Hyperparameters in Reinforcement Learning and How To Tune Them

Theresa Eimer ' *

Abstract

In order to improve reproducibility, deep rein-
forcement learning (RL) has been adopting better
scientific practices such as standardized evalua-
tion metrics and reporting. However, the process
of hyperparameter optimization still varies widely
across papers, which makes it challenging to com-
pare RL algorithms fairly. In this paper, we show
that hyperparameter choices in RL can signifi-
cantly affect the agent’s final performance and
sample efficiency, and that the hyperparameter
landscape can strongly depend on the tuning seed
which may lead to overfitting. We therefore pro-
pose adopting established best practices from Au-
toML, such as the separation of tuning and testing
seeds, as well as principled hyperparameter opti-
mization (HPO) across a broad search space. We
support this by comparing multiple state-of-the-
art HPO tools on a range of RL algorithms and
environments to their hand-tuned counterparts,
demonstrating that HPO approaches often have
higher performance and lower compute overhead.
As aresult of our findings, we recommend a set
of best practices for the RL community, which
should result in stronger empirical results with
fewer computational costs, better reproducibility,
and thus faster progress. In order to encourage the
adoption of these practices, we provide plug-and-
play implementations of the tuning algorithms
used in this paper at https://github.com/
facebookresearch/how-to-autorl.

1. Introduction

Deep reinforcement Learning (RL) algorithms contain a
number of design decisions and hyperparameter settings,
many of which have a critical influence on the learning
speed and success of the algorithm. While design deci-

“Work was done during an internship at Meta Al 'Leibniz
University Hannover “Meta Al Correspondence to: Theresa Eimer
<t.eimer@ai.uni-hannover.de>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Marius Lindauer

1 2

Roberta Raileanu

Low Budget HPO on Brax & ProcGen

Methed
mm Hand Tuned
. HPO
S ;

Environment

(¥
o

Normalized Evaluation Reward
= =3 - -
=1 wn o 5]

oy I

e —

Cliy, g,
"
Hayg
me&!‘%
Fuar
”aﬂo:a

Figure 1: Comparison of Hyperparameter Tuning Approaches:
state-of-the-art hyperparameter optimization packages match or
outperform hand tuning via grid search, while using less than 1/12
of the budget.

sions and implementation details have received greater at-
tention in the last years (Henderson et al., 2018; Engstrom
et al., 2020; Hsu et al., 2020; Andrychowicz et al., 2021;
Obando-Ceron & Castro, 2021), the same is less true of RL
hyperparameters. Progress in self-adapting algorithms (Za-
havy et al., 2020), RL-specific hyperparameter optimization
tools (Franke et al., 2020; Wan et al., 2022), and meta-learnt
hyperparameters (Flennerhag et al., 2022) has not yet been
adopted by RL practitioners. In fact, most papers only report
final model hyperparameters or grid search sweeps known
to be suboptimal and costly compared to even simple Hy-
perparameter Optimization (HPO) baselines like random
search (Bergstra & Bengio, 2012). In addition, the seeds
used for tuning and evaluation are rarely reported, leaving it
unclear if the hyperparameters were tuned on the test seeds,
which is — as we will show — a major reproducibility issue.
In this paper, we aim to lay out and address the potential
causes for the lack of adoption of HPO methods in the RL
community.

Underestimation of Hyperparameter Influence While it
has been previously shown that hyperparameters are impor-
tant to an RL algorithm’s success (Henderson et al., 2018;
Engstrom et al., 2020; Andrychowicz et al., 2021), the im-
pact of even seemingly irrelevant hyperparameters is still un-
derestimated by the community, as indicated by the fact that
many papers tune only two or three hyperparameters (Schul-
man et al., 2017; Berner et al., 2019; Badia et al., 2020;

https://github.com/facebookresearch/how-to-autorl
https://github.com/facebookresearch/how-to-autorl

Hyperparameters in RL and How To Tune Them 2

Hambro et al., 2022). We show that even often overlooked
hyperparameters can make or break an algorithm’s success,
meaning that careful consideration is necessary for a broad
range of hyperparameters. This is especially important for
as-of-yet unexplored domains, as pointed out by Zhang et al.
(2021a). Furthermore, hyperparameters cause different al-
gorithm behaviors depending on the random seed which is
a well-known fact in AutoML (Eggensperger et al., 2019;
Lindauer & Hutter, 2020) but has not yet factored widely
into RL research, negatively impacting reproducibility.

Fractured State of the Art in AutoRL Even though HPO
approaches have succeeded in tuning RL algorithms (Franke
et al., 2021; Awad et al., 2021; Zhang et al., 2021a; Wan
et al., 2022), the costs and benefits of HPO are relatively
unknown in the community. AutoRL papers often compare
only a few HPO methods, are limited to single domains or
toy problems, or use a single RL algorithm (Jaderberg et al.,
2017; Parker-Holder et al., 2020; Awad et al., 2021; Kiran &
Ozyildirim, 2022; Wan et al., 2022). In this work, we aim to
understand the need for and challenges of AutoRL by com-
paring multiple HPO methods across various state-of-the-art
RL algorithms on challenging environments. Our results
demonstrate that HPO approaches have better performance
and less compute overhead than hyperparameter sweeps or
grid searches which are typically used in the RL community
(see Figure 1).

Ease of Use State-of-the-art AutoML tools are often re-
leased as research papers rather than standalone packages.
In addition, they are not immediately compatible with stan-
dard RL code, while easy to use solutions like Optuna (Ak-
iba et al., 2019) or Ax (Bakshy et al., 2018) only provide a
limited selection of HPO aproaches. To improve the avail-
ability of these tools, we provide Hydra sweepers (Yadan,
2019) for several variations of population-based methods,
such as standard PBT (Jaderberg et al., 2017), PB2 (Parker-
Holder et al., 2020) and BGT (Wan et al., 2022), as well
as the evolutionary algorithm DEHB (Awad et al., 2021).
Note that all of these have shown to improve over random
search for tuning RL agents. As black-box methods, they
are compatible with any RL algorithm or environment and
due to Hydra, users do not have to change their implementa-
tion besides returning a success metric like the reward once
training is finished. Based on our empirical insights, we
provide best practice guidelines on how to use HPO for RL.

In this paper, we demonstrate that compared to tuning
hyperparameters by hand, existing HPO tools are ca-
pable of producing better performing, more stable, and
more easily comparable RL agents, while using fewer
computational resources. We believe widespread adoption
of HPO protocols within the RL community will therefore
result in more accurate and fair comparisons across RL
methods and in the end to faster progress.

To summarize, our contributions are:

1. Exploration of the hyperparameter landscape for
commonly-used RL algorithms and environments;

2. Comparison of different types of HPO methods on
state-of-the-art RL algorithms and challenging RL en-
vironments;

3. Open-source implementations of advanced HPO meth-
ods that can easily be used with any RL algorithm and
environment; and

4. Best practice recommendations for HPO in RL.

2. The Hyperparameter Optimization Problem

We provide an overview of the most relevant formaliza-
tions of HPO in RL, Algorithm Configuration (Schede et al.,
2022) and Dynamic Algorithm Configuration (Adriaensen
et al., 2022). Algorithm Configuration (AC) is a popular
paradigm for optimizing hyperparameters of several differ-
ent kinds of algorithms (Eggensperger et al., 2019).

Definition 2.1 (AC). Given an algorithm A, a hyperparam-
eter space A, as well as a distribution of environments or
environment instances Z, and a cost function ¢, find the
optimal configuration A* € A across possible tasks s.t.:

A" € argminy cp Eioz [c(A(i; X))

The cost function could be the negative of the agent’s reward
or a failure indicator across a distribution of tasks. Thus
it is quite flexible and can accommodate a diverse set of
possible goals for algorithm performance. This definition
is not restricted to one train and test setting but aims to
achieve the best possible performance across a range of en-
vironments or environment instances. AC approaches thus
strive to avoid overfitting the hyperparameters to a specific
scenario. Even for RL problems focusing on generalization,
AC is therefore a suitable framework. Commonly, the HPO
process is terminated before we have found the true A" via
an optimization budget (e.g. the runtime or number of train-
ing steps). The best found hyperparameter configuration
found by the optimization process is called the incumbent.

Another relevant paradigm for tuning RL is Dynamic Algo-
rithm Configuration (DAC) (Biedenkapp et al., 2020; Adri-
aensen et al., 2022). DAC is a generalization of AC that
does not search for a single optimal hyperparameter value
per algorithm run but instead for a sequence of values.

Definition 2.2 (DAC). Given an algorithm A, a hyperpa-
rameter space A as well as a distribution of environments or
environment instances Z with state space S, cost function ¢
and a space of dynamic configuration policies II with each
meIl:SxZ— A, find7* € Ils.t.:

m* € argmin g E;oz c(A(2; 7))

Hyperparameters in RL and How To Tune Them 3

As RL is a dynamic optimization process, it can benefit
from dynamic changes in the hyperparameter values such as
learning rate schedules (Zhang et al., 2021a; Parker-Holder
et al., 2022). Thus HPO tools developed specifically for RL
have been following the DAC paradigm in order to tailor
the hyperparameter values closer to the training progress
(Franke et al., 2020; Zhang et al., 2021a; Wan et al., 2022).

It is worth noting that while the model architecture can be
defined by a set of hyperparameters like the number of lay-
ers, architecture search is generally more complex and thus
separately defined as the NAS problem or combined with
HPO to form the general AutoDL problem (Zimmer et al.,
2021). While some tools include options for optimizing
architecture hyperparameters, insights into how to find good
architectures for RL are out of scope for this paper.

3. Related Work

While RL as a field has seen many innovations in the last
years, small changes to the algorithm or its implemen-
tation can have a big impact on its results (Henderson
et al., 2018; Andrychowicz et al., 2021; Engstrom et al.,
2020). In an effort to consolidate these innovations, sev-
eral papers have examined the effect of smaller design de-
cisions like the loss function or policy regularization for
on-policy algorithms (Hsu et al., 2020; Andrychowicz et al.,
2021), DQN (Obando-Ceron & Castro, 2021) and offline
RL (Zhang & Jiang, 2021). AutoRL methods, on the other
hand, have focused on automating and abstracting some
of these decisions (Parker-Holder et al., 2022) by using
data-driven approaches to learn various algorithmic compo-
nents (Bechtle et al., 2020; Xu et al., 2020; Metz et al., 2022)
or even entire RL algorithms (Wang et al., 2016; Duan et al.,
2016; Co-Reyes et al., 2021; Lu et al., 2022).

While overall there has been less interest in hyperparameter
optimization, some RL-specific HPO algorithms have been
developed. STACX (Zahavy et al., 2020) is an example of a
self-tuning algorithm, using meta-gradients (Xu et al., 2018)
to optimize its hyperparameters during runtime. This idea
has recently been generalized to bootstrapped meta-learning,
enabling the use of meta-gradients to learn any combination
of hyperparameters on most RL algorithms on the fly (Flen-
nerhag et al., 2022). Such gradient-based approaches are
fairly general and have shown a lot of promise (Paul et al.,
2019). However, they require access to the algorithm’s
gradients, thus limiting their use and incurring a larger com-
pute overhead. In this paper, we focus on purely black-box
methods for their ease of use in any RL setting.

Extensions of population-based training (PBT) (Jaderberg
et al., 2017; Li et al., 2019) improvements like BO ker-
nels (Parker-Holder et al., 2020) or added NAS compo-
nents (Franke et al., 2020; Wan et al., 2022) have led to

significant performance and efficiency gains, offering a RL-
specific way of optimizing hyperparameters during training.
A benefit of PBT methods is that they implicitly find a
schedule of hyperparameter settings instead of a fixed value.

Beyond PBT methods, many general AC algorithms have
proven to perform well on ML and RL tasks (Schede et al.,
2022). A few such examples are SMAC (Lindauer et al.,
2022) and DEHB (Awad et al., 2021) which are based on
Bayesian Optimization and evolutionary algorithms, respec-
tively. SMAC is model-based (i.e. it learns a model of the
hyperparameter landscape using a Gaussian process) and
both are multi-fidelity methods (i.e. they utilize shorter
training runs to test many different configurations, only
progressing the best ones). While these algorithms have
rarely been used in RL so far, there is no evidence to sug-
gest they perform any worse than RL-specific optimization
approaches. In fact, a possible advantage of multi-fidelity
approaches over population-based ones is that given the
same budget, multi-fidelity methods see a larger number
of total configurations, while population-based ones see a
smaller number of configurations trained for a longer time.

4. The Hyperparameter Landscape of RL

Before comparing HPO algorithms, we empirically motivate
why using dedicated tuning tools is important in RL. To this
end we study the effect of hyperparameters as well as that of
the random seed on the final performance of RL algorithms.
We also investigate the smoothness of the hyperparameter
space. The goal of this section is not to achieve the best
possible results on each task but to gather insights into
how hyperparameters affect RL algorithms and how we can
optimize them effectively.

Experimental Setup To gain robust insights into the im-
pact of hyperparameters on the performance of an RL
agent, we consider a range of widely-used environments
and algorithms. We use basic gym environments such as
OpenATI’s Pendulum and Acrobot (Brockman et al., 2016),
gridworld with an exploration component such as Mini-
Grid’s Empty and DoorKey 5x5 (Chevalier-Boisvert et al.,
2018), as well as robot locomotion tasks such as Brax’s
Ant, Halfcheetah and Humanoid (Freeman et al., 2021). We
use PPO (Schulman et al., 2017) and DQN (Mnih et al.,
2015) for the discrete environments, and PPO as well as
SAC (Haarnoja et al., 2018) for the continuous ones, all
in their StableBaselines3 implementations (Raffin
et al., 2021). This selection is representative of the main
classes of model-free RL algorithms (i.e. on-policy policy-
optimization, off-policy value-based, and off-policy actor-
critic) and covers a diverse set of tasks posing different
challenges (i.e. discrete and continuous control), allowing
us to draw meaningful and generalizable conclusions.

Hyperparameters in RL and How To Tune Them 4

For each environment, we sweep over 8 hyperparameters
for DQN, 7 for SAC and 11 for PPO (for a full list, see
Appendix E). We run each combination of hyperparameter
setting, algorithm and environment for 5 different random
seeds. For brevity’s sake, we focus on the PPO results in
the main paper. The results on the other algorithms lead to
similar conclusions and can be found in Appendix H.

For the tuning insights in this section, we use random search
(RS) in its Optuna implementation (Akiba et al., 2019), a
multi-fidelity method called DEHB (Awad et al., 2021) and
a PBT approach called PB2 (Parker-Holder et al., 2020).
Although grid search is certainly more commonly-used in
RL than RS, we do not include it as a baseline due to its
major disadvantages relative to RS such as its poor scal-
ing with the size of the search space and heavy reliance
on domain knowledge (Bergstra & Bengio, 2012). We
choose DEHB and PB2 as two standard incarnations of
multi-fidelity and PBT methods without any extensions like
run initialization (Wan et al., 2022) or configuration rac-
ing (Lindauer et al., 2022) because we want to test how
well lightweight vanilla versions of these algorithm classes
perform on RL.We use a total budget of 10 full RL runs for
all methods. For more background on these methods as well
as their own hyperparameter settings, see Appendix C. A
complete overview of search spaces and experiment settings
can be found in Appendix D. The code for all experiments
in this paper can be found at https://github.com/
facebookresearch/how-to-autorl.

4.1. Which RL Hyperparameters Should Be Tuned?

Our goal is not to find good default hyperparameter settings
(see Appendix E for our reasoning) or gain insights into
why some configurations perform a certain way. Instead, we
are interested in their general relevance, i.e., the effect size
for hyperparameter tuning. Thus, we run sweeps over our
chosen hyperparameters for each environment and algorithm
to get an impression of which hyperparameters are important
in each setting. See Appendix G for the full results.

In Figure 2, we can see a large influence on the final per-
formance of almost every hyperparameter we sweep over
for each environment. Even the rarely tuned clip range can
be a deciding factor between an agent succeeding or failing
in an environment such as in Ant. In many cases, hyper-
parameters can also have a large effect on the algorithm’s
stability throughout training. In total, we observed only the
worst hyperparameter choice being within the best choice’s
standard deviation 7 times out of 126 settings and only 13
times the median performance dropping by less than 20%.
At the same time, hyperparameter importance analysis using
fANOVA (Hutter et al., 2014) shows that one or two hyper-
parameters monopolize the importance on each environment
- though they tend to vary from environment to environment

Ciip Ranga on Ant Entropy Coefficient on Hallchestah

6000 —

_\\\
\\\i

o 5 e & N
D e e & & a” o &

5

2

Average Episodic Return
B
\
iy
=0
hY
s
1
X
A
-
—
~
e

Awerage Episadic Return

o

Clip Range Entropy Coefficient

Learning Rate on Humanoid

Leaming Rate on MiniGrid-Empty-5x5

Average Eptsodic Retun

Average Eplsodic Return

AR O oA L
o AF of AF of F o of o ®

Learning Rate

Figure 2: Hyperparameter landscapes of learning rate, clip range
and entropy coefficient for PPO on Brax and MiniGrid. For each
hyperparameter value, we report the average final return and stan-
dard deviation across 5 seeds.

(e.g.fro PPO learning rate on Acrobot, clip range on Pen-
dulum and the GAE lambda on MiniGrid - see Appendix I
for full results). Additionally, Partial Dependency Plots on
Pendulum and Acrobot (see Appendix J) show that there are
almost no complex interaction patterns between the hyper-
parameters which would increase the difficulty when tuning
all of them at the same time. Since most hyperparameters
have significant influences on performance, their impor-
tance varies across environments and there are only few
interference effects, we recommend tuning as many hyper-
parameters as possible — as is best practice in the AutoML
community (Eggensperger et al., 2019).

