= 1 - P(\Delta s_\psi \leq 0) \\ &= 1 - F_{\Delta s_\psi}(0) \\ &= 1 - \frac{1}{1 + e^{-(0-\mu)/s}} \\ &= 1 - \frac{1}{1 + e^{\mu/s}} \\ &= \frac{(1 + e^{\mu/s}) - 1}{1 + e^{\mu/s}} = \frac{e^{\mu/s}}{1 + e^{\mu/s}} \\ &= \frac{1}{1 + e^{-\mu/s}}. \end{aligned} \quad (14)$$

This final expression is precisely the sigmoid function, $\sigma(\mu/s)$.

Then, we apply the remaining assumptions. **Assumption 2** posits that the mean of the distribution is $\mu = r_\psi(x, y_c) - r_\psi(x, y_r)$. **Assumption 3** sets the scale parameter to unity, $s = 1$. Substituting these into our result from Eq. (14) yields:

$$P_\psi(y_c \succ y_r \mid x) = \frac{1}{1 + e^{-(r_\psi(x, y_c)-r_\psi(x, y_r))}} = \sigma(r_\psi(x, y_c) - r_\psi(x, y_r)). \quad (15)$$

From Lemma B.1, we know that the Bradley-Terry model also simplifies to $\sigma(r_\psi(x, y_c) - r_\psi(x, y_r))$. Since the probabilistic reward model under the specified assumptions and the Bradley-Terry model both yield the identical functional form, we have shown that the latter is a special case of the former. \square

864 C GRADIENT ANALYSIS OF THE PREFERENCE PROBABILITY

866 In this section, we conduct a formal gradient-based analysis to demonstrate that maximizing the
 867 preference probability, $P_\psi(y_c \succ y_r \mid x)$, incentivizes the underlying probabilistic model to maximally
 868 separate the score distributions of the chosen and rejected responses.

869 **Proposition C.1** (Optimization Incentive of Preference Maximization). *Let the scores for responses
 870 be drawn from a discrete set $\{a, a+1, \dots, b\}$. Let $p_c(k) \triangleq p_\psi(s_c = k \mid x, y_c)$ and $p_r(k) \triangleq p_\psi(s_r =$
 871 $k \mid x, y_r)$ be the respective probability mass functions (PMFs). Maximizing the preference probability
 872 $P(s_c > s_r)$ with respect to the variables $\{p_c(k)\}$ and $\{p_r(k)\}$ under the constraints $\sum_k p_c(k) = 1$
 873 and $\sum_k p_r(k) = 1$ creates the following incentives:*

- 875 1. *For the chosen response y_c , shifting probability mass from any score k to a higher score
 876 $k+1$ will increase or maintain the objective value.*
- 877 2. *For the rejected response y_r , shifting probability mass from any score $k+1$ to a lower score
 878 k will increase or maintain the objective value.*

880 This implies that the optimization process drives the PMF of y_c towards the maximum score b and the
 881 PMF of y_r towards the minimum score a .

883 *Proof.* The preference probability $P \triangleq P_\psi(y_c \succ y_r \mid x)$ for discrete scores is given by:

$$884 P = \sum_{i=a}^b p_c(i) P(s_r < i) = \sum_{i=a}^b p_c(i) \left(\sum_{j=a}^{i-1} p_r(j) \right). \quad (16)$$

885 We analyze the gradient of P with respect to the probability mass at each score for y_c and y_r
 886 separately.

887 **Part 1: Incentive for the Chosen Response Score (y_c).** We first compute the partial derivative of
 888 P with respect to $p_c(k)$ for some score $k \in \{a, \dots, b\}$. From Eq. (16), only the term where $i = k$
 889 depends on $p_c(k)$, so:

$$890 \frac{\partial P}{\partial p_c(k)} = \frac{\partial}{\partial p_c(k)} \left[p_c(k) \sum_{j=a}^{k-1} p_r(j) \right] = \sum_{j=a}^{k-1} p_r(j) = P(s_r < k). \quad (17)$$

891 This derivative represents the sensitivity of the objective to an increase in probability mass at score k .
 892 To understand the incentive for shifting mass, consider moving an infinitesimal probability mass $\epsilon > 0$
 893 from a score k to a higher score $k+1$. This corresponds to a change in the PMF: $p_c(k) \rightarrow p_c(k) - \epsilon$
 894 and $p_c(k+1) \rightarrow p_c(k+1) + \epsilon$. The resulting change in P , denoted ΔP , can be approximated by
 895 the first-order Taylor expansion (which is exact since P is linear in p_c):

$$896 \begin{aligned} \Delta P &\approx \epsilon \frac{\partial P}{\partial p_c(k+1)} - \epsilon \frac{\partial P}{\partial p_c(k)} \\ 897 &= \epsilon (P(s_r < k+1) - P(s_r < k)) \quad (\text{using Eq. equation 17}) \\ 898 &= \epsilon \cdot P(s_r = k) \\ 899 &= \epsilon \cdot p_r(k). \end{aligned} \quad (18)$$

900 Since probabilities are non-negative, $p_r(k) \geq 0$, and we defined $\epsilon > 0$, it follows that $\Delta P \geq 0$.
 901 This demonstrates that any shift of probability mass to a higher score for y_c is guaranteed to be a
 902 non-decreasing change in the objective function. This creates a persistent optimization pressure to
 903 move the entire distribution p_c towards the maximum score b .

