
Under review as a conference paper at ICLR 2023

FINE: FUTURE-AWARE INFERENCE FOR STREAMING
SPEECH TRANSLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

A popular approach to streaming speech translation is to employ a single offline
model together with a wait-k policy to support different latency requirements. It
is a simpler alternative compared to training multiple online models with differ-
ent latency constraints. However, there is an apparent mismatch in using a model
trained with complete utterances on partial streaming speech during online infer-
ence. We demonstrate that there is a significant difference between the speech
representations extracted at the end of a streaming input and their counterparts
at the same positions when the complete utterance is available. Built upon our
observation that this problem can be alleviated by introducing a few frames of
future speech signals, we propose Future-aware inference (FINE) for streaming
speech translation with two different methods to make the model aware of the
future. The first method FINE-Mask incorporates future context through a train-
able masked speech model. The second method FINE-Wait simply waits for more
actual future audio frames at the cost of extra latency. Experiments on the MuST-
C EnDe, EnEs, and EnFr benchmarks show that both methods are effective and
can achieve better trade-offs between translation quality and latency than strong
baselines, and a hybrid approach combining the two can achieve further improve-
ment. Extensive analyses suggest that our methods can effectively alleviate the
aforementioned mismatch problem between offline training and online inference.

1 INTRODUCTION

Streaming speech translation (ST) systems consume audio frames incrementally and generate real-
time translations, unlike their offline counterparts which have access to the complete utterance before
starting to translate. Because of the streaming nature, streaming ST models commonly use uni-
directional encoders (Ren et al., 2020; Ma et al., 2020b; Zeng et al., 2021) and are trained with some
wait-k policy (Ma et al., 2019) that determines whether to wait for more speech frames or emit target
tokens. In real-world applications, however, it is a costly effort to train and maintain multiple models
to satisfy different latency requirements (Zhang & Feng, 2021). Recently, some works (Papi et al.,
2022; Dong et al., 2022) show that offline models can be adapted to streaming scenarios with wait-
k policies to meet different latency requirements and achieve comparable or better performance,
partially due to their use of more powerful bidirectional encoders. However, there is an inherent
mismatch in using a model trained with complete utterances on incomplete streaming speech during
online inference (Ma et al., 2019).

Intuitively, speech representations extracted from streaming inputs (Figure 1(b)) are less informative
than in the case with full speech encoding (Figure 1(a)). Two questions arise naturally: how much
is the difference in speech representations between the two inference modes, and is it significant
enough to cause problems? We analyze the gap in speech representations, measured by cosine
similarity, at different positions in the streaming input compared to using the full speech (Section 3).
We find that there is a significantly greater gap for representations closer to the end of a streaming
segment, with an average similarity score as low as 0.2 for the last frame, and the gap quickly
narrows for frames further away. Moreover, we observe more degradation in translation quality for
utterances with the greatest gap in speech representations between online and offline inference.

Based on the above findings, we hypothesize that the lack of future contexts at the end of streaming
inputs could be detrimental to streaming speech translation. To this end, we propose two novel

1

Under review as a conference paper at ICLR 2023

(a) Training: Full speech encoding (b) Testing: Streaming encoding (c) FINE-Mask (d) FINE-Wait

Figure 1: (a) and (b) represent the input mismatch between offline training and streaming testing. (c)
and (d) denote the proposed methods FINE-Mask and FINE-Wait, respectively. “M” in (c) denotes
the mask token. Our methods introduce more informative future context to mitigate the mismatch.

Future-aware inference (FINE) strategies for streaming speech translation: FINE-Mask and FINE-
Wait, as shown in Figure 1(c) and 1(d). In FINE-Mask, we append a few mask embeddings to
the end of the current streaming speech tokens as additional input to the acoustic feature extractor,
which based on its masked modeling capability can implicitly estimate and construct future contexts
in the corresponding hidden representations and extract more accurate representations for the frames
in the streaming input. Since we find that only the speech representations of the last few positions in
the streaming input are severely affected by the mismatch problem, the closest future context could
provide the most improvement. Thus in FINE-Wait, we simply wait for a few extra speech tokens
during streaming encoding and use them as the future context to extract improved representations
for the frames in the original streaming segment. FINE-Wait incurs additional latency as the strategy
requires waiting for more oracle future context, but it achieves significant improvement in translation
quality and leads to a better trade-off.

We conduct experiments on the MuST-C EnDe, EnEs, and EnFr benchmarks. Experimental results
show that our methods outperform several strong baselines on the trade-off between translation
quality and latency. In particular, in the lower latency range (when AL is less than 1000ms), we
achieve improvements of 8 BLEU in EnDe, 12 BLEU in EnEs, and 6 BLEU in EnFr. Extensive
analyses demonstrate that introducing future context reduces the representation gap between the full
speech encoding and the partial streaming encoding.

2 BACKGROUND

Speech translation systems can be roughly categorized into non-streaming (offline) and stream-
ing (online) depending on the inference mode. Regardless of the inference mode, speech trans-
lation models typically employ the encoder-decoder architecture and are trained on an ST corpus
D = {(x, z,y)}, where x = (x1, . . . , xT) denotes an audio sequence, z = (z1, . . . , zI) and
y = (y1, . . . , yJ) the corresponding source transcription and target translation respectively.

Non-Streaming Speech Translation For the non-streaming ST task, the encoder maps the entire
input audio x to the speech representations h, and the decoder generates the j-th target token yj
conditional on the full representations h and the previously generated tokens y<j . The decoding
process of non-streaming ST is defined as:

p(y | x) =
J∏

j=1

p (yj | x,y<j) . (1)

A significant amount of work has focused on non-streaming ST, including pre-training (Wang et al.,
2020a; Dong et al., 2021a; Tang et al., 2022; Ao et al., 2022),multi-task learning (Liu et al., 2020;
Indurthi et al., 2020; 2021),data augmentation (Pino et al., 2019; Di Gangi et al., 2019b; McCarthy
et al., 2020),knowledge distillation (Dong et al., 2021b; Zhao et al., 2021; Du et al., 2022),and
cross-modality representation learning (Tang et al., 2021; Fang et al., 2022; Ye et al., 2022).

Streaming Speech Translation A streaming ST model generates the j-th target token yj based
on streaming audio prefix x≤g(j) and the previous tokens y<j , where g(j) is a monotonic non-

2

Under review as a conference paper at ICLR 2023

decreasing function representing the ending timestamp of the audio prefix that needs to be consumed
to generate the j-th word. The decoding probability is calculated as:

p(y | x) =
J∏

j=1

p
(
yj | x≤g(j),y<j

)
. (2)

Thus, a streaming ST model requires a policy to determine whether to wait for more source speech
or emit new target tokens. Recent studies (Ma et al., 2020b; Ren et al., 2020; Zeng et al., 2021; Dong
et al., 2022) on streaming ST make read/write decisions based on a variant of the wait-k policy (Ma
et al., 2019) that was initially proposed for streaming text translation, which alternates write and
read operations after reading the first k source tokens. Because there is no explicit word boundaries
in a streaming audio, several works attempt to detect word boundaries in the audio sequence using
methods such as fixed length (Ma et al., 2020b), Connectionist Temporal Classification (Ren et al.,
2020; Zeng et al., 2021; Papi et al., 2022), ASR outputs (Chen et al., 2021), and integrate-and-
fire (Dong et al., 2022). The wait-k policy is applied based on detected words rather than audio
frames. In other words, g(j) in Eq.(2) represents the length of audio segment corresponding to the
first j + k − 1 detected words in the streaming ST. Moreover, some studies (Arivazhagan et al.,
2019; Ma et al., 2020c; Zhang et al., 2020; Schneider & Waibel, 2020; Miao et al., 2021; Zhang &
Feng, 2022a;b; Zhang et al., 2022; Chang & Lee, 2022; Liu et al., 2021) explore adaptive policies
to dynamically decide when to read or write for streaming text and/or streaming speech translation.
Several works (Zhang et al., 2021; Zhang & Feng, 2022c) apply knowledge distillation and fill
future source positions with positional encoding to introduce future information during training for
simultaneous machine translation within the prefix-to-prefix framework. In this paper, we focus on a
matter less attended to – how to alleviate the mismatch between offline training and online inference.

