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ABSTRACT

Recent advancements have demonstrated that the performance of large language
models (LLMs) can be significantly enhanced by scaling computational resources at
test time. A common strategy involves generating multiple Chain-of-Thought (CoT)
trajectories and aggregating their outputs through various selection mechanisms.
This raises a fundamental question: can models with lower complexity leverage
their superior generation throughput to outperform similarly sized Transformers
for a fixed computational budget? To address this question and overcome the lack
of strong subquadratic reasoners, we distill pure and hybrid Mamba models from
pretrained Transformers. Trained on only 8 billion tokens, our distilled models
show strong performance and scaling on mathematical reasoning datasets while
being much faster at inference for large batches and long sequences. Despite the
zero-shot performance hit due to distillation, both pure and hybrid Mamba models
can scale their coverage and accuracy performance past their Transformer teachers
under fixed time budgets, opening a new direction for scaling inference compute.

1 INTRODUCTION

Reasoning in large language models (LLMs) has seen a significant boost in performance recently,
largely driven by scaling inference compute. A key technique to enhance “reasoning” performance
is the use of intermediate reasoning steps before producing a final answer, known as Chain-of-
Thought (CoT) (Wei et al., 2023). Building on this, many test-time compute techniques often involve
generating multiple CoTs (Wu et al., 2024; Snell et al., 2024) and selecting the best one. Even simple
strategies, such as majority voting, can be surprisingly effective (Brown et al., 2024; Beeching et al.).
Furthermore, trained reward models can provide scores for the final model answers and even for the
individual steps of the CoTs (Luo et al., 2024).

However, these test-time compute techniques introduce significant challenges for LLM systems.
Generating long CoT sequences or large batches of completions places substantial demands on
memory and compute resources. Transformers, in particular, struggle with such workloads due to
their linear memory scaling and memory-bound nature during generation. This raises an important
question: how should we optimize model architectures to best scale test-time compute? In particular,
can alternative architectures with faster and more efficient generation outperform current LLMs under
fixed compute budgets? Addressing this problem could unlock new avenues for deploying reasoning
models with different architectures, enabling them to run and scale more efficiently on hardware and
environments with limited memory and compute.

Recent subquadratic architectures have training time or prefill time linear in sequence length, and
constant memory requirement (instead of linear) during inference. This enables up to 5× higher
inference throughput (Gu & Dao, 2024; Peng et al., 2023) as inference time for large batch size or
long sequences is dominated by the time to load the model states (KV cache or RNN states). Despite
their efficiency, subquadratic models have not been extensively explored in reasoning tasks, primarily
due to the lack of large-scale pretrained models compared to Transformer-based counterparts. As a
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Figure 1: Distilled models have better coverage on MATH-500 for most time budgets. In (b), we
show the coverage as we increase the number of sampled answers k. Compared to their associated
Llama baselines, our distilled models provide a lower coverage for a given k. In (a), we now show
the shortest time required to reach a given coverage. For each curve in (b), we map the k-values on
the x-axis to the time required to generate that many samples for each model. Ideally, we would want
to reach the highest coverage for short time budget. For a given time budget, our distilled models
can generate many more completions than their respective baselines. As such, the higher throughput
of our models, shown in Figure 2, allows them to overcome their lower per-sample coverage. As a
result, our models push the Pareto front forward for most time budgets.

result, it remains unclear whether: (1) scaling inference compute for subquadratic models improves
reasoning performance, and (2) subquadratic models can match or exceed Transformers models under
fixed compute budgets.

In this work, we explore the reasoning capabilities of subquadratic architectures by distilling knowl-
edge from pretrained Transformers into hybrid and pure Mamba models. To address the scarcity
of pretrained subquadratic models with robust reasoning abilities, we develop recipes to distill
specific reasoning skills into these architectures. We then benchmark the models for multiple Chain-
of-Thought (CoT) completions, providing a comprehensive analysis of performance under fixed
compute and memory constraints. Our approach advances the Pareto front established by existing
models, achieving a better trade-off between efficiency and reasoning capability.

