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ABSTRACT

In this paper we present a novel method to estimate 3D human pose and shape from
monocular videos. This task requires directly recovering pixel-alignment 3D human
pose and body shape from monocular images or videos, which is challenging due
to its inherent ambiguity. To improve precision, existing methods highly rely on
the initialized mean pose and shape as prior estimates and parameter regression
with an iterative error feedback manner. In addition, video-based approaches
model the overall change over the image-level features to temporally enhance the
single-frame feature, but fail to capture the rotational motion at the joint level,
and cannot guarantee local temporal consistency. To address these issues, we
propose a novel Transformer-based model with a design of independent tokens.
First, we introduce three types of tokens independent of the image feature: joint
rotation tokens, shape token, and camera token. By progressively interacting with
image features through Transformer layers, these tokens learn to encode the prior
knowledge of human 3D joint rotations, body shape, and position information from
large-scale data, and are updated to estimate SMPL parameters conditioned on a
given image. Second, benefiting from the proposed token-based representation,
we further use a temporal model to focus on capturing the rotational temporal
information of each joint, which is empirically conducive to preventing large jitters
in local parts. Despite being conceptually simple, the proposed method attains
superior performances on the 3DPW and Human3.6M datasets. Using ResNet-50
and Transformer architectures, it obtains 42.0 mm error on the PA-MPJPE metric
of the challenging 3DPW, outperforming state-of-the-art counterparts by a large
margin. Code will be publicly available1.

1 INTRODUCTION

Capturing the motion of the human body pose has great values in widespread applications, such as
movement analysis, human-computer interaction, films making, digital avatar animation, and virtual
reality. Traditional marker-based motion capture system can acquire accurate movement information
of humans, but is only applicable to limited scenes due to the time-consuming fitting process and
prohibitively expensive costs. In contrast, markerless motion capture based on RGB image and video
processing algorithms is a promising alternative that has attracted numerous research in the fields of
deep learning and computer vision. Especially, thanks to the parameteric SMPL model (Loper et al.,
2015) and various diverse datasets with 3D annotations (Ionescu et al., 2013; Mehta et al., 2017; von
Marcard et al., 2018), remarkable progress has been made on monocular 3D human pose and shape
estimation and motion capture.

∗This work was done when Sen Yang was intern at Tecent PCG.
†Corresponding Author
1https://github.com/yangsenius/INT_HMR_Model
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Figure 1: Left: Mainstream temporal-based human mesh methods, e.g. (Kanazawa et al., 2019a;
Kocabas et al., 2020; Choi et al., 2021), adopt a temporal encoder to mix temporal information from
past and future frames and then regress the SMPL parameters from the temporally enhanced feature
for each frame. Right: Our method first acquires tokens of each joint in the time dimension and then
separately capture the motion of each joint using a shared temporal encoder.

Existing regression-based human mesh recovery methods are actually implicitly based on an assump-
tion that predicting 3d body joint rotations and human shape strongly depends on the given image
features. The pose and shape parameters are directly estimated from the image feature using MLP
regressors. Nevertheless, due to the inherent ambiguity, the mapping from the 2D image feature to 3D
pose and shape is an ill-posed problem. To achieve accurate pose and shape estimation, it is necessary
to initialize the mean pose and shape parameters and use an iterative residual regression manner to
reduce error. Such an end-to-end learning and inference scheme (Kanazawa et al., 2018) has been
proven to be effective in practice, but ignores the temporal information and produces implausible
human motions and unsatisfactory pose jitters for video streaming data. Video-based methods such
as (Kanazawa et al., 2019a; Kocabas et al., 2020; Choi et al., 2021; Wei et al., 2022) may leverage
large-scale motion capture data as priors and exploit temporal information among different frames to
penalize implausible motions. They usually enhance singe-frame feature using a temporal encoder
and then still use a deep regressor to predict SMPL parameters based on the temporally enhanced
image feature, as shown in the left subfigure of Fig.1. This scheme, however, is unable to focus on
joint-level rotational motion specific to each joint, failing to ensure the temporal consistency of local
joints. To address these problems, we attempt to understand the human 3D reconstruction from a
causal perspective. We argue that assuming a still background, the primary causes behind the image
pixel changes and human body appearance changes are 1) the motions of 3D joint rotations in human
skeletal dynamics and 2) the viewpoint changes of the observer (camera). In fact, a prior human
body model exists independently of a given specific image. And the 3D relative rotations of all joints
(relative to the parent joint) and body shape can be abstracted beyond image pixels and independent
of the image contents and observer views. In other words, the joint rotations cannot be “seen” and
they are image-independent and viewpoint-independent concepts.