3 PRELIMINARY ANALYSIS

In this section, we analyze the major mismatch in Transformer-based (Vaswani et al., 2017) ST
architecture between offline training and online decoding. In full-sentence ST, the speech represen-
tation of each frame is obtained by attending to all unmasked frames by the multi-head attention
in the transformer encoder layers. However, if directly applied to the streaming inference with the
model trained offline, the speech representation of the current last frame will deteriorate because
it can only attend to its previous frames. Recently, a common approach in speech translation is to
stack a pre-trained Wav2Vec2.0 (Baevski et al., 2020) as the acoustic encoder with a semantic NMT
encoder-decoder, and achieves SOTA performance in the ST task (Han et al., 2021; Dong et al.,
2022; Fang et al., 2022; Ye et al., 2022), because it has been shown that a better speech representa-
tion can be learned via Wav2Vev2.0 (Baevski et al., 2020).

To explore the precise effects of streaming inputs, we first follow MoSST (Dong et al., 2022) to train
an offline ST model on the MuST-C EnDe training set, where the acoustic encoder Wav2Vec2.0 is
trainable. After the offline ST training, we conduct an analysis on the MuST-C EnDe tst-COMMON
set. We remove the outliers and the noisy data, and select audios with a duration between 2s and
10s, resulting in a total of 1829 examples.

For an input sequence of audio frames x = (x1, . . . , xT), the convolutional subsampler of
Wav2Vec2.0 shrinks the length of the raw audio by a factor 320 and outputs the full speech repre-
sentation sequence a. In other words, every 320 elements in x become a vector in a. For readability
reasons, we uniformly use the notation T to denote the sequence length of a, i.e., a = (a1, . . . , aT).
This simplified notation does not undermine any of our conclusions while at the same time mak-
ing the equations for readable1. For streaming input ∀t ≤ T, x̂t = (x1, . . . , xt), Wav2Vec2.0 will
output the representation ât = (ât,1, . . . , ât,t).

3.1 WHICH PART OF STREAMING SPEECH REPRESENTATION IS WORSE?

To measure the gap of the speech representations between the offline and online inputs, we calculate
the cosine similarity st,t′ between the speech representation at the t′-th (t′ ≤ t) position in the t-th

1Because we can always define x = (x1:T) such that xt represents consecutive 320 audio frames.

3

Under review as a conference paper at ICLR 2023

100 200 300 400 500
0.2

0.4

0.6

0.8

1

Streaming encoding step t

C
os

in
e

Si
m

ila
ri

ty

t′ = 1

t′ = 2

t′ = 3

(a) s̄t,t′ of the first three positions

100 200 300 400 500
0.2

0.4

0.6

0.8

1

Streaming encoding step t

t′ = ⌊ 1+t
2 ⌋ − 1

t′ = ⌊ 1+t
2 ⌋

t′ = ⌊ 1+t
2 ⌋+ 1

(b) s̄t,t′ of middle three positions

100 200 300 400 500
0.2

0.4

0.6

0.8

1

Streaming encoding step t

t′ = t− 2

t′ = t− 1

t′ = t

(c) s̄t,t′ of the last three positions

Figure 2: The average cosine similarity s̄t,t′ of the first three (t′ = 1, 2, 3), middle three (t′ =
⌊ 1+t

2 ⌋ − 1, ⌊ 1+t
2 ⌋, ⌊ 1+t

2 ⌋+1), and last three (t′ = t− 2, t− 1, t) positions for each encoding step t.

−40 −30 −20 −10 0

0.2

0.4

0.6

0.8

1

Position (beginning→end)

C
os

in
e

Si
m

ila
ri

ty

Chimera
STEMM
MoSST

(a) Last 40 positions

Best Better Medium Worse Worst

10

20

30

25.69

23.79 24.13 23.42
21.91

19.75

14.86
13.73

12.01

9.5

Degree (small→large)

B
L

E
U

Offline ST Streaming ST

(b) Degree of deterioration of last representations

Figure 3: (a). The average cosine similarity s̄t′ of the forty representations at the end positions
(position= −1 denotes last position) in the streaming speech. (b). Performance with degree of
deterioration of the representation at the last position of the streaming speech.

streaming audio input x̂t and the speech representation at the same position in the full encoding.
Then we average the cosine similarities over the sentences in dataset B to obtain robust statistics.

For t′ ≤ t, s̄t,t′ =
1

|Bt|
∑
x∈Bt

st,t′(x) =
1

|Bt|
∑
x∈Bt

cos(ât,t′ , at′), (3)

where Bt = {x : |x| ≥ t} contains the audio inputs with length no shorter than t.

We empirically compare the averaged cosine similarity at the beginning, middle, and end positions
of the speech representations. Figure 2 shows s̄t,t′ of the first three (t′ = 1, 2, 3), middle three
(t′ = ⌊ 1+t

2 ⌋ − 1, ⌊ 1+t
2 ⌋, ⌊ 1+t

2 ⌋+ 1), and last three (t′ = t− 2, t− 1, t) positions for each encoding
step t. At the beginning and middle positions, the averaged cosine similarity s̄t,t′ is greater than 0.8
except t′ = 1, indicating that the representations at such positions in the partial streaming input are
close to those in the full speech. Note that t′ = 1 with a slightly lower similarity won’t hurt the
performance much, because in practice it is almost impossible to apply wait-1 policy in streaming
ST. However, the s̄t,t′ declines significantly for the end positions, especially for the last one. In
addition, we observe that as t becomes larger, the streaming input will gradually approximate the
full speech input, then the gap of the speech representation between the offline and the online input
becomes smaller. We conclude that the representations of the end position in the streaming
speech are particularly inferior.

We also average the cosine similarity over both dataset and time dimension with reversed index.

s̄−t′ =
1

|Bt′ |
∑

x∈Bt′

1

|x| − t′ + 1

|x|∑
t=t′

st,t−t′+1(x) (4)

We calculate the metric s̄−t′ of the representations at the last 40 positions in the streaming speech
for different methods: Chimera (Han et al., 2021), STEMM (Fang et al., 2022) and MoSST, and

4

Under review as a conference paper at ICLR 2023

Figure 4: Illustration of offline ST model and proposed methods FINE-Mask and FINE-Wait.

report the results in the Figure 3(a). The consistent results verify that the conclusion above holds
and decide that the low-quality representations at the last 10 positions cannot be ignored.

3.2 DOES THE POOR REPRESENTATION AT THE LAST POSITIONS OF STREAMING SPEECH
AFFECT STREAMING ST PERFORMANCE?

To answer this question, we only calculate the average cosine similarity in the last position for each
sample.

∀x, s̄−1(x) =
1

T

t=T∑
t=1

cos(ât,t, at), (5)

s̄−1(x) reflects the degree of deterioration of the representation at the last position of the streaming
speech. We sort the dataset by the value of the degree and divide them evenly into 5 groups to ensure
enough samples in each group. The translation quality of each group is shown in Figure 3(b). The
performance of streaming ST drops close to 10 points as the representation at the last position of
the streaming speech becomes worse, while the full-sentence ST fluctuates less than 4 points. In
addition, the performance gap between the streaming ST and the full-sentence ST becomes larger
as the representation at the last position gets worse. In the worse group, the streaming ST is 12.41
points lower than the full-sentence ST. Therefore, we conclude that the poor representation at the
end position of the streaming speech has a strong effect on the translation quality.

4 FINE: FUTURE-AWARE INFERENCE

Based on these analyses, we find that it is only necessary for the offline ST model to be aware of a
short future during streaming encoding. Thus, we propose two Future-aware INferencE strategies,
FINE-Mask and FINE-Wait, to enhance the representations of streaming speech in Figure 4.

4.1 FINE-MASK

In this strategy, we use the mask tokens of Wave2Vec2.0 as the pseudo future context and append
them to the speech tokens generated from the already consumed speech frames. The mask token em-
bedding is trainable when pre-training Wave2Vec2.0. Particularly, Wav2vec2.0 applies span masks
to the speech tokens and reconstructs 2 the corresponding latent features based on unmasked con-
text. By default, the pre-training results in approximately 49% of all time steps being masked with a
mean span length of 14.7 (300ms). This pre-training strategy makes the Wav2vec2.0 able to extract
better speech representations in offline ST task (Han et al., 2021; Dong et al., 2022; Ye et al., 2022).

Wav2Vec2.0 consists of a multi-layer convolutional subsampler fc and a Transformer encoder fe.
Concretely, for each audio prefix x̂t = (x1, . . . , xt) during online inference, the fc first outputs
streaming speech tokens ĉt = (c1, . . . , cτ), where ĉ ∈ Rτ×d and d is the dimension of model and τ
is the sequence length after convolutional subsampling. Then, we concatenate the streaming speech
tokens ĉ and m mask token embeddings e ∈ Rd along the time dimension, resulting in a longer

2Strictly speaking, the task is to identify the quantized latent audio representation rather than reconstruction.