Our distilled pure and hybrid subquadratic reasoners are able to outperform their Transformer teachers
on both coverage and accuracy on MATH-500 (Lightman et al., 2023), which we will refer to as
MATH henceforth, and GSM8K (Cobbe et al., 2021) mathematical reasoning tasks on most time
budgets, reaching the same quality with 2.5× less inference time. Our results highlight the potential
for distilling reasoning and math capabilities across architectures in a cost-effective manner while
maintaining the inference compute scaling properties of Transformers.

2 RELATED WORK

2.1 SCALING INFERENCE TIME COMPUTE FOR REASONING

Scaling inference time compute has emerged as a promising strategy to improve the performance of
LLMs. Techniques such as Chain of Thought (CoT) and its variants have demonstrated significant
performance improvements across various reasoning benchmarks by decomposing complex tasks
into intermediate steps (Wei et al., 2023; Yao et al., 2023)

While these approaches improve reasoning through task decomposition, they also increase computa-
tional demands due to longer generation sequences. Recent work suggests that this additional compute
may itself contribute to improved model abilities (Pfau et al., 2024). Dynamic compute allocation
during inference has further advanced this paradigm. For instance, Goyal et al. (2024) introduced
pause tokens into the LLM vocabulary, enabling models to allocate compute more effectively and
achieve better reasoning and task performance.

Another prominent approach involves generating and searching through multiple model outputs to
select the best answer. Various sampling algorithms have been proposed to increase the diversity
and quality of generated outputs to increase the likelihood of the correct or best answer being
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selected (Wang et al., 2023; Renze & Guven, 2024; Zhang et al., 2023). In parallel, outcome and
process reward models (ORMs and PRMs) have been introduced to help evaluate the best response
and guide intermediate generation steps within the LLM model (Lightman et al., 2023; Zhang et al.,
2024a; Luo et al., 2024; Uesato et al., 2022).

Recent work has shown that smaller LLMs, when scaled through inference-time compute (e.g., via
majority voting or PRM-guided search), can outperform larger models under fixed compute bud-
gets (Snell et al., 2024; Wu et al., 2024; Beeching et al.). However, these findings are primarily limited
to Transformer-based architectures. The extent to which these scaling laws apply to subquadratic
architectures, which offer faster inference but may trade off expressiveness, remains underexplored.

2.2 SUBQUADRATIC ARCHITECTURE ALTERNATIVES

While Transformers dominate the landscape of reasoning models (Grattafiori et al., 2024; Qwen et al.,
2025), alternative architectures have been proposed to mitigate their high computational cost. These
models, based on RNNs (Beck et al., 2024; Peng et al., 2023), SSMs (Gu et al., 2022; Gu & Dao,
2024), and linear attention mechanisms (Katharopoulos et al., 2020; Yang et al., 2024), offer improved
inference and memory efficiency especially for long-context tasks and large-batch generation, making
them attractive for large-scale language modeling. Notably, the Mamba family of models (Mamba-1
and Mamba-2) has introduced selective state spaces, enabling linear-time sequence modeling without
sacrificing performance (Gu & Dao, 2024; Dao & Gu, 2024). Hybrid architectures that combine
subquadratic layers (e.g., Mamba) with a limited number of self-attention layers have also emerged,
achieving superior performance compared to pure Transformer or subquadratic models (Lieber et al.,
2024; Ren et al., 2024; Dong et al., 2024). These architectures are particularly well-suited for the
increased compute demands of inference-time scaling. Our work evaluates the inference-time scaling
properties of both pure and hybrid subquadratic models.