904 **Part 2: Incentive for the Rejected Response Score (y_r).** To analyze the effect of $p_r(k)$, it is more
 905 convenient to rewrite Eq. (16) by swapping the order of summation:

$$906 P = \sum_{j=a}^{b-1} p_r(j) \left(\sum_{i=j+1}^b p_c(i) \right). \quad (19)$$

918 The partial derivative of P with respect to $p_r(k)$ for $k \in \{a, \dots, b-1\}$ is:
 919

$$920 \quad 921 \quad \frac{\partial P}{\partial p_r(k)} = \frac{\partial}{\partial p_r(k)} \left[p_r(k) \sum_{i=k+1}^b p_c(i) \right] = \sum_{i=k+1}^b p_c(i) = P(s_c > k). \quad (20)$$

922

923 Now, consider shifting an infinitesimal probability mass $\epsilon > 0$ from a score $k+1$ to a *lower* score k .
 924 This corresponds to the change: $p_r(k) \rightarrow p_r(k) + \epsilon$ and $p_r(k+1) \rightarrow p_r(k+1) - \epsilon$. The resulting
 925 change in P is:
 926

$$927 \quad 928 \quad \Delta P \approx \epsilon \frac{\partial P}{\partial p_r(k)} - \epsilon \frac{\partial P}{\partial p_r(k+1)} \\ 929 \quad = \epsilon (P(s_c > k) - P(s_c > k+1)) \quad (\text{using Eq. equation 20}) \\ 930 \quad = \epsilon \cdot P(s_c = k+1) \\ 931 \quad = \epsilon \cdot p_c(k+1). \quad (21)$$

932

933 Since $p_c(k+1) \geq 0$ and $\epsilon > 0$, we have $\Delta P \geq 0$. This shows that shifting probability mass to a
 934 lower score for y_r is always a non-decreasing change. This creates a consistent optimization pressure
 935 to move the distribution p_r towards the minimum score a .
 936

937 Combining both parts, we have formally shown that maximizing the preference probability $P(s_c > s_r)$
 938 drives the model to separate the score distributions by pushing the mass of p_c towards the highest
 939 possible score and the mass of p_r towards the lowest possible score. \square
 940

941 D DETAILED EXPERIMENTAL SETUP

942

943 **Training Preference Data.** We curate a dataset of 130k samples for reward model training, drawn
 944 primarily from publicly available open-source datasets: **Skywork Reward Preference 80K** (Liu
 945 et al., 2024b) is a high-quality, pairwise preference dataset that spans multiple domains, including
 946 chat, safety, mathematics, and code. It employs advanced data filtering techniques to ensure the
 947 reliability of preferences across different tasks. **UltraFeedback Binarized Preferences** (Cui et al.,
 948 2023) is a large-scale, fine-grained, and diverse preference dataset designed for training powerful
 949 reward and critic models. It comprises approximately 64k prompts from various sources, including
 950 UltraChat (Ding et al., 2023), ShareGPT, Evol-Instruct (Xu et al., 2024), TruthfulQA (Lin et al.,
 951 2021), FalseQA (Hu et al., 2023), and FLAN (Wei et al., 2021). Each prompt is used to query multiple
 952 LLMs to generate four distinct responses, resulting in a total of 256k samples.
 953

954 **Baselines.** In our main experiments, we employ the Qwen2.5-Instruction series of models (7B, 14B,
 955 32B, and 72B) (Team, 2024) as the backbone for training the OPRM. We compare OPRM to different
 956 categories of baselines: (1) **Discriminative RMs**, including Skywork-Reward (Liu et al., 2024b),
 957 ArmoRM (Wang et al., 2024a), InternLM-20B-Reward (Cai et al., 2024), and Nemotron-4-340B-
 958 Reward (Wang et al., 2024c). (2) **Generative RMs**, including DeepSeek-V2.5 (Liu et al., 2024a),
 959 Gemini-1.5-Pro (Team et al., 2024), LLaMA-3.1-70B (Grattafiori et al., 2024), Claude-3.5-sonnet,
 960 and GPT-4o (Hurst et al., 2024). (3) **DeepSeek-RM**, a collection of baselines re-implemented by
 961 DeepSeek, including LLM-as-A-Judge (Zheng et al., 2023), DeepSeek-BTRM (Bradley & Terry,
 962 1952), DeepSeek-PairRM (Jiang et al., 2023), Cloud-Gemma-2 (Ankner et al., 2024) and DeepSeek-
 963 GRM (Liu et al., 2025b).
 964

965 **Benchmarks and Evaluation Metrics.** Following prior work, we evaluate the performance of
 966 different methods on various RM benchmarks of different domains: **Reward Bench** (Lambert et al.,
 967 2024), **PPE-Preference**, **PPE-Correctness** (Frick et al., 2024), **RMB** (Zhou et al., 2024). We use
 968 the standard Best-of-N evaluation metrics for each benchmark: the accuracy of picking the best
 969 response from a set of responses. Specifically, Reward Bench and PPE Preference involve pairwise
 970 comparisons, with each prompt featuring two candidate responses. In contrast, PPE Correctness is
 971 designed for a large-scale Best-of-N evaluation, presenting 32 responses for each prompt. RMB is a
 972 hybrid, incorporating both pairwise comparison tasks and a Best-of-5 selection format.

972 **E SENSITIVITY ANALYSIS ON BOUNDARY AND BIN CONFIGURATIONS**
973974 In this section, we investigate the robustness of OPRM-RgFT to variations in ordinal bin definitions
975 and boundary placements. Specifically, we aim to verify that the method’s performance is primarily
976 driven by the underlying probabilistic framework rather than specific hyperparameter choices
977 regarding the ordinal scale.978 To this end, we trained a variant of OPRM-RgFT-32B using an expanded scale $S' = \{0, \dots, 9\}$ with
979 *irregular boundaries*: **bad** $\{0, 1, 2, 3\}$, **normal** $\{4, 5\}$, and **good** $\{6, 7, 8, 9\}$. This setup introduces
980 asymmetry and changes the cardinality of the semantic sets, contrasting with our default uniform
981 configuration which employs a symmetric partition of the scale $S = \{1, \dots, 9\}$ (**bad** $\{1, 2, 3\}$,
982 **normal** $\{4, 5, 6\}$, **good** $\{7, 8, 9\}$).983 As presented in Table 6, the performance deviation between the default uniform setting and the
984 irregular variant is negligible, with the difference in the Overall score being less than 0.1%. This
985 empirical evidence demonstrates that OPRM-RgFT is robust to boundary shifts and does not rely on
986 uniform partitions to achieve high performance.987
988 Table 6: Performance comparison between the default uniform configuration and an irregular bound-
989 ary variant. The results indicate that the method is highly robust to binning strategies.
990