5

Under review as a conference paper at ICLR 2023

Algorithm 1 Pseudocode of FINE-Mask inference strategy in a PyTorch-like style.

model: an offline-trained ST model consists of a acoustic encoder Wav2vec2.0, a token
boundary detector, a semantic encoder, and a decoder

m: mask length, K: wait lagging, audio: audio waveform
mask_emb: pre-trained mask embedding in Wav2vec

N = 0 # the number of source text tokens
x = [] # streaming audio prefix
y = [] # translations
mask_embs = mask_emb.repate(m, 1) # mask embeddings: m × d
while y[-1] != "<eos>":

if x == audio: # audio has been read
y = y + model(a,y) # write new target token

elif N - len(y) < K: # wait K detected source tokens
x = x + read(audio) # incrementally read audio
c = model.wav2vec2.cnn(x) # audio tokens τ × d

concatenate audio tokens and mask embeddings, (τ + m) × d
c = torch.cat((c, mask_embs), dim=0)
a = model.wav2vec2.encoder(c) # audio representations, (τ + m) × d
a = a[:a.shape[0] - m,:] # discard the predicted representations, τ × d

if model.token_detector(a): # source text token boundary is detected
N += 1

else:
h = model.semantic_encoder(a)
y = y + model.decoder(h, y) # write new target token

sequence of speech tokens ∈ R(τ+m)×d. The new speech tokens are then fed into the Transformer
encoder fe, but only the first τ encoder outputs (i.e., speech features) will be kept for the decoder
because, as discussed in Section 3.1, the last m speech features are of poor quality and adversely
affect translation quality. The FINE-Mask inference strategy is outlined in Algorithm 1.

4.2 FINE-WAIT

In the previous section, we conclude that the speech representations of only the last few positions
in the streaming input are inferior. Therefore, a straightforward method is to discard the poor rep-
resentation at the end positions. In the FINE-Wait strategy, we read more audio frames until the fc
can output m extra speech tokens, resulting in a new sequence of speech features with length τ +m.
We then discard the last m speech features as in the FINE-mask strategy above. The FINE-Wait in-
ference strategy is outlined as Algorithm 2 in Appendix. The FINE-Wait strategy incurs additional
latency as the model waits for more actual audio frames during each streaming encoding. However,
this strategy results in significant improvement, and motivates us to reconsider the trade-off between
translation quality and latency. The detailed analysis is given in Section 5.3.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets We evaluate our approach on MuST-C English-German (EnDe), English-Spanish (EnEs)
datasets (Di Gangi et al., 2019a). Because limited previous works discussed the MuST-C English-
French streaming ST with BLEU-latency curve, we present the EnFr results in Appendix. All the
corpora contain source audios, source transcriptions, and target translations, and the results reported
are conducted on the corresponding tst-COMMON set. For speech data, we normalize the raw audio
wave to the range of [−1, 1). For text data, we keep punctuation and remove non-printing characters,
and remain case-sensitive. For each translation direction, the unigram SentencePiece3 model (Kudo
& Richardson, 2018) is used to learn a shared vocabulary of size 10k.

Model Configuration We follow MoSST (Dong et al., 2022) to train the offline model. For the
acoustic encoder, we use Wav2vec2.04 (Baevski et al., 2020) following the base configurations,
which use a self-supervised learning framework to pre-train on large-scale audio data from the Lib-
riSpeech (Panayotov et al., 2015) corpus. We use the continuous integrate-and-fire (CIF) module

3https://github.com/google/sentencepiece
4https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt

6

https://github.com/google/sentencepiece
https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt

Under review as a conference paper at ICLR 2023

1,000 2,000 3,000 4,000 5,000

8

12

16

20

24

Average Lagging (ms)

B
L

E
U

offline (greedy) MU-ST †

RealTrans † MoSST ‡

FINE-Wait FINE-Mask

(a) EnDe

1,000 2,000 3,000 4,000

4

8

12

16

20

24

28

Average Lagging (ms)

offline (greedy) SimulSpeech †

RealTrans † MoSST ‡

FINE-Wait FINE-Mask

(b) EnEs

Figure 5: The translation quality (BLEU) against the latency metrics (AL) on the tst-COMMON
set of MuST-C EnDe and EnEs dataset. † denotes that the results are obtained from corresponding
papers. ‡ denotes that the results are from our improved MoSST inference method.

1,000 2,000 3,000
16

18

20

22

Average Lagging (ms)

B
L

E
U

offline (greedy)

FINE-Wait

FINE-Mask

FINE-Hybrid

(a) EnDe

1,000 1,500 2,000 2,500 3,000 3,500

22

24

26

28

Average Lagging (ms)

offline (greedy)

FINE-Wait

FINE-Mask

FINE-Hybrid

(b) EnEs

Figure 6: The translation quality (BLEU) against the latency metrics (AL) on the tst-COMMON set
of MuST-C EnDe and EnEs dataset.

(Yi et al., 2021) as the word boundary detector. We use 8 and 6 Transformer layers for the semantic
encoder and the translation decoder respectively, with 4 attention heads and 768 hidden units.

Inference We use the offline-trained ST model to perform streaming-testing with the wait-k policy.
k here means k detected source text tokens by the CIF word boundary detector. The length of future
context tokens (m) is 50 and 10 for FINE-Mask and FINE-Wait, respectively. For consistency
with previous works (Zeng et al., 2021; Dong et al., 2022), we do not rewrite the tokens that have
already been generated during inference. All hyper-parameters are tuned on EnDe and applied to
other language pairs. In all experiments, we use our re-implemented MoSST inference method for
a better performance (see Appendix B.2 for a detailed explanation).

Evaluation Metrics We use SacreBLEU5 to measure the translation quality. The latency is evalu-
ated with Average Latency (AL) (Ma et al., 2019), Average Proportion (AP) (Cho & Esipova, 2016),
and Differentiable Average Lagging (DAL) (Cherry & Foster, 2019) in the SimulEval toolkit6 (Ma
et al., 2020a).

Baselines We compare our method with several strong end-to-end streaming ST approaches. (i)
SimulSpeech (Ren et al., 2020) and RealTranS (Zeng et al., 2021) use uni-directional encoder
rather than bidirectional to simulate streaming inputs. (ii) MoSST (Dong et al., 2022) applies an
offline-trained model with a monotonic segmentation module for streaming testing and achieves

5https://github.com/mjpost/sacrebleu
6https://github.com/facebookresearch/SimulEval

7

https://github.com/mjpost/sacrebleu
https://github.com/facebookresearch/SimulEval

Under review as a conference paper at ICLR 2023

500 1,000 1,500 2,000

2

6

10

14

18

22

Average Lagging(ms)

B
L

E
U

m = 50 m = 40

m = 30 m = 20

m = 15 m = 10

m = 5 m = 0

(a) FINE-Wait

500 1,000 1,500

2

6

10

14

18

Average Lagging(ms)

m = 70

m = 60

m = 50

m = 30

m = 20

m = 10

m = 5

m = 0

(b) FINE-Mask

Figure 7: Effect from different lengths of future context. The observed points of FINE-Wait and
FINE-Mask in the plots represent wait-k policy with k = 3, 5, 7.

competitive performance. For fair comparisons, we use MoSST as our baseline model. (iii) MU-ST
(Zhang et al., 2022) learns an adaptive segmentation policy to detect meaningful units, which makes
read/write decisions.

5.2 MAIN RESULTS

We presents the results on the MuST-C EnDe and EnEs tst-COMMON set in Figure 5 7. Compared
with the online models SimulSpeech and RealTranS, the offline model MoSST achieves higher
translation quality with high latency as it encodes bidirectional context information during training.
But in the low latency region, it performs poorly one reason for which is the input mismatch between
offline-training and online-decoding. With the ability to reduce this mismatch, FINE-Mask and
FINE-Wait achieve higher BLEU in all latency regions. In particular, our methods outperform our
most compatible base model MoSST by large margins in lower latency regions (when AL is less
than 1000ms), with improvements over 8 BLEU in EnDe and 12 BLEU in EnEs. This indicates that
FINE-Mask and FINE-Wait can effectively mitigate the input mismatch between offline-training
and online-decoding. FINE-Wait only requires waiting for a small amount of oracle future context
8, but brings higher translation quality. In addition, our strategies achieve comparable translation
quality with full-speech translation at middle latency (at AL around 2000ms), especially for EnEs.
Compared with FINE-Wait, FINE-Mask achieves a better trade-off as it can introduce more future
context without additional latency. Moreover, we find that FINE-Wait and FINE-Mask can be further
combined into a new strategy – FINE-Hybrid. Specifically, given a streaming speech with length
τ , we first wait for m extra oracle speech tokens and add m′ mask tokens to the end of the streaming
speech. The total length of the streaming speech tokens will be τ+m+m′, but like FINE-Mask and
FINE-Wait, only the first τ encoder outputs will be kept for decoding. We set m = 10 and m′ = 50
for FINE-Hybrid, which are the optimal settings of FINE-Wait and FINE-Mask, respectively. The
experimental results are shown in Figure 6. We observe that FINE-Hybrid achieves a better trade-off.