2.3 KNOWLEDGE DISTILLATION

Knowledge distillation has proven effective in transferring capabilities from large teacher models
to smaller, more efficient student models (Hinton et al., 2015). In the context of LLMs, distillation
is commonly used to compress a larger pre-trained LLM into a smaller version while maintaining
core knowledge and functionality (Gu et al., 2024; Xu et al., 2024). Although larger models exhibit
better reasoning and overall abilities due to the properties of scale (Xu et al., 2025; Wei et al., 2022),
distillation has enabled smaller models to achieve strong reasoning performance (DeepSeek-AI
et al., 2025; Labs, 2025). While most distillation efforts focus on within-architecture transfer (e.g.,
Transformer to Transformer), recent work has explored cross-architecture distillation. Pretrained
Transformers have been successfully distilled into recurrent architectures such as RNNs (Kasai et al.,
2021; Mercat et al., 2024), linear attention (Zhang et al., 2024b), convolutions (Ralambomihanta
et al., 2024), and SSMs (Bick et al., 2024; Wang et al., 2024). Whether strong reasoning can be
distilled across architectures remains an open question.

3 DISTILLING STUDENT REASONERS

In this section, we describe how we distilled Llama models into pure Mamba and hybrid architectures.
We refer to our pure Mamba models as Llamba, and our hybrid models as MambaInLlama.

3.1 DISTILLING INTO LLAMBA

Distillation method. In order to distill pure Mamba models, we modify the MOHAWK distillation
procedure introduced by Bick et al. (2024). MOHAWK is composed of three stages: 1) matrix
orientation, 2) hidden state alignment, and 3) weight transfer and knowledge distillation. Stage
1 (matrix orientation) aligns the Mamba-2 model’s SSM matrix mixer (Dao & Gu, 2024) with
the teacher’s self-attention matrix by minimizing the distance between the two matrices. Stage 2
(hidden state alignment) matches the student and teacher’s layers’ hidden state outputs. Both of these
stages are run independently across layers to prevent previous optimization gaps from propagation
through the model. This is done by setting the input of the student layer to be that of the previous
teacher layer’s output. Stage 3 (weight transfer and knowledge distillation) transfers the remaining,
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Figure 2: Faster generation of distilled models. In (a) and (b), we show the inference time measured
for the baseline Llama models as well as our distilled Llamba (pure Mamba) and MambaInLlama
(hybrid) models at the 1B and 3B scale. We denote the speedup for our MambaInLlama model
at each batch size. We use prompts of 512 tokens and measure the time required to generate 512
tokens. The times measured do not include the prefilling of the prompt. Overall, distilled models
can generate tokens much faster with the speedup being greater for larger batch sizes. Moreover,
our distilled models are more memory efficient, as shown in (b), using a batch size of 512 yields
an Out of Memory (OOM) error for Llama 3B, but not for our models. To obtain 512 completions
with Llama-3B, the two batches of 256, result in an inference time of 58.8s. In comparison, our
MambaInLlama model would take 11.6s, a speedup of ×5.1.
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Figure 3: Negligible effect of finetuning
Llama baselines on distillation dataset. We
finetune Llama models on the distillation
dataset OpenMathInstruct-2. Those models
are marked with the ”+FT” prefix. We plot
coverage (a) and majority voting accuracies
(b) as a function of the number of completions.
Finetuning models on the distillation dataset
has a negligible effect on those metrics.

unoptimized parameters, e.g., MLPs, embeddings, and norms, and finetunes the complete end-to-end
student model using a distillation loss on the student and teacher logits (Hinton et al., 2015). We
deviate from the original MOHAWK paper by transferring the MLP weights and norms of each
teacher decoder layer to the student and training those parameters as well during Stage 2 Bick
et al. (2025). This stems from the architectural differences between Phi (Li et al., 2023) (MLP and

Algorithm 1 Initializing MambaInLlama from Llama
1: Shapes: B - Batch, L - Length, D - embed size, N = D/Heads, N ′ - expand
2: Input: ot: (B, D)
3: Output: output: (B, D)
4: New Params: MLP, A
5: for each head Wk,Wq,Wv,Wo : (N,D) expanding grouped KVs do
6: Head Parameter: A : (N,N ′)
7: for all positions t:
8: xt : (B,N)←WV ot

9: Bt : (B,N)←WKot

10: Ct : (B,N)←WQot

11: ∆t : (B,N ′)← MLP(xt)

12: A1:T ,B1:T ,C1:T : (B,N,N ′)← DISC(A,B,C,∆)

13: y ← LINEARRNN(A,B,C,x)
14: output← output +WO⊤y
15: end for
16: return output
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self-attention in parallel) and Llama (Grattafiori et al., 2024) (sequential self-attention and MLP).
Stage 3 remains the same with fewer weights transferred.