Based on the considerations above, we propose a novel 3D human pose and shape estimation model
based on independent tokens (INT). The core idea of the model is to introduce three types of
independent tokens that specifically encode the 3D rotation information of every joint, the shape
of human body and the information about camera. These initialized tokens learn prior knowledge
and mutual relationships from large-scale training data, requiring neither an iterative regressor to
take mean shape and pose as initial estimate (Kanazawa et al., 2018; Kolotouros et al., 2019a;
Kocabas et al., 2020; Choi et al., 2021), nor a kinematic topology decoder defined by human prior
knowledge (Wan et al., 2021) . Given an image as a conditional observation, these tokens are
repeatedly updated by interacting with 2D image evidence using a Transformer (Vaswani et al., 2017).
Finally, they are transformed into the posterior estimates of pose, shape and camera parameters. As a
consequence, this method of abstracting joint rotation tokens from image pixels can represent the
motion state of each joint and establish correlations in time dimension. Benefiting from this, we can
separately capture the temporal rotational motion of every joint by sending the tokens of each joint at
different timestamps to a temporal model. In comparison to capturing the overall temporal changes
in image features and the whole pose, this modeling scheme focuses on capturing separate rotational
motions of all joints, which is conducive to maintaining the temporal coherence and rationality of
each joint rotation.
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We evaluate our model on the challenging 3DPW (von Marcard et al., 2018) benchmark and Hu-
man3.6m (Ionescu et al., 2013). Using vanilla ResNet-50 and Transformer architectures, our model
obtains 42.0 mm error in PA-MPJPE metric for 3DPW, outperforming all state-of-the-art counterparts
with a large margin. The same model obtains 38.4 mm error in PA-MPJPE metric for Human3.6m,
which is on par with the state-of-the-art methods. Also, the qualitative results show that our model
produces accurate pixel-alignment human mesh reconstructions for indoor or in-the-wild images, and
shows fewer motion jitters in local joints when processing video data. We strongly encourage the
readers to see the video results in the supplementary materials for reference and comparison.

2 RELATED WORK

Great progress has been made in the monocular image and video based 3D human pose and shape
estimation, thanks to the parametric human mesh models (Loper et al., 2015; Pavlakos et al., 2019; Joo
et al., 2018), particularly the SMPL (Loper et al., 2015) and SMPL-X (Pavlakos et al., 2019) models.
The mainstream parametric methods are usually can be classified as two categories: optimization-
based and regression-based. SMPLify (Bogo et al., 2016) is the first automatic optimization-based
approach. It fits SMPL to 2D detected keypoint, using strong data priors to optimize the SMPL
parameters. SPIN (Kolotouros et al., 2019a) proposes fitting within the training loop to produce
pixel-accurate fittings, where the fittings are used in training instead of in test time. There are also
methods further using human silhouette (Lassner et al., 2017) or multi-views information (Huang
et al., 2017) to accomplish the optimization.

Regression-based scheme has recently received extensive research (Kanazawa et al., 2018, 2019a;
Kocabas et al., 2020; Sun et al., 2019b; Doersch & Zisserman, 2019; Choi et al., 2021; Lin et al.,
2021b,a), due to its directness and effectiveness. HMR (Kanazawa et al., 2018), is the representative
regression-based methods, using an image encoder and regressor to predict the pose, shape and camera
parameters. To train the model well and make sure the realistic of the pose and shape, the reprojection
loss and adversarial loss are introduced to leverage unpaired 2D-to-3D supervision. In addition,
several non-parameteric mesh regression methods are proposed to directly regress the mesh vertices
coordinates, including Pose2Mesh (Choi et al., 2020), Convolution Mesh Regression (Kolotouros
et al., 2019b), I2L-MeshNet (Moon & Lee, 2020), and the Transformer-based METRO (Lin et al.,
2021b) and Mesh Graphormer (Lin et al., 2021a).

Beyond estimating pose and shape from a singe image, video-based methods consider to fully
dig the temporal motion information hidden in video data to improve the accuracy and robustness.
HMMR (Kanazawa et al., 2019a) learns the human dynamics to predict pose and shape for past and
future frames. VIBE (Kocabas et al., 2020) encodes temporal feature using a GRU and adopts an
adversarial learning framework to learn kinematically plausible motion from a large-scale motion
capture dataset. TCMR (Choi et al., 2021) introduces PoseForecast to forecast additional temporal
features from past and future frames without a current frame. MAED (Wan et al., 2021) proposes
to use a spatial-temporal encoder to learn temporally enhanced image features and regress the
joint rotations following a defined kinematic topology. In contrast to these methods, our goal is
to encode joint-level features, shape and camera information separately, rather than encoding all
the information into a unified image feature vector. Since we use independent tokens to encode
the rotational information of each joint, we can model the inner temporal patterns when each joint
rotates over time. Compared with MAED, we make no assumptions about the directed dependencies
between rotations of joints, because its tree-based topology fails to capture important dependencies
between non-adjacent joints. In our modeling scheme, the joint tokens can freely learn undirected
relationships between any pairs of joints from large-scale data and a given image.