This result suggests that common grid search approaches
are likely suboptimal as good search space coverage along
many dimensions is highly expensive (Bergstra & Bengio,
2012). In order to empirically test if current HPO tools are
well suited to such a set of diverse hyperparameters, we
tune our algorithms using differently sized search spaces:
(i) only the learning rate (which could be hand-tuned), (ii)
a small space with three hyperparameters (which would be
expensive but possible to tune manually) and (iii) the full
search space of 7 hyperparameters for SAC, 9 for DQN, and
11 for PPO (which is too large to feasibly tune by hand -
sweeping 7 hyperparameters with only three values amounts
to a grid search of 2187 runs).

In Table 1 we see that RS performs well on Acrobot but
it falls short on Pendulum, displaying large discrepancies
across seeds, some performing well, and some failing to
find a good configuration. While this is a typical failure case
of RS, this does not mean RS is a weak candidate, rank-
ing second overall by outperforming PB2 in several cases.
PB2 is also quite unreliable: on Acrobot, its performance
decreases with the size of the search space; on Pendulum,
however, it improves with the size of the search space. As

https://github.com/facebookresearch/how-to-autorl
https://github.com/facebookresearch/how-to-autorl

Hyperparameters in RL and How To Tune Them 5

Table 1: Tuning PPO on Acrobot (top) and SAC on Pendulum
(bottom) across different search space sizes (i.e. only learning
rate, {learning rate, entropy coefficient, training epochs}, and full
search space). Shown is the negative evaluation reward across 5
tuning runs. Lower numbers are better, best performance on each
environment is highlighted. The best final performance on a single
seed from our sweeps is also reported.

DEHB Inc. PB2Inc. RS Inc. |Sweep
LROnlyl 71+1 94+22 7845 81
Small 72+1 1934+160 80=+6
Full 71+3 305+£186 83+5

LR Only| 71 £12 207+ 126 89425 | 117
S 119+ 12 106 £ 12 401 £ 363
Full 112+24 78+19 144+48

Pendulum | Acrobot

with RS, part of the underlying issue is the inconsistent per-
formance of PB2. Note that the incumbent configuration is
fairly static across all PB2 runs for the larger search spaces.
In most cases, the configuration changes at most once dur-
ing training, showing that PB2 currently does not take full
advantage of its ability to find dynamic schedules. DEHB is
the most stable in terms of standard deviation across seeds,
even though we see a slight decrease in performance on
Pendulum with larger search spaces.

Overall we see that finding well performing configurations
across large search spaces is usually possible even with
a simple algorithm like RS. All methods deliver reason-
able hyperparameter configurations across a large search
space, especially given all of them use only 10 full training
runs. On this small budget, they are able to match or out-
perform the single best seeds in all our sweep runs which
use a total of 125 runs per environment. Our experiments
show that automatically tuning a large variety of hyperpa-
rameters is both beneficial and efficient using even simple
algorithms like RS or vanilla instantiations of multi-fidelity
and population-based methods.

4.2. Are Hyperparameters in RL. Well Behaved?

In addition to the large number of hyperparameters con-
tributing to an algorithm’s performance, how an algorithm
behaves with respect to changing hyperparameter values is
an important factor in tuning algorithms. Ideally, we want
the algorithm’s performance to be predictable, i.e., if the
hyperparameter value is close to the optimum, we want
the agent to perform well and then become progressively
worse the farther we move away — in essence, a smooth
optimization landscape (Pushak & Hoos, 2022). As we can
see in Figure 2, the transitions between different parts of the
search space are fairly smooth. The configurations perform
in the order we would expect them to given the best values,
with the drops in performance being mostly gradual instead
of sudden. Figure 3 shows configurations also performing

sopp PO On halfchestsh - Entropy Coefficient PPO on Pendulumal - Entropy Cosfficient
0o y

£ sooe = -250 N -;{;’M e

3 e ¥ b

@ 5000 e _sa0 f!' 'llf‘\\,

E S [7
§ 4000 7 -
2 30m V- P e
u v, 100 :
£

E

/'.. - 1250

PP an Acrsbot-vl - Learning Rate BPO en MiniGrid-Empty-5x540 - Learning Rate
ot ey = = =
g } oe ks
B P e y
© F 06 .’} A
-1
A !
E —3a0 [o
i ¥z If i
1] Tl |
§ —ana I A 02 L/”A pons
1 I'f Ww-"..,ﬂ A4 a1
L o BN e SN ol
oo 42 0.4 0.6 0E 1o o0 0z 04 06 08 10
1e6 1e6
PPO on ant - CHip Range PPO on MiniGrid-Doorkey-Sx5-v0 - Clip Range
Lo
g 50 —
& 0.8
4000 ¥
& e Fauvmes,
g 3000 & > “I_.,_,,M\N_..n.-
£ 2000 .
o P 04
& 1000
g o !
& —— e
£ i

o 20000 40000 60000 80000 100000 0.0 02 04 0.6 nE 10
Episodes #5teps 1e6
Figure 3: Hyperparameter Sweeps for PPO across learning rates,
entropy coefficients and clip ranges on various environments. The
mean and standard deviation are computed across 5 seeds.

Figure 4: Individual seeds for selected clip range and entropy
coefficient values of PPO across various environments.

consistently with regards to one another during the runtime,
i.e., good configurations tend to learn quickly and bad con-
figurations decay soon after training begins. This means
HPO approaches utilizing partial algorithm runs to measure
the quality of configurations like multi-fidelity methods or
PBT should not face major issues tuning RL algorithms.

While we do see large variability in some configurations,
this issue seems to occur largely in medium-well perform-
ing configurations, not in the very best or worst ones (see
Figure 3). This supports our claim that hyperparameters
are not only useful in increasing performance but have a
significant influence on algorithm variability.

During the run itself differences between seeds can become
an issue, however, especially for methods using partial runs.
On many environments, when looking at each seed indi-

Hyperparameters in RL and How To Tune Them

6

Table 2: Tuning PPO on Acrobot (top) and SAC on Pendulum (bottom) across the full search space and different numbers of seeds. Lower

numbers are better, best test performance for each method and values within its standard deviation are highlighted. Test performances are
aggregated across 10 separate test seeds using the mean for each tuning run. We report mean and standard deviation of these.

PB2 Inc. PB2 Test RS Inc. RS Test

305.3 £185.5353.7 = 134.5
301.2+128.0411.3 +117.9| 88.2+5.7 98.8=+16.3
228.54+£149.5 471.8 £19.1 |89.2+10.4 116.8+43.3
404.9 £53.3 474.4 £ 23.5|108.3 +28.2100.1 £ 20.0

77.8+49 136.8+£70.5

| DEHB Inc. DEHB Test |

5 1Seed | 70.6+3.4 341.3+183.1

S 3Seeds | 76.2+0.9 381.14127.6
< 5Seeds | 793412 465.1424.6
10 Seeds| 156.0 & 24.5 464.8 & 36.5

E 1Seed [111.5+23.6 150.5+13.4
2 3Seeds [125.0+23.2 144.8+9.0
S 5Seeds |127.3+11.5 350.2 +418.2
10 Seeds|742.4 £ 498.8 318.6 £ 281.3

77.8+19.0 840.7£580.1 |88.6+24.9 168.3 +46.4
133.3+£14.7 171.0£35.5 |150.7 £13.9 159.0 & 21.6
134.0 £22.1 661.3 £586.2 |134.8£9.8 397.8 £485.5
282.0 £ 252.9 468.6 £437.9 [144.5+17.9 150.2 £ 4.8

vidually per hyperparameter as in Figure 4, we can see the
previously predictable behaviour is replaced with signifi-
cant differences across seeds. We observe single seeds with
crashing performance, inconsistent learning curves and also
exceptionally well performing seeds that end up outperform-
ing the best seeds of configurations which are better on
average. Given that we believe tuning only a few seeds of
the target RL algorithm is still the norm (Schulman et al.,
2017; Berner et al., 2019; Raileanu & Rocktischel, 2020;
Badia et al., 2020; Hambro et al., 2022), such high variabil-
ity with respect to the seed is likely a bigger difficulty factor
for HPO in RL than the optimization landscape itself.

Thus, our conclusion is somewhat surprising: it should be
possible to tune RL hyperparameters just as well as the
ones in any other fields without RL-specific additions to
the tuning algorithm since RL hyperparameter landscapes
appear to be rather smooth. The large influence of many
different hyperparameters is a potential obstacle, however,
as are interaction effects that can ocurr between hyperpa-
rameters. Furthermore, RL’s sensitivity to the random seed,
can present a challenge in tuning its hyperparameters, both
by hand and in an automated manner.

4.3. How Do We Account for Noise?

As the variability between random seeds is a potential source
of error when tuning and running RL algorithms, we in-
vestigate how we can account for it in our experiments to
generate more reliable performance estimates.

As we have seen high variability both in performance and
across seeds for different hyperparameter values, we return
to Figure 2 to investigate how big the seed’s influence on the
final performance really is. The plots show that the standard
deviation of the performance for the same hyperparameter
configuration can be very large. While this performance
spread tends to decrease for configurations with better me-
dian performance, top-performing seeds can stem from un-
stable configurations with low median performance (e.g.

the learning rate on Humanoid). In most cases, there is an
overlap between adjacent configurations, so it is certainly
possible to select a presumably well-performing hyperpa-
rameter configuration on one seed that has low average
performance across others.

As this is a known issue in other fields as well, albeit not
to the same degree as in RL, it is common to evaluate a
configuration on multiple seeds in order to achieve a more
reliable estimate of the true performance (Eggensperger
et al., 2018). We verify this for RL by comparing the final
performance of agents tuned by DEHB and PB2 on the
performance mean across a single, 3 or 5 seeds. We then
test the overall best configuration on 5 unseen test seeds.

Table 2 shows that RS is able to improve the average test
performance on both Acrobot and Pendulum by increasing
the number of tuning seeds, as are DEHB and PB2 on Pendu-
lum. However, this is only true up to a point as performance
estimation across more than 3 seeds leads to a general de-
crease in test performance, as well as a sharp increase in
variance in some cases (e.g. 5 seed RS or 10 seed PB2 on
Pendulum). Especially when tuning across 10 seeds, we see
that the incumbents suffer as well, indicating that evaluating
the configurations across multiple seeds increases the diffi-
culty of the HPO problem substantially, even though it can
help avoid overfitting. The performance difference between
tuning and testing is significant in many cases and we can
see e.g. on Acrobot that the best incumbent configurations,
found by DEHB, perform more than four times worse on
test seeds. We can find this effect in all tuning methods,
especially on Pendulum. This presents a challenge for re-
producibility given that currently it is almost impossible to
know what seeds were used for tuning or evaluation. Simply
reporting the performance of tuned seeds for the proposed
method and that of testing seeds for the baselines is an unfair
comparison which can lead to wrong conclusions.

To summarize, we have seen that the main challenges are
the size of the search space, the variability involved in train-
ing RL agents, and the challenging generalization across

Hyperparameters in RL and How To Tune Them 7

Test Performance on Brax

Ant Halfcheetah

- II I ' I II |
:] i
16 B4 810 16 64

=]
8

Mean Evaluation Performance
B
=
(=]
(=]

Budget

Budget

Humanoid
Method
B Baseline
== DEHB
mEm RS
. BGT
B —
810 16 64 810
Budget

Figure 5: Tuning Results for PPO on Brax. Shown is the mean evaluation reward across 10 episodes for 3 tuning runs as well as the 98%

confidence interval across tuning runs.

random seeds. Since many hyperparameters have a large
influence on agent performance, but the optimization land-
scape is relatively smooth, RL hyperparameters can be effi-
ciently tuned using HPO techniques, as we have shown in
our experiments. Manual tuning, however, is comparatively
costly as its cost scales at least linearly with the size of the
search space.Dedicated HPO tools, on the other hand are
able to find good configurations on a significantly smaller
budget by searching the whole space. A major difficulty fac-
tor, however, is the high variability of results across seeds,
which is an overlooked reproducibility issue that can lead
to distorted comparisons of RL algorithms. This problem
can be alleviated by tuning the algorithms on multiple seeds
and evaluating them on separate test seeds.

S. Tradeoffs for Hyperparameter
Optimization in Practice

While the experiments in the previous section are meant to
highlight what challenges HPO tools face in RL and how
well they overcome them, we now turn to more complex
use cases of HPO. To this end, we select three challeng-
ing environments each from Brax (Freeman et al., 2021)
(Ant, Halfcheetah and Humanoid) and three from Proc-
gen (Cobbe et al., 2020) (Bigfish, Climber and Plunder)
and automatically tune the state-of-the-art RL algorithms
on these domains (PPO for Brax and IDAAC (Raileanu &
Fergus, 2021) for Procgen). Our goal here is simple: we
want to see if HPO tools can improve upon the state of the
art in these domains with respect to both final performance
and compute overhead. As we now want to compare abso-
lute performance values on a more complex problems with
a bigger budget, we use BGT (Wan et al., 2022) as the state-
of-the-art population-based approach, and DEHB since it
is among the best solver currently available (Eggensperger
et al., 2021). As before, we use RS as an example of a
simple-to-implement tuning algorithm with minimal over-
head. In view of the results of Turner et al. (2021) on HPO

for supervised machine learning, we expect that RS should
be outperformed by the other approaches. For each task, we
work on the original open-sourced code of each state-of-the-
art RL method we test against, using the manually tuned
hyperparameter settings as recommended in the correspond-
ing papers as the baseline. All tuning algorithms will be
given a small budget of up to 16 full algorithm runs as well
as a larger one of 64 runs. In comparison, IDAAC’s tuning
budget is 810 runs. To give an idea of the reliability of both
the tuning algorithm and the found configurations, we tune
each setting 3 times across 5 seeds and test the best-found
configuration on 10 unseen test seeds.

As shown in Figures 5 and 6, these domains are more chal-
lenging to tune on our small budgets relative to our previous
environments (for tabular results, see Appendix F). While
we do not know how the Brax baseline agent was tuned
as this is not reported in the paper, the IDAAC baseline
uses 810 runs which is 12 times more than the large tuning
budget used by our HPO methods. On Brax, DEHB out-
performs the baseline with a mean rank of 1.3 compared to
1.7 for the 16 run budget and a rank of 1.0 compared to the
baselines’s 1.3 with 64 runs. On Procgen the comparison is
similar with 1.7 to 2 for 16 runs and 1.0 to 1.3 for 64 runs
(see Appendix D.4 for details on how the rank is computed).
We also see that DEHB’s incumbent and test scores improve
the most consistently out of all the tuning methods, with the
additional run budget being utilized especially well on Brax.
RS, as expected cannot match this performance, ranking 2.3
and 2.7 for 16 runs and 3.3 and 3 for 64 runs respectively.
We also see poor scaling behavior in some cases e.g. RS
with a larger budget overfits to the tuning seeds on Brax
while failing to improve on Procgen. As above, we see an
instance of PB2 performing around 5 times worse on the
test seeds compared to the incumbent on Bigfish, further
suggesting that certain PBT variants may struggle to gen-
eralize in such settings. On the other environments it does
better, however, earning a Procgen rank of 2 on the 16 run
budget, matching the baseline. With a budget of 64 runs, it

Hyperparameters in RL and How To Tune Them 8

ranks 2.7, the same as BGT and above RS. BGT does not
overfit to the same degree as PB2 but performs worse on
lower budgets, ranking 3.8 on Procgen for 16 runs and 2.7
for 64. On Brax, it fails to find good configurations with
the exception of a single run on Ant (rank 3). We do not
restart the BGT optimization after a set amount of failures,
however, in order to keep within our small maximum bud-
gets. The original paper indicates that it is likely BGT will
perform much better given a less restrictive budget.

Overall, HPO tools conceived for the AC setting, as rep-
resented by DEHB, are the most consistent and reliable
within our experimental setting. Random Search, while not
a bad choice on smaller budgets, does not scale as well with
the number of tuning runs. Population-based methods can-
not match either; PB2, while finding very well performing
incumbent configurations struggles with overfitting, while
BGT would likely benefit from larger budgets than used here.
Further research into this optimization paradigm that pri-
orities general configurations over incumbent performance
could lead to additional improvements.

Across both benchmarks we see large discrepancies between
the incumbent and test performance. This underlines our
earlier point about the importance of using different test and
tuning seeds for reporting. In terms of compute overhead,
all tested HPO methods had negligible effects on the total
runtime, with BGT, by far the most expensive one, utilising
on average under two minutes of time to produce new con-
figurations for the 16 run budget and less than 2 hours for
the 64 run budget, with all other approaches staying under
5 minutes in each budget. Overall, we see that even com-
putationally cheap methods with small tuning budgets can
generally match or outperform painstakingly hand-tuned
configurations that use orders of magnitude more compute.

6. Recommendations & Best Practices

Our experiments show the benefit of comprehensive hyper-
parameter tuning in terms of both final performance and
compute cost, as well as how common overfitting to the set
of tuning seeds is. As a result of our insights, we recommend
some good practices for HPO in RL going forward.

Complete Reporting We still find that many RL papers do
not state how they obtain their hyperparameter configura-
tions, if they are included at all. As we have seen, however,
unbiased comparisons should not take place on the same
seeds the hyperparameters are tuned on. Hence, reporting
the tuning seeds, the test seeds, and the exact protocol used
for hyperparameter selection, should be standard practice to
ensure a sound comparison across RL methods.