Experimental details. Our pure Mamba-distilled models, Llamba-1B and Llamba-4B, dubbed after
Bick et al. (2025), which uses a similar methodology and the same teacher models, are distilled
from their respective teacher models using our adjusted MOHAWK distillation approach with only 8
billion tokens total each. Following Bick et al. (2024), we use a variant of Mamba-2 that converts the
SSM head structure to multi-head (compared to the original multi-value and Llama’s grouped-query
structure) and converts the sequence mixer to entirely discrete-time. The post-convolution activation
and pre-output projection normalization are also removed. The 8B token distillation dataset is
composed of 4B tokens from FineMath-4+ (Lozhkov et al., 2024), allocated as 1B and 3B to Stages 1
and 2 respectively, and 4B tokens from OpenMathInstruct-2 (Toshniwal et al., 2024) used in Stage
3, which is the only stage in which we apply the chat template to the inputs. Unlike for our hybrid
models, we find that computing the loss on both the assistant output and user prompt improves model
performance over just the assistant output. All three distillation stages use the AdamW optimizer
with β = (0.9, 0.95) and weight decay of 0.1 and a Warmup-Stable-Decay (WSD) scheduler with
10% warmup and 10% decay (Hu et al., 2024) at a 2048 context length. In Stages 1 and 2, we set the
learning rate to 1× 10−4, while in Stage 3, it is 1× 10−5. The hyperparameters are the same for the
1B and 4B distillation runs. Our final Llamba-1B model has 16 layers of our Mamba-2 variant with a
state size of 64 and multi-head pattern of 32 heads and state size of 64. Likewise, our Llamba-4B
utilizes the same pattern with 24 heads and state size of 128 for 28 layers. We note that our pure
Mamba-2 models are slightly larger than their Transformer counterparts due to the conversion from
grouped-query to multi-head and additional parameters found within the Mamba-2 layer.

3.2 DISTILLING INTO MAMBAINLLAMA

Distillation method. We follow two separate directions for distillation. For the hybrid models, we
modify the protocol proposed by Wang et al. (2024) in order to distill some specific capabilities.
These techniques have been shown to be effective for hybrid architectures. The Mamba-in-Llama
framework (Wang et al., 2024) introduces a method for distilling hybrid Transformer-Mamba models
by reusing weights from the attention layers. In the distillation process shown in Alg 1, the linear
projections for Q, K, V and O are initialized using the corresponding linear projections for C, B,
X and O respectively. The only additional learned parameters in the new layers are the sampling
rate ∆ and the dynamic A. These new parameters will control the constructed Mamba through the
discretization function. Specifically, we take ∆ ∈ RN ′

to discretize Bt,Ct ∈ RN×1 and obtain
Bt,Ct ∈ RN ′×N×1 as shown in Alg 1. We directly reuse the MLP layers. Differently from Wang
et al. (2024), we replace the attention layers with Mamba layers in a single round and finetune the
whole model. For distillation, we employ token-level KL divergence. The full probability distribution
of the student model, p(·; θ), is trained to align with the full distribution of the teacher model,
p(·; θT ), by minimizing the KL divergence across all possible next tokens at position t. We adopt the
Mamba-1 architecture for our hybrid models, as Lieber et al. (2024); Wang et al. (2024); Dong et al.
(2024) demonstrates that using Mamba-1 in a hybrid architecture yields better results, especially for
challenging reasoning tasks.