Transformer (Vaswani et al., 2017) is proposed as a powerful model that is suitable for sequence-
to-sequence modeling. Transformer has less inductive bias and shows powerful performance when
trained with sufficient data. It is applied to various vision tasks including image classification (Doso-
vitskiy et al., 2020; Touvron et al., 2021; Liu et al., 2021), object detection (Carion et al., 2020; Chen
et al., 2021), segmentation (Wang et al., 2021; Xie et al., 2021), video classification (Arnab et al.,
2021), 2D/3D human pose estimation (Yang et al., 2021a; Li et al., 2021c,b; Yuan et al., 2021; Yang
et al., 2021b; Mao et al., 2022; Zheng et al., 2021) and 3D human mesh reconstruction (Lin et al.,
2021b,a; Wan et al., 2021), etc. In this work, inspired by the token-based Transformer designs (Devlin
et al., 2018; Dosovitskiy et al., 2020; Li et al., 2021c), we use multiple independent tokens to represent
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Figure 2: Base model for singe-frame input. We first use an image encoder to extract feature maps
from a given cropped image, then we flatten the feature map into a sequence and add a learnable
position embedding. The learnable joint rotation tokens, shape and camera tokens are appended to
the sequence and sent to the transformer. Finally, we use three linear heads, called rotation head,
shape head and camera head, to convert the joint rotation tokens, shape token and camera token to
the SMPL parameters, for 3D mesh reconstruction and 2D reprojection on the image plane.

the information with respect to joint 3D rotation, body shape and camera parameter. And we also use
Transformer to conduct sequence-to-sequence temporal modeling.

3 METHOD

Our goal is to build a model that represents joint rotations, shape and camera information using tokens
independent of image feature and further captures the rotational motion information of each joint
from video data. In this section, we first revisit prior SMPL-based human mesh recovery methods
and then describe our model design.

3.1 REVISITING SMPL-BASED HUMAN MESH RECOVERY

The classic human mesh recovery (HMR) methods (Kanazawa et al., 2018, 2019a; Kocabas et al.,
2020) represent human body as a mesh using the parameteric SMPL (Loper et al., 2015) model. The
SMPL mesh model is a differentiable function that output 6890 surface vertices M(θ,β) ∈ R6890×3,
which are deformed with linear blend skinning driven by the pose θ ∈ R72 and shape β ∈ R10

parameters. The pose θ parameter include the global rotation R and 23 relative joint rotations in
axis-angle format. To obtain the 3D positions of body joints, a pretrained linear regressor W is used
to achieve J3d = WM(θ,β). To leverage 2D joint supervision, a weak-perspective camera model
is usually used to project 3D joint positions into the 2D image plane, i.e., J2d = sΠ(RJ3d) + t,
where Π is an orthographic projection, the scale value s and translation t ∈ R2 are camera related
parameters.

For the image-based HMR methods like (Kanazawa et al., 2018; Kolotouros et al., 2019a), an
image encoder f(·) and a MLP regressor are used to estimate the set of reconstruction parameters
Θ = {θ,β, s, t}, which constitutes an 85-dim vector to regress. These parameters are iteratively
regressed from the encoded image feature vector f by the regressor. For the video-based HMR
methods like (Kocabas et al., 2020; Choi et al., 2021; Kanazawa et al., 2019a; Wan et al., 2021; Wei
et al., 2022), temporal models based on 1D convolution (Kanazawa et al., 2019a), GRU (Choi et al.,
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Figure 3: The overall temporal model framework. I. The base model. We feed the frames of a given
video clip to the same base model and achieve the tokens for each frame. II. The temporal model.
We use a transformer as the rotation motion encoder to capture the motion of each joint. III. The
SMPL heads. We feed the updated joint tokens, shape token and camera token of each frame to the
SMPL heads shared with image-based model, to achieve the final SMPL parameters.

2021) and self-attention models (Kocabas et al., 2020; Wan et al., 2021) are introduced to capture the
motion information in consecutive video frames. A temporal encoder g(·) is exploited to achieve
temporally encoded feature vector, formulated as a process like: mt = g(ft−T/2, ...,ft, ...,ft+T/2).
Also, a regressor is used to estimate the Θt from the current frame’s feature mt encoded with
temporal information.

3.2 ESTIMATING SMPL PARAMETERS BASED ON INDEPENDENT TOKENS

In this section, we first introduce the token based semantic representation and then describe our model
design for single frame input, mainly including the Base model and SMPL heads.

Joint rotation tokens, shape token & camera token. We introduce three types of token represen-
tations: (1) joint rotation tokens consist of 24 tokens, each of which encodes the joint 3D relative
rotation information (including the global rotation) ri ∈ Rd, i = 1, .., 24; (2) shape token is a token
vector s ∈ Rd encoding the body shape information; (3) camera token is also a token vector c ∈ Rd

encoding the translation and scale information. d is the vector dimension for all tokens.