Adopting AutoML Standards In many ways, the AutoML
community is ahead of the RL community regarding hyper-
parameter tuning. We can leverage this by learning from

their best practices, as e.g. stated by Eggensperger et al.
(2019) and Lindauer & Hutter (2020), and using their HPO
tools which can lead to strong performance as shown in this
paper. One notable good practice is to use separate seeds
for tuning and testing hyperparameter configurations. Other
examples include standardizing the tuning budget for the
baselines and proposed methods, as well as tuning on the
training and not the test setting. While HPO in RL provides
unique challenges such as the dynamic nature of the train-
ing loop or the strong sensitivity to the random seed, we
observe significant improvements in both final performance
and compute cost by employing state-of-the-art AutoML
approaches. This can be done by integrating multi-fidelity
evaluations into the population-based framework or using
optimization tools like DEHB and SMAC.

Integrate Tuning Into The Development Pipeline For fair
comparisons and realistic views of RL methods, we have
to use competently tuned baselines. More specifically, the
proposed method and baselines should use the same tun-
ing budget and be evaluated on test seeds which should be
different from the tuning seeds. Integrating HPO into RL
codebases is a major step towards facilitating such com-
parisons. Some RL frameworks have started to include
options for automated HPO (Huang et al., 2021; Liaw et al.,
2018) or provide recommended hyperparameters for a set
of environments (Raffin et al., 2021) (although usually not
how they were obtained). The choice of tuning tools for
each library is still relatively limited, however, while pro-
vided hyperparameters are not always well documented and
typically do not transfer well to other environments or algo-
rithms. Thus, we hope our versatile and easy-to-use HPO
implementations that can be applied to any RL algorithm
and environment will encourage broader use of HPO in RL
(see Appendix B for more information). In the future, we
hope more RL libraries include AutoRL approaches since
in a closed ecosystem, more sophisticated methods that go
beyond black-box optimizers (e.g. gradient-based methods,
neuro-evolution, or meta-learned hyperparameter agents a
la DAC) could be deployed more easily.

A Recipe For Efficient RL Research To summarize, we
recommend the following step-by-step process for tuning
and selecting hyperparameters in RL:

1. Define a training and test set which can include:

(a) environment variations

(b) random seeds for non-deterministic environments

(¢) random seeds for initial state distributions

(d) random seeds for the agent (including network
initialization)

(e) training random seeds for the HPO tool

2. Define a configuration space with all hyperparameters
that likely contribute to training success;

https://github.com/facebookresearch/how-to-autorl
https://github.com/facebookresearch/how-to-autorl

Hyperparameters in RL and How To Tune Them 9

Test Performance on ProcGen

Bigfish Climber Plunder
g 125
@ 125
- 4 Method
4 10.0 :
 10.0 BN Grid Search
5 3 - === DEHB
5 75 ' == RS
= 2
8 o 5.0 = BGT
i} = FR2
= 1 =
3 25 I i' 25 I I
=

0.0 i i 0 0.0
16 64 810 16 84 810 16 84 810
Budget Budget Budget

Figure 6: Tuning Results for IDAAC on Procgen. Shown is the mean evaluation reward across 10 episodes for 3 tuning runs as well as the

98% confidence interval across tuning runs.

»

Decide which HPO method to use;

4. Define the limitations of the HPO method, i.e. the bud-
get (or use self-terminating (Makarova et al., 2022));

5. Settle on a cost metric — this should be an evaluation re-
ward across as many episodes as a needed for a reliable
performance estimate;

6. Run this HPO method on the training set across a num-
ber of tuning seeds;

7. Evaluate the resulting incumbent configurations on the

test set across a number of separate test seeds and

report the results.

To ensure a fair comparison, this procedure should be fol-
lowed for all RL methods used, including the baselines.
If existing hyperparameters are re-used, their source and
tuning protocol should be reported. In addition, their cor-
responding budget and search space should be the same as
those of the other RL methods used for comparison. In case
the budget is runtime and not e.g. a number of environment
steps, it is also important to use comparable hardware for all
runs. Furthermore, it is important to use the same test seeds
for all configurations that are separate from all tuning seeds.
If this information is not available, re-tuning the algorithm
is preferred. This procedure, including all information on
the search space, cost metric, HPO method settings, seeds
and final hyperparameters should be reported. We provide a
checklist containing all of these points in Appendix A and
as a LaTeX template in our GitHub repository.

7. Conclusion

We showed that hyperparameters in RL deserve more at-
tention from the research community than they currently
receive. Underreported tuning practices have the potential
to distort algorithm evaluations while ignored hyperparame-
ters may lead to suboptimal performance. With only small
budgets, we demonstrate that HPO tools like DEHB can
cover large search spaces to produce better performing con-
figurations using fewer computational resources than hyper-

parameter sweeps or grid searches. We provide versatile and
easy-to-use implementations of these tools which can be
applied to any RL algorithm and environment. We hope this
will encourage the adoption of AutoML best practices by the
RL community, which should enhance the reproducibility
of RL results and make solving new domains simpler.

Nevertheless, there is a lot of potential for developing HPO
approaches tailored to the key challenges of RL such as
the high sensitivty to the random seed for a given hyper-
parameter configuration. Frameworks for learnt hyperpa-
rameter policies or gradient-based optimization methods
could counteract this effect by reacting dynamically to an
algorithm’s behaviour on a given seed. We believe this
is a promising direction for future work since in our ex-
periments, PBT methods yield fairly static configurations
instead of flexible schedules. Benchmarks like the recent
AutoRL-Bench (Shala et al., 2022) accelerate progress by
comparing AutoRL tools without the need for RL algorithm
evaluations. Lastly, higher-level AutoRL approaches that
do not aim to find hyperparameter values but replace them
entirely by directing the algorithm’s behavior could in the
long term both simplify and stabilize RL algorithms. Ex-
amples include exploration strategies (Zhang et al., 2021b),
learnt optimizers (Metz et al., 2022) or entirely new algo-
rithms (Co-Reyes et al., 2021; Lu et al., 2022).

Acknowledgements

Marius Lindauer acknowledges funding by
the European Union (ERC, “ixAutoML”,
grant n0.101041029). Views and opinions expressed are
those of the author(s) only and do not necessarily reflect
those of the European Union or the European Research
Council Executive Agency. Neither the European Union nor
the granting authority can be held responsible for them.

https://github.com/facebookresearch/how-to-autorl/blob/main/checklist.tex

Hyperparameters in RL and How To Tune Them

10

References

Adriaensen, S., Biedenkapp, A., Shala, G., Awad, N., Eimer,
T., Lindauer, M., and Hutter, F. Automated dynamic
algorithm configuration. Journal of Artificial Intelligence
Research, 2022.

Agarwal, R., Schwarzer, M., Castro, P., Courville, A., and
Bellemare, M. Deep reinforcement learning at the edge
of the statistical precipice. In Ranzato, M., Beygelzimer,
A., Dauphin, Y. N., Liang, P, and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems 34.:
Annual Conference on Neural Information Processing
Systems 2021, NeurIPS, pp. 29304-29320, 2021.

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.
Optuna: A next-generation hyperparameter optimization
framework. In Proceedings of the 25rd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2019.

Andrychowicz, M., Raichuk, A., Stanczyk, P., Orsini, M.,
Girgin, S., Marinier, R., Hussenot, L., Geist, M., Pietquin,
0., Michalski, M., Gelly, S., and Bachem, O. What
matters for on-policy deep actor-critic methods? A large-
scale study. In 9th International Conference on Learning
Representations, ICLR. OpenReview.net, 2021.

Awad, N., Mallik, N., and Hutter, . DEHB: evolutionary
hyberband for scalable, robust and efficient hyperparam-
eter optimization. In Zhou, Z. (ed.), Proceedings of the
Thirtieth International Joint Conference on Artificial In-
telligence, IJCAI, pp. 2147-2153. jjcai.org, 2021.

Badia, A., Piot, B., Kapturowski, S., Sprechmann, P., Vitvit-
skyi, A., Guo, Z., and Blundell, C. Agent57: Outper-
forming the atari human benchmark. In Proceedings of
the 37th International Conference on Machine Learning,
ICML, volume 119 of Proceedings of Machine Learning
Research, pp. 507-517. PMLR, 2020.

Bakshy, E., Dworkin, L., Karrer, B., Kashin, K., Letham,
B., Murthy, A., and Singh, S. Ae: A domain-agnostic
platform for adaptive experimentation. 2018.

Bechtle, S., Molchanov, A., Chebotar, Y., Grefenstette, E.,
Righetti, L., Sukhatme, G., and Meier, F. Meta learning
via learned loss. In 25th International Conference on
Pattern Recognition, ICPR, pp. 4161-4168. IEEE, 2020.

Bergstra, J. and Bengio, Y. Random search for hyper-
parameter optimization. 13:281-305, 2012.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P,,
Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse,
C., Jozefowicz, R., Gray, S., Olsson, C., Pachocki, J.,
Petrov, M., de Oliveira Pinto, H., Raiman, J., Salimans, T.,
Schlatter, J., Schneider, J., Sidor, S., Sutskever, 1., Tang,

10

J., Wolski, F.,, and Zhang, S. Dota 2 with large scale deep
reinforcement learning. CoRR, abs/1912.06680, 2019.

Biedenkapp, A., Bozkurt, H. F., Eimer, T., Hutter, F., and
Lindauer, M. Dynamic Algorithm Configuration: Foun-
dation of a New Meta-Algorithmic Framework. In Lang,
J., Giacomo, G. D., Dilkina, B., and Milano, M. (eds.),
Proceedings of the Twenty-fourth European Conference
on Artificial Intelligence (ECAI’20), pp. 427-434, June
2020.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Chevalier-Boisvert, M., Willems, L., and Pal, S. Minimalis-
tic gridworld environment for gymnasium, 2018. URL
https://github.com/Farama-Foundation/
Minigrid.

Co-Reyes, J., Miao, Y., Peng, D., Real, E., Le, Q., Levine,
S., Lee, H., and Faust, A. Evolving reinforcement
learning algorithms. In 9th International Conference
on Learning Representations, ICLR. OpenReview.net,
2021. URL https://openreview.net/forum?
id=0XXpJ40t jW.

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. Lever-
aging procedural generation to benchmark reinforcement
learning. In Proceedings of the 37th International Con-
ference on Machine Learning, ICML, volume 119 of Pro-
ceedings of Machine Learning Research, pp. 2048-2056.
PMLR, 2020.

Duan, Y., Schulman, J., Chen, X., Bartlett, P., Sutskever,
I., and Abbeel, P. RI$"2$: Fast reinforcement learning
via slow reinforcement learning. CoRR, abs/1611.02779,
2016.

Eggensperger, K., Lindauer, M., and Hutter, F. Neural net-
works for predicting algorithm runtime distributions. In
Lang, J. (ed.), Proceedings of the Tventy-Seventh Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
pp- 1442-1448. ijcai.org, 2018.

Eggensperger, K., Lindauer, M., and Hutter, F. Pitfalls and
best practices in algorithm configuration. pp. 861-893,
2019.

Eggensperger, K., Miiller, P, Mallik, N., Feurer, M., Sass,
R., Klein, A., Awad, N., Lindauer, M., and Hutter, F.
Hpobench: A collection of reproducible multi-fidelity
benchmark problems for HPO. In Vanschoren, J. and
Yeung, S. (eds.), Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks
1, NeurlPS Datasets and Benchmarks, 2021.

https://github.com/Farama-Foundation/Minigrid
https://github.com/Farama-Foundation/Minigrid
https://openreview.net/forum?id=0XXpJ4OtjW
https://openreview.net/forum?id=0XXpJ4OtjW

Hyperparameters in RL and How To Tune Them

11

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos,
F., Rudolph, L., and Madry, A. Implementation matters
in deep RL: A case study on PPO and TRPO. In 8th
International Conference on Learning Representations,
ICLR. OpenReview.net, 2020.

Flennerhag, S., Schroecker, Y., Zahavy, T., van Hasselt, H.,
Silver, D., and Singh, S. Bootstrapped meta-learning. In
The Tenth International Conference on Learning Repre-
sentations, ICLR. OpenReview.net, 2022.

Franke, J., Kohler, G., Biedenkapp, A., and Hutter, F.
Sample-efficient automated deep reinforcement learning.
In 9th International Conference on Learning Representa-
tions, ICLR. OpenReview.net, 2021.

Franke, J. K., Kohler, G., Biedenkapp, A., and Hutter, F.
Sample-efficient automated deep reinforcement learning.
arXiv:2009.01555 [cs.LG], 2020.

Freeman, C., Frey, E., Raichuk, A., Girgin, S., Mordatch, I.,
and Bachem, O. Brax - A differentiable physics engine for
large scale rigid body simulation. In Vanschoren, J. and
Yeung, S. (eds.), Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks
1, NeurIPS Datasets and Benchmarks 2021, 2021.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In Dy, J. G. and
Krause, A. (eds.), Proceedings of the 35th International
Conference on Machine Learning, ICML, volume 80 of
Proceedings of Machine Learning Research, pp. 1856—
1865. PMLR, 2018.

Hambro, E., Raileanu, R., Rothermel, D., Mella, V.,
Rocktischel, T., Kiittler, H., and Murray, N. Dungeons
and data: A large-scale nethack dataset. 2022.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Pre-
cup, D., and Meger, D. Deep reinforcement learning
that matters. In Mcllraith, S. and Weinberger, K. (eds.),
Proceedings of the Conference on Artificial Intelligence
(AAAI’18). AAAI Press, 2018.

Hsu, C., Mendler-Diinner, C., and Hardt, M. Revisiting
design choices in proximal policy optimization. CoRR,
abs/2009.10897, 2020.

Huang, S., Dossa, R., Ye, C., and Braga, J. Cleanrl: High-
quality single-file implementations of deep reinforcement
learning algorithms. CoRR, abs/2111.08819, 2021.

Hutter, F., Hoos, H., and Leyton-Brown, K. An efficient ap-
proach for assessing hyperparameter importance. In Xing,
E. and Jebara, T. (eds.), Proceedings of the 31th Interna-
tional Conference on Machine Learning, (ICML’14), pp.
754-762. Omnipress, 2014.

11

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W.,
Donahue, J., Razavi, A., Vinyals, O., Green, T., Dun-
ning, I., Simonyan, K., Fernando, C., and Kavukcuoglu,
K. Population based training of neural networks.
arXiv:1711.09846 [cs.LG], 2017.

Kiran, M. and Ogzyildirim, B. Hyperparameter tuning
for deep reinforcement learning applications. CoRR,
abs/2201.11182, 2022. URL https://arxiv.org/
abs/2201.11182.

Li, A., Spyra, O., Perel, S., Dalibard, V., Jaderberg, M., Gu,
C., Budden, D., Harley, T., and Gupta, P. A generalized
framework for population based training. In Teredesai,
A., Kumar, V., Li, Y., Rosales, R., Terzi, E., and Karypis,
G. (eds.), Proceedings of the 25th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data
Mining, KDD, pp. 1791-1799. ACM, 2019.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and
Talwalkar, A. Hyperband: A novel bandit-based approach
to hyperparameter optimization. 18(185):1-52, 2018.

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J.,
and Stoica, I. Tune: A research platform for distributed
model selection and training. CoRR, abs/1807.05118,
2018.

Lindauer, M. and Hutter, F. Best practices for scientific re-
search on neural architecture search. Journal of Machine
Learning Research, 21:1-18, 2020.

Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp,
A., Deng, D., Benjamins, C., Ruhkopf, T., Sass, R., and
Hutter, F. SMAC3: A versatile bayesian optimization
package for hyperparameter optimization. J. Mach. Learn.
Res., 23:54:1-54:9, 2022.

Lu, C., Kuba, J., Letcher, A., Metz, L., de Witt, C., and
Foerster, J. Discovered policy optimisation. CoRR,
abs/2210.05639, 2022.

Makarova, A., Shen, H., Perrone, V., Klein, A., Faddoul, J.,
Krause, A., Seeger, M., and Archambeau, C. Automatic
termination for hyperparameter optimization. In Guyon,
1., Lindauer, M., van der Schaar, M., Hutter, F., and Gar-
nett, R. (eds.), International Conference on Automated
Machine Learning, AutoML, volume 188 of Proceedings
of Machine Learning Research, pp. 7/1-21. PMLR, 2022.

Metz, L., Harrison, J., Freeman, C., Merchant, A., Beyer,
L., Bradbury, J., Agrawal, N., Poole, B., Mordatch,
1., Roberts, A., and Sohl-Dickstein, J. Velo: Train-
ing versatile learned optimizers by scaling up. CoRR,
abs/2211.09760, 2022.

https://arxiv.org/abs/2201.11182
https://arxiv.org/abs/2201.11182

Hyperparameters in RL and How To Tune Them

12

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M. A.,
Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, 1., King, H., Kumaran, D., Wier-
stra, D., Legg, S., and Hassabis, D. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529-533, 2015.

Obando-Ceron, J. and Castro, P. Revisiting rainbow: Pro-
moting more insightful and inclusive deep reinforcement
learning research. In Meila, M. and Zhang, T. (eds.),
Proceedings of the 38th International Conference on Ma-
chine Learning, ICML, volume 139 of Proceedings of Ma-
chine Learning Research, pp. 1373-1383. PMLR, 2021.