5.3 ABLATION STUDY

In this section, we describe experiments to evaluate the effectiveness of our methods from various
aspects. All ablation results are obtained from the MuST-C EnDe tst-COMMON set.

5.3.1 HOW MUCH FUTURE CONTEXT IS NEEDED?

To answer this question, we compare FINE-Mask and FINE-Wait with different lengths of future
context m. Figure 7 shows the results. The system that inherits the mismatch problem, i.e. uses the
offline model directly for online decoding, is shown by setting m = 0. For FINE-Wait, increasing
m obtains better translation quality, but generally brings higher latency. Our results in Figure 7(a)
shows that it achieves the better trade-off between quality and latency when m = {10, 15, 20}. If

7The extended results for other latency metrics (AP and DAL) are described in Appendix B.6.
8The results are reported with m = 10 for FINE-Wait. It only corresponds to 200ms oracle audio.

8

Under review as a conference paper at ICLR 2023

2 6 10 20 30 40 50 60 70

0.2

0.4

0.6

0.8

1

C
os

in
e

Si
m

ila
ri

ty

FINE-Wait
FINE-Mask

(a) Future Context Length
−40 −30 −20 −10 0

0.2

0.4

0.6

0.8

1

C
os

in
e

Si
m

ila
ri

ty

FINE-Wait
FINE-Mask

MoSST

(b) Last 40 positions of consumed speech

Figure 8: (a). Effect of future context length on the average cosine similarity s̄t,t at the last position
of streaming speech. (b). Effect on the average cosine similarity s̄−t′ of the forty representation at
the end position in the streaming speech. After applying FINE-Mask and FINE-Wait, the represen-
tation at the end position is improved.

m > 20, the large latency becomes prohibitive. Unlike FINE-Wait, FINE-Mask can attend to more
future context without waiting for future audio. It achieves the best trade-off between quality and
latency at m = 50 (Figure 7(b)). Since the predicted context further into the future will likely
introduce more noise, FINE-Mask obtains similar performance when m is increased from 30 to 70.
We also investigate the impact of various future context lengths on the representation of the last
position by calculating the average cosine similarity in Eq. (4). The results are shown in Figure
8(a). We observe that 1) as m increases, the representation of the last position in the streaming
speech becomes better. 2) the curves of the average cosine similarity for FINE-Wait and FINE-
Mask becomes flattened when m > 10 and m > 50, respectively. This is consistent with the results
in Figure 7. Therefore, we set future context length m = 10 and m = 50 respectively for FINE-Wait
and FINE-Mask in our other experiments.

5.3.2 WHY DOES FINE WORK?

Figure 8(b) plots the changes of average cosine similarity s̄−t′ (Eq. (4)) of the last 40 positions in the
streaming speech after applying the FINE strategies. FINE-Mask and FINE-Wait achieve at least 0.6
and 0.8 cosine similarity at the last position. In MoSST, however, the cosine similarity is less than 0.6
for the last 4 positions and only 0.2 for the last position. Thus, the speech representations with FINE-
Wait and FINE-Mask are closer to those of the full speech input, especially at the end positions. The
cosine similarities in FINE-Mask are lower than those in FINE-Wait because the predicted future
context is less accurate by consuming mask tokens. However, FINE-Mask achieves better balance
(Figure 5) as it does not incur additional latency. In sum, introducing future context significantly
reduces the representation gap between full and partial speech input, improves streaming speech
representations, and achieves a better balance between quality and latency.

More ablation studies are included in the Appendix. In Appendix B.3 we find the least monotonic
examples are mostly improved by our strategies. Appendix B.4 analyzes the difference of the pre-
trained and fine-tuned Wav2Vec2.0 with respect to future context representations. Appendix B.5
demonstrates why all predicted features should be discarded in FINE-Mask.

6 CONCLUSION

In this paper, we examine streaming speech translation from a new perspective. We investigate
the effects of the input mismatch between offline-training and online-decoding. We find that the
representations at the end positions in the streaming input are particularly poor, directly impacting
the translation quality. We propose FINE-Mask and FINE-Wait to improve these representations
by introducing, respectively, predicted and real future context. Experiments and analysis demon-
strate their effectiveness in bridging the representation gap between full speech encoding and partial
streaming encoding. Furthermore, our strategies can be generally beneficial to streaming speech
translation models that are based on Wav2Vec2.0. In the future, we will experiment with other
methods to improve the accuracy of predicting future information. We hope the work and perspec-
tive presented in this paper can engender further innovations in general streaming translation.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li,
Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, and Furu Wei. SpeechT5: Unified-modal encoder-
decoder pre-training for spoken language processing. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5723–5738,
Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
acl-long.393. URL https://aclanthology.org/2022.acl-long.393.

Naveen Arivazhagan, Colin Cherry, Wolfgang Macherey, Chung-Cheng Chiu, Semih Yavuz, Ruom-
ing Pang, Wei Li, and Colin Raffel. Monotonic infinite lookback attention for simultaneous ma-
chine translation. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 1313–1323, Florence, Italy, July 2019. Association for Computational Linguis-
tics. doi: 10.18653/v1/P19-1126. URL https://aclanthology.org/P19-1126.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0:
A framework for self-supervised learning of speech representations. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 12449–12460. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf.

Chih-Chiang Chang and Hung-yi Lee. Exploring continuous integrate-and-fire for efficient and
adaptive simultaneous speech translation. arXiv preprint arXiv:2204.09595, 2022.

Junkun Chen, Mingbo Ma, Renjie Zheng, and Liang Huang. Direct simultaneous speech-to-
text translation assisted by synchronized streaming ASR. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021, pp. 4618–4624, Online, August 2021. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.406. URL https:
//aclanthology.org/2021.findings-acl.406.

Colin Cherry and George Foster. Thinking slow about latency evaluation for simultaneous machine
translation. arXiv preprint arXiv:1906.00048, 2019.

Chung-Cheng Chiu and Colin Raffel. Monotonic chunkwise attention. In International Confer-
ence on Learning Representations, 2018. URL https://openreview.net/forum?id=
Hko85plCW.

Kyunghyun Cho and Masha Esipova. Can neural machine translation do simultaneous translation?
arXiv preprint arXiv:1606.02012, 2016.

Mattia A. Di Gangi, Roldano Cattoni, Luisa Bentivogli, Matteo Negri, and Marco Turchi. MuST-
C: a Multilingual Speech Translation Corpus. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 2012–2017, Minneapolis, Minnesota, June
2019a. Association for Computational Linguistics. doi: 10.18653/v1/N19-1202. URL https:
//aclanthology.org/N19-1202.

Mattia A. Di Gangi, Matteo Negri, Viet Nhat Nguyen, Amirhossein Tebbifakhr, and Marco Turchi.
Data augmentation for end-to-end speech translation: FBK@IWSLT ‘19. In Proceedings of the
16th International Conference on Spoken Language Translation, Hong Kong, November 2-3
2019b. Association for Computational Linguistics. URL https://aclanthology.org/
2019.iwslt-1.14.

Qian Dong, Yaoming Zhu, Mingxuan Wang, and Lei Li. Learning when to translate for streaming
speech. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pp. 680–694, Dublin, Ireland, May 2022. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2022.acl-long.50. URL https://aclanthology.
org/2022.acl-long.50.

Qianqian Dong, Mingxuan Wang, Hao Zhou, Shuang Xu, Bo Xu, and Lei Li. Consecutive decoding
for speech-to-text translation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 12738–12748, 2021a.