Base model. Inspired by ViT (Dosovitskiy et al., 2020) and TokenPose (Li et al., 2021c), we embody
our scheme into a Transformer-based architecture design (Fig. 2). We adopt a CNN to extract image
feature map f ∈ Rc×h×w from a given RGB image I cropped with a human body. We reshape
the extracted feature map into a sequence of flattened patches and apply patch embedding E (linear
transformation) to each patch to achieve the sequence fp ∈ RS×d where S = h × w. We append
the totally learnable joint rotation tokens, shape token and camera token to the sequence fp, namely
prior tokens. We only inject the learnable position embedding PE ∈ RS×d into the fp to preserve
the 2D structure position information. Then we send the whole sequence S0 ∈ R(S+24+1+1)×d to a
standard Transformer encoder with L layers and achieve these corresponding tokens from the final
layer.

SMPL heads. To achieve the estimated SMPL parameters Θ = {θ,β, s, t} for 3D human mesh
reconstruction, we use three linear SMPL heads – rotation head, shape head and camera head –
to transform the corresponding tokens outputted from the final transformer layer. Particularly, the
rotation head (a shared linear layer) transforms each joint token into a 6D rotation representation (Zhou
et al., 2019). The shape and camera heads (two linear layers) separately transform the shape token
and camera token into the shape parameters (10-dim vector) and camera parameters (3-dim vector).
Finally, we convert the 6D rotation representations to SMPL pose (in axis-angle format) and use
these parameters to generate the human mesh. Further, we obtain the predicted joint 3D locations
J3d and then project them into 2D locations J2d using a weak-perspective camera model.

3.3 ROTATIONAL MOTION CAPTURING USING A TEMPORAL TRANSFORMER

We aim to capture the rotational motion at the joint level. Given a video clip V = {It}Tt=1 of length
T , we feed these T frames to the Base model and acquire the estimated N joint rotation tokens for
each frame: {r̂t1, ..., r̂tN}Tt=1 ∈ RT×N×d, from the final transformer layer.
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We use another standard Transformer as the temporal model to capture the motion of each joint; we
denote it as Temporal Transformer. For the n-th type joint token rn, such as the left knee, the
token sequence formed in the time axis is Xn = {r̂1n, r̂2n, ..., r̂Tn } ∈ RT×d, where n ∈ {1, ..., N}.
We feed each sequence Xn to the Temporal Transformer and achieve a new sequence X ′

n, so that each
updated joint token from a particular moment is mixed with the joint rotation information from past
and future frames. Then, we reshape the temporally updated tokens {X ′

1, ..., X
′
n} from N × T × d

to T × N × d. Note that the temporal information in camera and shape tokens is not taken into
consideration in our model since we hope to capture the pure rotational motion information of joints.
Finally, for timestamp t, the updated N joint tokens are then fed into the rotation head to achieve the
joint rotations θt; the shape token and camera token outputted from the Base model are fed to the
shape head and camera head to achieve the βt, st, tt. The overall framework is shown in Fig. 3.

3.4 LOSS FUNCTION

Leveraging full supervision from different formats of annotations is critical to train the model well
and attain the generalization in different cases. Following common human mesh recovery methods,
we use SMPL parameters loss, L2 normalization, 3D joint location loss and projected 2D joint
location loss, when the corresponding SMPL, 3D/2D location supervision signals are available.

Lsmpl = wθ · ∥θ − θgt∥2 + wβ · ∥β − βgt∥2 ,

Lnorm = ∥θ∥2 + ∥β∥2 ,
L3D = ∥J3d − J3dgt∥2 ,L2D = ∥J2d − J2dgt∥2 ,

Ltemp =
∥∥∥(J t+1

3d − J t
3d)− (J t+1

3dgt − J t
3dgt)

∥∥∥
2
,

L = Lsmpl + wnorm · Lnorm + w3D · L3D + w2D · L2D + wtemp · Ltemp.

θgt,βgt are the groundtruth SMPL parameters. J3D,J2D are the groundtruth joint 3D and 2D
locations. The Ltemp is a temporal loss for video data, which supervises the velocity of the joint
temporal movement in 3D space. The wθ, wβ , wnorm, w3D, w2D, wtemp are the weights to balance
all of loss functions (see more details in Appendix C).

4 EXPERIMENTS

Training data & Model setups. Following (Kanazawa et al., 2018; Kocabas et al., 2020; Wan et al.,
2021), we use mixed 3D video, 2D video and 2D image datasets for training. The details of model
configurations and training data are described in Appendix A and Appendix B.

Evaluation. We report results on 3DPW and Human3.6m datasets, using 4 standard metrics,
including Procrustes-Aligned Mean Per Joint Position Error (PA-MPJPE), Mean Per Joint Position
Error (MPJPE), Per Vertex Error (PVE) and ACCELeration error (ACCEL). The unit for these metrics
is millimetter (mm). We evaluate the models trained w/ and wo/ 3DPW training set for comparison
with previous methods.

Progressive training scheme. In practice, we find how to exploit these training datasets with such
multi-modal supervision is critical to training the whole model well and ensuring the generalization
to in-the-wild scenes. Following MAED (Wan et al., 2021), we develop an improved progressive
training scheme adapting to our model, which consists of three training phases. Please see more
details about this training scheme in Appendix C.

