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Abstract

Cross-lingual alignment in multilingual lan-
guage models has been an active field of re-
search in recent years. We survey the litera-
ture of techniques, both to train well-aligned
models, and to improve the cross-lingual align-
ment of pre-trained encoders. Compiling evalu-
ation results and method summaries, we give an
overview of which methods work better than
others. We further show how to understand
cross-lingual alignment and its limitations. Fi-
nally, we discuss how these insights may be
applied not only to encoder models, where
this topic has been heavily studied, but also
to encoder-decoder or even decoder-only mod-
els. In generative models, the focus must be on
an effective trade-off between language-neutral
and language-specific information.

1 Introduction

Zero-shot cross-lingual transfer using highly multi-
lingual models has been an active subset of multi-
lingual NLP research. In tasks like sentence classi-
fication, sequence labelling, or sentence retrieval,
all of which rely on encoder representations, cross-
lingual overlap of those representations is an un-
derlying assumption. As we define it, cross-lingual
alignment means that words or sentences with sim-
ilar semantics are:

1. more similar in the representation space than
words or sentences with dissimilar semantics.

2. similar enough that a prediction head trained
on a source language will recognise the rele-
vant patterns in the target language.

These criteria are not guaranteed to be fulfilled
through unsupervised pre-training, motivating ef-
forts to improve the cross-lingual alignment by
various methods. We surveyed a number of papers
in this area. These papers propose new training ob-
jectives, pre-trained new models, contrastive fine-
tuning, or post-hoc adjustments of the embedding

space. The vast majority of these methods were
developed for and applied to multilingual encoder
models, chiefly XLM-R and mBERT. We address
future research on generative models in § 5.

The contributions of this paper are: a thorough
review of papers in this space from the last years
(§ 3, § 4), a higher-level discussion of cross-lingual
alignment and the representation space (§ 2), and a
discussion about cross-lingual alignment and future
research in the context of generative models (§ 5).

2 Cross-Lingual Alignment

2.1 Definitions

“Alignment” is an overloaded term in NLP, refer-
ring to word alignment in machine translation (Och
et al., 1999), or to desirable model behaviour in
chatbot training (Ouyang et al., 2022). In our case,
it refers to the meaningful similarity of multilingual
representations across languages. “Cross-lingual
alignment” in this sense was used in static word em-
beddings, and can be applied to contextual models
as well. We define two main requirements:

1) Similar meanings have more similar represen-
tations than dissimilar meanings do. When query-
ing cross-lingually, the nearest neighbour of a word
representation should be its translation. This im-
plies it is not enough that similar meanings are rep-
resented in similar ways; it is also necessary that
dissimilar meanings are represented in dissimilar
ways. This property is critical for tasks relying on
retrieval from the space. A “stronger” cross-lingual
alignment (c.f. Abulkhanov et al., 2023) would
additionally require that word representations be
more similar to their translations than to dissimilar
words in the same language.

2) A prediction head trained on a source language
should be able to find relevant patterns in the repre-
sentations of a target language, and classify accord-
ingly. Although it is tempting to think of similarity



in terms of simple measures such as cosine simi-
larity, the classification head works with the full
encoder representations as its input, and can use
subspaces to that effect. This property is crucial
for fine-tuning tasks, i.e., classification or question
answering. This requirement also implies that rep-
resentations, or at least subspaces thereof, are close
to isomorphic (see § 2.2).

Although cross-lingual alignment is not the only
possible term, it has been commonly used in the re-
lated research and is likely to be understood. It im-
plies a relationship between matched words across
languages, at as many points as possible, and in-
deed a complex optimisation problem. It requires
good but not necessarily perfect correspondence
between spaces, as we will discuss further.

2.2 Isomorphism of Representations

As has been pointed out for cross-lingual static em-
beddings, alignment between two language spaces
depends on an assumption of isomorphism, i.e.,
that both spaces have (roughly) the same shape
and can be linearly transformed onto each other
in such a way that equivalent tokens are consis-
tently aligned (Vuli¢ et al., 2020). This assumption
may not always hold due to cultural-semantic dif-
ferences, imperfect translation of concepts (e.g.,
Gibson et al., 2017), typological differences, differ-
ent corpus domains, different data sizes, and more
(Ormazabal et al., 2019; Vuli¢ et al., 2020).

We can think of cross-lingual alignment as a
complex optimisation problem in this light—to
be completely cross-lingually aligned, the model
would have to reconcile both large and small dif-
ferences between many different language spaces.
However, this may simply not be necessary in order
to fulfill our two conditions reasonably well.

That said, Vuli¢ et al. (2020) emphasise that
undertraining contributes significantly to non-
isomorphism in static embeddings, and this may
well apply to contextual models. For example,
we know that contextual models also encode to-
ken frequency (Rajaee and Pilehvar, 2022; Puccetti
et al., 2022), which is implicitly related to each
language’s vocabulary and data size.

2.3 Subspaces

Contextual representations encode not only seman-
tic aspects, but also morphosyntactic aspects (He-
witt and Manning, 2019; Acs et al., 2023), token
frequency, and more. They are likely to pick up on

many other details to some degree, including spuri-
ous attributes and noise. Among the hundreds of di-
mensions in the models, subspaces can correspond
to more specific aspects. These can be found math-
ematically, through projections of the raw represen-
tations. For instance, Chang et al. (2022) find affine
subspaces that correspond to language-sensitive as
well as language-neutral information.

In effect, Chang et al. (2022) separate types of
axes by how their means and variances differ in dif-
ferent languages. That is, if both are similar across
languages, the axis is language-neutral. If the
means differ between languages and/or variances
are very different, the axis is language-sensitive.