991 Configuration	992 RewardBench	993 PPE-P	994 PPE-C	995 RMB	996 Overall
993 Irregular Variant (Scale 0 … 9) 994 bad $\{0, 1, 2, 3\}$, normal $\{4, 5\}$, good $\{6, 7, 8, 9\}$	994 89.1	995 64.1	996 67.7	997 74.4	998 73.8
995 Default Uniform (Scale 1 … 9) 996 bad $\{1, 2, 3\}$, normal $\{4, 5, 6\}$, good $\{7, 8, 9\}$	996 88.9	997 64.6	998 67.3	999 74.8	1000 73.9

1001 Despite the demonstrated robustness to irregular boundaries, we adhere to the default uniform config-
1002 uration for two principled reasons related to efficiency and priors. First, regarding **computational**
1003 **efficiency**, we utilize the range $[1, 9]$ to maximize granularity while ensuring each ordinal score maps
1004 to a single token. Mainstream LLM tokenizers typically treat digits $\{0, \dots, 9\}$ as individual tokens,
1005 whereas values ≥ 10 are decomposed into multiple tokens. Restricting the support set to single
1006 tokens allows OPRM to compute the full probability distribution in a single forward pass, avoiding
1007 the prohibitive computational costs associated with computing joint probabilities over multi-token
1008 sequences. Second, concerning **geometric simplicity**, we employ a uniform partition (3×3 regions)
1009 as a neutral prior to minimize inductive bias. This uniformity aligns with the theoretical design
1010 of Region Flooding Tuning, allowing probability mass to flood into a symmetric lower triangular
1011 geometry of consistent size. In the absence of domain-specific knowledge suggesting that **good**
1012 samples require finer granularity than **bad** ones, a symmetric division simplifies hyperparameter
1013 selection and ensures balanced gradient pressure across different quality levels.1014 **F BRADLEY-TERRY LOSS WITH MARGIN**1015 Inspired by INF-ORM (Yang et al., 2024), which employs GPT-4o to evaluate the preference margin
1016 between chosen and rejected responses, we annotate each pair in our dataset with a margin label.
1017 The original evaluation in INF-ORM follows these rules: (1) If the chosen answer is much better
1018 than rejected answer, set margin to 10; (2) If the chosen answer is better than the rejected answer, set
1019 margin to 3; (3) If the chosen answer is slightly better than rejected answer, set margin to 1.1020 Analogously, we define margins based on the combination of quality-level annotations. Specifically,
1021 pairs with the same quality level, such as $\langle \text{good}, \text{good} \rangle$, $\langle \text{normal}, \text{normal} \rangle$, and $\langle \text{bad}, \text{bad} \rangle$, are
1022 assigned a margin of 1. Pairs with adjacent quality levels, namely $\langle \text{good}, \text{normal} \rangle$ and $\langle \text{normal},$
1023 $\text{bad} \rangle$, are assigned a margin of 3. Finally, a margin of 10 is assigned to pairs with distant quality
1024 levels, like $\langle \text{good}, \text{bad} \rangle$.

1025 After that, the Bradley-Terry Loss with Margin is defined as:

1026
$$\mathcal{L}(r_\psi) = -\mathbb{E}_{(x, y_c, y_r) \sim \mathcal{D}_{\text{rm}}} [m(x, y_c, y_r) \cdot \log \sigma(r_\psi(x, y_c) - r_\psi(x, y_r))], \quad (22)$$

1026 Here, $m(x, y_c, y_r)$ stands for the margin value between chosen and rejected responses. This formula
 1027 helps the model to better understand which responses are preferred over others, based on the scores
 1028 we gave them.
 1029
 1030
 1031

1032 G DISENTANGLING THE IMPACT OF REGION FLOODING FROM LABEL 1033 AUGMENTATION

1034
 1035
 1036 A central hypothesis of this work is that the *Region Flooding Tuning* (RgFT) framework provides
 1037 methodological benefits beyond the simple inclusion of absolute quality labels. To verify whether the
 1038 observed performance gains stem from the architecture itself or merely from data augmentation, we
 1039 conducted controlled experiments comparing OPRM-RgFT against standard classification paradigms
 1040 trained on identical data (comprising both preference pairs and semantic quality labels).
 1041

We formulate two baseline approaches to isolate the contribution of the modeling strategy:

- 1042 • **Baseline A (Hard Classification):** A standard multi-class classification model optimizing for
 1043 three discrete quality tiers (**good**, **normal**, **bad**). Inference is performed via maximum a posteriori
 1044 estimation, selecting the class with the highest probability.
 1045
- 1046 • **Baseline B (Scalar-Weighted Classification):** A regression-oriented approach designed to provide
 1047 finer granularity than hard classification. Here, the reward score is computed as the expected value
 1048 over class probabilities: $\mathbb{E}[s] = \sum_{c \in \{\text{good,normal,bad}\}} P(c) \cdot v_c$, where v_c represents the centroid of
 1049 the corresponding semantic region (e.g., values mapped to 2, 5, and 8).
 1050

1051
 1052 Table 7: Comparative analysis of OPRM-RgFT against standard classification baselines utilizing
 1053 identical supervision signals. The results demonstrate that the proposed region flooding mechanism
 1054 yields significant gains over pure classification approaches.
 1055