4.1 COMPARISON WITH STATE-OF-THE-ART METHODS

Quantitative results. In Tab. 4, we compare our method with state-of-the-art image-based and
video-based HMR methods. We evaluate the models trained w/ and w/o 3DPW training set for
fair comparisons. For 3DPW, our model substantially outperforms all these methods, mainly in
PA-MPJPE, MPJPE and PVE. For Human3.6m, our model is on par with state-of-the-art methods.
MAED (Wan et al., 2021) is our main competitor, as both use the same backbone and training
data. The results show that our model achieve superior performances in all metrics over MAED,
particularly in PA-MPJPE on 3DPW gaining 8.1% performance improvement. Our model achieves a
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Table 1: Comparisons to state-of-the-art models on 3DPW and Human3.6M datasets. INT-1 model is
trained with first two phases, and separately evaluated the best performance for both datasets. INT-2
model is trained with three phases, and the best model for 3DPW is directly evaluated on Human3.6m.
† represents training w/o 3DPW training dataset. ∗ represents training w/ 3DPW training dataset. For
fair comparison, we also list the CNN backbones (ResNet (He et al., 2016) or HRNet (Sun et al.,
2019a)) used in different methods.

3DPW H36M

Models Backbone PA-MPJPE ↓ MPJPE ↓ PVE ↓ Accel ↓ PA-MPJPE ↓ MPJPE ↓

Im
ag

e-
ba

se
d

HMR† (Kanazawa et al., 2018) ResNet-50 76.7 130.0 - 37.4 56.8 88
Neural Body† (Omran et al., 2018) ResNet-101 - - - - 59.9 -
Mesh Regression† (Kolotouros et al., 2019b) ResNet-50 70.2 - - - 50.1 -
SPIN† (Kolotouros et al., 2019a) ResNet-50 59.2 96.9 116.4 29.8 41.1 -
I2l-MeshNet† (Moon & Lee, 2020) ResNet-50 57.7 93.2 110.1 30.9 41.1 55.7
PyMAF† (Zhang et al., 2021) ResNet-50 58.9 92.8 110.1 - 40.5 57.7
Hybrik† (Li et al., 2021a) ResNet-34 48.8 80.0 94.5 34.5 54.4
ROMP∗ (Sun et al., 2021) ResNet-50 49.7 79.7 94.7 - - -
ROMP∗ (Sun et al., 2021) HRNet-W32 47.3 76.7 93.4 - - -
PARE† (Kocabas et al., 2021) ResNet-50 52.3 82.9 99.7 - - -
PARE† (Kocabas et al., 2021) HRNet-W32 50.9 82.0 97.9 - - -
PARE∗ (Kocabas et al., 2021) HRNet-W32 46.5 74.5 88.6 - - -
METRO∗ (Lin et al., 2021b) ResNet-50 - - - - 40.6 56.5
METRO∗ (Lin et al., 2021b) HRNet-W64 47.9 77.1 88.2 - 36.7 54.0
Mesh Graphormer∗ (Lin et al., 2021a) HRNet-W64 45.6 74.7 87.7 - 34.5 51.2

V
id

eo
-b

as
ed

HMMR† (Kanazawa et al., 2019a) ResNet-50 72.6 116.5 139.3 15.2 56.9 -
Sim2Real† (Doersch & Zisserman, 2019) ResNet-50 74.7 - - - - -
Temporal Context† (Arnab et al., 2019) ResNet (from HMR) 72.2 - - - 54.3 77.8
Skeleton-disentangled† (Sun et al., 2019b) ResNet-50 69.5 - - - 42.4 59.1
VIBE∗ (Kocabas et al., 2020) ResNet (from SPIN) 51.9 82.9 99.1 23.4 41.4 65.6
TCMR† (Choi et al., 2021) ResNet (from SPIN) 55.8 95.0 111.3 6.7 41.1 62.3
MPS-Net∗ (Wei et al., 2022) ResNet (from SPIN) 52.1 84.3 99.7 7.4 47.4 69.4
MAED∗ (Wan et al., 2021) ResNet-50 45.7 79.1 92.6 17.6 38.7 56.4

INT-1 (Ours)† ResNet-50 49.7 90.0 105.1 23.5 39.1 57.1
INT-2 (Ours)∗ ResNet-50 42.0 75.6 87.9 16.5 38.4 54.9

significant improvement when trained with 3DPW, which indicates that using accurate SMPL pose
and shape labels as supervision is critical to improve the generalization to in-the-wild scenes. Notably,
METRO (Lin et al., 2021b) and Mesh Graphormer (Lin et al., 2021a) are recent Transformer-based
SOTA methods, with a stronger CNN extractor HRNet-W64 (Sun et al., 2019a) as the backbone,
showing better performance. In comparison to them, our method shows superior performance in
PA-MPJPE on 3DPW and comparable results in MPJPE and PVE, even using ResNet-50 (He et al.,
2016) as the backbone. These results demonstrate the effectiveness and superiority of our token-based
model design.