10

https://aclanthology.org/2022.acl-long.393
https://aclanthology.org/P19-1126
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
https://aclanthology.org/2021.findings-acl.406
https://aclanthology.org/2021.findings-acl.406
https://openreview.net/forum?id=Hko85plCW
https://openreview.net/forum?id=Hko85plCW
https://aclanthology.org/N19-1202
https://aclanthology.org/N19-1202
https://aclanthology.org/2019.iwslt-1.14
https://aclanthology.org/2019.iwslt-1.14
https://aclanthology.org/2022.acl-long.50
https://aclanthology.org/2022.acl-long.50

Under review as a conference paper at ICLR 2023

Qianqian Dong, Rong Ye, Mingxuan Wang, Hao Zhou, Shuang Xu, Bo Xu, and Lei Li. Listen,
understand and translate: Triple supervision decouples end-to-end speech-to-text translation. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 12749–12759,
2021b.

Yichao Du, Zhirui Zhang, Weizhi Wang, Boxing Chen, Jun Xie, and Tong Xu. Regularizing end-
to-end speech translation with triangular decomposition agreement. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 10590–10598, 2022.

Qingkai Fang, Rong Ye, Lei Li, Yang Feng, and Mingxuan Wang. STEMM: Self-learning with
speech-text manifold mixup for speech translation. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 7050–7062, Dublin,
Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.
486. URL https://aclanthology.org/2022.acl-long.486.

A. Graves. Sequence transduction with recurrent neural networks. Computer Science, 58(3):235–
242, 2012.

Chi Han, Mingxuan Wang, Heng Ji, and Lei Li. Learning shared semantic space for speech-to-text
translation. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021,
pp. 2214–2225, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/
v1/2021.findings-acl.195. URL https://aclanthology.org/2021.findings-acl.
195.

Sathish Indurthi, Houjeung Han, Nikhil Kumar Lakumarapu, Beomseok Lee, Insoo Chung, Sangha
Kim, and Chanwoo Kim. End-end speech-to-text translation with modality agnostic meta-
learning. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 7904–7908. IEEE, 2020.

Sathish Indurthi, Mohd Abbas Zaidi, Nikhil Kumar Lakumarapu, Beomseok Lee, Hyojung Han,
Seokchan Ahn, Sangha Kim, Chanwoo Kim, and Inchul Hwang. Task aware multi-task learning
for speech to text tasks. In ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 7723–7727. IEEE, 2021.

Taku Kudo and John Richardson. SentencePiece: A simple and language independent sub-
word tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing: System Demonstrations, pp.
66–71, Brussels, Belgium, November 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-2012. URL https://aclanthology.org/D18-2012.

Dan Liu, Mengge Du, Xiaoxi Li, Ya Li, and Enhong Chen. Cross attention augmented transducer
networks for simultaneous translation. In Proceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 39–55, Online and Punta Cana, Dominican Republic,
November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.
4. URL https://aclanthology.org/2021.emnlp-main.4.

Yuchen Liu, Jiajun Zhang, Hao Xiong, Long Zhou, Zhongjun He, Hua Wu, Haifeng Wang, and
Chengqing Zong. Synchronous speech recognition and speech-to-text translation with interactive
decoding. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 8417–
8424, 2020.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng, Kaibo Liu, Baigong Zheng, Chuanqiang
Zhang, Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and Haifeng Wang. STACL: Simultaneous
translation with implicit anticipation and controllable latency using prefix-to-prefix framework.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
3025–3036, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/
v1/P19-1289. URL https://aclanthology.org/P19-1289.

Xutai Ma, Mohammad Javad Dousti, Changhan Wang, Jiatao Gu, and Juan Pino. SIMULEVAL: An
evaluation toolkit for simultaneous translation. In Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing: System Demonstrations, pp. 144–150, Online, Oc-
tober 2020a. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.
19. URL https://aclanthology.org/2020.emnlp-demos.19.

11

https://aclanthology.org/2022.acl-long.486
https://aclanthology.org/2021.findings-acl.195
https://aclanthology.org/2021.findings-acl.195
https://aclanthology.org/D18-2012
https://aclanthology.org/2021.emnlp-main.4
https://aclanthology.org/P19-1289
https://aclanthology.org/2020.emnlp-demos.19

Under review as a conference paper at ICLR 2023

Xutai Ma, Juan Pino, and Philipp Koehn. SimulMT to SimulST: Adapting simultaneous text trans-
lation to end-to-end simultaneous speech translation. In Proceedings of the 1st Conference of
the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th Inter-
national Joint Conference on Natural Language Processing, pp. 582–587, Suzhou, China, De-
cember 2020b. Association for Computational Linguistics. URL https://aclanthology.
org/2020.aacl-main.58.

Xutai Ma, Juan Miguel Pino, James Cross, Liezl Puzon, and Jiatao Gu. Monotonic multihead
attention. In International Conference on Learning Representations, 2020c. URL https://
openreview.net/forum?id=Hyg96gBKPS.

Arya D McCarthy, Liezl Puzon, and Juan Pino. Skinaugment: Auto-encoding speaker conversions
for automatic speech translation. In ICASSP 2020-2020 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 7924–7928. IEEE, 2020.

Yishu Miao, Phil Blunsom, and Lucia Specia. A generative framework for simultaneous ma-
chine translation. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 6697–6706, Online and Punta Cana, Dominican Republic, Novem-
ber 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.536.
URL https://aclanthology.org/2021.emnlp-main.536.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
based on public domain audio books. In 2015 IEEE international conference on acoustics, speech
and signal processing (ICASSP), pp. 5206–5210. IEEE, 2015.

Sara Papi, Marco Gaido, Matteo Negri, and Marco Turchi. Does simultaneous speech translation
need simultaneous models? arXiv preprint arXiv:2204.03783, 2022.

Juan Pino, Liezl Puzon, Jiatao Gu, Xutai Ma, Arya D. McCarthy, and Deepak Gopinath. Harnessing
indirect training data for end-to-end automatic speech translation: Tricks of the trade. In Proceed-
ings of the 16th International Conference on Spoken Language Translation, Hong Kong, Novem-
ber 2-3 2019. Association for Computational Linguistics. URL https://aclanthology.
org/2019.iwslt-1.18.

Yi Ren, Jinglin Liu, Xu Tan, Chen Zhang, Tao Qin, Zhou Zhao, and Tie-Yan Liu. Simul-
Speech: End-to-end simultaneous speech to text translation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational Linguistics, pp. 3787–3796, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.350. URL
https://aclanthology.org/2020.acl-main.350.

Felix Schneider and Alexander Waibel. Towards stream translation: Adaptive computation time for
simultaneous machine translation. In Proceedings of the 17th International Conference on Spo-
ken Language Translation, pp. 228–236, Online, July 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.iwslt-1.28. URL https://aclanthology.org/2020.
iwslt-1.28.

Yun Tang, Juan Pino, Xian Li, Changhan Wang, and Dmitriy Genzel. Improving speech translation
by understanding and learning from the auxiliary text translation task. In Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4252–4261, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.328.
URL https://aclanthology.org/2021.acl-long.328.

Yun Tang, Hongyu Gong, Ning Dong, Changhan Wang, Wei-Ning Hsu, Jiatao Gu, Alexei Baevski,
Xian Li, Abdelrahman Mohamed, Michael Auli, and Juan Pino. Unified speech-text pre-training
for speech translation and recognition. In Proceedings of the 60th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers), pp. 1488–1499, Dublin, Ireland,
May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.105. URL
https://aclanthology.org/2022.acl-long.105.

12

https://aclanthology.org/2020.aacl-main.58
https://aclanthology.org/2020.aacl-main.58
https://openreview.net/forum?id=Hyg96gBKPS
https://openreview.net/forum?id=Hyg96gBKPS
https://aclanthology.org/2021.emnlp-main.536
https://aclanthology.org/2019.iwslt-1.18
https://aclanthology.org/2019.iwslt-1.18
https://aclanthology.org/2020.acl-main.350
https://aclanthology.org/2020.iwslt-1.28
https://aclanthology.org/2020.iwslt-1.28
https://aclanthology.org/2021.acl-long.328
https://aclanthology.org/2022.acl-long.105

Under review as a conference paper at ICLR 2023

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceed-
ings of the 31st International Conference on Neural Information Processing Systems, pp.
6000–6010, 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Chengyi Wang, Yu Wu, Shujie Liu, Ming Zhou, and Zhenglu Yang. Curriculum pre-training for
end-to-end speech translation. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 3728–3738, Online, July 2020a. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.344. URL https://aclanthology.org/
2020.acl-main.344.