Parker-Holder, J., Nguyen, V., and Roberts, S. Prov-
ably efficient online hyperparameter optimization with
population-based bandits. In Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems

2020, NeurIPS, 2020.

Parker-Holder, J., Rajan, R., Song, X., Biedenkapp, A.,
Miao, Y., Eimer, T., Zhang, B., Nguyen, V., Calandra, R.,
Faust, A., Hutter, F., and Lindauer, M. Automated rein-
forcement learning (autorl): A survey and open problems.
J. Artif. Intell. Res., 74:517-568, 2022.

Paul, S., Kurin, V., and Whiteson, S. Fast efficient hyperpa-
rameter tuning for policy gradient methods. In Wallach,
H. M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F.,
Fox, E. B., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS,
pp- 4618-4628, 2019.

Pushak, Y. and Hoos, H. H. Automl loss landscapes. ACM
Trans. Evol. Learn. Optim., 2(3):10:1-10:30, 2022.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-baselines3: Reliable re-
inforcement learning implementations. J. Mach. Learn.
Res., 22:268:1-268:8, 2021.

Raileanu, R. and Fergus, R. Decoupling value and policy
for generalization in reinforcement learning. In Meila,
M. and Zhang, T. (eds.), Proceedings of the 38th Interna-
tional Conference on Machine Learning, ICML, volume
139 of Proceedings of Machine Learning Research, pp.
8787-8798. PMLR, 2021.

Raileanu, R. and Rocktéschel, T. RIDE: rewarding impact-
driven exploration for procedurally-generated environ-
ments. In 8th International Conference on Learning
Representations, ICLR. OpenReview.net, 2020.

12

Sass, R., Bergman, E., Biedenkapp, A., Hutter, F., and
Lindauer, M. Deepcave: An interactive analysis tool
for automated machine learning. CoRR, abs/2206.03493,
2022.

Schede, E., Brandt, J., Tornede, A., Wever, M., Bengs, V.,
Hiillermeier, E., and Tierney, K. A survey of methods for
automated algorithm configuration. J. Artif. Intell. Res.,
75:425-487, 2022.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv:1707.06347 [cs.LG], 2017.

Shala, G., Arango, S., Biedenkapp, A., Hutter, F., and
Grabocka, J. Autorl-bench 1.0. In Workshop on Meta-
Learning (MetaLearn@NeurIPS’22), 2022.

Storn, R. and Price, K. Differential evolution - A simple and
efficient heuristic for global optimization over continuous
spaces. J. Glob. Optim., 11(4):341-359, 1997.

Turner, R., Eriksson, D., McCourt, M., Kiili, J., Laakso-
nen, E., Xu, Z., and Guyon, 1. Bayesian optimization is
superior to random search for machine learning hyperpa-
rameter tuning: Analysis of the black-box optimization
challenge 2020. CoRR, abs/2104.10201, 2021.

Wan, X., Lu, C., Parker-Holder, J., Ball, P., Nguyen, V., Ru,
B., and Osborne, M. Bayesian generational population-
based training. In Guyon, 1., Lindauer, M., van der Schaar,
M., Hutter, F., and Garnett, R. (eds.), International Con-
ference on Automated Machine Learning, AutoML, vol-
ume 188 of Proceedings of Machine Learning Research,
pp. 14/1-27. PMLR, 2022.

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot,
M., and de Freitas, N. Dueling network architectures for
deep reinforcement learning. In Balcan, M. and Wein-
berger, K. (eds.), Proceedings of the 33rd International
Conference on Machine Learning (ICML’17), volume 48,
pp- 1995-2003. Proceedings of Machine Learning Re-
search, 2016.

Xu, Z., van Hasselt, H., and Silver, D. Meta-gradient re-
inforcement learning. In Bengio, S., Wallach, H. M.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Gar-
nett, R. (eds.), Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurlPS, pp. 2402-2413,
2018.

Xu, Z., van Hasselt, H., Hessel, M., Oh, J., Singh, S., and
Silver, D. Meta-gradient reinforcement learning with an
objective discovered online. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems 33: Annual

Hyperparameters in RL and How To Tune Them

13

Conference on Neural Information Processing Systems
2020, NeurIPS, 2020.

Yadan, O. Hydra - a framework for elegantly configuring
complex applications. Github, 2019. URL https://
github.com/facebookresearch/hydra.

Zahavy, T., Xu, Z., Veeriah, V., Hessel, M., Oh, J., van Has-
selt, H., Silver, D., and Singh, S. A self-tuning actor-critic
algorithm. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., and Lin, H. (eds.), Advances in Neural In-
formation Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS,
2020.

Zhang, B., Rajan, R., Pineda, L., Lambert, N., Biedenkapp,
A., Chua, K., Hutter, F., and Calandra, R. On the impor-
tance of hyperparameter optimization for model-based
reinforcement learning. In Banerjee, A. and Fukumizu,
K. (eds.), The 24th International Conference on Artificial
Intelligence and Statistics, AISTATS, volume 130 of Pro-
ceedings of Machine Learning Research, pp. 4015-4023.
PMLR, 2021a.

Zhang, S. and Jiang, N. Towards hyperparameter-free pol-
icy selection for offline reinforcement learning. In Ran-
zato, M., Beygelzimer, A., Dauphin, Y. N., Liang, P.,
and Vaughan, J. W. (eds.), Advances in Neural Infor-
mation Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS,
pp. 12864-12875, 2021.

Zhang, T., Xu, H., Wang, X., Wu, Y., Keutzer, K., Gonzalez,
J., and Tian, Y. Noveld: A simple yet effective exploration
criterion. In Ranzato, M., Beygelzimer, A., Dauphin,
Y. N., Liang, P., and Vaughan, J. W. (eds.), Advances
in Neural Information Processing Systems 34: Annual

Conference on Neural Information Processing Systems
2021, NeurIPS, pp. 25217-25230, 2021b.

Zimmer, L., Lindauer, M., and Hutter, F. Auto-pytorch:
Multi-fidelity metalearning for efficient and robust au-
todl. IEEE Trans. Pattern Anal. Mach. Intell., 43(9):
3079-3090, 2021.

13

https://github.com/facebookresearch/hydra
https://github.com/facebookresearch/hydra

Hyperparameters in RL and How To Tune Them 14

A. Reproducibility Checklist for Tuning Hyperparameters in RL

Below is a checklist we recommend for conducting experiments and reporting the process in RL. It is hard to give general
recommendations for all RL settings when it comes to questions of budget, number of seeds or configuration space size. For
guidance on an appropriate number of testing seeds, as well as recommendations on how to report them, see Agarwal et al.
(2021). The ideal number of tuning seeds will likely depend heavily on the domain, though we recommend to use at least 5
to avoid overtuning on a small number of seeds. As for configuration space size, we have seen successful tuning across up to
14 hyperparameters in this paper and only small differences between 3 and up to 9 hyperparameters in Section 4, so we
believe there is no reason be too selective for search spaces of around this size unless hyperparameter importances on the
algorithm and domain are fairly well known. Much larger search spaces could benefit from pruning, potentially after an
initial analysis of hyperparameter importance.

1. Are there training and test settings available on your chosen domains?
If yes:

* Is only the training setting used for training? v' X

* Is only the training setting used for tuning? /X

* Are final results reported on the test setting? v'X
2. Hyperparameters were tuned using <package—name> which is based on <an-optimization-method>
3. The configuration space was: <algorithm—1>:

e <a-continuous—hyperparameter>: (<lower>, <upper>)

* <a-logspaced-continuous-hyperparameter>: log((<lower>, <upper>))

* <a-discrete-hyperparameter>: [<lower>, <upper>]

¢ <a-categorical-hyperparameter>: <choice-a>, <choice-b>

<algorithm-2>:

* <an—-additional-hyperparameter>: (<lower>, <upper>)

4. The search space contains the same hyperparameters and search ranges wherever algorithms share hyperparameters v' X
If no, why not?

5. The cost metric(s) optimized was/were <a—-cost-metric>

6. The tuning budget was <the-budget>

7. The tuning budget was the same for all tuned methods v' X
If no, why not?

8. If the budget is given in time: the hardware used for all tuning runs is comparable v'X

9. All methods that were reported were tuned with this the methods and settings described above v/ X
If no, why not?

10. Tuning was done across < n > tuning seeds which were: [< 0>, <1 >,<2>,<3 >, <4 >]
11. Testing was done across < m > test seeds which were: [< 5 >, <6 >, <7 >,<8>,< 9 >]

12. Are all results reported on the test seeds? v' X
If no, why not?

13. The final incumbent configurations reported were:
<algorithm-l-env-1>:

¢ <a-hyperparameter>: <value>

<algorithm-l-env-2>:

¢ <a-hyperparameter>: <value>

14

Hyperparameters in RL and How To Tune Them 15

<algorithm-2-env-1>:

* <a-hyperparameter>: <value>

14. The code for reproducing these experiments is available at: <a-1ink>
15. The code also includes the tuning process v'X

16. Bundled with the code is an exact version of the original software environment, e.g. a conda environment file with all
package versions or a docker image in case some dependencies are not conda installable v’ X

17. The following hardware was used in running the experiments:

¢ <n> <gpu-types>

. e

B. Our AutoRL Hydra Sweepers

We provide implementations of DEHB and PBT variations to supplement existing options like Optuna (Akiba et al., 2019)
or ray (Liaw et al., 2018) with state-of-the-art HPO tools that still have relatively high barriers of use, particularly in RL.
Our goal was to provide a tuning option with as little human overhead as possible but as much flexibility for applying it
to different RL codebases as possible. Hydra allows us to do both by using the tuning algorithms as sweepers that launch
different configurations either locally or as parallel cluster jobs. In practice, this means minimal code changes are necessary
to use our sweepers: the return value will need to be a cost metric and for PBT checkpointing and loading is mandatory. In
this way, these plugins are compatible with any RL algorithm and environment.

Once these changes are implemented, a sweeper Hydra configuration that includes a search space definition can be used to
run the whole optimization process in one go or resume existing runs (e.g. if the optimization was terminated accidentally
or if more tuning budget becomes available after the fact). We include the option of using tuning seeds, which is so far
uncommon except for CleanRL (Huang et al., 2021) where they are user specified. Furthermore, we extended the option
of initial runs for PBT variations to the original PBT and PB2 instead of just BGT in order to stabilize those methods. In
comparison to existing user-friendly tuners like Optuna, we provide different tuning algorithms that are not BO-based and
include the option of using multi-fidelity tuning in hydra directly instead of having to implement a separate script.

Figure 7 shows an example Hydra configuration file turned into a ready-to-run tuning configuration file for tuning with
DEHB. The corresponding configuration file, here for the full search space of PPO in StableBaselines3, is shown in Figure 8.

C. Additional Background on Tuning Methods Used

Since many in the RL community might be unfamiliar with the state of the art in AutoML and AutoRL, we provide brief
descriptions of the RS, DEHB and PBT approaches we use in this paper.

C.1. Random Search

Random Search for hyperparameter optimization commonly refers to the method of sampling from a configuration space
in a pseudo-random fashion (Bergstra & Bengio, 2012). The resulting configurations are then evaluated on full algorithm
runs and the best performing one selected as incumbent. While RS is not as reliable with small budgets and larger search
spaces as other tuning options, it has proven to be a better alternative to grid search due to its scaling properties. As Grid
Search exhaustively evaluates all combinations of the given hyperparameter value set, it needs n™ algorithm evaluations,
with n being the number of hyperparameters per dimension and m the number of dimensions in the search space. Still
we only evaluate n values for each dimension, irrelevant of how important this dimension actually is. RS implicitly shifts
more importance to the more relevant hyperparameters by varying the whole configuration at once, producing good results
on smaller budgets. Furthermore, Grid Search relies entirely on the domain knowledge of the user since they provide all
configurations. This is of course an issue with new methods, domains or if the optimal hyperparameter configuration falls
outside of the norm.

15

Hyperparameters in RL and How To Tune Them

16

defaults:
- algorithm: ppa
- override hydra/launcher; submitit_slurm

hydras:
run:
dir: tuning_test_seeds/S{env_name}_S{hydra.{iob.override dirnase}/seed=${seed}
job:
config:
averride dirname:
exc lude_keys:
- seed
launcher:
partition: partition—name
mem_gb: 18
timeput_min: 1728
sweep:
dir: tuning_test_seeds/${env_name}l_s{hydra.job.override_dirnome}/sced=5{sced}
log dirt ./agent_logs
env_name: Pendu Lum-v1
load: false
save: false
reward_curves: false
seed: @
wandb: true
wandb_tags: [base]
logging_interval: 1e5

defaults;

1

f) - algorithm: ppa

3 — search_space: ppo

4 - averride hydra/sweeper: DEHB

- - gverride hydra/launcher: submitit slurm

)

T hydra:

g sweeper:

B dehb_kwargs:

18 mutation_factors 8.2

1 max_budget: ${algorithm.total_timesteps)
12 min_budget: 1e3

13 COSTI “steps™

14 wandh_project: autorl-benchmarks

15 eta: §

16 seeds: [5,6,7,8,9]

17 slurm: true

18 slurm_timeout: s{hydra.launcher.timeoat min}
19 search_space: ${search_space}

28 total_brackets: 3

21 budget_variable: algorithm. total_timesteps
221 n_jobs: 1850

23 Tun;

28} dir: tuning_ocutput/dehb_sesd_f{seed}_${algorithm.agent_class)}_j{env_name}_seeds 5

25 Launcheri

2'E|§ partition: partition-name
7 mem_ghb: 18

28 timeout_min: 1728

29 SweEp

ELR dir: tuning output/dehb_seed_${seed} ${algorithm.agent_class}_${env_name} seeds 5
n

32 log dir: ./agent_logs

33 env_na Pendulus—v1

34 loal e

35 saves; lse

36 reward_curves: Talse

7 seed: @

38 wandh: false

39| wandb_tags: [basel

L] togping_interval: 15

Figure 7: A base Hydra configuration file (left) and the changes necessary to tune this algorithm with DEHB (right).

hyperparaneTers:

1

2

k | type: uniform_fioat

4 lower: 8, 089001

5 upper; #.01

] log: trus

7 algorithm.model_kwargs.batch_size:
B type: categorical

9. choices: [16, 32, 64, 128]

18 algarithm, mode|_kwargs.,n_steps:

algorithm.model_kwargs. iearning_rate:

i1 type: categorical

12 choices: [256, 512, 1824, 7P4B, 4A96]
13 algorithm. model_kwargs. n_epochs:

14 type: uniferm_int

L] lower: 5

16 uppert 29

17 log: Talse

18 algorithm.model_kwargs.gae_lambda:

19 type: uniform_float

20 lower: @.8

21 upper: €.9999

v log: felse

3 algorithm.model_kwargs.clip_range:

24 type: umiform_float

25 lower: 6.0

6 upper: 8.5

77 log: false

28 algorithm.model_kwargs.clip range uf:
bt type: uniform_fioat

3 lower: €.0

N upper: 8.5

32 log: false

3 algorithm.model_kwargs.norsolize advantage:
34 type: categorical

35 choices: [True, False]

6 algorithm.model_kwargs.ent_coed:

I type! uniforn_fioat

38 lower: 2.8

k] upper: .5

48 log: false

a1 algorithm.model_kwargs.wf_coef:

42 type: wniforn_float

43 lower; #.0

44 upper: L.B

45 log: false

A6 algorithm. model kwargs.max_grad_norm:
a7 type: uniform_filoat

48 lower: #.0

a9 upper: 1.8

58 log: false

Figure 8: Example definition of a search space for PPO in a separate configuraion file.

16

Hyperparameters in RL and How To Tune Them 17

C.2. DEHB

DEHB is the combination of the evolutionary algorithm Differential Evolution (DE) (Storn & Price, 1997) and the multi-
fidelity method HyperBand (Li et al., 2018). HyperBand as a multi-fidelity method is based on the idea of running many
configurations with a small budget, i.e. only a fraction of training steps, and progressing promising ones to the next
higher budget level. In this way we see many datapoints, but avoid spending time on bad configurations. DEHB starts
with a full set of HyperBand budgets, from very low to full budget, and runs it in its first iteration. For each budget,
DEHB runs the equivalent of one full algorithm run in steps, e.g. if the current budget is %0 of the full run budget, 10
configurations will be evaluated. For the second one, the lowest budget is left out and the second lowest is initialised with a
population of configurations evolved by DEHB from the previous iteration’s results. This procedure continues until either a
maximum number of iterations is reached or only the full run budget budget is left. The number of budgets is decided by a
hyperparameter 7.

In our experiments in Section 4 we run 3 iterations with 1 = 5 so only 3 budgets, and in our larger DEHB experiments in
Section 5 we use 2 iterations with 7 = 1.9 so 8 budgets. We set the minimum budget as ﬁ of the full run training steps in
each case.

C.3. PBT Variants

PBT is based on the idea of maintaining a population of agents in parallel, each with its own hyperparameter configuration.
These agents are then trained for n steps, after which their performance is evaluated and a checkpoint of their training state
is created. Now a portion of the worst agents are replaced by the best ones and the rest of the configurations are refined for
the next iteration. This will result in a hyperparameter schedule utilizing the best performing configurations at each iteration.

The original PBT (Li et al., 2019) randomly samples the initial configurations and then subsequently perturbes them by either
randomly increasing or decreasing each hyperparameter by a constant factor. Categorical values are randomly resampled
with a fixed probability.