Experimental details. Our hybrid Mamba models, named MambaInLlama-1B (with 4 attention
layers in 16 total layers) and MambaInLlama-3B (with 6 attention layers in 26 total layers), are
distilled with 8B tokens from OpenMathInstruct-2 (Toshniwal et al., 2024). We apply the Llama
chat template, mask the user prompt, and compute the loss only over the tokens generated in the
assistant’s output. Thus, the total number of supervised tokens is reduced to roughly 6.8B. To speed
up training, we use data packing to merge different sequences into a single one until we reach the
maximum sequence length which is set to 8192. We use the AdamW optimizer with learning rate
2× 10−5, β = (0.9, 0.95) and a weight decay of 0.1. The hyperparameters are the same for the 1B
and 3B models. In Mamba layers, we set the SSM state size to 16. Consequently, the number of SSM
groups after expansion is 2048/16 = 128 for the 1B model and 3072/16 = 192 for the 3B model.

Remarks on the distillation dataset. We finetune the Llama teacher models on the same data
used during distillation to avoid our models from potentially gaining an unfair advantage. The
results, reported in Figure 3, show that the continuous training of the base model on the distillation
data mix has a negligible effect on performance. Moreover, we find that the selection of data used
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Figure 4: Distilled models provide better accuracies on MATH for most time budgets. Figures
are similar to Figure 1b. In (a) and (b), we show the majority-voting accuracy and the weight
Best-of-N accuracy (the selected answer is the one with the highest sum of reward model scores, as
introduced in Beeching et al.), for different time budgets. Similarly to Figure 1b, we observe how
the higher throughput of our distilled models allows them to push the Pareto front for most time
budgets. Interestingly, when comparing models of a given size, Llama models are better for larger
time budgets. However, looking at both model sizes together reveals that larger distilled models can
compensate for the lower accuracies of smaller models. As a result, the Pareto front is defined by our
hybrid models. While Llama-3B is still more efficient for a large time budget, one could imagine
distilling a larger subquadratic model that generates quicker nonetheless.

during distillation has a significant impact on the final capabilities of the distilled models. Switching
the Stage 3 dataset in Llamba-1B from OpenMathInstruct-2 to OpenHermes-2.5 (Teknium, 2023)
decreased greedy decoding accuracy on MATH (acc@1) by more than 10 percentage points.

Lack of correlation between reasoning and general benchmarks. We also highlight the lack of
correlation between common multiple choice-based benchmarks and mathematical reasoning, as
the OpenHermes variant of Llamba-1B outperforms the final Llamba-1B by more than 5 points on
MMLU (Hendrycks et al., 2021a) and 0.5 point on ARC-Challenge (Clark et al., 2018). Moreover,
analyzing the acc@1 performance of Llamba-1B and Llamba-4B on MATH after each of the three
stages, we see that the sharp increase in reasoning ability between Stage 2 and Stage 3 is not reflected
in general knowledge benchmarks (Fig. 11).

4 SCALING INFERENCE TIME COMPUTE

100 101

Time (seconds)

0.4

0.6

0.8

1.0

C
ov

er
ag

e

Llama-1B

Llama-3B

Llamba-1B (ours)

Llamba-4B (ours)

MambaInLlama-1B (ours)

MambaInLlama-3B (ours)

Pareto Front

(a) Scaling with time.

20 21 22 23 24 25 26 27 28

Number of completions (k)

0.4

0.6

0.8

1.0

C
ov

er
ag

e

(b) Scaling with number of completions.

Figure 5: Distilled models have better coverage on GSM8K for most time budgets. Observations
are similar to Figure 1, despite a small degradation in coverage per number of completions, the better
throughput of distilled models pushes the Pareto front forward. Hybrid models are more efficient for
most time budgets.

We scale test-time compute using our distilled models by generating multiple CoTs to solve a set of
math problems. The system prompt (Figure 7) contains instructions on how to properly format the
response. The model outputs are parsed to extract the final solution, which is then compared to the
ground truth. This approach enables us to evaluate the model’s performance in generating correct
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Figure 6: Distilled models provide better accuracies on GSM8K for most time budgets. Observa-
tions are similar to Figure 4. The higher throughput of our distilled models allows them to push the
Pareto front for most time budgets.

solutions across multiple attempts. Moreover, the results demonstrate that the models are able to
retain their instruction following ability after distillation.