2.4 Measuring Cross-Lingual Alignment

Cross-lingual alignment or language-neutrality has
been measured using a range of metrics, none of
which show the full picture: Word or sentence re-
trieval tasks measure the model’s ability to encode
the correct translation more similarly to the query
than other candidate translations. Often this is
measured by cosine, i.e., angular similarity, after
normalising vector length, or an adjusted retrieval
score such as CSLS (Lample et al., 2018).

Cosine similarity between matched words, or av-
erage cosine similarity between language spaces,
has also been used more directly as a measure of
cross-lingual alignment. It is important in such
cases to compare against the average cosine simi-
larity in the space, which can be quite high (Etha-
yarajh, 2019; Rajaee and Pilehvar, 2022).

Isomorphism between two representation spaces
can be measured using relational similarity (Vuli¢
et al., 2020), eigenvector similarity (Sggaard et al.,
2018), or the Gromov-Hausdorff distance (Gromoyv,
1999; Patra et al., 2019).

Language identification is sometimes used (e.g.,
Libovicky et al., 2020) to reveal language-specific
elements of the representations. In this thinking, if
a language classifier trained on the output represen-
tations performs worse, then the model outputs are
more language-neutral. However, this neglects that
the representations can have both language-neutral
and language-specific areas (§ 2.3).

Zero-shot cross-lingual transfer, after fine-
tuning, is both an aim in itself and a proxy for how
well-aligned the representations are. Of course,
fine-tuning will change the model again, but in-
terventions before and/or during fine-tuning have
been shown to improve transfer performance. The



metrics used depend on the respective task, but
a common way to highlight cross-lingual transfer
is to report the transfer gap, i.e., the difference
between source language performance and the av-
erage target language performance.

Finally, though not a metric, we mention t-SNE
(van der Maaten and Hinton, 2008) here. This is
a visualisation method where spaces are projected
down into two or three dimensions for graphing,
and it can be extremely helpful to get a better sense
of what the space looks like. However, we must
remember that due to the down-projection and se-
lection of examples, we can see only some aspects
of the representation space at any given time.

3 Strategies to Increase Alignment

We report on a number of strategies for improv-
ing zero-shot transfer and increasing cross-lingual
alignment, sorting them by aspects such as con-
tinued training or full pre-training, word-level or
sentence-level objectives, and more. Table 1 lists
all included papers, organised by initialisation, ob-
jectives and kinds of data. In this section, we
show different strategies with examples, adding
categories that are not in the table as they would
overlap with multiple table cells. We leave out
some methods that are less relevant to the overall
analysis, though we explain them in Appendix B
for completeness.

3.1 Word-Level vs. Sentence-Level Objectives

First, we discuss models using external parallel
data—sentence-parallel or word-parallel—which is
a plurality of methods in this survey. In some cases,
a sentence-parallel corpus is used and word-level
alignments are induced before training. We tabu-
late the methods based on whether the proposed
objectives focus on word-level alignments, or only
sentence-level ones. “Both levels” refers mostly to
methods using multiple alignment objectives. In
many cases, the alignment objective is combined
with a regularisation or joint objective.

Word-level alignment. Cao et al. (2020) is an
influential early work in explicit cross-lingual align-
ment training, using parallel texts. The objective
is “contextual word retrieval”, searching for word
matches over the entire corpus using CSLS (Lam-
ple et al., 2018), which deals better than cosine
similarity with hubness issues. As a regulariser,
they keep the model similar to its initialisation.
Wu and Dredze (2020) propose a similar objective

with a contrastive loss, which is “strong” or “weak”
based on whether negative examples are consid-
ered from both the source and target language or
only from the target language. Zhao et al. (2021)
also use a similar alignment process and combine
it with batch normalisation, i.e., forcing “all em-
beddings of different languages into a distribution
with zero mean and unit variance”. Algahtani et al.
(2021), meanwhile, formulate cross-lingual word
alignment as an optimal transport problem. XLM-
Align (Chi et al., 2021b) combines denoising word
alignment with self-labelled word alignment in an
EM manner.

Word- and Sentence-level. These models either
use multiple objectives, or use objectives that are
hard to categorise as either word- or sentence-level.

For instance, Hu et al. (2021b) propose both a
Sentence Alignment and a Bidirectional Word Align-
ment objective inspired by MT for their AMBER
model, which they train from scratch.

Among modified models, Chi et al. (2021a) pro-
pose the sentence-level cross-lingual (momentum)
contrast objective for InfoXLM. However, they
also emphasise the importance of MLM and TLM
(translation language modelling) for token-level
mutual information, casting both in information-
theoretic terms. nmT5 (Kale et al., 2021) combines
TS5 training with a standard MT loss, which ar-
guably targets both granularity levels. DeltaLM
(Ma et al., 2021) is also an encoder-decoder model
using T5-style training objectives on monolingual
and parallel data. The model is initialised with
InfoXLLM and modified from there. Ouyang et al.
(2021) propose the new objectives Cross-Attention
MLM and Back-Translation MLM for ERNIE-M.

Sentence-embedding models. Models specifi-
cally targeting sentence-level tasks are typically
concerned only with sentence-level alignment. One
of these is multilingual Sentence-BERT (Reimers
and Gurevych, 2020), an XLM-R model tuned with
an English S-BERT model as a teacher. Using par-
allel data, the model learns to represent target lan-
guage sentences similarly to the English source.
This makes for strong cross-lingual alignment and
good cross-lingual retrieval performance.