1056 Method	1057 RewardBench	1058 PPE-P	1059 PPE-C	1060 RMB	1061 Overall
1057 Baseline A (Hard Classification)	1058 71.0	1059 43.9	1060 46.6	1061 55.7	1062 54.3
1057 Baseline B (Scalar-Weighted Classification)	1058 85.4	1059 61.5	1060 64.3	1061 71.3	1062 70.6
1057 OPRM-RgFT-32B (Ours)	1058 88.9	1059 64.6	1060 67.3	1061 74.8	1062 73.9

1062 The empirical results, detailed in Table 7, indicate a clear performance hierarchy. Hard Classification
 1063 significantly outperforms Scalar-Weighted Classification, underscoring the necessity of continuous
 1064 score representations for ranking tasks. However, it consistently underperforms OPRM-RgFT across
 1065 all benchmarks (e.g., a 3.3% deficit in the Overall score). This performance gap substantiates that
 1066 the efficacy of our method is not solely attributable to the availability of absolute labels. Rather,
 1067 the Region Flooding strategy effectively harmonizes discriminative pairwise ranking with absolute
 1068 semantic constraints. Unlike standard classification, which treats labels as independent categories,
 1069 RgFT anchors the preference distribution within a continuous ordinal space, thereby achieving
 1070 superior calibration and ranking fidelity.
 1071
 1072

1073 H OPRM’S PROMPT TEMPLATES

1074
 1075
 1076 As shown in Prompt H.1, we present the prompt templates used during the OPRM training process.
 1077 Furthermore, we designed distinct scoring criteria for general-domain and domain-specific data.
 1078 Specifically, the general-domain preference data is evaluated using the OpenAI 3H Criteria, as
 1079 detailed in Prompt H.2. In contrast, the role-play data used in our experiments is assessed against our
 custom Role Play Criteria, presented in Prompt H.2.

1080 H.1 PROMPT

1081

1082

1083 **Ordinal Distributional Reward Modeling Prompt**

1084

Evaluation Guidelines

You are an expert text quality evaluator.

Your task is to carefully assess and score the AI-generated candidate response based on the specific criteria provided below.

1085

1086

1087

1088

Scoring Criteria

1089

1090

1091

Context of Interaction

The following represents a historical conversation between a user and an AI assistant:

1092

1093

{prompt}

1094

1095

AI Response to Evaluate

Below is the candidate response generated by the AI that needs to be evaluated:

1096

1097

{response}

1098

Evaluation Instructions

Please score the response according to the criteria on a scale from 1 to 9, where:

1099

1100

1101

- 1-3: Bad performance

- 4-6: Normal performance

- 7-9: Good performance

1102

1103

Use the following format for your final assessment: "Score: <total points>".

1104

1105

1106

1107

1108

1109

H.2 CRITERIA

1110

1111

Role Play Criteria

1112

1113

Relevant: Responses should not be irrelevant. Responses should be coherent and reasonable within the given context, without containing logical flaws.

1114

1115

1116

Credible: Responses should be credible, meet the prompt requirements and provide accurate information. In role-playing or storytelling, responses should be consistent with the given character and background.

1117

1118

Interesting: Responses should be engaging and able to capture the user's attention. Responses that are self-aware, thought-provoking, or captivating will be more interesting.

1119

1120

1121

1122

Openai 3H Criteria

1123

1124

1125

Helpfulness: The content generated should aim to be of assistance to the user. It should provide accurate information, answer questions to the best of the model's knowledge, and offer solutions that are practical and relevant to the user's queries. The model should not generate content that is intentionally misleading or unhelpful.

1126

1127

1128

1129

Truthfulness: The model should strive to provide information that is truthful and based on the most accurate data available up to its knowledge cutoff. It should not fabricate information or present opinions as facts. When uncertain, the model should acknowledge the limitations of its knowledge.

1130

1131

1132

1133

Harmlessness: The content should not cause harm to individuals or groups. It should avoid generating content that is offensive, discriminatory, or promotes harmful behaviors. The model should be programmed to refuse to generate content that could be used for malicious purposes, including but not limited to generating false information, engaging in deception, or promoting illegal activities.

1134 **I DETAILED EXPERIMENT RESULTS**
11351136 We report the detailed per-subset experiment results on RewardBench 8, PPE Correctness 9, and
1137 RMB 10. The results for the baseline methods are sourced from their original papers.
11381139 Table 8: Detailed results of different methods on the Reward Bench benchmark.
1140

Method	Chat	Chat Hard	Safety	Reasoning	Reward Bench
<i>Reported Results of Public Models</i>					
Skywork-Reward-Gemma-2-27B	95.8	91.4	91.9	96.1	93.8
DeepSeek-V2.5-0905	-	-	-	-	81.5
Gemini-1.5-Pro	94.1	77.0	85.8	90.2	86.8
ArmoRM-8B-v0.1	96.9	76.8	90.5	97.3	90.4
InternLM2-20B-Reward	98.9	76.5	89.5	95.8	90.2
LLaMA-3.1-70b-Instruct	97.2	70.2	82.8	86.0	84.1
Claude-3.5-sonnet	96.4	74.0	81.6	84.7	84.2
Nemotron-4-340B-Reward	95.8	87.1	91.5	93.6	92.0
GPT-4o	96.1	76.1	88.1	86.6	86.7
<i>Reproduced Results of Baseline Methods From DeepSeek</i>					
LLM-as-a-Judge	96.7	69.3	83.5	84.3	83.4
DeepSeek-BTRM-27B	96.7	86.2	75.7	89.8	81.7
Cloud-Gemma-2-27B	96.7	69.3	83.5	84.3	82.0
DeepSeek-PairRM-27B	95.5	86.8	52.3	92.0	87.1
DeepSeek-GRM-27B-RFT	94.7	77.2	87.0	79.2	84.5
DeepSeek-GRM-27B	94.1	78.3	88.0	83.8	86.0
<i>Results of Our Method</i>					
OPRM-Qwen2.5-7B	96.4	76.3	86.2	92.2	87.8
OPRM-Qwen2.5-14B	96.6	78.1	86.1	96.2	89.3
OPRM-Qwen2.5-32B	96.9	81.8	89.6	96.7	91.3
OPRM-Qwen2.5-72B	96.4	79.6	88.1	93.0	89.3
<i>Results of Our Method (w/ Region Flooding Tuning)</i>					
OPRM-RgFT-Qwen2.5-7B	95.5	76.5	86.4	86.5	86.2
OPRM-RgFT-Qwen2.5-14B	96.9	79.4	88.1	84.6	87.3
OPRM-RgFT-Qwen2.5-32B	95.3	82.7	89.2	88.4	88.9
OPRM-RgFT-Qwen2.5-72B	96.9	82.7	89.7	87.1	89.1