Chengyi Wang, Yu Wu, Liang Lu, Shujie Liu, Jinyu Li, Guoli Ye, and Ming Zhou. Low Latency
End-to-End Streaming Speech Recognition with a Scout Network. In Proc. Interspeech 2020, pp.
2112–2116, 2020b. doi: 10.21437/Interspeech.2020-1292. URL http://dx.doi.org/10.
21437/Interspeech.2020-1292.

Rong Ye, Mingxuan Wang, and Lei Li. Cross-modal contrastive learning for speech translation. In
Proceedings of the 2022 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pp. 5099–5113, Seattle, United States, July
2022. Association for Computational Linguistics. URL https://aclanthology.org/
2022.naacl-main.376.

Cheng Yi, Shiyu Zhou, and Bo Xu. Efficiently fusing pretrained acoustic and linguistic encoders for
low-resource speech recognition. IEEE Signal Processing Letters, 28:788–792, 2021.

Xingshan Zeng, Liangyou Li, and Qun Liu. RealTranS: End-to-end simultaneous speech trans-
lation with convolutional weighted-shrinking transformer. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021, pp. 2461–2474, Online, August 2021. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.218. URL https:
//aclanthology.org/2021.findings-acl.218.

Ruiqing Zhang, Chuanqiang Zhang, Zhongjun He, Hua Wu, and Haifeng Wang. Learning adaptive
segmentation policy for simultaneous translation. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), pp. 2280–2289, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.178. URL
https://aclanthology.org/2020.emnlp-main.178.

Ruiqing Zhang, Zhongjun He, Hua Wu, and Haifeng Wang. Learning adaptive segmentation pol-
icy for end-to-end simultaneous translation. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 7862–7874, Dublin, Ire-
land, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.542.
URL https://aclanthology.org/2022.acl-long.542.

Shaolei Zhang and Yang Feng. Universal simultaneous machine translation with mixture-of-experts
wait-k policy. In Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 7306–7317, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.581. URL
https://aclanthology.org/2021.emnlp-main.581.

Shaolei Zhang and Yang Feng. Gaussian multi-head attention for simultaneous machine transla-
tion. In Findings of the Association for Computational Linguistics: ACL 2022, pp. 3019–3030,
Dublin, Ireland, May 2022a. Association for Computational Linguistics. doi: 10.18653/v1/2022.
findings-acl.238. URL https://aclanthology.org/2022.findings-acl.238.

Shaolei Zhang and Yang Feng. Modeling dual read/write paths for simultaneous machine transla-
tion. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 2461–2477, Dublin, Ireland, May 2022b. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2022.acl-long.176. URL https://aclanthology.
org/2022.acl-long.176.

13

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2020.acl-main.344
https://aclanthology.org/2020.acl-main.344
http://dx.doi.org/10.21437/Interspeech.2020-1292
http://dx.doi.org/10.21437/Interspeech.2020-1292
https://aclanthology.org/2022.naacl-main.376
https://aclanthology.org/2022.naacl-main.376
https://aclanthology.org/2021.findings-acl.218
https://aclanthology.org/2021.findings-acl.218
https://aclanthology.org/2020.emnlp-main.178
https://aclanthology.org/2022.acl-long.542
https://aclanthology.org/2021.emnlp-main.581
https://aclanthology.org/2022.findings-acl.238
https://aclanthology.org/2022.acl-long.176
https://aclanthology.org/2022.acl-long.176

Under review as a conference paper at ICLR 2023

Shaolei Zhang and Yang Feng. Reducing position bias in simultaneous machine translation with
length-aware framework. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 6775–6788, Dublin, Ireland, May
2022c. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.467. URL
https://aclanthology.org/2022.acl-long.467.

Shaolei Zhang, Yang Feng, and Liangyou Li. Future-guided incremental transformer for simultane-
ous translation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp.
14428–14436, 2021.

Jiawei Zhao, Wei Luo, Boxing Chen, and Andrew Gilman. Mutual-learning improves end-to-end
speech translation. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 3989–3994, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.325. URL
https://aclanthology.org/2021.emnlp-main.325.

14

https://aclanthology.org/2022.acl-long.467
https://aclanthology.org/2021.emnlp-main.325

Under review as a conference paper at ICLR 2023

Algorithm 2 Pseudocode of FINE-Wait inference strategy in a PyTorch-like style.

model: an offline-trained ST model consists of a acoustic encoder Wav2vec2.0, a token
boundary detector, a semantic encoder, and a decoder

m: mask length, K: wait lagging, audio: audio waveform

N = 0 # the number of source text tokens
x = [] # streaming audio prefix
y = [] # translations
while y[-1] != "<eos>":

if x == audio: # audio has been read
y = y + model(a,y) # write new target token

elif N - len(y) < K: # wait k detected source tokens
x = x + read(audio) # incrementally read audio
c = model.wav2vec2.cnn(x) # audio tokens
if c.shape[0] <= m: # waiting for m audio tokens

continue
a = model.wav2vec2.encoder(c) # audio representations, (τ + m) × d
a = a[:a.shape[0] - m,:] # discard last m representations, τ × d

if model.token_detector(a): # source text token boundary is detected
N += 1

else:
h = model.semantic_encoder(a)
y = y + model.decoder(h, y) # write new target token

A ALGORITHM OF FINE-WAIT

The pseudo code of FINE-Wait are described in Algorithm 2

B ADDITIONAL EXPERIMENTS

B.1 WHY WE USE AL RATHER THAN k?

In our presented results, we plot the BLEU v.s. AL rather than k. We argue that k is not a fair metric
to evaluate the latency. In text streaming translation, different tokenization (e.g., different number
of BPE operations) will lead to different token boundaries for the same sentence. It indicates the
k tokens do not necessarily represent the same partial sentence for different BPE methods. This
situation becomes even severer for speech streaming translation. As we have a source text token
boundary detector in our model, the first k detected text tokens will represent different lengths of
audio frames for different input audios. To be precise, the wait-k policy used in our streaming speech
translation is actually wait-k detected tokens policy. Therefore, we prefer to use AL rather than k as
the latency metric in our experiments.

B.2 WHY WE USED OUR IMPLEMENTED MOSST?

1,000 2,000 3,000 4,000

8

12

16

20

24

Average Lagging (ms)

B
L

E
U

offline (greedy)
imporved-MoSST
MoSST-reproduce

Figure 9: Difference between original and im-
proved MoSST.

For streaming speech translation, when the al-
lowed AL is increasing, the performance of
streaming ST will gradually converge to the of-
fline model. However, in the original imple-
mentation of MoSST, there is still a nonnegli-
gible gap between the SST and offline ST for
the large AL. We re-implement the MoSST in-
ference method and build our inference strate-
gies on top of the improved MoSST inference.
The difference of the inference performance be-
tween the original MoSST and our improved
MoSST can be seen from Figure 9. We can see
the inference BLEU of our improved MoSST
can approximate the offline model as the AL in-
creases. The detailed implementation can refer
to the submitted code.

15

Under review as a conference paper at ICLR 2023

Table 1: Performance (BLEU) on different monotonic levels on test set of MuST-C EnDe.

Monotonic Level Easy Medium Hard AL
example 668 1013 895 -

Offline (greedy) 29.36 23.32 22.38 -
MoSST 24.29 15.32 9.22 1295
FINE-Wait 26.61+2.32 19.36+4.04 17.24+8.02 1251
FINE-Mask 26.03+1.74 19.35+4.03 17.40+8.18 1143

5

(

6

(

3

(

4

(

2

(

1

(

0

(

(a) EnDe

1

(b) EnEs (c) EnFr

Figure 10: The source-to-target alignment position shift on MuST-C EnDe, EnEs, and EnFr tst-
COMMON set.

B.3 WHAT EXAMPLES ARE IMPROVED BY OUR STRATEGIES?

For tst-COMMON on MuST-C EnDe, we use fast-align9 to identify the token-level alignment be-
tween source transcription and target translation following Zhang & Feng (2022c). First, we define
the source-to-target alignment position shift as max{0, i− j}, where the ith source token is aligned
to the jth target token. If i− j is large, it means in order to translate the jth target token, the model
may need to read more until seeing the ith source token. Then we calculate the monotonic level of
each example as the averaged alignment position shift over the number of aligned tokens, i.e.,

monotonic level =
1

|aligned pairs|
∑

(i,j)∈aligned pairs

max{0, i− j} (6)

We divide the test set into 3 groups according to different monotonic levels: easy (= 0), medium
(< 3) and hard (≥ 3). For each group, we evaluate different inference methods and report the results
in Table 1. As we explained in B.1, it is almost impossible to guarantee the same AL for different
inference methods. For a fair comparison, we try our best to set the AL of different methods to
be approximately equal. We can see our inference strategies show a significant advantage on the
non-monotonic examples (hard group).