Among pre-trained models, LASER (Artetxe
and Schwenk, 2019) is a 5-layer BILSTM trained
on machine translation, with the decoder being dis-
carded. Its successor LASER3 (Heffernan et al.,
2022) is a 12-layer Transformer model, but trained



Objectives From Existing Model From Scratch
Parallel, Multilingual S-BERT (Reimers and Gurevych, | LASER (Artetxe and Schwenk,
sentence-level | 2020); Sentence-level MoCo (Pan et al., 2021); | 2019); LASER3 (Heffernan et al.,
OneAligner (Niu et al., 2022); One-pair su- | 2022); LaBSE (Feng et al., 2022);
pervised (Tien and Steinert-Threlkeld, 2022); | LASER3-CO (Tan et al., 2023)
mSimCSE supervised (Wang et al., 2022);
LAPCA (Abulkhanov et al., 2023)
Parallel, Cao et al. (2020); Weak/Strong Alignment
word-level (Wu and Dredze, 2020); Joint-Align + Norm
(Zhao et al., 2021); VECO (Luo et al., 2021);
WEAM (Yang et al., 2021); WordOT (Algah-
tani et al., 2021); XLM-Align (Chi et al.,
2021b); WAD-X (Ahmat et al., 2023)
Parallel, Kvapilikova et al. (2020)*; InfoXLLM (Chi | ALM (Yang et al., 2020); AM-
both levels et al.,, 2021a); nmT5 (Kale et al., 2021); | BER (Hu et al., 2021b); XLM-E
HiCTL (Wei et al., 2021); ERNIE-M (Ouyang | (Chi et al., 2022); XY-LENT (Patra
et al., 2021); DeltaLM (Ma et al., 2021) et al., 2023)
Target task | xTune (Zheng et al., 2021); FILTER (teacher | FILTER (student model)
data model) (Fang et al., 2021); XeroAlign (Gritta
and lacobacci, 2021); Cross-Aligner (Gritta
et al., 2022); X-MIXUP (Yang et al., 2022)
Other RotateAlign (Kulshreshtha et al., 2020); | DICT-MLM (Chaudhary et al.,
sources CoSDA-ML (Qin et al., 2020); DuEAM | 2020); ALIGN-MLM (Tang et al.,
(Goswami et al., 2021); Syntax-augmentation | 2022)
(Ahmad et al., 2021); RS-DA (Huang et al.,
2021); EPT/APT (Ding et al., 2022); mSim-
CSE NLI supervision (Wang et al., 2022)
Monolingual | MAD-X (Pfeiffer et al., 2020); Adversarial | RemBERT (Chung et al., 2021);
only & Cycle (Tien and Steinert-Threlkeld, 2022); | XLM-R XL & XXL (Goyal et al.,
BAD-X (Parovi¢ et al., 2022); X2S-MA (Him- | 2021); mT5 (Xue et al., 2021);
merl et al., 2022); mSimCSE unsupervised | XLM-V (Liang et al., 2023); mDe-
(Wang et al., 2022); LSAR (Xie et al., 2022) | BERTaV3 (He et al., 2023);

Table 1: Proposed strategies for improved zero-shot transfer by training objectives and initialisation (training from
scratch vs. modifying an existing model). *Uses only monolingual data and/or synthetic parallel data.

using a student-teacher setting, where the teacher
is similar to the original LASER. This follow-up
also emphasises support for lower-resource lan-
guages, training a student for each group of similar
languages. By contrast, LaBSE (Feng et al., 2022)
relies entirely on monolingual data and mined paral-
lel data, but is pre-trained with standard MLM and
TLM. Then, it uses translation ranking with nega-
tive sampling and additive margin softmax (Yang
et al., 2019a) to train sentence embeddings.

3.2 Modified Pre-Training Schemes

Many of the proposed strategies rely on parallel
data. However, several models are trained from

scratch using only monolingual data while modify-
ing specific aspects: a larger vocabulary (XLM-V,
Liang et al., 2023), rebalanced pre-training vs. fine-
tuning parameters (RemBERT, Chung et al., 2021),
or using training objectives that had been tested in
an English-only context, such as mDeBERTaV3
(He et al., 2023) and mT5 (Xue et al., 2021). Mean-
while, Goyal et al. (2021) improve performance
by significantly scaling up model size, producing
models with 3.5B and 10.7B parameters.

Like mDeBERTaV3, XLM-E (Chi et al., 2022)
is pre-trained using the ELECTRA training scheme
(Clark et al., 2020), but XLM-E does use both
monolingual and parallel data. The later XY-LENT



(Patra et al., 2023) uses the same objectives, fo-
cusing on many-to-many bitexts rather than only
English-centric data.

3.3 Adapter Tuning

Several other methods modify existing models us-
ing monolingual text: MAD-X (Pfeiffer et al.,
2020) and BAD-X (Parovi¢ et al., 2022) are both
adapter-based frameworks, combining language
adapters and task adapters for improved cross-
lingual transfer performance. The latter builds on
the former by using ‘bilingual’ language adapters,
which are trained on monolingual corpora of both
the source and the target language. WAD-X (Ah-
mat et al., 2023) is another, later method that adds
“word alignment adapters” using parallel text.

In a somewhat different approach, Luo et al.’s
(2021) VECO wuses a “plug-and-play” cross-
attention module which is trained during continued
pre-training, and can be used again in fine-tuning
if appropriate parallel data is available.

3.4 Contrastive Learning

Contrastive learning has become popular in NLP
for a variety of use cases. For cross-lingual align-
ment, it has also been used in several papers, since
it aims to improve the similarity of positive ex-
amples and the dissimilarity of negative examples
jointly. In effect, contrastive learning should help
representations to fulfil our requirement number 1)
as mentioned in § 2.1.

It can be used very effectively on the word level
(InfoXLM, HiCTL, Wu and Dredze (2020)). For
example, HICTL (Wei et al., 2021) stands for Hier-
archical Contrastive Learning, which includes both
a sentence-level and a word-level contrastive loss.