1169 **J QUALITY-LEVEL ANNOTATION**
11701171 **J.1 GENERAL-DOMAIN DATA**
11721173 For the acquisition of quality-level annotations, we follow the methodology of UltraFeedback (Cui
1174 et al., 2023). The process involves two main steps. First, we employ the gpt-4o model (Hurst et al.,
1175 2024) to annotate each prompt-response pair with fine-grained scores across multiple dimensions,
1176 such as instruction-following, truthfulness, and helpfulness. Second, these scores are averaged,
1177 and the resulting value is mapped to one of our three predefined quality levels—**good**, **normal**, or
1178 **bad**—based on specific score intervals.
11791180 Following this automatic annotation, we perform a manual verification step. For verifiable tasks,
1181 such as mathematics and coding, we check the responses against the ground truth. If a response is
1182 found to be incorrect, its quality level is manually downgraded to **bad**. We acknowledge that for
1183 more subjective tasks, this per-instance verification is not always feasible, which may introduce some
1184 annotation noise.
11851186 Finally, to ensure logical consistency, we filter out all pairs where the chosen response is not strictly
1187 better than the rejected one. This includes invalid combinations of $\langle l_{\text{chosen}}, l_{\text{rejected}} \rangle$ such as **<normal, good>**,
1188 **<bad, normal>**, and **<bad, good>**. The remaining data constitutes our final training set.
1189

Table 9: Detailed results of different methods on the PPE Correctness benchmark.

Method	MMLU-Pro	MATH	GPQA	MBPP-Plus	IFEval	PPE Correctness
<i>Reported Results of Public Models</i>						
Skywork-Reward-Gemma-2-27B	54.0	63.0	53.0	59.0	54.0	56.6
DeepSeek-V2.5-0905	-	-	-	-	-	58.5
Gemini-1.5-Pro	-	-	-	-	-	59.8
ArmoRM-8B-v0.1	66.0	71.0	57.0	54.0	58.0	61.2
InternLM2-20B-Reward	68.0	70.0	57.0	58.0	62.0	63.0
LLaMA-3.1-70b-Instruct	-	-	-	-	-	59.2
Claude-3.5-sonnet	66.0	63.0	56.0	52.0	57.0	58.8
Nemotron-4-340B-Reward	70.0	65.0	57.0	49.0	63.0	60.8
GPT-4o	-	-	-	-	-	57.6
<i>Reproduced Results of Baseline Methods From DeepSeek</i>						
LLM-as-a-Judge	66.0	68.0	52.8	50.2	56.8	58.8
DeepSeek-BTRM-27B	68.8	73.2	56.8	68.8	66.0	66.7
Cloud-Gemma-2-27B	68.7	68.8	53.5	59.0	62.0	62.4
DeepSeek-PairRM-27B	68.3	74.7	55.0	63.1	62.9	64.8
DeepSeek-GRM-27B-RFT	64.8	68.7	55.5	49.0	60.2	59.6
DeepSeek-GRM-27B	64.8	68.8	55.6	50.1	59.8	59.8
<i>Results of Our Method</i>						
OPRM-Qwen2.5-7B	65.2	70.1	56.3	59.0	56.1	61.3
OPRM-Qwen2.5-14B	66.7	70.7	57.1	67.4	59.5	64.3
OPRM-Qwen2.5-32B	71.2	73.2	57.9	66.2	62.2	66.1
OPRM-Qwen2.5-72B	73.4	75.9	58.6	54.1	59.5	64.3
<i>Results of Our Method (w/ Region Flooding Tuning)</i>						
OPRM-RgFT-Qwen2.5-7B	64.8	71.6	55.9	63.0	56.8	62.4
OPRM-RgFT-Qwen2.5-14B	69.5	74.0	57.3	67.0	60.0	65.6
OPRM-RgFT-Qwen2.5-32B	73.3	76.8	58.5	67.2	60.6	67.3
OPRM-RgFT-Qwen2.5-72B	72.8	77.1	59.0	62.0	61.2	66.4

Table 10: Detailed results of different methods on the RMB benchmark.