This undirected sampling proved successful, but only with large population sizes upwards of 64 agents, therefore newer
iterations of PBT often use a model to select new hyperparameter configurations, as e.g. PB2 uses Bayesian Optimization
with a Gaussian Process (Parker-Holder et al., 2020). This enables optimization with a significantly smaller population size
of as little as 4 agents.

As we have seen, however, the result can be volatile, therefore Wan et al. (2022) suggested two main extensions on top of
PB2, in addition to the ability to tune the architecture with the PBT framwork, forming the current state of the art across
PBT methods. The extensions are (1) the use of periodic kernel restarts in case no improvements are visible and (2) the use
of full budget initial runs to warmstart the Gaussian Process with high quality datapoints.

In our experiments we use 20 configuration changes for each method with a population size of 8 for PB2 in Section 4 and
16/64 for PB2 in Section 5. For BGT, we use 8 initial runs and a population size of 8 for the smaller budget and 48 and 16,
respectively for the larger one. In both PB2 and BGT, we always replace the worst 12.5% of agents with the best 12.5%.

D. An Overview of Hyperparameter Configurations & Search Spaces
D.1. Stable Baselines Default Configurations

Table 3 shows the default hyperparameters we use throughout Section 4.

D.2. Stable Baseline Sweep Values

We sweep over the same hyperparameter values for each environment one dimension at a time. For PPO, these are
learning rate € {le—2,5e—3,1le—3,5e—4,le—4,5¢—5,1e—5,5¢—6,1le—6,5e—T}, entropy coefficient
€ {0.1,0.05,0.01,0.005,0.001} and c1ip range € {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}.

For SAC, learning rate € {le — 2,5e — 3,1e — 3,5e — 4,1le — 4,5e — 5,1e — 5,5e — 6,1e — 6,5e — 7}, tau
€ {1.0,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1} and training frequency € {1,2,4,8,16}.

For DQN, learning rate € {le—2,5¢ —3,1le—3,5¢ —4,1le —4,5¢—5,1le — 5,5e — 6,1le — 6,5¢ — 7}, epsilon
€ {1.0,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1} and training frequency € {1,2,4,8,16}.

17

Hyperparameters in RL and How To Tune Them 18

Acrobot & Pendulum Brax MiniGrid
Policy Class MlpPolicy MlpPolicy CnnPolicy
leaning_rate le-3 le-4 Te-4
batch_size 64 512 64
gamma 0.9 0.99 0.999
n_steps 1024 1024 256
n_epochs 10 16 4
gae_lambda 0.95 0.96 0.95
g clip_range 0.2 0.2 0.2
clip_range_vf null null null
normalize_advantage True True True
ent_coef 0.01 0.01 0.01
vf_coef 0.5 0.5 0.5
max_grad_norm 0.5 0.5 0.5
use_sde False False False
sde_sample_freq 4 4 4
Policy Class MlpPolicy MlpPolicy
leaning_rate le-4 le-4
batch_size 256 512
gamma 0.99 0.99
tau 1.0 1.0
% learning_starts 100 100
buffer_size 1000000 1000000
train_freq 1 1
gradient_steps 1 1
use_sde False False
sde_sample_freq -1 -1
Policy Class MlpPolicy CnnPolicy
learning_rate le-3 Se-7
batch_size 64 64
tau 1.0 1.0
gamma 0.9 0.999
6 learning_starts 50000 100
A train_freq 4 4
gradient_steps 1 1
exploration_fraction 0.1 0.1
exploration_initial_eps 1.0 1.0
exploration_final_eps 0.05 0.05
buffer_size 1000000 1000000

Table 3: StableBaselines hyperparameter defaults for different environments.

18

Hyperparameters in RL and How To Tune Them 19
Hyperparameter Full Space Small Space LR Only
leaning rate log(interval(le-6, 0.1)) log(interval(le-6, 0.1)) log(interval(1le-6, 0.1))
ent_coef interval(0.0, 0.5) interval(0.0, 0.5)
n_epochs range[5,20] range[5,20]
batch_size {16, 32, 64, 128}
n_steps {256, 512, 1024, 2048, 4096}
g gae_lambda interval(0.8, 0.9999)
clip_range interval(0.0, 0.5)

clip_range_vf
normalize_advantage
vf_coef
max_grad_norm

interval(0.0, 0.5)
{True, False}
interval(0.0, 1.0)
interval(0.0, 1.0)

leaning_rate log(interval(le-6, 0.1)) log(interval(le-6, 0.1)) log(interval(le-6, 0.1))
train_freq range[1,1e3] range[1,1e3]
L tau interval(0.01, 1.0) interval(0.01, 1.0)
5 batch_size {64, 128, 256, 512}
learning_starts range[0, le4]
buffer_size range[5e3,5¢7]

gradient_steps

range[1,10]

learning_rate log(interval(le-6, 0.1)) log(interval(le-6, 0.1)) log(interval(le-6, 0.1))
batch_size {4,8, 16, 32} {4, 8, 16, 32}
exploration_fraction interval(0.005, 0.5) interval(0.005, 0.5)

- learning_starts range[0,le4]

8‘ train_freq range[1,1e3]

gradient_steps
exploration_initial_eps
exploration_final_eps
buffer_size

range[1,10]
interval(0.5, 1.0)
interval(0.001, 0.2)
range[5e3,5¢7]

Table 4: StableBaselines search spaces.

D.3. Stable Baselines Search Spaces

Table 4 shows the search spaces we used for the experiments in Section 4. The search spaces are the same for all tuning
methods and across environments. We denote floating point intervals as interval (lower, upper), integer ranges as
range [lower, upper], categorical choices as {choice 1, choice 2} and add log if the search space for this
hyperparameter is traversed logarithmically.

D.4. Brax Experiment Settings

We base our implementations the training code provided with Brax with minor additions like only a
single final evaluation and agent loading. The GitHub commit ID for the code version we use is
3843d433050a08cb492c301e039e04409b3557 fc. The cost metric we optimize is the evaluation reward across
one episode of the environment batch. We tune on seeds 0 — 4 and evaluate on seeds 5 — 14. The baseline hyperparameters
are taken from this commit as well and are shown in 5 together with our search space.

For both Procgen and Brax, we compute the rank of a method as follows: the best performing method on the test seeds and
all other methods within its standard deviation receive rank one. The method with the next best mean (and all methods in
its standard deviation) receive the next free rank — 2 in case there was a single best method, 3 if there were two and so on.
These ranks are determined for each environment from which we can compute a mean across the whole domain.

19

https://github.com/google/brax

Hyperparameters in RL and How To Tune Them 20
Hyperparameter ‘ Search Space Defaults
leaning rate log(interval(le-6, 0.1)) 3e-4
num_update_epochs range[1,15] 4
batch_size {128,256,512,1024,2048} 1024
num_minibatches range[0,7] 6
entropy_cost interval(0.0001, 0.5) le-2
gae_lambda interval(0.5, 0.9999) 0.95
epsilon interval(0.01, 0.9) 0.3
vf_coef interval(0.01, 0.9) 0.5
reward_scaling interval(0.01, 1.0) 0.1

Table 5: Search Space and baseline hyperparameters for Brax. Actual number of minibatches is 2m#m-menibatehes Eudilon refers to the

clip range in this implementation.

Hyperparameter |

Ir

eps

hidden_size
clip_param
num_mini_batch
ppo-epoch
nume-steps
max_grad_norm
value_loss_coef
entropy_coef
gae_lambda
gamma

alpha
clf_hidden_size
order_loss_coef
use_nonlinear_clf
adv_loss_coef
value_freq
value_epoch

Search Space Bigfish Climber Plunder
log(interval(le-6, 0.1)) S5e-4 S5e-4 Se-4
log(interval(le-6, 0.1)) 1le-5 le-5 le-5

- 256 256 256
interval(0.0, 0.5) 0.2 0.2 0.2
- 8 8 8
range[1, 5] 3 3 3
- 256 256 256
interval(0.0, 1.0) 0.5 0.5 0.5
interval(0.0, 1.0) 0.5 0.5 0.5
interval(0.0, 0.5) 0.01 0.01 0.01
interval(0.8,0.9999) 095 095 0.95
- 0.999 0.999 0.999
interval(0.8,0.9999) 099 099 0.99
- 4 64 4
interval(0.0, 0.1) 0.01 0.001 0.1
{True,False} True True False
interval(0.0, 1.0) 0.05 0.25 0.3
range[1, 5] 32 1 8
range[1, 10] 9 9 1

Table 6: Search Space

D.S5. Procgen Experiment Settings

and baselines hyperparameters for IDAAC on Procgen.

We use the open-source code provided by (Raileanu & Fergus, 2021) with minor additions like loading agents. The GitHub
commit ID for the code version we use is 2£e30202942898b1b09d76e5d8c71d5a7db3686b. The cost metric we
optimize is the evaluation reward across ten episodes of the training environment. We tune on seeds 0 — 4 and evaluate
on seeds 5 — 14. Our baseline are the provided best hyperparameters per environment (see 6 for the configuration and our

search space).

D.6. Hardware

All of our experiments were run on a compute

cluster with two Intel CPUs per node (these were used for the experiments in

Section 4) and four different node configurations for GPU (used for the experiments in Section 5). These configurations
are: 2 Pascal 130 GPUs, 2 Pascal 144 GPUs, 8 Volta 10 GPUs or 8 Volta 332. We ran the CPU experiments with 10GB of
memory on single nodes and the GPU experiments with 10GB for Procgen and 40GB for Brax on a single GPU each.

20

https://github.com/rraileanu/idaac

Hyperparameters in RL and How To Tune Them 21

Hyperparameter Default DEHB PB2 RS
leaning_rate le-3 5e-05 5e-3 for 90e5 steps, then 3e-6 le-6
batch_size 64 64 64 for 90e5 steps, then 128 64
n_steps 1024 1024 256 256
n_epochs 10 14 8 for 90e5 steps, then 20 6
gae_lambda 0.95 0.82 0.85 for 90e5 steps, then 0.82 0.81
5 clip_range 0.2 0.14 0.06 for 90e5 steps, then 0.27 0.05
¢ cliprange_vf null 043 0.06 0.11
& normalize_advantage| True True True
8 ent_coef 0.01 0.21 0.42 for 90e5 steps, then 0.29 0.01
A~ vf_coef 0.5 0.02 0.5 for 90e5 steps, then 0.7 0.07
max_grad_norm 0.5 0.75 0.24 for 90e5 steps, then 0.5 0.97

Table 7: StableBaselines hyperparameter defaults for different environments.

E. Details on the Tuned Configurations

We want to give some insights into how much the incumbents of our HPO methods differ from the baselines and one another.
We show an example comparisons between different incumbent configurations on the full search space of PPO on Acrobot
in Table 7. This result is consistent with what we find across other algorithms and environments: the differences between
incumbents as well as between incumbents and baseline are fairly large. The result of HPO in our experiment has not meant
small changes to only a subset of the search space, but usually significant deviations from the baseline in most of them.
Still, we can see some similarities at times, in this case the batch size stays consistently at 64 across all configurations
(with the exception of the final training phase of PB2). We can also see common trends among the incumbents at times,
e.g. in the value of the GAE)\ which is between 0.81 and 0.85 for the incumbents, but at 0.95 in the default configuration.
Unfortunately, the other hyperparameter values do not seem to share any trends and often have significantly different values
as e.g. in the entropy coefficient which varies between 0.01 and 0.42.

Why do we then see such similar performance from all of these configurations? We believe three main factors are at
play: hyperparameter importance, the algorithm’s sensitivity to a hyperparameter value and interaction effects between
hyperparameters. It is likely that not all hyperparameters are crucial to optimize in this setting, so seeing very different
values for unimportant hyperparameters can make the configurations appear more different than they are. We know from our
experiments, however, that a mistake in the entropy coefficient can be highly damaging to the algorithm’s performance in
Acrobot (see Figure 21 below). Comparing the entropy coefficient curve of Acrobot and Ant in this figure, however, reveals
that the median performance across different entropy coefficients degrades much less quickly for Acrobot than for Ant — on
Acrobot, PPO is less sensitive to changes in hyperparameter values. To put it another way: hyperparameter values may look
different between configurations but result in the same algorithm behaviour as long as they are within a similar range. Lastly,
since we optimize many hyperparameters and the agent’s behaviour depends on these hyperparameters, it is possible that
hyperparameters interact with each other to produce a similar outcome as long as their relation stays similar. This could be
an explanation for combining lower learning rates with more update epochs as DEHB does. Analysing hyperparameter
configurations on their own, however, will not provide enough information to determine each of these factors for each
hyperparameter. They have to be explored through separate experiments first before we can draw conclusions on how similar
the configurations we found in HPO tools are and what that means for optimal hyperparameter values in our settings.

F. Tuning Results on Brax & Procgen in Tabular Form

For ease of comparison, we provide the results of Section 5 in tabular form.

21

Hyperparameters in RL and How To Tune Them

Table 8: Tuning PPO on Brax’s Ant, Halfcheetah and Humanoid environments. Shown are tuning results across 3 runs across 5 seeds

each, tested on 10 different test seeds.

‘ Ant Halfcheetah Humanoid

Baseline

| 3448 £ 343 6904 + 377 3235 + 758

DEHB Inc.
DEHB Test
RS Inc.
RS Test

5745 £ 878 3993 £871 1788 + 718
4288 £ 1017 4928 + 500 3167 + 874
2515 £ 1750 2978 £ 1007 763 + 317
5165 £ 896 3646 =699 753 209

DEHB Inc. (64)
DEHB Test (64)
BGT Inc. (64)
BGT Test (64)
RS Inc. (64)
RS Test (64)

7170 £ 1045 8202 £ 445 4338 £+ 1655
4696 + 1252 8039 £+ 636 5205 + 2781
1119 £ 1321 1051 £752 434+15
3196 £ 3307 456 + 461 13240

6344 £ 654 7891 £386 2932+ 798

669 & 2447 950 1461 325 £ 162

Table 9: Tuning IDAAC on Procgen’s Bigfish, Climber and Plunder. Results are across 3 runs using 5 seeds each, and tested on 10

different test seeds.

‘ Bigfish Climber Plunder
Baseline | 68+32 41+1.411.8+5.5
DEHB Inc. 73420 3.7+02 58402
DEHB Test (11.9+4.32.7+15 86+2.6
BGT Inc. 13402 25+04 45+0.3
BGT Test 0.9+£04 24+1.1 53+10
PB2 Inc. 26.1£2.2 3.2£0.3 4.7+0.3
PB2 Test 34£1.9 26+1.1 83+27
RS Inc. 44+21 55406 62+1.3
RS Test 74+50 26+1.0 47+1.0
DEHB Inc. (64 runs)| 11.5 £ 0.7 6.0+ 1.0 7.3+£0.9
DEHB Test (64 runs)| 9.4 +2.5 3.9+1.9 8.7+0.7
BGT Inc. (64 runs) | 4.7+5.1 3.2+15 53+0.1
BGT Test (64 runs) | 21+£1.9 2.6+04 59416
PB2 Inc. (64 runs) [10.5+10.1 3.4+0.3 5.2+0.2
PB2 Test (64 runs) | 21+£1.1 3.0£0.9 4.3+0.2
RS Inc. (64 runs) | 1.94+0.3 59+0.8 6.7+£0.4
RS Test (64 runs) | 1.1+0.1 2.3+0.7 3.6£0.5

22

Hyperparameters in RL and How To Tune Them

G. Hyperparameter Sweeps for PPO, DQN and SAC

The full set of PPO sweeps can be found in Figures 9, 10, 11 and 12, the SAC sweeps in Figures 15 and 16 and the DQN

sweeps in Figures 13 and 10.

G.1. PPO Sweeps

PR on Fendgban] - Lesmisg Saie

o a0
e

PO on Pendulem-vt - N Epachs
4y ==
— 41 — mo
— 1

Awaiage Egisadic Retum
\ |
8 8

.

o 4 06 (L] 10
#Seps

PPO on Pendulum-v? - Grad Nom

£ =03 — 0}
3 — 0y — 0T
& 500 — 05
&
E—mm
P
e
£ 150
o o 4 o (L] 1.0
#Stops 1

PRO an Acrobot-v1 - Entropy Coefficient
— wam — wn
— fn — 2]
M — oo

-0

PP on Acrabetv] - N Staps
— a0

W
=
2

E

£

Awaiage Episadic Returm

4

a3 a4 L3 o4 10
#5tap:

PO on Pendulim-v] - Entropy Cosflicient

PPO on Pendulum-v? « N Sleps

£

o

0 o 4 06 (L] 10
#Steps 18

PROon Pendulum-vi - Value Coafficient
— o — e

—oms — a1
—

%

Average Episadic Fetur
;-
g 8

£
=

o 4 06 (L] 10

=
]

PPO an Acrobatw ! - Norm. Adv
P — File. — The,

Mr.meEpi:TndicRamm
A

o
=
£
o
=
=
=
o
a

&

5

Awaiage Episadic Returm
&

Hil a3 a4 L3 o4 10
#Eteps 1e8

PPC an Pendulim-vl - Clip Rangs

PPO on Pendulumev1 - Norm, Adv,
— Fase o T

£

:

Awaiage Episadic Retum
\

£
=

o 4 06 (L] 10
#5eps

PPO on Pendulumev! - Clip Renge W

81— DA
— 87 ﬂi

-

Awaiage Episadic Retum
|
g &

PPO on Acrobot-v1 - Batch Size

£ =1 — wWe. — 1m0
| — M. — 30
& <200 i
& =
im 2N
il
2
-
s-ﬁﬂb

no a3 a4 L3 o4 10

5 18

£ 10 ST —
3 — s
2 —DES e 00,
& ——oes a5,
fi [H—T
J
il
FE
s 500
o a3 a4 L3 o4 10
5 18
£ WD
|
& 200
&
im
il
F -0
25
no a3 a4 L3 o4 10
#Eteps 18

PO an Perdulum-vi - Balch Stza
e ——Y
Bt
—En

PP on Penduum-vi - GAE Lambda

1 — amy
— aw
=500 — ns3 a0
— na3 as
nn am

Awaiage Episadic Returm
i
=
2

§

o o 4 06 (L] 10
#5eps

|
5
2

o
2

kool
&5 &
8

Average Episodic Rotum

.
2
3

:

&

Auarage Episadic Return
‘
R

PPO on dercbol-v! - Grad Marm
— %3 — 08
B4 — of

5

Awaiage Episadic Returm

Figure 9: Hyperparameter Sweeps for PPO on Pendulum and Acrobot.