Qualitative results. To demonstrate qualitative mesh reconstruction results, we select a typical
showcase of 3DPW dataset to compare our model with the current video-based SOTA method
MAED (Wan et al., 2021), as shown in Fig. 4. We can see that MAED performs well in most
frames but still produces some bad fit in hard samples. In contrast, our model produces accurate
pixel accurate mesh alignment that better fit to 2D human silhouette, resulting in more natural and
smoother motion. This phenomenon suggests that our scheme of separate joint rotation predictions
may produce more flexible and adaptive human mesh than regressing the whole pose. Please see
more in-the-wild examples in the Appendix D for reference.

4.2 ABLATION STUDY

Table 2: Study on the effectiveness of temporal modeling. We evaluate the performances of the
image-based model and two types of video-based temporal models.

Mode Temporal modeling PA-MPJPE ↓ Accel ↓

Image-based N/A 45.6 23.5
Video-based whole-pose temporal learning 43.9 19.1
Video-based separate joint temporal learning 42.0 16.5

Pure image-based model vs. video-based temporal models. To study the effectiveness of the
temporal modeling, we evaluate the models when trained with and without the Temporal Transformer.
When using the Temporal Transformer, we conduct two types of temporal modeling schemes –
separate joint temporal learning and whole-pose temporal learning. In Tab. 2, the results show that
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Figure 4: The qualitative comparisons between our model (top) and the reproduced MAED
model (Wan et al., 2021) (bottom).
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Figure 5: Prior knowledge learned in the prior independent tokens. (a): the pose and shape parameters
are transformed from the initial joint rotation tokens and shape token by the rotation head and shape
head. (b): the corresponding attention areas in an image for some selected initial tokens

video-based ones have obvious advantages in the PA-MPJPE and Accel metrics compared with the
image-based one.

Separate joint temporal learning vs. whole-pose temporal modeling. We study the differences
between the separate joint temporal learning and whole-pose temporal learning. We implement a new
model that concatenates all joint tokens (each is d/24-dim) together as a pose vector (d-dim) and
then use the Temporal Transformer to capture the overall changes in pose over time. As shown in
Tab. 2, although effective, the whole-pose temporal learning scheme still performs worse than the
separate joint temporal learning.

Table 3: Comparisons with the temporal modeling of MAED. We report the MAED result we
reproduced.

Image model Backbone Temporal Modeling PA-MPJPE ↓ Accel ↓
INT ViT-base separate joint temporal learning 51.6 25.3
INT ResNet50+Transformer separate joint temporal learnin 42.0 16.5
INT ResNet50+Transformer parallel spatial-temporal 43.0 19.4

MAED ResNet50+Transformer parallel spatial-temporal 45.0 18.6

Comparison with MAED. Since we use the same backbone and training data as MAED (Wan et al.,
2021), it is relatively fair to compare with the temporal modeling of MAED. We combine the base
model with the parallel spatial-temporal mechanism (abbr. parallel). The results in Tab. 3 show that,
for PA-MPJPE metric, the parallel scheme performs worse 1 mm than the separate joint temporal
learning; but the parallel scheme based INT model still gains 2 mm improvements over MAED.

4.3 OBSERVATIONS

Since we explicitly give certain concepts to these learnable tokens, it is desirable to know what
information these defined tokens have learned.

What prior pose and shape are learned? In Fig. 5(a), we show the prior pose and shape learned
in the prior joint rotations and shape token, by transforming them to SMPL parameters by the
linear rotation head and shape head. We can see that the prior pose and shape present a reasonable
appearance, not a totally random state. Note that we does not leverage any explicit SMPL constraints
or image information on these prior joint rotation tokens and shape token. The only learning source
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is the backward gradient signals in the training process. This result also indicates that the model
learns a fixed linear transformation relationship between these joint token vectors and the realistic
3D rotations. In Fig. 5(b), we show the attention areas in an image of for some selected tokens.

t=12 t=24 t=36 t=48 t=60 t=72 t=84 t=96 t=108 t=120

Figure 6: Visualized attention matrices (bottom) between different frames (top) for a video clip
(T =128). Colored lines indicate strongly correlated joint rotation tokens between different time
points, e.g., for the left hip joint, the joint tokens in the 12-th and 60-th frames have high attention
score. Different joints show different rotational temporal patterns.

t=5 t=10 t=15 t=20 t=25 t=30

Figure 7: Visualized attention matrices (bottom) between different frames (top) for a clip (T =32).
Colored lines indicate strongly correlated joint rotation tokens between different time points.