B.4 HOW IMPORTANT OF THE WAV2VEC2.0?

As we mentioned in the main text, the special audio token “mask” in Wav2Vec2.0 is pre-trained on
the Librispeech dataset to reconstruct the corresponding feature conditional on unmasked context
via the contrastive task. In our experiments, we didn’t include contrastive learning as the auxiliary
task in the downstream ST training. And in our FINE-Mask inference, we directly leverage the
mask embeddings as the future context by appending them to the streaming input. However, we
found the speech representations after ST training becomes even better. Particularly, we calculate
the cosine similarity between every predicted future representation and full speech representations
at the same position, and the results are illustrated in Figure 11. On either the Librispeech or the
MuST-C audio test set, the fine-tuned Wav2Vec2.0 can produce better speech representations from
the masking inputs.

9https://github.com/clab/fast_align

16

https://github.com/clab/fast_align

Under review as a conference paper at ICLR 2023

−10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

Distance from consumed speech

C
os

in
e

Si
m

ila
ri

ty

finetuned-w2v2
pretrained-w2v2

(a) MuST-C

−10 0 10 20 30 40

0

0.2

0.4

0.6

0.8

Distance from consumed speech

C
os

in
e

Si
m

ila
ri

ty

finetuned-w2v2
pretrained-w2v2

(b) LibriSpeech

Figure 11: We measure the accuracy of predicted context by calculating the cosine similarity be-
tween every predicted future representation and full speech representations at the same position.

B.5 WHY ARE ALL PREDICTED FEATURES DISCARDED?

1,000 2,000 3,000

4

8

12

16

20

24

Average Lagging(ms)

B
L

E
U

p = 1.0

p = 0.8

p = 0.4

p = 0.0

Figure 12: BLEU v.s. AL on different p.

In FINE-Mask strategy, all the output represen-
tations corresponding to the m = 50 mask-
ing tokens will be discarded, because we have
demonstrated that the representations at the
ending positions are inferior. However, as
shown in 11, the first 10 predicted represen-
tations are not as bad as the next 40. There-
fore, on the EnDE test set, we also conduct
another streaming ST inference by appending
different numbers of predicted context to the
original speech representations. We use dis-
card rate p to measure the number of append-
ing features. When p = 1.0, all predicted fea-
tures are discarded and it reduces to the stan-
dard FINE-Mask inference. In Figure 12, we
compare the streaming speech translation qual-
ity between regular FINE-Mask and its variant. It is concluded that the predicted future context is
too noisy and harmful to the performance.

B.6 ADDITIONAL RESULTS ON ENDE/ES AND ENFR

1,000 2,000 3,000 4,000

6

12

18

24

30

Average Lagging (ms)

B
L

E
U

offline (greedy)

MoSST ‡

FINE-Wait

FINE-Mask

Figure 13: BLEU v.s. AL on the tst-COMMON
set of MuST-C EnFr dataset.

In this section, we evaluate our inference meth-
ods with other latency metrics AP and DAL.
The AP-BLEU and DAL-BLEU curves on the
MuST-C EnDe, EnEs, and EnFr tst-COMMON
sets are shown in Figure 14. For both EnDe
and EnEs, our proposed inference strategies can
consistently improve the baseline by a large
margin.

EnFr In general, we found very limited pre-
vious works evaluating on the MuST-C EnFr
dataset with BLEU-latency curves. We apply
our strategies on the EnFr datasets on different
latency metrics and present the results in Fig-
ure 13 and Figure 14(e) and 14(f). The FINE-
Mask strategy can achieve significant improve-
ment. Note that the y-axis of EnFr has a larger
measuring scale than EnDe or EnEs, so the gap

17

Under review as a conference paper at ICLR 2023

0.5 0.6 0.7 0.8 0.9 1

8

12

16

20

24

Average Proportion

B
L

E
U

offline (greedy)

MoSST ‡

FINE-Wait

FINE-Mask

(a) EnDe

1,000 2,000 3,000 4,000 5,000

8

12

16

20

24

Differentiable Average Lagging

offline (greedy)

MoSST ‡

FINE-Wait

FINE-Mask

(b) EnDe

0.6 0.7 0.8 0.9 1

16

20

24

28

Average Proportion

B
L

E
U

offline (greedy)

MoSST ‡

FINE-Wait

FINE-Mask

(c) EnEs

1,000 2,000 3,000 4,000

4

8

12

16

20

24

28

Differentiable Average Lagging

offline (greedy)

MoSST ‡

FINE-Wait

FINE-Mask

(d) EnEs

0.4 0.6 0.8

6

12

18

24

30

Average Proportion

B
L

E
U

offline (greedy)

MoSST ‡

FINE-Wait

FINE-Mask

(e) EnFr

1,000 2,000 3,000 4,000

6

12

18

24

30

Differentiable Average Lagging

offline (greedy)

MoSST ‡

FINE-Wait

FINE-Mask

(f) EnFr

Figure 14: The translation quality (BLEU) against the latency metrics (AP, DAL) on the tst-
COMMON set of MuST-C EnDe, EnEs and EnFr dataset. ‡ denotes that the results are from our
improved MoSST.

is not as visible as the other two language pairs, e.g., the absolute BLEU gain on AL (1000ms) from
MoSST to FINE-Mask is about 6 BLEUs. We observe that FINE-Wait does not bring as signifi-
cant improvement over the baseline improved MoSST. We also count the distributions of monotonic
levels of EnFr test set as shown in Figure 10(c), and find the majority (94.8%) of the averaged po-
sition shift is < 3. Most of the EnFr examples fall into the easy and medium groups. According to
the finding in Table 1, it should be common that there is a less significant difference between our
strategy and the baseline MoSST.

18

Under review as a conference paper at ICLR 2023

B.7 HOW DO FINE-TUNING EPOCHS AFFECT THE FINE-MASK STRATEGY?

1,000 1,500 2,000 2,500 3,000

8

10

12

14

16

18

20

Average Lagging (ms)

B
L

E
U

FINE-Mask (e = 23) MoSST (e = 23)

FINE-Mask (e = 25) MoSST (e = 25)

FINE-Mask (e = 27) MoSST (e = 27)

FINE-Mask (e = 29) MoSST (e = 29)

FINE-Mask (e = 31) MoSST (e = 31)

Figure 15: Performance of different fine-
tuning epochs on FINE-Mask strategy.

For FINE-Mask strategy, we use a mask token that
is well-trained during pre-training of the Wav2Vec
2.0 model to predict future speech features. Now
we investigate the performance of different fine-
tuning steps on FINE-Mask strategy. We evalu-
ate the FINE-Mask inference and regular stream-
ing inference (MoSST) at different checkpoints
with epoch e = {23, 25, 27, 29, 31} after train-
ing converges, as illustrated in Figure 15. Al-
though different checkpoints achieve different per-
formances, FINE-Mask consistently brings im-
provement (about 6 BLEU at low latency regimes)
over the baseline. Moreover, we can observe that
the performance gap between different checkpoints
in MoSST is larger than that in FINE-Mask. Specif-
ically, when AL ∈ [1000, 1500], the performance
gap between the best and the worst checkpoints in
MoSST is 3 BLEU, while the gap in FINE-Mask is
only 2 BLEU. All these indicate that the number of
fine-tuning steps is not sensitive to the performance
improvement of FINE-Mask.

B.8 FUTURE WORK: UPPER BOUNDER OF FINE-MASK

200 500 1,000 1,500 2,000 2,500

6
8

12

16

20

24

Average Lagging (ms)

B
L

E
U

offline (greedy)

m = 50 (oracle)

m = 50 (mask)

Figure 16: Upper Bound of FINE-Mask.

If we infer with FINE-Wait without counting on
the latency, the result will be the upper bound
of the FINE-Mask, as illustrated in Figure 16.
We can observe that the translation quality is
further improved at all latency regimes when
the accuracy of the predicted contexts becomes
fully correct. In particular, the translation qual-
ity remains 16 BLEU at a very low latency
regime (AL is about only 200ms), exceeding
the FINE-Mask by about 10 BLEU. Thus it mo-
tivates us to predict the future contexts or rep-
resentations as accurate as possible and we will
explore this direction in the future work.