Still, contrastive learning is especially popular
for sentence embedding models. Examples in-
clude OneAligner (Niu et al., 2022), which targets
two sentence retrieval tasks, is an XLM-R version
trained on OPUS-100 data. One version uses all
available English-centric pairs, another only uses
the single highest-resource corpus, while setting
a fixed data budget. Their training objective is
based on BERT-Score, with in-batch normalisation
and negatives. Abulkhanov et al. (2023), for their
retrieval model LAPCA, emphasise “strong” cross-
lingual alignment, mining both roughly parallel
positive passages and hard negatives. mSimCSE
(Wang et al., 2022) is a contrastive framework using
in-batch negatives, which has multiple supervised
and unsupervised settings.

Among pre-trained models, the popular LaBSe
also uses contrastive learning to achieve good
sentence-embeddings, and LASER3-CO (Tan et al.,
2023) extends the LASER3 paradigm by adding
contrastive learning to the distillation process.

3.5 Data Augmentation

Some methods create pseudo-parallel data by min-
ing sentence pairs or machine translating monolin-
gual text. For example, Kvapilikova et al. (2020)
fine-tune XLM-100 using TLM, but they do this
with 20k synthetic translation pairs, which they cre-
ate for this purpose. However, there are also more
complex data augmentation strategies being pro-
posed: Yang et al.’s (2020) Alternating Language
Model (ALM) uses artificially code-switched sen-
tences constructed from real parallel data. Yang
et al. (2021) propose a “cross-lingual word ex-
change”, where representations from the source
language are used to predict target language tokens.

DICT-MLM (Chaudhary et al., 2020) and
ALIGN-MLM (Tang et al., 2022) both rely on a
bilingual dictionary resource. DICT-MLM trains
the model to predict translations of the masked to-
kens. ALIGN-MLM rather combines traditional
MLM with an alignment loss to optimise aver-
age cosine similarity between translation pairs.
CoSDA-ML (Qin et al., 2020) also uses dictionar-
ies in a similar way, but is not trained from scratch.

3.6 Transformation of Representations

Although most models take advantage of fine-
tuning techniques and deep learning, linear trans-
formations can equally be applied to Transformer
models. For instance, Rotate Align (Kulshreshtha
et al., 2020) uses either dictionaries or parallel
data—although parallel data is more effective—to
find transformation matrices for each of the last
four Transformer layers, combined with language-
centering normalisation. LSAR (Xie et al., 2022)
works without any parallel data, by projecting away
language-specific elements of the representation
space. Both Rajaee and Pilehvar (2022) and Him-
merl et al. (2023) find that mean-centering repre-
sentations and forcing them to be highly isotropic
can improve cross-lingual retrieval performance.
And the in-batch normalisation used by Zhao et al.
(2021) and (Niu et al., 2022) also targets the intu-
ition that centering individual language-subspaces
will lead to closer cross-lingual alignment.

With the fine-tuning framework X-MIXUP
(Yang et al., 2022), the transformation is rather



built into the fine-tuning process again, by adding
MSE between source and target to the fine-tuning
loss, as well as the Kullback-Leibler divergence
of source and target probability distributions for
classification tasks.

3.7 Tuning with Task Data

We have so far focused on methods for pre-training
or continued pre-training. Some methods do fine-
tuning on the task data and cross-lingual alignment
in the same step, often using (translated) task data
for a translate-train setting. Such methods cannot
be directly compared to the zero-shot transfer set-
ting, but they are really quite effective at achieving
good transfer performance on the target tasks.

These include xTune (Zheng et al., 2021), a fine-
tuning framework for cross-lingual transfer tasks
which can be combined with other models. xTune
also includes consistency regularisation, which
can work without translated data. Gritta and la-
cobacci’s (2021) XeroAlign adds a Mean-Squared-
Error (MSE) loss between the source and target
sentence to the fine-tuning process. Cross-Aligner
(Gritta et al., 2022) further adds a loss operating
on entity level. Fang et al.’s (2021) FILTER frame-
work first trains a teacher model in the translate-
train paradigm, then a student model is trained with
a self-teaching loss aimed to bridge the gap of label
transfer across languages.

4 Evaluation of “Aligned” Models

There is no single metric reported by all these pa-
pers. Many report performance on XNLI (Con-
neau et al., 2018), in the zero-shot transfer and/or
translate-train settings. We compile XNLI results
in Tables 2 and 4. Cross-lingual retrieval is also
popular, although the specific tasks reported vary.
We show Tatoeba-36 (Artetxe and Schwenk, 2019;
Hu et al., 2020) results in Table 3.

Several other tasks are reported relatively often,
and we compile more results in Appendix C. For
this section, we focus on XNLI, as we find that
methods which work well on XNLI mostly also do
well on other tasks, although the ranking changes.
Unfortunately, there are a number of cases where
authors report results for a task but do not use all
test languages of the most commonly-used version,
meaning that the average results are not compara-
ble. We omit the results in those cases.

Additionally, App. D shows which authors pro-
vide code or model downloads for reproducibility.

Model Size XNLI
mBERT (Hu et al., 2020) 110M 65.4
mBERT + EPT/APT ~110M 684
DICT-MLM ~110M  68.6
mBERT+JointAlign+Norm | ~110M  72.3
WordOT ~110M  75.4
AMBER 172M 71.6

- XLM-Rpqc + EPT/APT | ~270M  75.8
XLM-ALIGN ~270M  76.2
InfoXLMpgse ~270M  76.5
ERNIE-Mp, s ~270M 773
HiCTLyse ~270M  77.3
XLM-R+JointAlign+Norm | ~270M  77.6
mDeBERTaV3 ~276M  79.8
XLM-Epgse 279M 76.6
stsmall 300M 67.5

" XY-LENTyee | 447M 805
XLM-R (Hu et al., 2020) 550M 68.2
HiCTL4rge ~550M 81.0
InfoXLM;grge ~550M 814
ERNIE-M;4;ge ~550M  82.0
XLM-Ry4rge + xTune 550M 82.6
RemBERT 575M 80.8
mT5p4se 580M 75.4
VECO,.; 662M 79.9
XLM-V ~750M  76.0
XLM-Ej4rge 840M 81.3

"XY-LENTx;, | 21B 848
XLM-Exy, 2.2B 83.7
XLM-Rxy, 3.5B 82.3
mT5 XL 3.7B 82.9

"XLM-Rxx;, | 107B 831
mT5 XX 13B 85.0

Table 2: Zero-shot transfer XNLI performance reported
by various papers, ordered by model size. Many papers
do not report exact parameter counts, so we make an
estimate (~) based on the model they modify, or on
hyperparameters where reported.