Evaluation metrics. We evaluate our model using two metrics: coverage and accuracy. In domains
like coding and formal proofs, where answers can be automatically verified, coverage directly
translates to improved performance and has been widely adopted (Chen et al., 2021; Brown et al.,
2024). Coverage is commonly referred to as the pass@k metric, where k denotes the number of
samples per problem (Chen et al., 2021; Brown et al., 2024). This metric estimates the probability
that at least one correct solution exists among the k samples. To reduce the variance when calculating
coverage, we adopt the unbiased estimation formula from Chen et al. (2021). Specifically, we
generate N ≥ k total samples per task. The probability that a correct solution exists among a pool of
k generated samples can then be determined given the total number of correct solutions Ci for each
task.

pass@k =
1

# of problems

# of problems∑
i=1

(
1−

(
N−Ci

k

)(
N
k

) )

We implement this formula using a numerically stable approach as suggested by Chen et al. (2021)(see
Appendix C).

For accuracy, we use multiple aggregation strategies. Majority voting, or self-consistency decod-
ing (Wang et al., 2023) is the most straightforward method to aggregate responses and compute an
accuracy score. A more refined strategy involves using a trained verifier to select the best response
(we call this approach Best-of-N).

As our verifier, we utilize a reward model trained using process supervision, where the model receives
feedback on each step of the reasoning process. Inspired by Snell et al. (2024), we utilize a Llama-3.1
8B-based reward model to score the solutions for Best-of-N. As PRMs produce a cumulative sequence
of step-level scores per solution, we perform a reduction over the steps to obtain a single solution-level
score which we use for answer selection. Following Snell et al. (2024), we use the final score in all
the steps as the score for Best-of-N.

While Best-of-N simply selects the generation with the highest reward, weighted Best-of-N aggregates
the rewards of samples that share the same response and returns the solution with the highest combined
score. In this work, we chose to report weighted Best-of-N, since we often found it to be superior to
Best-of-N, most likely due to it identifying highly-rated but also common solutions.

We focus on the performance of the models for a fixed compute budget. Inspired by the scaling laws
for inference-time compute (Brown et al., 2024), we speculate that having a model that can scale to
very large number of completions can be very effective, even more so than increasing model size by a
large amount (Snell et al., 2024).
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MATH System Prompt: Solve the following math problem efficiently and clearly:\n\n- For sim-
ple problems (2 steps or fewer):\nProvide a concise solution with minimal explanation.\n\n- For
complex problems (3 steps or more):\nUse this step-by-step format:\n\n## Step 1: [Concise descrip-
tion]\n[Brief explanation and calculations]\n\n## Step 2: [Concise description]\n[Brief explanation
and calculations]\n\n...\n\nRegardless of the approach, always conclude with:\n\nTherefore, the
final answer is: $\boxed{answer}$. I hope it is correct.\n\nWhere [answer] is just the final number or
expression that solves the problem.

GSM8K System Prompt: \n\nGiven the following problem, reason and give a final answer to the
problem.\nYour response should end with ”The final answer is [answer]” where [answer] is the
response to the problem.\nProblem:

Figure 7: System prompts for MATH and GSM8K. System prompts passed to all models (pure
and hybrid distilled models and Llama baseline) to be used within the chat template.

5 RESULTS

We (i) measure the inference speedup of our distilled models (§ 5.1), and (ii) show that this speedup
can result in better scaling for a given inference time budget (§ 5.2).

5.1 INFERENCE TIME RESULTS

Experimental protocol. In order to measure the inference time and throughput of our distilled
models, we focus on creating a realistic setup that matches the prompt and CoTs lengths that we find
for MATH and GSM8K. We compare the runtime of a Llama 3.2 architecture against our distilled
models. For Llama, we use FlashAttention2 (Dao, 2023) and torch compile. The implementations of
our models rely on the standard Mamba implementation. Given a varying batch size, we consider
the tasks of generating 512 tokens from a 512 token prompt, which reflect the length found in the
evaluation datasets. The prefilling time to process the prompt is not included in the benchmark, as it
may depend on the redundancy of a given prompt within the batch. In fact, in our setting, we are only
interested in the time to generate the multiple completions given one prompt. Our benchmark is done
on a single NVIDIA H100 GPU, and averaged results over multiple runs are shown in Figure 2.