Rotational temporal patterns for different joints. For joint rotation tokens, there is no information
exchange between different frames before being sent into the temporal transformer. Through the
self-attention interactions in the temporal Transformer, the model builds correlation and integrates
the information among different frames. For example, in Fig. 6, the person is walking. For t = 24
and t = 84 frames, his right knee joint is in the same state of rotation (the right calf is slightly lifted),
so the estimates for these two frame should be close. By visualizing the attention matrix in the last
layer of temporal transformer, we can see there is indeed a strong correlation between the two frames
for the right knee joint token. Similarly, we can observe in Fig. 6 and Fig. 7 that the model captures
the periodic joint rotational motions. In this way, the joint angle estimation for the current frame can
be corrected and regularized by using the information from past or future frames.

5 CONCLUSION

In this paper, we propose a simple yet effective model based on the design of independent tokens
to address the problem of 3D human pose and shape estimation. We introduce joint rotation tokens,
shape token and camera token to encode the 3D rotations of human joints, body shape and camera
parameters for SMPL-based human mesh reconstruction. Thanks to the design of independent tokens,
we use a temporal Transformer to capture the temporal motion of each joint separately, which is
beneficial for maintaining the temporal rotational coherence of each joint and reducing jitters in local
joints. Our model outperforms state-of-the-art counterparts on the challenging 3DPW benchmark
and attains comparable results on the Human3.6m. The qualitative results show that our model can
produce well-fitted and robust human mesh reconstructions for video data. We also give analysis on
what prior information learned in the independent tokens and what temporal patterns are captured by
the temporal model. Since we abstract 3D human joints and shape from image pixels as independent
concepts/representations, it is possible for future works to incorporate other modal supervision such as
text to leverage reasonable constraints on these independent representations for multi-modal learning.
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A MODEL SETUPS

Base model. For the Base model, we use a hybrid architecture with ResNet2 (He et al., 2016) and
Transformer3 (Vaswani et al., 2017), based on the ImageNet pretrained ViT model4 (Dosovitskiy et al.,
2020). The transformer in the Base model has 6 Transformer blocks and the multi-head self-attention
layer has 12 attention heads. The embedding dimension is 768 for each token vector and the hidden
dimension in the FFN is 3072 (4 times w.r.t. the embedding dimension 768).

Temporal Transformer. As we find that increasing the number of layers brings a little improvement
but with extra computational overhead, we set the number of layers of Temporal Transformer as
3 for the trade-off. The number of attention heads is also set as 12. The temporal transformer is
not pre-trained with any data. We also add a learnable temporal embedding to retain the temporal
position information of tokens in the time dimension. In the training, the length T of video clips is 16
sampled at a interval of 8 from the original video data. In inference, we enlarge the bbox with a scale
of 1.1 with respect to the original size of bbox.

And in practice, we find setting T to be larger in inference could improve the accuracy, with acceptable
additional computational overhead. In Tab. 4, we study on how the input sequence length of the
temporal model affect the performances. The results show that longer sequence length brings weak
improvements on the overall metrics but stable improvements on the acceleration error. For the INT-2
model, we use T = 64 to report the results. Due to the length of learnable temporal embedding is
initialized with 16, we interpolate the temporal embedding to the expected length when necessary.

B TRAINING DATA

3D video datasets include Human3.6m (Ionescu et al., 2013), MPI-INF-3DHP (Mehta et al., 2017),
and 3DPW (von Marcard et al., 2018). 3DPW (von Marcard et al., 2018) is a in-the-wild dataset with
accurate pose and shape annotations. We use Human3.6m annotated with pose and shape parameters.
PennAction (Zhang et al., 2013) and PoseTrack (Andriluka et al., 2018) are the 2D video datasets
with only annotated 2D groundtruth. InstaVariety (Kanazawa et al., 2019b) is the 2D video dataset
with pseudo 2D grountruth annotations. For 2D image datasets, we use COCO (Lin et al., 2014),
MPII (Andriluka et al., 2014) and LSPET (Johnson & Everingham, 2011) datasets. They contain
large amounts of 2D keypoint locations annotations of in-the-wild scenes, meanwhile we use their
pseudo pose and shape annotations based on EFT (Joo et al., 2020).

C PROGRESSIVE TRAINING SCHEME

In this paper, we develop an improved progressive training scheme adapting to our model, which
consists of three training phases.

In the first phase (phase-1), we expect the Base model and SMPL heads to be fully trained to
produce accurate estimates for static images; so we train the model only using 2D image datasets and
individual frames from Human3.6M (Ionescu et al., 2013) and MPI-INF-3DHP (Mehta et al., 2017).