4.1 What works well?

The best results we see in zero-shot cross-lingual
transfer are from a mix of newly-trained and modi-
fied models. WordOT, a modified mBERT with an
optimal transport objective, yields the best result in
its size band. In the next size group, mDeBERTaV3
performs best. This is a model trained from scratch
with only monolingual data, with the ELECTRA
pre-training objective and additional improvement
in the form of gradient-disentangled embeddings.
XLM-E, which does not have this additional ele-



Model Size Tatoeba
mBERT (Hu et al., 2020) | 110M 38.7
mBERT + LSAR ~110M 44.6
DICT-MLM ~110M 47.3
LaBSe ~110M 95.0

CX2S-MA | ~270M 681
XLM-Epgse 279M 65.0

" XLM-R (Huetal., 2020) | 550M 573
HiCTL;qge ~550M 59.7
XLM-R + LSAR ~550M 65.1
T&ST (unsup) ~550M 74.2
T&ST (one-pair) ~550M 80.4
ERNIE-M;4;ge ~550M 87.9
OneAligner 550M 92.9
mSimCSE uns. ~550M 78.0
mSimCSE sup. ~550M 88.3
mSimCSE NLI ~550M 91.4
VECO,,+ 662M 75.1

Table 3: Tatoeba-36 performance reported by various
papers, ordered by parameter counts.

ment, does markedly worse than mDeBERTaV3.
Only few points behind, ERNIE-M, HiCTL and
the JointAlign+Norm method sit at a near-identical
performance. All modify an existing model in dif-
ferent ways: InfoXLM uses information theory,
ERNIE-M focuses on aligning the attention pa-
rameters, whereas JointAlign+Norm looks at the
output vector space. In the next group, xTune’s
consistency regulation proves highly effective, with
ERNIE-M,,,4¢ and InfoXLM just behind.

In both zero-shot transfer and translate-train,
once we cross the threshold of 1B parameters, X Y-
LENT x, is the best available method—we do not
know, at this point, if this model would be outper-
formed by another method being scaled up. Trained
from scratch, XY-LENT specifically uses a lot of
parallel data that is not only English-centric, which
seems to work well. XLLM-R x x 1, lags behind XY-
LENT x 1, and XLM-Ex, while outperforming its
own XL counterpart. Interestingly, mTS5, which
underperforms in smaller configurations, is com-
petitive in XL size and does very well in XXL.

In the translate-train setting, mDeBERTaV3
again wins its size group. However, in the next
larger group of models, X-MIXUP proves the most
effective. It also improves mBERT’s performance
by a large margin. This method directly addresses
representation discrepancies between different lan-
guages by linear interpolation between the hidden

states of translation pairs. HiCTL, VECO, and
ERNIE-M,,.4c come close to the performance of
X-MIXUP on this task, while needing more re-
sources. The contrastive learning approaches in
these tables do well (HiCTL, InfoXLM), although
they are not necessarily the most performant. We
must add the caveat that not all relevant models are
listed in the tables, since not all papers report the
full XNLI results.

For Tatoeba, the range of results is especially
large—the task has indeed been criticised for its
large variability. Here, contrastive training ap-
proaches are both very common and very success-
ful. LaBSE, OneAligner, and mSimCSE with NLI
supervision attain the best overall results. LaBSE
uses both negative sampling and additive margin
softmax, OneAligner uses in-batch negatives, and
mSimCSE follows a contrastive training approach
as well, indicating the strength of these methods
for the task. OneAligner additionally uses in-batch
normalisation to offset the hubness problem.

4.2 'What to use?

Besides the obvious conclusion that larger models
usually outperform smaller ones, we recommend
using (multi-directional) parallel data if available,
and designing models carefully. Mined or pseudo-
parallel data can fulfil that function in some cases.
Use the available translated task data when optimis-
ing for a specific application. When pre-training
encoder models, ELECTRA-style replaced token
detection may be the way to go. Contrastive learn-
ing is popular for good reason, especially in the
retrieval paradigm. Methods like OneAligner also
show that models can learn from one language pair
to transfer better to multiple language pairs. Repre-
sentation normalisation and ensuring that language
means are closer together can be very effective and
make models competitive with larger ones. These
could also be helpful when not enough data or re-
sources are available for a larger training effort.

S Multilingual Generative Models

Recently, the field has turned much attention to gen-
erative Large Language Models (LLMs). In this
space, there are still fewer intentionally multilin-
gual models (e.g., Workshop et al., 2023; Lin et al.,
2022), and unfortunately they skew more heavily
towards English data than models in our survey.
However, we believe that multilingual generation
will become increasingly relevant as applications



scale. Thus, we point out several areas of future re-
search, including how cross-lingual alignment will
interact with multi- and cross-lingual generation.
There exist some efforts to benchmark multi-
lingual generation (Asai et al., 2023; Ahuja et al.,
2023; Gehrmann et al., 2022), but this presents
unique challenges compared to multilingual clas-
sification, or monolingual generation tasks. Mul-
tilingual classification tasks, by contrast, are of-
ten solved considerably less well by generative
methods—typically using in-context learning or
zero-shot prompting—than by fine-tuned encoder
models (Lin et al., 2022). Further, the zero-shot
cross-lingual transfer paradigm encounters issues
in generative settings, since well-aligned represen-
tations can lead to generation in the wrong lan-
guage (Xue et al., 2021; Li and Murray, 2023).
Essentially, where encoder-based classification
tasks must rely on language-neutral axes of repre-
sentations, generative tasks must rely not only on
language-neutral aspects of semantics, but also on
language-specific information about the target lan-
guage, such as its specific vocabulary and syntax.

