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Abstract

Cross-lingual alignment in multilingual lan-001
guage models has been an active field of re-002
search in recent years. We survey the litera-003
ture of techniques, both to train well-aligned004
models, and to improve the cross-lingual align-005
ment of pre-trained encoders. Compiling evalu-006
ation results and method summaries, we give an007
overview of which methods work better than008
others. We further show how to understand009
cross-lingual alignment and its limitations. Fi-010
nally, we discuss how these insights may be011
applied not only to encoder models, where012
this topic has been heavily studied, but also013
to encoder-decoder or even decoder-only mod-014
els. In generative models, the focus must be on015
an effective trade-off between language-neutral016
and language-specific information.017

1 Introduction018

Zero-shot cross-lingual transfer using highly multi-019

lingual models has been an active subset of multi-020

lingual NLP research. In tasks like sentence classi-021

fication, sequence labelling, or sentence retrieval,022

all of which rely on encoder representations, cross-023

lingual overlap of those representations is an un-024

derlying assumption. As we define it, cross-lingual025

alignment means that words or sentences with sim-026

ilar semantics are:027

1. more similar in the representation space than028

words or sentences with dissimilar semantics.029

2. similar enough that a prediction head trained030

on a source language will recognise the rele-031

vant patterns in the target language.032

These criteria are not guaranteed to be fulfilled033

through unsupervised pre-training, motivating ef-034

forts to improve the cross-lingual alignment by035

various methods. We surveyed a number of papers036

in this area. These papers propose new training ob-037

jectives, pre-trained new models, contrastive fine-038

tuning, or post-hoc adjustments of the embedding039

space. The vast majority of these methods were 040

developed for and applied to multilingual encoder 041

models, chiefly XLM-R and mBERT. We address 042

future research on generative models in § 5. 043

The contributions of this paper are: a thorough 044

review of papers in this space from the last years 045

(§ 3, § 4), a higher-level discussion of cross-lingual 046

alignment and the representation space (§ 2), and a 047

discussion about cross-lingual alignment and future 048

research in the context of generative models (§ 5). 049

2 Cross-Lingual Alignment 050

2.1 Definitions 051

“Alignment” is an overloaded term in NLP, refer- 052

ring to word alignment in machine translation (Och 053

et al., 1999), or to desirable model behaviour in 054

chatbot training (Ouyang et al., 2022). In our case, 055

it refers to the meaningful similarity of multilingual 056

representations across languages. “Cross-lingual 057

alignment” in this sense was used in static word em- 058

beddings, and can be applied to contextual models 059

as well. We define two main requirements: 060

1) Similar meanings have more similar represen- 061

tations than dissimilar meanings do. When query- 062

ing cross-lingually, the nearest neighbour of a word 063

representation should be its translation. This im- 064

plies it is not enough that similar meanings are rep- 065

resented in similar ways; it is also necessary that 066

dissimilar meanings are represented in dissimilar 067

ways. This property is critical for tasks relying on 068

retrieval from the space. A “stronger” cross-lingual 069

alignment (c.f. Abulkhanov et al., 2023) would 070

additionally require that word representations be 071

more similar to their translations than to dissimilar 072

words in the same language. 073

2) A prediction head trained on a source language 074

should be able to find relevant patterns in the repre- 075

sentations of a target language, and classify accord- 076

ingly. Although it is tempting to think of similarity 077
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in terms of simple measures such as cosine simi-078