23

Hyperparameters in RL and How To Tune Them

24

BP0 0 anit - Leaming Rate

3000 — et — aon
— le o8
— i w00z |

2000 — oy so1 |
— s Bt

O 20000 0000 GO0CO AO00C 100000
isndes

PR on Ant - N Epachs

= 1000 — 40 — mn
3 — 8 —
& — B

.%m

w

e e
g

-

0 0000 40000 EDOOD HOOOD 100000
Episades

PPC on Ant - Grad Morm

o om0 B
3 G
— 5

%WD

i

;I.I o

o _—____-—-——_
S

5 e

0 0000 40000 EDOOD HOOOD 100000
Episades

ooy PP On hallchestsh - Entrapy Coefficient

£ soon
5000

g

§ 2000

2 3000

r
B 2000

o

0 ® S 75 10 125 1D

PPO on Halfchestah - N Steps
— %1 — 3RO
— SR —— WA
—— V0

Awaiage Episadic Retum
~EHBEER

PO an ant - Entrepy Coatficlent

4 0000 40000 EOODG AOOO0 100000
Epizodes

PPO o An - N Steps

— HB0 —— AMRD
000 — BEE — a0
— R0

=

Aveiage Episodic Return
=
=3

D 0000 40000 EDOOD HOOOD 100000
Episades

PP on Ant - Value Coefficient

g oo —enli — a0
; —ams — 0y
— aiDt

g S0

i

o o

2 —_—
g

s-ﬁﬂﬁ

D 0000 40000 EDOOD HOOOD 100000
Episades

PP an halfcheatah - Clip Rangs

o @ 0 35 10 @5 150
Episodes.

PPO an Halfchestah - Norm. Ady.

= — Fube: — T
=2 3000 2
-3
aé 00
W 1pog
E
3 o
1 H 4]
Episodas a7
FPO an Halfeneetan - Value Gosficient
£A00a — omn — 0%
El — nges —pA
& — 01
% smog
i
& 1000
2
E
3 L
1] 4
Episodas a7

BPO on ant - Clip Range e

]

= — W4 — o
£ 5000 El — TN — D
g s %—mo L}
g =00 :E-‘WD
& oo “;: 800
& 1000 ¥
i i
~1000
0 20000 40000 60900 BG000 100000 G 20000 ADOOU EDOO0 OGN 100000
Episodes Epizades
PPO on Ant - Morm Adv PO on Ant - GAE Lambda
= — Fabe — T 3 — e — 078
i R e
i T} — 0
'i] im a1 um
1000 i 1000
2 2
P B B
0 0000 40000 EOOO0 ROO00 100000]
Episndes
PPO an Ant - Cip Range Y
= = a8
s ==
2 200 | =
£ —
‘i 400
W —sop
S
: =800

PPO on Haffichestah - Baich Sze

PRG) on Halfcheetah - N Epachs

= — wg — 1m0 = — a0 — o

3 — @i — men 3 3000 — o —b

% _1o0 | — 0 % —

B o]

u PR

g g

e I

b A000 40000 HOGOD BOCOY 100003 o Fl 4 6

Episodas Episodes o7

PPO on Halfcheetah - GAE Lambda PPO an Hatfchestah - Grad Sarm

£ —u e £ —o —
2 E| — o —ny
& o0 2 2000 —
& &
i i
; & 1000
g [
» »
H i
L H
4 (3 [H] 4]
Episodes o7 Epissdes w7
PPO on Hafchestah - Clip Range W
£ 100 —0f —
2, — a2 o
—_ o8
% — o
i-mn ;/ o8
-2 |
z
-0
a0

b 2000 40000 BCODOD SH000 100000
Episodas

Figure 10: Hyperparameter Sweeps for PPO on Ant and Halfcheetah.

24

Hyperparameters in RL and How To Tune Them

25

PPO on humanoid - Learning Rate
ot — sl
Bosss

o
—

0 ZODOD 40000 60000 80000 100000

PPO on Humanaid - N Epochs

= — a0 —
| — w0 — e
& 60 =

r

2

200

w

E #
L

=

P0000 40000 GOGOG BOODOD 100000
Epi:

PR3 an humanold - Entropy Coefficient

— on — 04y
BOOO — [y — 0¥
— o
E aoc0
=
&

4 0000 40000 &DO0C 0000 100000
Eplsodes

PP on Humancid - N Steps

= — aanp
2 1000 — 0
&

%500

B w0

[}

§,-m

I 00 p—

o

O AN BDOOG FOONG 10000
Episades

PPO o0 hismanald - Clip Rangs:

ABCO

3000
i
é 2000

1000

a 2000 40000 000G 80000 10000C
Eplscdes
PPO an Humancid - Ko, Ady.

= — Fahe — T
£
£
'iww
i
§ 0

0 000 0000 EDOOG ROOOG 100000
Episades

Awaiage Episadic Retur

Average Episodic Return

PPO on Humanaid - Batch Size

PP en Humansid - Grad Noarm PPO on Humanoid - Value Cosfficient

FIPO an Humanaid - Clip Range Vi

=50 ——T———a§ =80 — e — s £
é — a4 — a7 é — g — 01 é .
— 5 — 0
% 00 & am & el
i i i
300 L& r
w [} (=]
P P P
g0 Faoa ¥
H H 3P
] 100
0 0000 40000 GOOOG MGG 100000 0 0000 40000 GOGOG KOODD 100000
Episodes Episodes.

Figure 11: Hyperparameter Sweeps for PPO on Humanoid.

25

Hyperparameters in RL and How To Tune Them

26

1_EPCI an MiniGrd-Doarkey-525-vD - Laaming Rate

Seqp — doooiy

%
T (13
=
o4

3

o

an 02 ha .6 as

-4
@

=
a

=
"

Awatage Episadic Retur
=3
B

=
o -

e 0@ o4 08

L2 10
#5teps. a8

PPO on Minigrid-docreey-5x5-v0 - Grad Norm

El
o

=
@

Auarasge Episadic Retur
-3
=

s o
a0

0 02 o4 ng L2 10
#5teps. a8

a0 n2 4 0.6 ag 10
#StEpy 1eé

1 PP on Minigrid-cengty-Buf-v0 - N Bleps

T ==

— D

=
o

=
a

Awaiage Egisadic Returm
=@ =

-5 R B

=

02 o4 04 o8 1.0
#5teps. a8

PRC on ManiGrid-Doorkey-555-v0 - Entropy Coefficler
10 =

LI 04 06 aa 10
wseepa 106
PPO on Miragric-doorkey-5x5-¢0 - N Steps.

)
=

=
@

Awatage Episadic Retur
=
=

s o
a0 =

b0l o4 08

L2 10
#5taps. a8

PP on Minigrid-doorkey-xil - Value Gosfficier

=

=
@

=
@

Avaiage Egisadic Retur
a2 = =
-5 & E

] 02 o4 ng L2 10
#5taps. a8

iy PR on MiniGrid-Empty-525-v0 - Clip Range

a0 n2 L3 0.6 ag 10
#StEpy 1eé

RO an MiniCind-Empty-fxh-wl - Norm, Ady
B ———e = ke

#teps

L] o4 ng

L2 10
#5taps. a8

Ll’l:’O on MiniGrid-Doorkey-5x 340 - Clip Range

4 PO en Mimigrid-doorkey-5x5-40 - Morm. Ade.

=
@

o 2
noa

Awatage Episadic Retur
=3
B

=
o

e 03 o4 08

L2 10
#5taps. a8

PPO on Minigrid-dearkey-Ex5-v - Clip Range Vi

=
@

Avaiage Egisadic Retur
-3
=

o 02 o4 ng L2 10
#5taps. a8

1,aFF'@ ot Minlgeid-emply-5uf-v0 - Baich Size

E

Awaiage Egisadic Returm
=3
B

4
02
an
o 02 o4 ng L2 10
#5taps. a8

‘EPOQH Minigrid-empty-SxS-vl) - GAE Lambda
£ — 1

o 02 o4 ng L2 10
#5taps. a8

‘laF'Oon Minigrid-ematy -Sx5-vD - Clip Ranga W
= >

-ina
o4 [
Bo.
a0
L o o4 04 o8 1.0
#Stops. a8

DOM an Minigrid-docrkey-Sx5-v0 - Batch Size
— e — 10
— a0

=
=

i
—

o
o

Awaiage Episadic Retum
H 2

F

o 02 o4 ng L2 10
#5taps. a8

PP on Minigrid-doarkey- 5Bl - GAE Lambda
e ;

=
@

=
m

Awatasge Episadic Retur
=
=

=
=0
=

02 o4 0 8 1.0
#5taps. a8

P{'E of MiniGrid-Empty-5x5-v0 - Learning Rate

(T

00 0Z 04 05 08

10
Te

1,0 FPQ on Mirigrid-emply-Sxf-v0 - N Epochs

A _—‘51

=
o

o =2
noa

Awaiage Egisadic Returm
=3
B

=
=0
=

02 o4 04 o8 1.0
#5taps. a8

1,0 P2 on Minigrid-cariphy-Exb-+0 « Grasd Moy

3 i —— %
— o —

E (1] pres=—n

gna

o4

o 02 o4 ng L2 10
#5taps. a8

Figure 12: Hyperparameter Sweeps for PPO on MiniGrid.

26

Hyperparameters in RL and How To Tune Them

27

G.2. DQN Sweeps

DM on Acobot-yl - Learning Rate

DM on Acrobatu ! - Gradient Steps
200 — i —u
w0 — w0’
R 1

Awaiage Episadic Returm

DON on Acrobot-v1 - Epsilon

DGN an Acrobot-vl - Train Frequersy
]

LI as 06 o8

0.0 [+ o4 ah o8 10 1
#hteny g #stens pLl

DXIN an Acrobat-vt - Leam Start DM an Aorobotvt - Tau

= — we = —% — &
é 350 — '.:;n é =agk =
i i

I i
! 1
S
E: -

i

i

Al oz a4 98 a4 1.0

a2 a4 98 ou
#5taps a6 #Shap:

5 a6

Figure 13: Hyperparameter Sweeps for DQN on Acrobot.

27

DCH on Acrebot-v1 - Baich Size

Awaiage Episadic Retum
B

il a2 a4 98 a4 1.0
#5taps a6

D3N an Acraboi-v1 - Buffer Size

= — N0 — 6ol
émn — wo0p. — somu,
o =360

g—m

2

450

Hyperparameters in RL and How To Tune Them

DOM an Minigrid-docrkey-Sx5-v0 - Batch Size

DOW on MInIGRA-Doorkey-5x5-v0 - Learning Rate DM o MINGHd-Doorkey-5x5-v0 - Train Frequancy DN an MiniGrid-Doorkey-5a5-u - Epsilon i) s
— deim — dpn S bag —a —m En4 = =
23 T s o4 E S
w02 -
03 i
o2
H
g0z &
Bl g’o«
oo B 3 LT
0o B2 04 06 a3 1
staps 106
%g""" Minigeid-docriey-5x5.v0 - Gradient Step: DEN en Mnigrd-doarkey-Sx5-0 - Leam Start - OGN an Mirdgrid-dearkey-SxGvD - Taw
— e — ; — a1 — 08

P
— o ur

—_— — 0
0%
—

0003
— MO0 — NG

— 20
— 000

— A

=
>
=
w

R
|
2

& Episadic Return
)
73
Awstage Episadic Returm
3
Average Episadic Relurm
|
2

e o1
oy o
o0 o0 i —— o0
Wo o 02 04 0E 0B 10 wo 02 04 08 08 10 00 07 04 05 08 10
#Staps. 1mfl #Staps. e #Staps 1e8
Delies Ml"hddi m: 5"52‘ Ak s DN o1 MINKGId-Empty-5x540 - Leaming Rata DN on MINIGi-Empey-5x5-v0 - Train Frequency | DON n MINGrd-Empry-545-¢0) - Epsion
§ e — smbmn
— o

iu.?

4 g

i =

2 04 s ! r z

6o 02 04 05 0B A0 B da GAL 68 A L oo Bz 04 06 98 10 oo Bz 04 06 a3 1o
#Staps e Wsteps 16 gy 106 #teps 106
DG on Minigridempty-x5-40 - Gradient Steps DG an Minigrid-smpty- 4540 - Learn Start DM 0n Mnkgpid-armpty x50 - Tau
£ £ = £ p — ok 3
an E‘”’ : =8 En.a —Joo0a0, 208
gos g“ﬁ gna %un
o4 Zos Foa Fos
r o o o
Fog Fuz Fou Zo2
: o0 i o0 i o0 2 oo
L o o4 04 o8 1.0 L) L o o4 04 o8 1.0 no o n4 o8 (i 10
#Eheps a8 #hteps o8

DOM cn Minigrd-ematy Sul-vi - Buffer Sze

=
o

Auarasge Episadic Returmn
s @
£ 35

s o
o =

=
=
o
=

04 04 o8 1.0
#5taps. a8

Figure 14: Hyperparameter Sweeps for DQN on MiniGrid.

28

Hyperparameters in RL and How To Tune Them

29

G.3. SAC Sweeps

SAC on Pandullam-v1 - Leaming Rare
— St oy
i

E

op 4r 84 @8 08 1d 00 4y 04 06
#5tens 10€ #5tens

SAC on Pendulum-v1 - Buffer Size.

§

Awaiage Episadic Returm
|
=
3

Aveiage Episadic Return
e £
. B B 8

~1500
4 07 G4 06 BA 10 ug 03 b4 06
#5ieps a8 #5teps
SAC on At - Tau
£ £ 0
s :
500
2 & T
i i
—H
g—ﬁm 'g
g"ﬂ“’“ g-&nn
2500
0 20000 40000 BONCO BOGOG 100000
Episodes
g P £
| -
R &
2 2
i-mno i 1400
04500 [in)
¥ §-20m0
—2500
0 20000 40000 HODOO BOGOG 100000

Epsades

SAC on Pendulum-v1 - Tau

SAC on Pendulim-v1 - Gradient Steps

SAC an Pendubin-vl - Tradn Frequency

— i
uzl
-~
u
—
e 10 oo 07 04 Gs o0& 10
6 #5tens 106

SAC on Pendulumvt - Learn Start

=3 —10 — 10000
— e’ 00— 00
1000

g

Awaiage Episadic Retum
P |
g B

(L] 10 an 02 4 06 (L] 10
188 #Steps 188
SAC an Ant - Train Frequency
10— a0
o —en
w A

Awaiage Episadic Retum
g
2

020000 4000 0000 BH00G: 100000

Epsades
SAC on At - Gradient Steps

— 1 —a0 g 0

wm — 0 E

i el
%—mm

i
& -2000

g

0 20000 0000 G0000 BOGOD 100000]
Epsodes

= o — w0t

3 — o — M

& 500 — 0

&

:i—WﬂO

[

P

S

3—15“)

an 02 4 06 (L] 10
#Steps 1e8
SAC an Pendulum-v1 - Eniropy Coefficient
= — m — s
— gy

R |

& -

i—wm

[

P

e

£ -0

— 1
— w0

—

st Episadic Retwin
Eggsg.

:

SAC on Penduum-v1 - Balch Size

o 02 4 06 (L] 10
#Steps 18

SAC on Ant - Baich Size
— By — sme
M0 — WMo

e

0000 SO000 GOOOD OO0 100000
Epsades

SALC on Ant - Leam Start

— 10000
—

0000 $0000 HONOD BOGGD 100000
Epsades

Figure 15: Hyperparameter Sweeps for SAC on Pendulum and Ant.