Method	Helpfulness BoN	Helpfulness Pair	Harmlessness BoN	Harmlessness Pair	RMB
<i>Reported Results of Public Models</i>					
Skywork-Reward-Gemma-2-27B	47.2	65.3	56.1	72.1	60.2
DeepSeek-V2.5-0905	-	-	-	-	65.7
Gemini-1.5-Pro	53.6	76.3	29.9	66.1	56.5
ArmoRM-8B-v0.1	63.6	78.7	49.7	66.3	64.6
InternLM2-20B-Reward	58.5	76.3	49.9	67.0	62.9
LLaMA-3.1-70b-Instruct	64.8	81.1	55.8	73.9	68.9
Claude-3.5-sonnet	70.5	83.8	51.8	76.4	70.6
Nemotron-4-340B-Reward	-	-	-	-	69.9
GPT-4o	63.9	81.5	68.2	81.4	73.8
<i>Reproduced Results of Baseline Methods From DeepSeek</i>					
LLM-as-a-Judge	55.8	78.5	50.8	73.9	64.8
DeepSeek-BTRM-27B	64.0	83.0	33.6	51.0	57.9
Cloud-Gemma-2-27B	64.7	81.1	41.7	66.1	63.4
DeepSeek-PairRM-27B	59.9	83.3	34.1	55.5	58.2
DeepSeek-GRM-27B-RFT	58.4	79.3	54.2	76.0	67.0
DeepSeek-GRM-27B	62.3	80.5	57.0	76.1	69.0
<i>Results of Our Method</i>					
OPRM-Qwen2.5-7B	63.1	78.4	65.7	78.8	71.5
OPRM-Qwen2.5-14B	65.8	80.7	68.2	80.5	73.8
OPRM-Qwen2.5-32B	69.2	82.1	68.9	82.0	75.6
OPRM-Qwen2.5-72B	68.7	82.4	64.2	78.5	73.5
<i>Results of Our Method (w/ Region Flooding Tuning)</i>					
OPRM-RgFT-Qwen2.5-7B	63.4	79.0	62.4	75.6	70.1
OPRM-RgFT-Qwen2.5-14B	66.3	81.3	65.3	78.2	72.8
OPRM-RgFT-Qwen2.5-32B	67.6	81.4	69.1	81.2	74.8
OPRM-RgFT-Qwen2.5-72B	67.9	82.3	67.1	79.5	74.2

J.2 ROLE-PLAY DATA

For the domain-specific data, we employ a team of six human experts to perform accurate quality-level annotation. The data consists of Role-Play Dialogues, for which the experts assessed each prompt-response pair against four core dimensions: **Core Role-Playing Consistency**, **Interactivity & Narrative Progression**, **Fundamental Linguistic Quality**, and **Immersion**. Based on this multi-

dimensional evaluation, they directly assigned a quality level of **good**, **normal**, or **bad** to each prompt-response pair. To ensure high annotation quality and consistency, a label was only accepted if at least two experts reached a consensus. We consider this high-fidelity annotation process to be crucial for fully leveraging the capabilities of our Region Flooding Tuning method.

J.3 DISTINGUISHING ANNOTATION ERROR FROM DISAGREEMENT

Our methodology emphasizes robustness to inconsistent preference data and the ability to handle annotation disagreement. To provide clarity on our data processing pipeline, it is crucial to distinguish between two fundamentally different types of label conflicts: **Annotation Errors** (Logical Inconsistency) and **Annotation Disagreements** (Subjective Ambiguity).

Annotation Errors (Logical Inconsistency). Our training paradigm relies on preference pairs (y_c, y_r) where the chosen response y_c is preferred over the rejected response y_r . A semantic label configuration such as **<normal, good>** (where the chosen response has a lower semantic quality than the rejected one) constitutes a direct violation of the preference premise ($y_c \succ y_r$). We classify such cases as logical inconsistencies or annotation errors rather than subjective disagreements. Empirical analysis of our dataset reveals that these contradictions are extremely rare, accounting for less than 0.1% of the total samples. Consequently, our decision to filter these instances represents a standard data preprocessing aimed at eliminating verifiable noise, rather than an evasion of challenges.

Annotation Disagreements (Subjective Ambiguity). In contrast, the disagreement that our probabilistic framework aims to model refers to valid variations in semantic judgment where the core preference relationship remains intact. For instance, given a valid preference pair $(y_c \succ y_r)$, one annotator might assign the labels **<good, normal>**, while another might assign **<good, bad>**. Both annotations respect the ordinal constraint (y_c is superior to y_r) but differ in the perceived margin of quality. This type of variation reflects genuine subjective ambiguity in reward assessment. Unlike point-estimate models that are forced to regress to a single mean value, OPRM is specifically designed to capture this aleatoric uncertainty by learning a full probability distribution over the reward space.

In summary, the filtering step mentioned in prior sections is strictly limited to removing logical contradictions that violate the definition of a preference pair. It does not compromise our claim of robustness; rather, it ensures that the model focuses on learning meaningful distributional patterns from legitimate subjective variations.

K FUTURE WORK

In this section, we outline several promising directions for future research that build upon the OPRM framework, such as customized Region Flooding Tuning method and customized decoding method.

K.1 CUSTOMIZED REGION FLOODING TUNING

Figure 5: **Annotation Region Flooding Tuning.** As annotation ambiguity increases, the target optimization region "floods" to encompass a wider set of plausible outcomes. A more uncertain annotation results in a larger target region than a more certain one.

As discussed in Section 5.2, a core advantage of Region Flooding Tuning is its customizability. In this section, we demonstrate a novel application of this feature. Annotator inconsistency is a well-known challenge in preference data collection, an issue that is exacerbated at finer annotation granularities and leads to increased label ambiguity. To address this, we propose a method that explicitly models this ambiguity by permitting a single prompt-response pair to be associated with multiple potential

1296 quality levels. For instance, a response might be considered both **good** and **normal**, or even all
 1297 three levels in cases of extreme uncertainty. As illustrated in Figure 5, our approach handles this by
 1298 optimizing over an expanded set of joint probabilities, corresponding to all plausible quality-level
 1299 assignments for a given pair.
 1300