5.1 Until Now: Encoder-Only Models

We have surveyed primarily encoder-only models,
though we include a few encoder-decoder mod-
els. Encoder-only models transform the inputs
into a latent space representation which is then
used by a downstream task “head”. For any tasks
where the set of outputs does not depend on the
language, the model needs to primarily rely on
language-neutral axes of the representations. Intu-
itively, strong cross-lingual alignment will be help-
ful here, including more “radical” methods such as
mean-centering language-specific subspaces.

5.2 Encoder-Decoder Models

Due to their pre-training tasks, encoders can pre-
dict the most likely tokens to fill a masked posi-
tion, but encoder-decoder models are more suited
to generative tasks due to their architecture. In this
framework, the encoder is responsible for creating
the latent space representation, while the decoder
predicts the next tokens one-by-one. Conceptually,
the encoder should still represent the semantics
of different languages as closely aligned. How-
ever, both language-neutral and language-specific
information will be present and necessary in the
encodings. If we want to use established cross-
lingual alignment techniques in generative models,
the encoder is the most natural target for them.

The decoder, meanwhile, must learn to focus
more on language-specific information in order to
generate tokens in the target language. It is there-
fore likely that, e.g., mean-centering the language
subspaces in the encoder output would be harmful.
That said, language-neutral semantic information
from the encoder must also be taken into account.
We suggest training for both cross-lingual align-
ment and language-specificity at the decoding step.
An approach such as OneAligner, where one or a
few target languages are used for training along
with the source language, could help to remain
resource-efficient. Note that this is different from
zero-shot cross-lingual transfer, where only one
(source) language is used for training.

5.3 Decoder-Only Models

Many recent LLMs (Brown et al., 2020; Touvron
et al., 2023) are decoder-only models, meaning they
use the decoder architecture throughout the model
and have no separate encoder layers. Thus, there is
no one obvious point at which cross-lingual align-
ment should be greatest. However, any training
scheme that can help an encoder-decoder model to
focus on language-neutral and language-specific
information—at the relevant times—could help
here as well. Since LLMs are hard to fine-tune, this
should be combined with approaches like LoORA
(Hu et al., 2021a)—or integrated in a multilingual
pre-training scheme. Assuming the output lan-
guage should be based on the input language and/or
explicit instructions in the input, this should also
be explored in instruction tuning datasets.

6 Conclusions

We have surveyed the literature of cross-lingual
alignment methods and compiled results in some
of the most popular evaluation tasks. Our analy-
sis confirms the strengths of methods such as con-
trastive learning and ELECTRA-style pre-training,
as well as the importance of using available par-
allel data. We further collated an overview of
which authors provide code or model downloads
for reproducibility. Going forward, new challenges
present themselves with respect to multilingual gen-
erative models: Simply maximising cross-lingual
alignment can lead to wrong-language generation.
We thus call for methods that effectively trade-off
cross-lingual semantic information with language-
specific axes, allowing models to generate fluent
and relevant content in many languages.



Limitations

Evaluation Tasks

XNLI is reported in a plurality of papers in our
survey, more often than any other single task. The
relative prevalence of XTREME (Hu et al., 2020)
means that this and several other tasks, including
UD-POS, MLQA, PAWS-X, Tatoeba, BUCC2018
and NER, are frequently reported in specific con-
figurations. Most of these tasks are also popular on
their own. Unfortunately, despite this, many papers
do not report results for the full range of “standard”
target languages, a problem that is more common
the more target languages appear in a task. This
particularly limits our ability to compare models
across lower-resource languages, and we strongly
urge researchers to report results for all standard
languages when evaluating on a task.

We chose here to compile results from
XTREME, focusing on XNLI and Tatoeba, since
the former is so common among fine-tuning tasks,
and the latter functions under a different paradigm.
We simply omit papers that do not report these re-
sults, or do not report all target languages, from our
tables. We do not calculate such missing results
ourselves. Thus, our picture of model performance
is admittedly narrow, with multiple kinds of tasks—
particularly word-level ones—missing entirely, and
many models missing from the ranking, even if they
perform well on the tasks they do report.

Bilingual vs. Multilingual Alignment

Since we are talking about highly multilingual
models, we are implicitly concerned with multi-
lingual cross-lingual alignment. Many-to-many
cross-lingual alignment makes for a hard optimi-
sation problem, as mentioned in § 2.2. However,
most of the parallel data involved in (re-)aligning
the models or measuring transfer performance are
parallel with English. Thus, in practice, bilingual
alignments with English as a pivot language are the
most common. To the extent that alignment in the
models is measured (see § 2.4), this is typically also
done between English and some target language,
and less often between a non-English source and
non-English target language. These circumstances
significantly limit the training and evaluation of
many-to-many cross-lingual alignment.

Multimodality

Alignment of representations between modali-
ties adds further complexities compared to cross-

lingual alignment. We omit multimodal models
from this survey, but note that cross-modal align-
ment should be similarly examined in future work.
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A Inclusion of Papers
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B Further Models Explained

We add here brief explanations of additional mod-
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are methods that are either quite similar to ones de-
scribed in Section 3, or did not fit well into one of
the larger categories which we exemplify. Several
of these papers do not report results for the tasks
we looked at.
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B.1 More Word- and Sentence-Level methods

Pan et al. (2021) propose a sentence-level momen-
tum contrast objective, which they combine with
TLM to train mBERT. This seems to be a similar
idea to InfoXLM. Unfortunately, the paper does not
include all languages on XNLI or MLQA results.