29

Hyperparameters in RL and How To Tune Them

SAC an Halfcheetah - Leaming Rate SAC on Haffchestah - Tau SAC on Halfcheedah - Train Frequency SAC an Halicheetah - Balch Size
£ £ £ w0 £ — e — g
R 2 2 2 e — 10—
& & & &
& 2000 & & 1000 & 1000
1o i i i
[[[[[o
2 2 2 2
g 0 g g g
=1000
2 10 2 2 -toeo 2
a 2 4 8 a 1 2 Bo 08 W 15 30 25
Episedes. b Episodas L] 1T
SAC an Halicheetah - Buffer Size SAC on Halfcheetah - Gradient Steps SAC on Ha¥cheetah - Learn Start a0 SAC on Humancid - Leaming Rate
H £ 2000 £ — . — e £ — e — ot
E| E| 3 -~ wp — toxan] — e e
2 200 2 2 2000 | [%ou & a0 — G0 G
) — s
2 2 Jo00 2 2 — s it
:i 1000 :i :i 1000 :i
fm fm fm i
2 PR PR 2
g 0 E E E
i i - - e
=1000
a 1 2 o a5 10 15 20 a 1 ? 3
Episodes o7 Episodes. o7 Episodes. o7
SAC on Humanaid - Tau SAC on Hemangid - Train Fraquency SAC an Humanoid - Batch Size SAC on Humanid - Buffer Size
£ —on — £ — 1 —a0 £400 — o — e =0 — mOD — SO0
2 — ar E‘w — i — 80 2 — M0 — WM 2 — N — S0
2 —) — O el — el — a0 2o — s
— [00
1 e 1 1
a0 — i — Ham
: oe i :
E K K S
Em Ea Eaw En
o 0000 40000 GOOOG BOO0D 100000 O 20000 40000 EO0OU BOODD 1CX00O
Episodes Egi
SAC an Humanokd - Gradient Steps SAC an Humanaid - Leam Start
£ 80 — 1 — o £ — o — e
2 — ¥ — 80 2 — We — 0o
3w — By — won
. 1
i3 i @
2 2
o |
s 100 s 00
O 20000 40000 BOOOU BOODD 100000 O 20000 40000 EOOOU BOODD 100000
Episodes Episodes

Figure 16: Hyperparameter Sweeps for SAC on Halfcheetah and Humanoid.

30

Hyperparameters in RL and How To Tune Them 31

H. Full Performance Pointplots

The full set of SAC pointplots can be found in Figures 17 and 18, the DQN pointplots in Figures 19 and 20 and the PPO
pointplots in Figures 21, 22, 23 and 24.

H.1. SAC Pointplots

N - Batch Sie on Penduum-v1
S4C on Penduum-vl - Leaming Rate SAC on Pendulum-vl - Tau SAC on Pendulum-vl - Train Frequency

260 £ 290
0 3
o
500 & -
z o =700 L —huo _,_‘; 30
£ 1400 H £
£ 5 g -0 b
_3s00 E a0 L 3 Woae
1000 g
2
s 1350 320
R Ly = S A W a B s E *
Fg o o YR, S L S RO 0L . REU I R O G40 EG /60 BIZ0 M0
Learning Rate Tau Trisin frequency Hyperparamstar Valus
201 Buffer Size on Pendulem-vt Gradient Steps an Pendulum vl Leamn Start on Pendulumv Entropy Coefficient on Pendulum-v1
o _-2in £ 4T
3 2 o 2 3
B 0 R o .
i i i i
600 230 i
i ¥ i § Fm
[[fm [
w800 u o 240 2 e
g T a0 ¥ g
2 ~1000 2 T 2
: i £ -0 < 480
SO0 SO0 SOO0G SH0000 BRG0G0 0 W20 40 B0 B0 T 0G0 000 10000 100004 B G005 0N Bos B
Hyperparametar Vatue Hypemaramater Yalus Hypemarameter Valus Hypemaramater Valus
Leaming Rate on Ant Taw an Ant Train Frequency on Art Batch Size on Ant
£ 500 £ 475 £ g e
E| E| 3 s E|
2 = 2]
i i ¥ 4-am
] e]]
4 -1000 4 4 4
[woap [T [
1280 ¥ - B %700
-g ~1500 -g - .g—wco -g
L 500
5.0 Te-Ofi-Oio- 160 IECON DOTRLCA 008 01 G162 0% 04 05 08 07 B8 B9 10 W0 oAb Ap 6D G40 B4 60 BIZ0 1020
Hyperparamatar Yalue Hyperparamater Valus Hyperparamatar Value Hyprsparamator Yakse
Buffer Size on Ant Cradient Steps an Ant Learn Start an Ant
£ = - 500
3 3 s 3
i -3 -3
2 2 e
5 35 35
F 800
& -0 4 4
[[i 700
¥ § 1000 ¥
T -000 z T i
] = L1400 TR
SO0 SO0 50000 0500000 BO0GG00 0 W0 4D AL 16D T 0G0 000 100040 100004
Hyperparameter Vake Hyperparamatar Yalue Hyperparamatar Valus

Figure 17: Final returns across 5 seeds for different hp variations of SAC on Pendulum and Ant.

31

Hyperparameters in RL and How To Tune Them

32

Learming Rate an Halicheetah

L BD
3 L0d
2
o A
bl
i 2w
u
g o0
2
* 200
[¥e-lEe-{a 050
Hypermparametar Yakse
Buffer Size on Halfchsetah
H
2 400
2
i
&
il
»
g o
<
G000 BOOO BOCOD, 0 SO0000 B00000.0
Hyparparamater Valuo
Tau on Humansid
E
f
[
u
b1
i 265
]
u
& 60
I
Z

010703 64 b5 06 07 08 08 10
Hyperparameter Vake

g g B

Avetage Episodic Reburn
@

2

Average Episodic Return
2 s 29 8 8

Average Episodic Return

Average Episodic Return
0
=
g8 o

$
g

¥

Ayerage Episadic Returmn
g & B

k ' Average Episodic Return
g 5 ¥ BB
Average Episodic Return
B 8 8 8

Aveiage Episodic Return

i

Tau on Halfcheetah

01 3203 44 4506 07 08 b9 10
Hypemaramater Vakse

Gradient Siops on Hafcheotah

W20 40 B0 B0
Hyperparamater Valus

Train Frequenay an Humanaid

it @0 & uo 164
Hyperpamameter Vakuo

‘Gradient Steps on Humanoid

I

it @0 & uo 164
Hyperpamameter Vakuo

Train Frequency an Halfchestah

Average Episodic Reburn
o :
Eeg . 28

20 40 B0 B0
Hyperparamater Valus

Leam Start on Halfcheetan

100 1000 10004 0000
Hypemarametar Value

Batch Size on Humanoid

640 1AL P50 BH2G
Hyperparameter Value

4

Learn Start on Humancid

Aweiage Episadic Returm
g g -1 a
2 =

T 00 000 10000 0000
Hyparpamametor Vakio

Avetage Episadic Reburn

g8 85

E

g

B0

Sl

Baich Size on Halfohestah

WA AL 5120 10240

Hypemarametar Value

Leaming Rate an Humanoid

n-tle 50

BO0.0

Hyperpammeter Vakio

Baiffer Size an Humanoid

U000 000, 0 0000 (000000
Hyporparameter Yalus

Figure 18: Final returns across 5 seeds for different hp variations of SAC of Halfcheetah and Humanoid.

32

Hyperparameters in RL and How To Tune Them 33

H.2. DQN Pointplots

Batch Size on Acrobat-vi

DON on Acrobat-vl - Leaming Rate DN on Acrabet-v1 - Traln Fraguency DAM on Acrooosyl - Epsilon
-200 £
) 200 = |
= o 400
= =301 p -0 E
£ oo £ 5 B e
E E § a8
£ f —on E —4on uw
-3a0 £ 410
= -300 g
2
L oA i S it 2 ~san . T
FE SO T R T Y PRI, e T . O R BN e WO Ba0 AL 280
Learning Fate Traln Frequency Epalion Hypemaramatar Valus
Gradient Steps on Acrobat-vi Leamn Start on Acrobotvl Tau on Acrobot-v 1 - Buffer Size on Acrobotvt
4t £
= e = =
3 a0 2 -3ms 3 8
2 2 2w Lol
?_:‘ a8 s Thasd: —’;_:‘ e —’;_:‘ _aa
A g urs A A
i -350 o fm i =300
z s o 430 P
T oo g g 2 e
2 2 g0 2
< £ 025 £ <
400 410
16 20 40 B 180 W0E 00 10000 0000100000 010203404 050807 0809 10 SO0 B0O0.0 BOOOR DS00000 0000000
Hypemaramater Valus Hyperparamatar Vakse Hyperparamater Valus Hypemaramater Vakse

Figure 19: Final returns across 5 seeds for different hp variations of DQN on Acrobot.

33

Hyperparameters in RL and How To Tune Them

Batch Size an Minigrid-doorkey-Sx6-vl

DO# 0N MiniGrig-Doorkey-5x5-4 - Leaming Raty DON on MiniGed-Doorkey-5x5-u0 - Train Fraguent DO on MIniGrid-Doarkay-5x5-v1 - Epsilon
=
E|
02 04 TS 2 pozs
= a0s0 2
T o1 T oz H B
i z 3 oo § o020
a0 £ B]
() 000 Fooms
=01 —0.625 3
P SN - -0z
FAESE T A . ST ST Y B0 O G40 wRQ el
Learning Rate Trai Frequency Epsilon Hyperparameter Vake
115 Grosiert Steps on Minigriddaarkey 5540 g e Start on Miniprd-coarkey Sx540 Tau on Minigrid-daarkey-Sx5(Eufer Size on Minigrid-dooriey-Sxdvil
= £ £ nass £
2 2 ooz 2 2 oozs
£0 E E E
) & pag £ o 2
TBoor z z T o020
§ '§uma g §
2 uosa o w0015 Homs
& Foote - -
£ 0025 3 T o 3000
H Zoma 2 E:
1WA 40 b0 180 WO 0E IO00D 10000 0100000 0 01 020304 050607 0808 10 SO00 G000 E0000 0500000, 8000000 0
Hypemparamater Vakie Hyperparameter Vatue Hyparparamatar Value Hypeparametar Yake
hatch_size an MiniGrid-Empty-Sxs-vi)
DON an MiniGad-Ematy-55-v) - Leaming Rata DO# on MiniGrid-Empiy-5x5-v - Traln Fraguency DON an MiniGrig-Empry-5x5-4D - Egsiisn 123
a6 10 o oes
0 06
o 04 pom
- T o8 E o4 2
oz H 3 i
i ooz i
0y
- o o
g 040
-0 . . o2
P I itz o7
P g w@'°§e@ oF o & - 1 3 - r T G B e R L %6 = &4 128)
Leatning Rate Trasin frequency Epallon Hyparparameder Value
radiant_staps on MiniGrid-Empty-Sxb- Learn Start on Minigrid-empty- x5y Tau an Minigrid empty-Gx540 Buffer Size on Minigrd-ematy-Sxivl
LES = 0675 - -
£ £ pes E
L £ 2 2
T 065 & 2o
08z u e 2
k] k-1
om0 0.625 B oss i
i 2 &05
LY L w o
© 0.600 P o«
. Eass gnu £
: 04
o z e
4 kS 1 WA 00 000 K000 1000000 01 0F 03 04 06 06 0.7 04 05 10 04 S00000 . S000, 000000 S000000,0
Hyparpornrmedar Value Hyparparameter Vaiue Hypemaramater Yalse Hyperpamameter Vakuo

Figure 20: Final returns across 5 seeds for different hp variations of DQN on MiniGrid.

34

Hyperparameters in RL and How To Tune Them 35

H.3. PPO Pointplots

Batch_size on Pandulm-v]

PRO an Pendulum-vl - Leaming Rata PPO on Pendulim-vi - Entropy Coefficient 3 PPO on Pendulum-y1 - Ciip Range
o a =250
500 ~za0 —500 20
H E E z
2 3 -s00 5_ “xm
2 —1a0n r § el é
750 ——
-1s00 -1000 e
a F o e,
R S i O o 3 s @ >
T eg,@&&@ & T = P I SO S I e, T e ® omE owm om
Learning Rate Entrapy Cosflicient Clip Range Hyperparameter Valus
N Epechs on Pendulum-v1 H Steps on Pendulum-v1 Noem. Adv. on Pendulumt GAE Larmbda on Pendutum-v1
3 £ £ £ 280
£ o0 § -0 £ am0 £
I3 & _aso -3 & 300
& s 2 2
k-1 k-1 5 k-1
] T § § -3
a5 A A A
-0 ul il il
)) 450 3 i—m
L Iz :
-380 550 st -380
4 L) (] g g WED BIRD D HMMAD 0860 False Trun {03 (420 530,630 710, 780,86 (9 096095
Hyperparamater Valus Hypemaramater Vakhs Hyperparamatar Valus Hypemaramater Valus
i Grad Norm an Pendulum-v1 alue Coefficient on Pendulurmoy ! Ciip Range W on Panduum-w! PR an Acrabate] - Learming Aate
g b E oan £ i
8 8 2 318
2 -0 2 .]
2 -s0s 3 3 o z-0
] B 308] T
B 2 -3 & 425 i
[} ul il
. i » -30 i A
g 4 g0
4 ag
£ : £ O STy
A a0 ? o
iK1 d 05 o8 o7 BOf1 B005 00 nos "1 01 02 03 04 045 08 07 0808 o F o ay -?’wd?.a?“hﬁa@a %
Hyperparamater Value Hyperparamater Valus Hyperparamatar Valus Learning Aate
i Acrobat-v1 n_gpachs on Acrebat-vl
PR on Acrobot-vl - Entropy Coetmicient PO an Acrabat-vl - Ciip Range Batch Size on W _apac
=00 -100 R L
ol —zo0 %
4 = 5 o =l
-] 5 =300 § 160, %‘
) :
o §_4an u 150 B 200
so1 300 &
E 220
—sail =20
2 X 5 ~
o @ g ¢ £ P s R i, . T S . 66 O A0 EL 280 4 & a 0 12
Entrapy Cosfficisnt Clip Range Hypemaramater Valus Hyperparameter Valus
n_ateps on Acrobol-vl rormatae_sdvartags on Acrabiot-] gaa_lambda on Aombotil max_grad_nom on Acrabot vl
=2 e
20 i
-2 " _ozs
280
o2 .E, o2 o
z B 360 z z
£ o5 i : a5
& [& - é 235
270
230 o 240
280
-235 =45
IS8 BI04 DME 4De0 w Faisa 05G0.95 09 0.A507E0 TI0630510.42 03 o4 o3 os o a7
Hyperparameter Valus Hyperparameter Valus Hyperparameter Valus Hyperparameter Valus
Wi_coat oe Arobot 1 Clip Range W on Acobat-vi

-5

-180

~286

Reward
& & &
& B)
Aunarasge Episadic Retun
L& b
s & B

o1 DDS DO 0005 oo0f 0102 03 04 05 08 07 08 08
Hyperparameter Value Hyperparamatar Valus

Figure 21: Final returns across 5 seeds for different hp variations of PPO on Pendulum and Acrobot.

35

Hyperparameters in RL and How To Tune Them

36

PRO on ant - Learning Rate

—rzv:__md .
EEEE
re:lurd .

. E %

Average Episedic Return

4 " 5

o L 3 O

FF v{u@“\éu@n&ﬁ
Learming Rate

M Epoachs on Ant

Austage Episadic Returm
= -} B
Average Episadic Reburn
8 B 8
8 o 2 B

4 oo Bl 1w wa
Hyperparametar Vidua

Grad Narm on Ant

Average Episodic Return

5 e 3 B ¥

Awstage Episadic Retum
=l B 8

03 b4 06 BE 0OF
Hypemparameatar Value

Entropy Coefficient on Halfichestah

g

N
<}
g
2

farerage Episodic Relum
g
2

a

Entropy Coefficient

N Steps on Halichectah

Average Episodic Return
- 8 B EE

EEO B0 R0 AMAL 0860
Hyperparametar Vake

PPO N ant - Entrapy Coafficlent

F & & @

@,

Entropy Caefficient

H Steps on Ant

AL BRG A0 HMED 0860
Hyperparamatar Yaks

Watue Coefficent an Ant

Do 0.005 ay e [t}
Hyperpasameter Vg

PPO on halfcheetan - Chp Range

. F 88

T T T SR, TN, T SO .

Clip Aange.

Morm, Adv. on Halicheatah

Aveiage Episodic Return
g & ¥

Aveiage Episodic Return

Falsa Trun
Hypemparametar Yaks

Vale Coefficient on Hafichestah

Awaiage Episadic Returm
E & EB 2

0001 GO00E 001 G0s O
Hyperparameter Vakuo

000

ao0p

2000

:

o

£
4

e R
b

l

2
B azs

Auetage Epi

a5

1650
=165

psadic Faturn

H

-TT7E

= 138

-134

Awaiage Episadic Retum

A Y
= B OF

E B ¥

2

&

%

Ayerage Episadic Return
& th
2)

Gl

Ciip Ranga on Ant

oot o? ot o7 ot S P
Ciip Range
Morm, Adv. an Ant

Falsa T
Hyperparameter Yakuo

Clip Range V¥ an Ant

01 07 03 04 05 06 07 0808
Hypergaramatar Valus

Batch Size on Halicheetah

)

W0 B0 b0 G 2660
Hyperaramatar Valus

GAE Lambda on Halfcheetah

(03 41420 530 630,710 7HO.85 4.8 0 950,95
Hyperparamatar Yaks

C#p Range VF on Halfchectah

01 02 03 04 06 06 07 D8 08
Hyperparamater Yalue

Basch Size an Ant

= :
-TE0
5
u TE2 5
g
£-ns0

W0 B0 640 1AL 2660
Hypemaramater Valus

GAE Lambda an Ant

=

15311420 530,830 710 78085 .9 D9E0SS
Hypeparametar Vake

82 8

Average Episodic Return
o

E

PP on halfcheetsh - Leaming Rate

)
¥
5
z
2000
1

g R M Y
Pb-fﬁ\«apo;pu@eé oo e

Lewring Hate
M Epochs on Halfsheetah
£
2 noe
&
-
T 0o
]
i
L oon
E
200
40 BOD B0 00 120
Hypeparametar Vake
Grad Norm an Hatichestah
£
2 poa
&
-
35
7 750
‘a
w
z
Fmo

03 a4 06 1]
Hyperpamameter Vakuo

Figure 22: Final returns across 5 seeds for different hp variations of PPO on Ant and Halfcheetah.