1301 K.2 CUSTOMIZED DECODING METHOD

1303 The full probability distribution $p_\psi(s | x, y)$ produced by OPRM allows us to go beyond a simple
 1304 expected score. To fully leverage this rich distributional information, we introduce **Uncertainty-
 1305 aware Decoding**. This method adjusts the expected score by penalizing predictive uncertainty,
 1306 thereby favoring responses that are predicted to be high-quality with high confidence. The final
 1307 reward score $r_\psi(x, y)$ is calculated as:
 1308

$$1309 \quad r_\psi(x, y) = \underbrace{\sum_{s=a}^b s \cdot p_\psi(s | x, y)}_{\text{Expected Score}} - \underbrace{\lambda \cdot u(x, y)}_{\text{Uncertainty Term}} \quad (23)$$

1313 where the first term is the standard expected score. The second term, $u(x, y)$, is an uncertainty
 1314 measure of the distribution, such as its **Shannon entropy** or **variance**. The hyperparameter $\lambda \geq 0$
 1315 controls the strength of the uncertainty penalty.
 1316

1317 L COMPUTATIONAL OVERHEAD ANALYSIS

1319 A key consideration for advanced reward modeling frameworks is the potential trade-off between
 1320 performance gains and computational costs. To rigorously evaluate this, we conducted a systematic
 1321 benchmark comparing the computational overhead of OPRM against a standard Bradley-Terry model
 1322 under identical experimental conditions. Both models employ the Qwen2.5-32B architecture as the
 1323 backbone. Benchmarks were executed using $32 \times$ NVIDIA H200 GPUs for training and $4 \times$ H200
 1324 GPUs for inference, with results reported as the average wall-clock time over three independent runs.
 1325

1326 Table 11: Computational efficiency comparison between BTRM and OPRM.
 1327

1328 Method	1329 Training Time	1330 Inference Time	1331 Hardware (Train)	1332 Hardware (Infer)
1329 BTRM (Standard DRM)	7.3h	5.5 min	32 × H200	4 × H200
1330 OPRM (Ours)	6.9h	2.1 min	32 × H200	4 × H200

1332 As summarized in Table 11, OPRM exhibits training efficiency comparable to, and slightly superior
 1333 to, the BTRM baseline (6.9 hours vs. 7.3 hours). This result empirically confirms that our ordinal
 1334 preference modeling approach captures richer distributional information without imposing additional
 1335 computational burdens during the training phase.
 1336

1337 More notably, OPRM demonstrates a substantial advantage in inference latency, achieving a **2.6×**
 1338 speedup over BTRM (2.1 min vs. 5.5 min). This efficiency gain stems directly from OPRM’s
 1339 architectural design: by eliminating the need for an external scalar value head, OPRM remains
 1340 strictly within the standard vocabulary space of the LLM. Consequently, it is natively compatible
 1341 with highly optimized inference engines (e.g., vLLM, SGLang) without requiring custom kernel
 1342 modifications or specialized implementations. This characteristic renders OPRM particularly suitable
 1343 for high-throughput applications, such as online RLHF and large-scale preference ranking tasks like
 1344 Best-of-N sampling, where inference speed is a critical bottleneck.
 1345

M CASE STUDY

1347 We present several case studies in Table 12, Table 13, and Table 14, along with the scoring results
 1348 from BTRM, OPRM, and OPRM-RgFT for comparative analysis. A key finding is that by being
 1349 grounded in absolute quality assessment, OPRM and OPRM-RgFT exhibit a reduced susceptibility to
 length bias, a known issue in purely relative models like BTRM. Moreover, for tasks with verifiable

1350 answers, our models consistently prioritize factual correctness, whereas BTRM can be misled by
 1351 other stylistic attributes.
 1352

Table 12: Case 1

Example

1353 **Question:** You are a highly skilled mathematician tasked with solving complex math problems. Your goal is to
 1354 provide clear, step-by-step solutions that can be easily parsed and evaluated.
 1355

1356 Here is the math problem you need to solve:
 1357

1358 <problem> The length of a rectangle is twice its width. Given the length of the diagonal is $5\sqrt{5}$, find the area of
 1359 the rectangle. </problem>
 1360

1361 Box your final answer using LaTeX, for example: $\$x = \boxed{[Your final numerical or algebraic answer]}\$$.
 1362 Now, please solve the given math problem and provide your solution in the specified format.

1363 **Chosen Response:** Here's my solution to the problem:
 1364

1365 Let the width of the rectangle be w . Since the length is twice the width, the length of the rectangle is $2w$.
 1366 We are given that the length of the diagonal is $5\sqrt{5}$. Using the Pythagorean theorem, we can write: $(5\sqrt{5})^2 =$
 1367 $w^2 + (2w)^2$

1368 Simplifying the equation, we get: $25 \cdot 5 = w^2 + 4w^2$

1369 Combine like terms: $25 \cdot 5 = 5w^2$

1370 Divide both sides by 5: $25 = w^2$

1371 Take the square root of both sides: $w = \sqrt{25} = 5$

1372 Now that we have the width, we can find the length: $2w = 2 \cdot 5 = 10$

1373 The area of the rectangle is the product of the width and length: $A = w \cdot 2w = 5 \cdot 10 = \boxed{50}$

1374 Therefore, the area of the rectangle is 50.

1375 **Rejected Response:** To solve this problem, we can start by using the Pythagorean theorem to relate the length
 1376 and width of the rectangle to the length of the diagonal: $d^2 = l^2 + w^2$

1377 where d is the length of the diagonal, l is the length of the rectangle, and w is the width of the rectangle. Since
 1378 the length of the rectangle is twice its width, we can write: $l = 2w$