B.2 Further Sentence-embedding models

Tien and Steinert-Threlkeld (2022) propose two
different methods, one supervised by a single lan-
guage pair not unlike OneAligner, and one unsuper-
vised approach. Their unsupervised approach uses
an adversarial loss encouraging language distribu-
tions to become indistinguishable, and a Cycle loss
to keep them from degenerating. In both cases, they
freeze the parameters of XLLM-R and only train a
linear mapping. Their one-pair supervised model is
competitive with OneAligner on BUCC2018, but
lags further behind on Tatoeba-36, which contains
more languages.

B.3 More Tuning with Task Data

DuEAM (Goswami et al., 2021) uses data from
the XNLI dataset while targeting semantic textual
similarity and bitext mining tasks. The objectives
used are Word Mover’s Distance and a translation
mining loss. The model performs reasonably well
but does not reach the performance of S-BERT.

B.4 More Data Augmentation

RS-DA (Huang et al., 2021) is “randomised
smoothing with data augmentation”—a kind of
robustness training during fine-tuning, using syn-
onym sets to create the augmented (English) data.
Ding et al. (2022) build on the idea of robust
regions and synonym-based data augmentation,
adding three objectives to ‘push’ and ‘pull’ the
embeddings and attention matrices appropriately
(EPT/APT in Tables 2 and 5). This model performs
well on PAWS-X but does not stand out on XNLI.

B.5 Other Approaches

X2S-MA (Hammerl et al., 2022) is an approach
using monolingual data to first distill static embed-
dings from XLM-R, which are then aligned post-
hoc and used to train the model for similarity with
the aligned static embeddings. This model works
well on Tatoeba.

Ahmad et al. (2021), meanwhile, augment
mBERT with syntax information using dependency
parses. They employ a graph attention network to
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learn the dependencies, which they then mix using
further parameters with some attention heads in
each layer.

C More Task Results

Table 7 compiles BUCC2018 (Zweigenbaum et al.,
2018) performance, as implemented by Hu et al.
(2020). Tables 5 and 6 show zero-shot transfer and
translate-train results for UD-POS (Zeman et al.,
2019), PAWS-X (Yang et al., 2019b) and MLQA
(Lewis et al., 2020).

Results on zero-shot transfer overall show a sim-
ilar picture to XNLI, although details change. For
example, XLM-ALIGN’s performance stands out
on UD-POS but is “only” competitive on the other
tasks. HiCTL, meanwhile, is fairly competitive in
zero-shot XNLI performance but falls a bit further
behind in Table 5. The authors of mDeBERTaV3
do not report any of these other tasks, leaving XLM-
ALIGN, XLM-Epse, and ERNIE-Mp,,, to take the
top spots: they all perform well on these three tasks
but alternately take the lead.

In the translate-train setting (Table 6), VECO;,
performs best on all three tasks, with HICTL;4;g¢
on par for PAWS-X but not UD-POS or MLQA.
For XNLI, the best translate-train performance was
attained by X-MIXUP, which still does well on
these tasks. Again, overall trends are very similar
as for the XNLI task.

Finally, BUCC2018 (Table 7) also conveys a
similar picture as Tatoeba, although the variation is
smaller, likely due the larger datasets and smaller
selection of relatively high-resource languages.
mSimCSE with NLI supervision performs best
on this task—it also proved effective on Tatoeba-
36. OneAligner is the second most effective on
BUCC2018, with Tien and Steinert-Threlkeld’s
(2022) one-pair supervision a close third.

D Reproducibility

In order to reproduce a method, or apply it to a new
use case, detailed instructions and ease of reuse
are vital. Providing implementation code is the
most straightforward way to ensure that all neces-
sary details are conveyed to a reader, and they do
not waste time reimplementing them. Similarly,
model downloads save time and make further ex-
perimentation much easier. The larger the model
in question, the more important model downloads
become, since re-training them requires more time,
effort, and compute.



Model Size XNLI
mBERT (Hu et al., 2020) 110M 74.6
mBERT + X-MIXUP 110M 78.8

InfoXLMpgse | ~270M  80.0
ERNIE-Mp,se ~270M  80.6
mDeBERTaV3 ~276M  82.2
mTSSmall 300M 72.0

" XY-LENTypee | 447M 829
XLM-R;4pge + xTune ~550M 82.6
FILTER ~550M 83.6
FILTER + Self-teaching ~550M 839
ERNIE-M4;.ge ~550M 842
HiCTLjgrge ~550M 84.5
XLM-R;4ge + X-MIXUP | 550M 85.3
mTS5pgse 580M 79.8
VECO;, 662M 84.3

" XY-LENTx;, | ! 21B 871
XLM-Rx, 3.5B 85.4
mTS5xr, 3.7B 85.3

"XLM-Rxx, | 107B  86.0
mT5 XXL 13B 87.1

Table 4: Translate-train XNLI performance reported by
various papers, ordered by model size.