C DIFFERENCES FROM STREAMING SPEECH RECOGNITION TECHNIQUES

We briefly describe the differences between our work and other streaming speech processing tech-
niques for other readers from other backgrounds to understand our work. Most streaming recognition
techniques still fall into the category to train the model in a streaming manner, e.g., MoChA (Chiu
& Raffel, 2018). Similarly, CAAT (Liu et al., 2021) follows the RNN-T (Graves, 2012) method to
build a streaming speech translation model. However, what we are researching is completely differ-
ent from these streaming recognition techniques. We want to reuse the pre-trained offline ST model
for streaming inference without further streaming-related training. In general, this is a difficult prob-
lem for two reasons. First, the streaming inference takes the partial speech sequence as input, while
the offline model always consumes the full speech sequence. Second, the reordering issue prevents
partial speech sequence from seeing future information. Our proposed method attempts to relieve
such mismatches via the FINE-Mask strategy.

Moreover, the word boundary detector in our model is similar to that in SN model (Wang et al.,
2020b) However, there are two significant differences. First, in our pseudo word detector, we use
CIF module. For detector architecture, SN and CIF are almost identical with a linear layer and the
sigmoid activation. The only difference is the label used. The label for CIF is the total number
of words in the transcription. During inference, the CIF module will segment the speech sequence

19

Under review as a conference paper at ICLR 2023

into several possibly overlapped segments, whose number should be roughly equal to the number
of words if the model is well-trained. However, for SN, it uses actual word-frames alignment in-
formation as the labels to learn the real word boundary. So CIF is almost unsupervised or weakly
supervised learning, while SN is supervised learning. Second, our methods are mainly used to adapt
a single pre-trained offline ST model to streaming inference without further streaming training, and
alleviate the input mismatch between offline training and streaming inference. However, for SN, it
is trained conditioned on the previous states. It indicates SN is a streaming-trained model with a
unidirectional encoder.

In summary, our method is different from traditional streaming techniques.

D WHY MOSST AS A BASE MODEL

MoSST (Dong et al., 2022) consists of an acoustic encoder, a monotonic segmentation module (i.e.,
CIF module), a semantic encoder, and a translation decoder. First, the acoustic encoder is pre-trained
Wav2Vec2.0. The mask speech embedding is well-trained and is helpful for our FINE-Mask strategy.
Moreover, the CIF module can be trained to roughly segment the speech sequence into words level
with very weak signal (the total number of words). After training, the number of resulted segments
is roughly equal to the number of words. So it can be used as a pseudo word detector for streaming
inference. Thus, we use MoSST as our base model.
Details of Offline Training The offline ST model is first trained for about 20 epochs by a multi-task
learning, including ASR and ST tasks. A language identity tag is prepended to the target sentence
for indicating which task is learned. In this stage, the CIF module which is used for monotonic
segmentation is deactivated, in other words, the CIF module is not trained. The main purpose is to
learn a better decoder, i.e., a well-trained language model. Then, we activate the CIF module such
that its parameters are trainable, and continue to train for another several epochs. In this stage, only
the ST task is learned. Usually, it will only take 5 or 6 epochs to converge.

E NUMERIC RESULTS FOR THE FIGURES

Table 2: Numeric results for Figure 5, 13, 14.

Model
EnDe EnEs EnFr

AL AP DAL BLEU AL AP DAL BLEU AL AP DAL BLEU

MoSST

867 0.51 1032 7.79 802 0.38 981 3.54 743 0.4 866 4.59
1295 0.65 1531 13.31 1327 0.64 1606 16.99 1376 0.66 1576 21.07
1939 0.78 2234 18.72 1832 0.76 2189 23.30 1886 0.78 2150 28.59
2505 0.85 2788 20.67 2571 0.86 2944 26.30 2532 0.87 2798 31.47
3312 0.92 3559 22.33 3188 0.91 3543 27.40 3083 0.91 3341 32.54
4410 0.97 4576 23.16 4047 0.95 4327 27.58 3811 0.95 4017 33.08

FINE-Mask

796 0.63 1223 16.10 740 0.57 1123 17.15 414 0.4 593 6.81
1143 0.70 1559 19.19 1101 0.68 1499 21.15 1009 0.59 1205 17.88
1534 0.76 1928 21.15 1532 0.77 1954 25.43 1499 0.72 1724 26.69
2109 0.83 2476 22.23 1990 0.82 2404 27.24 1937 0.8 2200 30.89
2647 0.88 2974 23.15 2647 0.88 3035 27.45 2554 0.87 2821 32.78
3404 0.93 3678 23.65 3228 0.92 3568 27.44 3087 0.92 3335 33.41
4457 0.97 4625 23.42 4017 0.96 4287 27.60 3797 0.95 3996 33.70

FINE-Wait

1045 0.68 1455 18.43 965 0.65 1368 20.40 841 0.49 957 10.07
1453 0.75 1849 20.39 1409 0.74 1808 24.15 1390 0.68 1558 22.93
1857 0.81 2227 21.43 1895 0.81 2291 26.45 1892 0.79 2116 28.83
2414 0.86 2750 22.45 2357 0.86 2734 27.19 2314 0.85 2563 31.26
2926 0.90 3220 22.91 2975 0.91 3323 27.49 2884 0.9 3119 32.70
3628 0.94 3875 23.33 3516 0.93 3815 27.57 3374 0.93 3594 33.20
4590 0.98 4737 23.39 4232 0.96 4466 27.95 4017 0.96 4197 33.57

20

Under review as a conference paper at ICLR 2023

Table 3: Numeric results for Figure 5, 6. The results of MU-ST are obtained from (Zhang et al.,
2022). The results of SimulSpeech and RealTrans are obtained from (Zeng et al., 2021).

EnDe

MU-ST
AL 1023 1424 1953 2642 3621 4453 5089 5754
BLEU 17.94 20.85 22.78 24.3 24.82 24.99 25.05 25.9

RealTrans
AL 1355 1838 2290 2720 3106 - - -
BLEU 16.54 18.49 19.84 20.05 20.41 - - -

FINE-Hybrid
AL 1056 1396 1778 2328 2840 3557 - -
BLEU 18.66 20.94 22.26 22.76 23.29 23.60 - -

EnEs

SimulSpeech
AL 694 1336 2169 2724 3331 - - -
BLEU 15.02 19.92 21.58 22.42 22.49 - - -

RealTrans
AL 1047 1554 2043 2514 2920 - - -
BLEU 18.54 22.74 24.89 25.54 25.97 - - -

FINE-Hybrid
AL 1108 1468 1779 2234 2854 3399 - -
BLEU 22.53 24.14 26.62 27.35 27.37 27.70 - -

Table 4: Numeric results for Figure 7.

FINE-Mask FINE-Wait
m AL BLEU m AL BLEU m AL BLEU m AL BLEU

0
178 0.10

30
442 12.38

0
178 0.10

20
882 17.00

483 1.68 785 16.06 483 1.68 1286 19.79
867 7.79 1146 18.83 867 7.79 1686 21.22

5
198 1.66

50
475 12.65

5
484 10.88

30
1098 17.99

577 5.98 796 16.10 891 16.19 1504 20.18
977 12.58 1143 19.19 1295 18.87 1890 21.59

10
324 6.39

60
473 12.65

10
641 14.59

40
1316 18.06

706 11.29 811 16.23 1045 18.43 1710 20.48
1088 16.61 1152 19.09 1453 20.39 2082 21.81

20
409 10.99

70
494 12.33

15
768 16.11

50
1511 18.62

783 14.61 801 16.28 1166 19.31 1893 20.92
1144 18.36 1148 18.77 1575 20.67 2253 21.95

We also provide the numeric results for Figures 5, 13, and 14 in Tables 2, for Figure 7 in Table 3,
and for Figures 5 and 6 in Table 4.

21

	Introduction
	Background
	Preliminary Analysis
	Which part of streaming speech representation is worse?
	Does the poor representation at the last positions of streaming speech affect streaming ST performance?

	FINE: Future-Aware Inference
	FINE-Mask
	FINE-Wait

	Experiments
	Experimental Settings
	Main Results
	Ablation Study
	How much future context is needed?
	Why Does FINE Work?

	Conclusion
	Algorithm of FINE-Wait
	Additional Experiments
	Why we use AL rather than k?
	Why we used our implemented MoSST?
	What examples are improved by our strategies?
	How important of the Wav2Vec2.0?
	Why are all predicted features discarded?
	Additional Results on EnDe/Es and EnFr
	How Do Fine-tuning Epochs Affect the FINE-Mask Strategy?
	Future Work: Upper Bounder of FINE-Mask

	Differences from Streaming Speech Recognition techniques
	Why MoSST as A Base Model
	Numeric Results for the Figures