1379 Substituting this into the Pythagorean theorem, we get: $d^2 = (2w)^2 + w^2$

1380 Simplifying this expression, we get: $d^2 = 4w^2 + w^2$

1381 Simplifying further, we get: $d^2 = 5w^2$

1382 Since we are given that the length of the diagonal is $5\sqrt{5}$, we can set up the equation: $d = 5\sqrt{5}$

1383 Substituting this into the equation above, we get: $5\sqrt{5}^2 = 5w^2$

1384 Simplifying this expression, we get: $25 \cdot 5 = 5w^2$

1385 Simplifying further, we get: $125 = w^2$

1386 Taking the square root of both sides, we get: $w = \sqrt{125} = 5\sqrt{5}$

1387 Now that we have found the width, we can find the length by substituting this value back into the equation:

1388 $l = 2w = 2(5\sqrt{5}) = 10\sqrt{5}$

1389 The area of the rectangle is given by: $A = lw = (10\sqrt{5})(5\sqrt{5}) = 50\sqrt{5}^2 = 50 \cdot 5 = \boxed{250}$

1390 Final Answer: The final answer is 250.

BTRM-Qwen2.5-32B

1391 Chosen Score: **0.03**

1392 Rejected Score: **-2.70**

OPRM-Qwen2.5-32B (Ours)

1393 Chosen Score: **7.04**

1394 Rejected Score: **3.63**

OPRM-RgFT-Qwen2.5-32B (Ours)

1395 Chosen Score: **8.06**

1396 Rejected Score: **3.13**

1404
1405
1406
1407
1408
1409
1410

Table 13: Case 2

1411	Example
1412	Question: is $(x^y)^z = (x^z)^y$?
1413	Chosen Response: Yes, the equation $(x^y)^z = (x^z)^y$ is indeed true, and it is a direct consequence of the properties of exponents in mathematics. To see why this is true, let's consider the equation on both sides: Left side: $(x^y)^z$ Right side: $(x^z)^y$ First, we can simplify the left side by applying the power of a power rule, which states that $(a^m)^n = a^{(mn)}$: Left side: $(x^y)^z = x^{(yz)}$ Now, let's simplify the right side using the same power of a power rule: Right side: $(x^z)^y = x^{(zy)}$ Now we can see that both sides of the equation are equal: $x^{(yz)} = x^{(zy)}$ Since the bases (x) are the same and the exponents (yz) and (zy) are also the same, we can conclude that the equation $(x^y)^z = (x^z)^y$ is true. This property holds for any real numbers x , y , and z , as long as $x \neq 0$ and y and z are non-zero.
1426	Rejected Response: A classic question about exponentiation! Unfortunately, the answer is no, $(x^y)^z$ is not necessarily equal to $(x^z)^y$ in general. To see why, let's break it down: $(x^y)^z$ means “raise x to the power of y , and then raise the result to the power of z ”. This can be written as: $(x^y)^z = x^{(y*z)}$ On the other hand, $(x^z)^y$ means “raise x to the power of z , and then raise the result to the power of y ”. This can be written as: $(x^z)^y = x^{(z*y)}$ As you can see, the two expressions are not equal in general, because $y * z$ is not necessarily equal to $z * y$. For example, if $x = 2$, $y = 3$, and $z = 4$, then: $(2^3)^4 = 2^{(3*4)} = 2^{12} = 4096$ while $(2^4)^3 = 2^{(4*3)} = 2^{12} = 4096$ But in this case, it just so happens that $y * z = z * y$, so the two expressions are equal. However, this is not always the case. For example, if $x = 2$, $y = 2$, and $z = 3$, then: $(2^2)^3 = 2^{(2*3)} = 2^6 = 64$ while $(2^3)^2 = 2^{(3*2)} = 2^6 = 64$ Again, it just so happens that the two expressions are equal in this case, but this is not a general rule. So, to summarize: $(x^y)^z$ is not necessarily equal to $(x^z)^y$, unless y and z commute, i.e., $y * z = z * y$.
1445	BTRM-Qwen2.5-32B Chosen Score: -0.96 Rejected Score: -0.39
1447	OPRM-Qwen2.5-32B (Ours) Chosen Score: 7.85 Rejected Score: 3.84
1450	OPRM-RgFT-Qwen2.5-32B (Ours) Chosen Score: 8.03 Rejected Score: 2.05
1453	
1454	
1455	
1456	
1457	

1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470

Table 14: **Case 3**

Example
<p>Question: Anita ___ some application letters to the company but they never call her.</p> <p>A.has send B.have sent C.have send D.have sending E.has sent</p>
<p>Chosen Response: The correct answer is E. "has sent".</p> <p>Explanation: In this sentence, we need to use the present perfect tense, which is formed by "has/have + past participle". The past participle of the verb "send" is "sent".</p> <p>A. "has send" is incorrect because "send" is the base form of the verb, not the past participle. B. "have sent" is incorrect because the subject "Anita" is singular, so we should use "has" instead of "have". C. "have send" is incorrect for two reasons: "have" is used with a plural subject, and "send" is not the past participle. D. "have sending" is incorrect because "sending" is the present participle, not the past participle. E. "has sent" is the correct form, using "has" for the singular subject "Anita" and the past participle "sent". Therefore, the correct sentence should be: "Anita has sent some application letters to the company, but they never call her."</p>
<p>Rejected Response: The correct option is E. "has sent."</p> <p>The sentence should read: "Anita has sent some application letters to the company but they never call her." The verb "has sent" is used because the subject of the sentence, "Anita," is singular and the action of sending the letters happened in the past. The present perfect tense is used to indicate that the action was completed in the past, but its effects are still being felt in the present. Therefore, "has sent" is the appropriate form of the verb to use in this sentence.</p>
<p>BTRM-Qwen2.5-32B Chosen Score: 0.24 Rejected Score: -1.12</p> <p>OPRM-Qwen2.5-32B (Ours) Chosen Score: 8.08 Rejected Score: 6.76</p> <p>OPRM-RgFT-Qwen2.5-32B (Ours) Chosen Score: 8.81 Rejected Score: 8.14</p>

1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511