In Table 8, we list all papers that provide their
code, a model download, or both. Some of these
are well documented, some not so much. Some are
well-maintained, some not at all. We did not test
the provided code and links, simply checked that
they are online and contain what looks to be the
promised artifacts. Papers where we did not find
any artifacts are omitted.
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Model Size UDPOS PAWS-X MLQA (F1)
Zero-shot transfer

mBERT (Hu et al., 2020) | 110M 71.5 81.9 61.4
mBERT + Syntax augm. | ~110M - 84.3 60.3
mBERT + EPT/APT ~110M - 86.2 -
DICT-MLM ~110M 71.6 84.8 -

- XLM-Ryqqe + EPT/APT | ~270M - ¢ 87.1 -
XLM-ALIGN ~270M 76.0 86.8 68.1
ERNIE-Mpse ~270M - - 68.7
HiCTLyg s ~270M 71.4 84.5 65.8
InfoXLMp,se ~270M - - 68.1
XLM-Epyse 279M 75.6 88.3 68.3
mT5,,0 300M - 82.4 54.6

 XY-LENTpeee | 47 - 89.7 713
XLM-R (Hu et al., 2020) | 550M 73.8 86.4 71.6
HiCTL4rge ~550M 74.8 87.5 72.8
ERNIE-M;q4;ge ~550M - 89.5 73.7
InfoXLM;qpge ~550M - - 73.6
XLM-Ry4yge + xTune 550M 78.5 89.8 74.4
RemBERT 575M 76.5 87.5 73.1
mT5p,se 580M - 86.4 64.6
VECO,¢ 662M 75.1 88.7 71.7
XLM-V ~750M - - 66.0

XL-LENTx;, | 21B - ¢ 91.0 754
XLM-Rx, 3.5B - - 73.4
mT5xr, 3.7B - 89.6 73.5

XLM-Rxxr, | 7B - - 748
mTS5x xr, 13B - 90.0 76.0

Table 5: Zero-shot transfer UD-POS, PAWS-X, and MLQA performance reported by various papers, ordered by
model size. Many papers do not report exact parameter counts, so we make an estimate based on the model they
modify, or based on hyperparameters where reported. We mark the estimates with a tilde (~). We draw dashed lines
between models of markedly different sizes.
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Model Size  UDPOS PAWS-X MLOQA (F1)
Translate-train
mBERT (Hu et al., 2020) 110M - 86.3 65.6
mBERT + X-MIXUP 110M 76.5 89.7 69.0
mT5epan | 300M - 799 643
XY-LENThee | 4™M - 924 =
XLM-R large + xTune ~550M 78.5 89.8 75.0
FILTER ~550M 76.2 91.2 75.8
FILTER + Self-teaching ~550M 76.9 91.5 76.2
ERNIE-M;4ge ~550M - 91.8 -
HiCTL4rge ~550M 76.8 92.8 74.4
XLM-R;4pgc + X-MIXUP | 550M 78.4 91.8 76.5
mTS5pqse 580M - 89.3 75.3
VECO;, 662M 79.8 92.8 71.5
XL-LENTx, | ! 2B - 926 N
mTSxy, 3.7B - 91.0 75.1
mT5xx, | 3B - 91.5 769

Table 6: Translate-train UD-POS, PAWS-X, and MLQA performance reported by various papers, ordered by model
size. Many papers do not report exact parameter counts, so we make an estimate based on the model they modify, or
based on hyperparameters where reported. We mark the estimates with a tilde (~). We draw dashed lines between
models of markedly different sizes.

Model Size BUCC
mBERT (Hu et al., 2020) 110M 56.7
LaBSe ~110M  89.7
"LAPCA-LMpgee | ~270M 713
- XLM-Rjg4e (Huetal,2020) | 550M  66.0
HiCTL;qpge ~550M 684

Tien and Steinert-Threlkeld (2022) (unsup) ~550M 824
Tien and Steinert-Threlkeld (2022) (one-pair) | ~550M  89.6

LAPCA-LM;4,4e ~550M 835
OneAligner 550M 90.5
mSimCSE uns. ~550M  87.5
mSimCSE sup. ~550M  88.8
mSimCSE NLI ~550M  95.2
Kvapilikova et al. (2020) ~570M 758
VECO,y+ 662M 85.0

Table 7: BUCC performance reported by various papers, ordered by model size.
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Model Name Code Available Model Download
Syntax Augmented mBERT (Ahmad et al., 2021) yes no
LASER (Artetxe and Schwenk, 2019) yes yes, fairseq
XLM-Align (Chi et al., 2021b) yes yes, HF
InfoXLM (Chi et al., 2021a) yes yes, HF
RemBERT (Chung et al., 2021) no yes, HF
EPT/APT (Ding et al., 2022) yes no
FILTER (Fang et al., 2021) yes no
LaBSE (Feng et al., 2022) no yes, TFH, HF
X2S-MA (Hiammerl et al., 2022) yes no
XLM-Rx 1/ xxr (Goyal et al., 2021) yes yes, fairseq, HF
XeroAlign (Gritta and lacobacci, 2021) yes no
CrossAligner (Gritta et al., 2022) yes no
mDeBERTaV3 (He et al., 2023) yes yes, HF
LASER3 (Heffernan et al., 2022) yes yes, fairseq
XLM-V (Liang et al., 2023) no yes, HF
XGLM (Lin et al., 2022) no yes, fairseq, HF
VECO (Luo et al., 2021) no* yes, fairseq
ERNIE-M (Ouyang et al., 2021) yes yes, HF
BAD-X (Parovié et al., 2022) yes yes, AdapterHub
MAD-X (Pfeiffer et al., 2020) no yes, AdapterHub
Multilingual S-BERT (Reimers and Gurevych, 2020) yes yes, HF
ALIGN-MLM (Tang et al., 2022) yes no

Tien and Steinert-Threlkeld (2022) yes no
mSimCSE (Wang et al., 2022) yes yes, HF

Wu and Dredze (2020) yes no
LSAR (Xie et al., 2022) yes no

mT5 (Xue et al., 2021) yes yes, custom, HF
X-MIXUP (Yang et al., 2022) yes no
JointAlign + Norm (Zhao et al., 2021) yes yes
xTune (Zheng et al., 2021) yes no

Table 8: A list of those surveyed papers that provide code and/or model downloads. We do not test the provided
code, only making sure it remains online at time of writing. We sort by first author last name. *VECO has a
repository online that includes only fine-tuning code.
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