36

Hyperparameters in RL and How To Tune Them

37

Leaming Rate on Humanoid

PPO o6 hismarald - Entropy Coefficiant

PR 00 hsmanald - Clip fanse

0.3 0420530630 71078085 0.9 0860:99

Batch Size on Humanoid

WO osen g

Hyperpammeter Vakio

GAE Lambda on Humanoid

Hyperpammeter Vakio

000 =
£
E) 59
£ sono £
w00 .
£ B ibeo & g
& 000 5 s 8
2000 ;
&] t 2
g 2000 avea »
g 100 ERT
NN, :
& o & o) o> > o n 1
N .FD@“@QQ o @ & u@ o of v & ek o o e o e et 1840
Leaming Rate Entroay Coefficient Clin Aange
M Epocha on Humanokd W Sizps on Humanaid i Marm, Adv, an Humanaid
= 4 = = =
3 2 50 2 2 400
& 330 -3 w -3
]]]]
350
B a0 b ol 8
by by by by
o o u 400 o 300
g L £ £
z g z z
350
< 280 < < o« 70
40 L) al WO 1 PEN BIZ0 WD MAE0 40960 Falsa Trum
Hyperparameter Vakio Hypermpammeter Vakue Hyperpamameter Vakuo
Grad Nomm on Humancid Value Coefiicient an Humanaid C#p Ranps Vf on Humaneid
2 2 360 2
0
2% -3 -3
2 2 100
k-1 k-1 k-1
jur B
i Baw i
[il il
v » v g
¥ o ¥
fu ; 5
03 4 08 13 o7 H00 aCos o .05 o1 01 62 03 44 05 06 QT OB 0%
Hyperpamameter Vakue Hyperpamameter Vakio Hyperpamameter Vakuo

Figure 23: Final returns across 5 seeds for different hp variations of PPO on Humanoid.

37

25460

Hyperparameters in RL and How To Tune Them

38

PPO on MiniGrig-Doorkey-5x5-40 - Learning Rate

10
#05

0o

b

A . o e M
P T
Learning Rate

Epochs on Minigrid-doorkey-GxE

Aveiage Episodic Return
s e B o
B B 3 &

e
o
8

60 &0 W0 120
Hypemparamater Yahse

Grad Nonm on Minigrid-goarkey-5x50

Awerage Episadic Ralutn
o o =
s = 4

o
=

a4 (5] L6 ar
Hypemparamater Yahse

PPO on MinaGrid-Empty-5x5-40 - Entropy Coafficier

reward
B g @ 8
reward
o 8 B 8 B o=
A - =

%

I

o o

%

Entropy Coefficient

N Steps an Minirid-mpty Sx5-v)

oaa

Average Episodic Return
CR]
.
B2
Reward
H
i

0525

HBEL S120 0240 HN4BU 0560
Hypoerparamater Value

PPO an MiniGrid-Doorkey-5x5-v0 - Entropy Coeffich

100

075

E

z{l:ll

a5

aon
> s @ e
A A

Unitrapy Eosfficient

N Steps on Minigrd-doarkey-Sx5-v0

Average Epieadic Ratum
a g g

W0 A0 M0 AMA0 40660
Hypemaramater Yaks

Ve Goeffisiant an Minigric-docrhey-5x6-v0
o8
2
& oen
-
fiuss
o
P
Foas

T

040

QN GO0 0 008 aa
Hypermaramater Yakus

PPO an MindGrid-Empty-5x5-w0 - Cip Range

of gt ot gt e o o oF &
Clip Range

normalza_sdvantaga on MiniGnd-Emply-Sx5-0
o545

o0

0830

[+1-7]
Teua Falsa
Hyperparameter Value

o ‘Waiue Coefficient on Minignd-emgpty -Sx5-w(

@

Average Episodic Return
= o &
® B B

QN GO0 0 008 aa
Hypermaramater Yakus

R PPO an MiniGrid-Doarkey-5x5-vD - Clip Range

Lo
EDJS
Fas
g
025
asn
P e o ® gt of @t

o 2 u' o
Clip Rangs

Marm, Adv, an Minigrid-docrkey Sx540

=
i o7
Goas
k-1
fom
uf
»
SDSE
E 050
Fais. Trun
Hypermaramater Yakus
o Range V¥ on Minigid-doorkey-Sx5-
£
Eos
]
o
&
'ED 5
b
u
Fo4
H
01 02 0N 04 06 06 D7 0408
Hypermaramater Yakus
Batch Size on Minigrid-emply-5x5+0
Eo
£
rpt)
i
;i.l 082
»
gu o
LR < R 3 VR N)
Hypermaramater Yaks
GAE Lambda on Minignd-empty-5x5-40
E
¥
a
:30.90
i}
o D85
7
2
= nan

1.3 0420 530,830,710 7A0 45 0. 0.960 95
yparparamater Value

Clip Range ¥ an Minigrid-empty-6x540

E.
Zo09s

g
Loo3
;gn!-li'

P
gnm
L]

01 07 U3 04 05 06 07 08 08
Hypemaramater Vakie

Batch Size an Minigrid-doorkey-Sx6-vl

Aveiage Episodic Return
= = 2
2. B B
= =2 &

O SF0 640 RO EGL
Hyperparametar Vake

GAE Lambda on Minigrid-doorkay-Sx6-
=08
3
& oa
u

.Tgn:

Aueiage E
s e o
Z

o
05 0420 530 636710780 85 04 086099
Hyperparamater Valua

Leaming Rate on MiniGrid-Empty-545

Average Episodic Return
= =
5 & &

T S
P

Learning Rate

M Epochs on Minignd-emgty- S5

Averige Episadic Raturn
s = e
5 B B

40 il an wa 2o
Hypoparamater Value

Grad Morm an Mirkgric empty-Gx5-40

Average Episodic Return
S) @
L ®

a8
03 a4 (3 06 af

Hypemparamater Yakse

Figure 24: Final returns across 5 seeds for different hp variations of PPO on MiniGrid.

38

39

Hyperparameters in RL and How To Tune Them

I. Hyperparameter Importances using fANOVA

These hyperparameter importance plots were made using the fANOVA (Hutter et al., 2014) plugin of DeepCAVE (Sass

etal., 2022).

‘Ed_geg
Il 1.0

n
=]

‘Ed_geg
Il 1.0

@
o

o A I
o o o

aouepodw|

T .
o o o o

aouepodw|

1

0.

“h i

1

0.

0.0

0.0

abejueape” ez|jeulo

azIs yoeq

olel Bules|
48007 JA
syooda U

1900 Jus
sdejs u

wuiou pelf xew
epque| seb

o abues dip

abues dip

abejueape” ez|jeulo

azIs yoeq
1800 A

J900 U8
epque| seb
syooda U
sdejs u

v abues dio
wuou peif xew
abues dip

ojes Bujues|

Figure 25: PPO Hyperparameter Importances on Acrobot (left) and Pendulum (right).

‘Ed_geg
Il 10

1| ebejueape ez|eWlO"

|y abues dip

| syooda u
(E=Ts s TN

1 sdaisu

1 }J300 8

1 uwuou pes6xew
| @z1s yojeq

* ebuesi dip

_ ajes Bujwes)

«Q o = o
(=] [= (=]
aouepodw|

o

| a

zl

=

o

2
(=1

1| ebejueape ez|eWlO"

| Ja00 s

I abuels dip

1 uuou peif xew
1 syooda U

| 8215 yoleq

1 abuei dip

1 sdejs u

| 1903 A

ajes Bujwes)

© = &
o o =}

aouepodw|

o
o

2
(=1

Figure 26: PPO Hyperparameter Importances on MiniGrid Empty (left) and Minigrid DoorKey(right).

39

40

Hyperparameters in RL and How To Tune Them

uwiou” pesb xew

Budgets

|
|
1 syzodaTu
| jaoa
| sdaTu
| 8215 YIjeq
1 ajes Gujwes)
{ epoweroe6
w afive dip
.lI WwWabuesdip
——— .

W ow o8N = o
(=} (=3 o o (=] a o
aouepoduw|
w sy
mu.m abEjUBADE BZIEULD
) -
u- Jaos i
m
wuoa peaf xew
sysodau
sdalsTu

1

'

'

'

1

b A Bules)

_ azIsTynieq
. |Baa U8
epoue” el

abueidiz

=]

020
0.08
0.00

]
=1 = 3
asuepoduw)

1.

Budgets

jaoa i

wiou™ pesfiTxew

syzoda U

ael Gujwes)

sdais U

Bpowey 2ef
§ emsunea
- jBoajua
.l. afives dip
— I | coue e

o = @4 N o]
= o & s =

aouepodu)

o
=1

sleuespE azELLD

sleuespE azELLD

Figure 27: PPO Hyperparameter Importances on Brax Ant (left), Halfcheetah (middle) and Humanoid (right).

spes” Bujwes|
ajel Buues|

| ezsTuoeq
B sagng

ey

bay"ujen

-|I el

1
1
]

o
0
0.
(R

1 ejes Bujwea

1 E@E sEyng
sdejs juaipesdti
ey e

SUES BULIES|

|
|
-
-
.|. uojsds

= o

o
souepodul|

-]
4
2

o
i 1 nE

- _ | suegs Bunuesy
azis yojeq
HOE sagng
B]eS” Bujwes)|

uopsda

sdajs juaipelb

™ o - =
o (=] (=] =
aouepoduw)|

Figure 28: DQN Hyperparameter Importances on Acrobot (left), MiniGrid Empty (middle) and MiniGrid DoorKey (right).

1.0

Budgets
B

i
1
(=] [} -3 - 2] a
- o = = o =1
souepodu|
ne
- 1
o
al _
1
1
1
|
] =} - o o
(=] o o (-] (-]
aouepodw|

il]

sIE Jayng
azisTydeq
sdejs usipedt
LTI

ajel” Buiwes)
SHE]S BunLes]

ney

by ey
suE)s Buiwes|
nEy

a5 yojeg
sdajg waipel
JBoaTjue
BzIsIayng

A Guuea)

Figure 29: SAC Hyperparameter Importances on Pendulum (left) and Brax Ant(right).

| oW M N = S

S =1 = [=] = (=] (-]
aouepodu|

ne

- 1

o

al _

o @ + o o
o (-] o (=1 (-]
aouepodu)

JEl i)
bay"upen
SUEIS Buwes)
8215 yoleq
sdajg waipel
el Bues)
BzIsIayng

ne

JEl i)

bedy uen
sdays waipeb
ajel Bulues|
SUEIS Bulwes|
azsTyoleg
BzIsIayng

ne

Figure 30: SAC Hyperparameter Importances on Brax Halfcheetah (left) and Humanoid (right).

40

Hyperparameters in RL and How To Tune Them 41

J. Partial Dependency Plots

These plots show performance (lighter is better) across the value ranges of two hyperparameters.

J.1. SAC on Pendulum

algarithen madel_iwargs:tw

aigorthem modsl_knargs. gradient_steps

Titen e FIry =
kIR MOeL_ e 15 MEIL_ 38 BT, e KaE A e
E) & 1000,
i v E
o ==en ¢
= 3
E E
i e B oer
g v §
E =
£ 5
% e B oo
satia
£ £
i ; -
: -)
L pre o n ey 133 prr= e
sqanthm,madel. Kiws EEmin_mte kR Fodet_ W5, Baming_rsee

sigartm mossl kuargs b st

sigaritn mode_kwege batch_ere

FEITE] A0 . 1303 “aneka
it MOie_laanma kaning_rim AT MWD E BTN _fate

sigartm mossl kuargs b st

sigaritn mode_kwege batch_ere

TR, Mol kiwars fai ORI Mol kwars T

algerthem model_ksrge merming etarte

algerthem model_ksrge gradent

0emIm. madkl wargs.tais SN, made_knas
& 1000, = Sa00000,
E ward
. FSE—
& 9 i
B oo 5 s e
i L =
] ey ¥
% £
a4 120 teeruncn
E E
£ oy E
% — —]
o oM .87 o R] 128 e e
0Nt mrse KW T AN PO EWADS. AT siza

41

Hyperparameters in RL and How To Tune Them

42

shps

algerthem model_kwsrge gradent

algarithem madsl_kwarge lmarring ctarte sigerehm modsl_owargs tran_fag

algerthem model_ksrge merming etarte

a|
ﬁ
= g =a 21z
Ak Frionel_ kwaros. haten_size

1002,

ner

am

B 1z FT 1

SanrEhm.mosel kwaras S sie

0T, moel_Ewaras. baffar_se

revard

=

.4

revard
14
n

1

14

¢

w
-
3

m &

a7

1450

=n

3
skgerithem mad)
o
]

anonThm, model_gwares Beth_aze

0T el kWas. bofer_size

£ omm s i
i1 s o
m |
,,., ; i 109
L] ;‘ af 1478
e |
w
E 1a83
3 o= o

Anoaman

E i
= i
H
m F =3 [|
B e
m E
i
o 5 1150
.
E
= f 1002
<
aben Ariazam 0zaman

el ks bute_size

Agerehm modh

ST N—
E - reward
E ==
E
B oer
|3
5 1150
% i
£
£ 10
z

1o am =

RO Pl EWaras asTana _SEs

42

Hyperparameters in RL and How To Tune Them

43

J.2. PPO on Acrobot

ke b

sigaritn mode.

FREr w0844 nm
Ha0rThm model_kWas I misg_rats

slzaithen madelkwsrge dp_range_sf

e EREED apiaa L
MBI FRied_kowa s esmin

algarithem rradel_iovargs. gos_lwmbd

FRTEY ap3a-a
MBI PR koW G BT

[
E.

Tisea e no
OO, TS KNI fesnina_rate

I-m_
=T m o 0

AT Mol _warEn_enaths

B

gonthm macl_kuargs. neeTs

knmrge b

sigaritn mode.

nar nm an
BT moe_rwargs ae_ooel

slzaithen madelkwsrge dp_range_sf

B, moel_Kwans e ros

e

e

B

a8
Lns
e

s

sigarithm mode_knarge A range

sigortam model_kuargs. art_coef

iare_grad_reem

Apnrtitm midel_laearg:

st

sgantm macel_uargr

aigneithm el lowargs o ot

sigarithm mode_knarge A range

Irbde

I
;

43

21503

21503

21503

MBI FReed_kowa s s

MBI PR koW T BT

0.0

Apiaa

MBI PR koW G BT e

asdus
el _iOWANTS BTN e

ERTY

MBI FReced_kowa s s

nz

B, el Kwans e ros

B, moel_Kwans e ros

ans

e

e

Hyperparameters in RL and How To Tune Them

44

z
E
E
E

+ et

i msied_lowarge

E
3

rad_reem

sigantm mecel ke

S T

AEOrRRm, o K

e A, B cned

P83 3

r=vard

¢ dp_range

[
[
|
i 8 3
e ol
5 5
|

a5

S0rThm, Mol kwarss batrh_sie

| Zans
;oo
: 4o
anr
E e 122 3 13
Thin, moml_kwanss barh_size s0rThm, Mol kwarss batrh_sie

a

s0rThm, Mol kwares batrh_sie ARt

OrAhm, mel_ kA B size

¥,
“_

aorthim.n

L kwiEs Bareh_sze

reward

ARt

m Ha

WA DS L kwEas. d_ranae

44

45

Hyperparameters in RL and How To Tune Them

i

it moe ks de_ranie
Sanntam, model ke, din_mnan

AorEhm. mode Kwangs do_mnae

2

g = = 0 = 4

-] B
g T d
o eel SRR RO L AUl

LR s SR fap wpaaTe S0 BB (IO Wil b R

2 8 2 g

o .

E I
"

gL g te
E

nz

Sanntam, model ke, dn_mnon

it moe ks de_ranie
M, w0 kWaTs c_rEna

a7

B
T d g
o eel SRR RO L AUl

A 2 -] H 3 a
SR R PR ol IR B S RO LGN LT PR s sER e WL e

O, MO KAA TS CA_R008_

AQorEhm. model Kwangs do_mnae

]

¥
¥

g 2 B i
A I
E

I

oL S

| 10nk

LEEIGMENTL

SOAEM, MO8, KR, 00 _Rn0E_Y

SOAEM, MO8, KR, 00 _RnE_

=3

Bl

&

T PO F e .

g

g

T L LTI, ey T N TP e Ty

S

HOCm, e kWars 036 _mbia

AorEhm. mode Kwangs do_mnae

i i

S0 BB (IO Wil b R

HOEhm.moel_knnaros o Bmbos

sinnrThm model_kwans. gae_mbia

45

Hyperparameters in RL and How To Tune Them

46

rar _shics

siguntm mecel_<w

nw Lo

ICAEM,model kA ros oae mibita

n=a

rEhm, mooe_kiwars a3 _Bmbi

B (R
o [}
k s
z 3
E

na
E
£
2

[E ner]
NI kel EWIRIS. MR At

s kWar s, mas_nrad e

= Falia

AT Ml narmEn_epachs

s

§

i

4
:

E

£ o
£

£ T, a3 = 2008 e

= Hnorthm mossel ko

onthm mocel kg neera

Ll

i

= a0
E

t.

&

‘a.

p

i
E

E a7
E

E g

H e

rar _shics

siguntm mecel_<w

ST IS KNBTS. N enocks

AT, MOGeL KR, NS0T

3
HIOFENM, POel_kWaTas n_stens

Bl kManas Ao kze AdvaEniage

46