Distilled models are significantly faster. Results in Figure 2 show our distilled models are up to
×3.7 and ×4.2 faster than their respective Llama 1B and 3B baselines. Moreover, MambaInLlama
and Llamba are more memory efficient and thus can run larger batches. In Figure 2b, our models
can accommodate batches of 512 while Llama-3B returns an out-of-memory error. We also notice
that MambaInLlama models are slightly faster than Llamba. We speculate that this is because
MambaInLlama has a smaller SSM state size of 16, while Llamba uses a larger SSM state size of 64.
Additionally, Llamba has larger projections because of its multi-head structure.

Remark. In our speed experiments, both the prompt and the generation lengths are relatively short
compared to many other domains. When evaluating multi-turn conversations, for example, where
distilled Mamba architectures are already shown to excel (Wang et al., 2024), it is clear that the
length of the context and of the CoTs can be significantly larger than what has been considered in
our experiments. Such longer sequences would significantly increase the throughput advantage of
our models. Unfortunately, it is not yet clear how to evaluate and exploit test-time compute for more
subjective, conversational tasks.

Limitations. We try to ensure fair speed comparisons between the model types by utilizing roughly
equivalent implementations: standard implementation of Mamba-1/2 and FlashAttention-based
self-attention with Pytorch compilation. However, it is worth noting that there exist optimizations
for current Transformer architectures, such as memory management improvements (Kwon et al.,
2023), that enable faster generation; similar boosts are currently not readily available for alternative
architectures. Deeper optimizations for each architecture are beyond the scope of this work.

8



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

5.2 RESULTS ON REASONING TASKS

Experimental protocol. We benchmark the teacher models (Llama-3.2 1B-Instruct and 3B-Instruct)
and the distilled Mamba students (MambaInLlama-1B, MambaInLlama-3B, Llamba-1B, Llamba-4B)
on the MATH-500 subset of the MATH dataset (Lightman et al., 2023; Hendrycks et al., 2021b) and
a randomly selected 500-sample subset of GSM8K (Cobbe et al., 2021). We evaluate performance
based on coverage and accuracy with majority voting and weighted Best-of-N (§ 4). We sample
responses from the distilled models with temperatures T = 0.6, 0.8 and top k = −1 to consider
all tokens. For each response, we sample up to 2048 tokens. For the distilled models, we find that
T = 0.6 and T = 0.8 are ideal for the 1B and 3B scale, respectively, and subsequent results are
obtained using these temperatures. The official Llama evaluation system prompt is used for the
MATH dataset, while the original prompt is kept for GSM8K as displayed in Figure 7. For our
process reward model, we utilize a base Llama3.1-8B-Instruct model trained on Mistral-generated
data (Xiong et al., 2024).

Distilled Models can Cover like Teachers. When observing the scaling of coverage as the number
of generation k increases in Figure 1a (resp. Fig. 5a for GSM8K), we see distilled models closely
matching the coverage of their teachers. Only a small degradation is observed. When we plot the
coverage as a function of the time budget, by associating each coverage measurement to the time
required to generate the associated number of completions (see Fig. 1b), we find that our distilled
models are exceptional in their ability to generate correct answers fast. By generating many more
completions for the same time budget, the overall Pareto front for coverage in both MATH and
GSM8K (Fig. 1b, 5b) is heavily dominated by our distilled models where both pure and hybrid
Mamba reasoners are able to achieve the same degree of coverage in nearly half the time of their
respective teachers. Given a sufficiently strong reward model or verifiable solutions, those coverage
scores would in large parts translate to accuracy.