In the second phase (phase-2), we take the pre-trained weights of Base model and SMPL heads
from the phase-1 as the initialization, and then use the mixed 2D/3D and image/video datasets to train
the whole model, including the Base model, Temporal Transformer and SMPL heads. In practice,
we find that the generalization of the model gradually deteriorates in the middle and late periods in
the second phase, even when trained with 3DPW (von Marcard et al., 2018) training set. And we
further observe that the estimated pose and shape of human mesh become implausible in the later
period of the training process. We empirically attribute such phenomena to that 1) a large proportion
of training data has no annotations of pose and shape parameters, such as InstaVariety (Kanazawa
et al., 2019b) or PoseTrack (Andriluka et al., 2018), and such data may dominate the model training

2https://github.com/rwightman/pytorch-image-models/blob/master/timm/
models/resnetv2.py

3https://github.com/rwightman/pytorch-image-models/blob/master/timm/
models/vision_transformer.py

4https://github.com/rwightman/pytorch-image-models/releases/download/v0.
1-vitjx/jx_vit_base_resnet50_224_in21k-6f7c7740.pth
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in the later period; 2) domain gap exists among various datasets; 3) we do not leverage any prior
reasonable SMPL pose and shape constraints on the tokens or the estimated parameters about the
pose and shape. These factors may cause the conflicts between multiple objectives in the later stage
of training, such as overfittng in L2D making the model less constrained with reasonable SMPL pose
or shape parameters. Based on these observations and conjectures, we do not use 3DPW training set
in the second phase and develop the third training phase as follow.

In the third phase (phase-3), we use the pre-trained weights from the phase-2 and fine-tune the
whole model on mixed datasets only consisting of 3DPW and Human3.6m that have accurate pose
and shape annotations as supervision. This phase not only largely preserves the adaptability to
in-the-wild scenarios that is learned in the phase-2, but also makes the model focus on learning to
predict accurate and credible pose and shape values to fit the image appearance, 3D joint locations
and 2D joint locations. Note that we do not separately fine-tune the model on each dataset and report
the best performance on both datasets separately. Instead, we finally achieve a single best model
to report the results on 3DPW and Human3.6M, which has attained wider adaptability and good
generalization.

The default values of the weights wθ, wβ , wnorm, w3D, w2D, wtemp are 60, 0.06, 1, 600, 300 and
600 unless otherwise stated. In the first phase, we use 4 Tesla V100 GPUs with a batch size of 120
for each GPU. The wtemp is set to 0. In the second phase, we use 16 Tesla V100 GPUs to conduct
distributed training (2 nodes and 8 GPUs for each node). The batch sizes for 3D video/2D video/2D
image datasets are 4, 3 and 7 for each GPU. The wtemp is set to 0. In the third phase, we use 8 Tesla
V100 GPUs with a batch size of 8 for each GPU. The wnorm is set to 0.01.

For training phase 1 and 2, we train the model for 100 epochs separately using Adam with 1e−4

initial learning rate, which decays 10 times at the 60-th and 90-th epochs. For the training phase 3,
we fine-tune the model for 40 epochs using SGD with 1e−4 initial learning rate, which decays 10
times at the 20-th and 30-th epochs. We found using SGD is better than using Adam for both 3DPW
and Human3.6m datasets. For data augmentation, we follow the settings in MAED (Wan et al., 2021)

Table 4: Study on the sequence length of the input video clip for the temporal Transformer model.

Input sequence length PA-MPJPE ↓ MPJPE ↓ PVE ↓ Accel ↓
T=16 42.2 76.6 88.8 18.1
T=32 42.5 76.2 88.8 18.5
T=64 42.3 75.9 88.5 17.4
T=128 42.2 75.4 88.0 15.1

D LEARNED POSES AND EXAMPLES OF THE IN-THE-WILD AND INDOOR
SCENES

In the section, to show our model indeed has learned reasonable pose using the joint rotation tokens,
we also visualize the poses that are generated by sample the randomly initialized and the finally
learned joint rotation tokens. We transform these tokens to the pose parameters using the learned
rotation head and visualize the human meshes. As shown in Figure 9, we can see the random poses
show very chaotic, distorted, and unnatural states, but the learned pose shows a relatively reasonable
and natural human pose.

We compare our model with the typical video-based HMR method - VIBE (Kocabas et al., 2020) under
the same detection and tracking framework provided by VIBE implementation. The reconstructed
results for videos are show in Fig. 8. We encourage the readers to see the videos in the supplementary
materials for better comparisons.

We show more qualitative results for some complex scenes in the wild, including crowded scenes, fast
human motion and occluded persons. In Fig. 10, Fig. 11 and Fig. 12, we show the human mesh recon-
struction results of the examples from PoseTrack (Andriluka et al., 2018) and Human3.6M (Ionescu
et al., 2013). We also provide the video files on the supplementary materials. Please see the
supplementary video files for more references.
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Ours

VIBE

Ours

VIBE

Figure 8: The qualitative comparisons between our model (top) and the VIBE model (Kocabas et al.,
2020) (bottom) for two video clips in the 3DPW test set.

Random pose 1 Random pose 2 Random pose 3 A learned pose

Figure 9: Visual pose comparison between randomly initialized and finally learned joint rotation
tokens, transformed by the learned rotation head.

Figure 10: The human mesh reconstruction results on some hard examples from PoseTrack (Andriluka
et al., 2018).
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Figure 11: The human mesh reconstruction results on the examples from Human3.6M (Ionescu et al.,
2013).

Figure 12: The human mesh reconstruction results for some video clips sampled from PoseTrack (An-
driluka et al., 2018).
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