Distilled Models Achieve Competitive Accuracy Under Fixed Time. Training with distillation
and utilizing subquadratic architectures—which are less expressive than Transformers—can degrade
model quality. However, we find that this is a worthy trade-off when comparing performance under
fixed time budgets in Figure 6 and Figure 4. Similarly to coverage, the lighter and faster batch
inference of the distilled models, allowing for more generations, results in a better accuracy/time
Pareto front at several completion scales. Interestingly, while comparing models of similar sizes
indicates that larger time budgets are dominated by the teacher models, we observe that the larger
distilled model can provide better accuracy than the smaller baseline while still being faster. For
example, while Llama-1B provides better accuracy than MambaInLlama-1B for larger time budgets,
MambaInLlama-3B takes over where MambaInLlama-1B left off, providing a better accuracy than
Llama-1B for inference time. Similarly, we can conjecture it would be possible to distill a larger
baseline model that would outperform Llama-3B, providing better accuracy for a given time budget.

Larger Students Faster and Better than Smaller Teachers. The core driving force behind the
growing interest in subquadratic models is their computational efficiency. Such properties enable our
distilled models of larger sizes (3B scale) to generate samples faster than even a smaller Transformer
(1B). Our MambaInLlama-3B and Llamba-4B models outperform the slower Llama-1B baseline
on coverage and accuracy while being faster. These inference speedups, rooted in the underlying
architecture, allow larger and more capable models to be used in time-constrained environments,
despite their increased number of parameters.

Smaller models have great coverage. When focusing on coverage, we observe in Figure 1b and
Figure 5b that most of the Pareto front is occupied by 1B models. Contrasting those results with
the majority voting accuracy results in Figure 4a and Figure 6a where the gap between 1B and 3B
models is much more significant. An interpretation is that, while smaller models have the ability to
generate the correct answer, the probability of generating it within a constrained number of samples
increases with the model size. This finding has implications in choosing model size for tasks involving
formal language where the answer is easily verifiable, such as coding and mathematical proofs. In
those applications, coverage matters most, and smaller models may be preferred given their better
time/coverage efficiency compared to larger models.
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6 CONCLUSION

In our work, we investigate whether lower-complexity models can leverage their superior generation
throughput to outperform similarly sized Transformers under a fixed computational budget. We
focus on reasoning tasks where we can scale test-time compute to improve performance. Through
extensive experimentation, we distill both pure and hybrid Mamba models at the 1B and 3B scales
and evaluate their reasoning capabilities on mathematical reasoning benchmarks, where the ability of
subquadratic models to quickly generate many completions enables them to take advantage of their
scaling properties when increasing inference compute. When fixing memory and/or compute, our
models achieve better coverage and accuracy for most time budgets compared to their Transformer,
teacher counterparts. These findings highlight the potential of Mamba and other attention alternatives
as strong substitutes to Transformers for tasks that benefit from scalable inference compute.
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A ADDITIONAL RESULTS

Figures 8 and 9 show accuracy as a function of the number of completions.
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Figure 8: Accuracy scores on MATH per completion without considering inference time.
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Figure 9: Accuracy scores on GSM8K per completion without considering inference time.

14



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

B DISTILLATION LOSS CURVES

Figure 10: The distillation loss decreases steadily over time, showing a clear downward trend
and converge at around 0.03.

Figure 10 shows the distillation loss of MambaInLlama 3B when training on the Toshniwal et al.
(2024) dataset. We observed a stable decrease in loss until it converged to 0.03.

C PASS@K IMPLEMENTATION

A numerically stable script for calculating an unbiased estimate of pass@k, from Chen et al. (2021).

1 def pass_at_k(n, c, k):
2 """
3 :param n: total number of samples
4 :param c: number of correct samples
5 :param k: k in pass@$k$
6 """
7 if n - c < k: return 1.0
8 return 1.0 - np.prod(1.0 - k /
9 np.arange(n - c + 1, n + 1))
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D MOHAWK (PURE MAMBA) DISTILLATION ON REASONING AND GENERAL
PERFORMANCE
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Figure 11: Reasoning and general performance of models after various stages of MOHAWK
distillation. Distilling reasoning capabilities, measured by accuracy using greedy decoding (acc@1)
on the MATH benchmark, does not correlate with general multiple-choice reasoning benchmarks. The
performance of Llamba-1B and 4B increase significantly only after the last stage of the MOHAWK
distillation, but Stage 2 is able to significantly improve general benchmark performance.
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