larity, the classification head works with the full079

encoder representations as its input, and can use080

subspaces to that effect. This property is crucial081

for fine-tuning tasks, i.e., classification or question082

answering. This requirement also implies that rep-083

resentations, or at least subspaces thereof, are close084

to isomorphic (see § 2.2).085

Although cross-lingual alignment is not the only086

possible term, it has been commonly used in the re-087

lated research and is likely to be understood. It im-088

plies a relationship between matched words across089

languages, at as many points as possible, and in-090

deed a complex optimisation problem. It requires091

good but not necessarily perfect correspondence092

between spaces, as we will discuss further.093

2.2 Isomorphism of Representations094

As has been pointed out for cross-lingual static em-095

beddings, alignment between two language spaces096

depends on an assumption of isomorphism, i.e.,097

that both spaces have (roughly) the same shape098

and can be linearly transformed onto each other099

in such a way that equivalent tokens are consis-100

tently aligned (Vulić et al., 2020). This assumption101

may not always hold due to cultural-semantic dif-102

ferences, imperfect translation of concepts (e.g.,103

Gibson et al., 2017), typological differences, differ-104

ent corpus domains, different data sizes, and more105

(Ormazabal et al., 2019; Vulić et al., 2020).106

We can think of cross-lingual alignment as a107

complex optimisation problem in this light—to108

be completely cross-lingually aligned, the model109

would have to reconcile both large and small dif-110

ferences between many different language spaces.111

However, this may simply not be necessary in order112

to fulfill our two conditions reasonably well.113

That said, Vulić et al. (2020) emphasise that114

undertraining contributes significantly to non-115

isomorphism in static embeddings, and this may116

well apply to contextual models. For example,117

we know that contextual models also encode to-118

ken frequency (Rajaee and Pilehvar, 2022; Puccetti119

et al., 2022), which is implicitly related to each120

language’s vocabulary and data size.121

2.3 Subspaces122

Contextual representations encode not only seman-123

tic aspects, but also morphosyntactic aspects (He-124

witt and Manning, 2019; Acs et al., 2023), token125

frequency, and more. They are likely to pick up on126

many other details to some degree, including spuri- 127

ous attributes and noise. Among the hundreds of di- 128

mensions in the models, subspaces can correspond 129

to more specific aspects. These can be found math- 130

ematically, through projections of the raw represen- 131

tations. For instance, Chang et al. (2022) find affine 132

subspaces that correspond to language-sensitive as 133

well as language-neutral information. 134

In effect, Chang et al. (2022) separate types of 135

axes by how their means and variances differ in dif- 136

ferent languages. That is, if both are similar across 137

languages, the axis is language-neutral. If the 138

means differ between languages and/or variances 139

are very different, the axis is language-sensitive. 140

2.4 Measuring Cross-Lingual Alignment 141

Cross-lingual alignment or language-neutrality has 142

been measured using a range of metrics, none of 143

which show the full picture: Word or sentence re- 144

trieval tasks measure the model’s ability to encode 145

the correct translation more similarly to the query 146

than other candidate translations. Often this is 147

measured by cosine, i.e., angular similarity, after 148

normalising vector length, or an adjusted retrieval 149

score such as CSLS (Lample et al., 2018). 150

Cosine similarity between matched words, or av- 151

erage cosine similarity between language spaces, 152

has also been used more directly as a measure of 153

cross-lingual alignment. It is important in such 154

cases to compare against the average cosine simi- 155

larity in the space, which can be quite high (Etha- 156

yarajh, 2019; Rajaee and Pilehvar, 2022). 157

Isomorphism between two representation spaces 158

can be measured using relational similarity (Vulić 159

et al., 2020), eigenvector similarity (Søgaard et al., 160

2018), or the Gromov-Hausdorff distance (Gromov, 161

1999; Patra et al., 2019). 162

Language identification is sometimes used (e.g., 163

Libovický et al., 2020) to reveal language-specific 164

elements of the representations. In this thinking, if 165

a language classifier trained on the output represen- 166

tations performs worse, then the model outputs are 167

more language-neutral. However, this neglects that 168

the representations can have both language-neutral 169

and language-specific areas (§ 2.3). 170

Zero-shot cross-lingual transfer, after fine- 171

tuning, is both an aim in itself and a proxy for how 172

well-aligned the representations are. Of course, 173

fine-tuning will change the model again, but in- 174

terventions before and/or during fine-tuning have 175

been shown to improve transfer performance. The 176
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metrics used depend on the respective task, but177

a common way to highlight cross-lingual transfer178

is to report the transfer gap, i.e., the difference179

between source language performance and the av-180

erage target language performance.181

Finally, though not a metric, we mention t-SNE182

(van der Maaten and Hinton, 2008) here. This is183

a visualisation method where spaces are projected184

down into two or three dimensions for graphing,185

and it can be extremely helpful to get a better sense186

of what the space looks like. However, we must187

remember that due to the down-projection and se-188

lection of examples, we can see only some aspects189

of the representation space at any given time.190

3 Strategies to Increase Alignment191

We report on a number of strategies for improv-192

ing zero-shot transfer and increasing cross-lingual193

alignment, sorting them by aspects such as con-194

tinued training or full pre-training, word-level or195

sentence-level objectives, and more. Table 1 lists196

all included papers, organised by initialisation, ob-197

jectives and kinds of data. In this section, we198

show different strategies with examples, adding199

categories that are not in the table as they would200

overlap with multiple table cells. We leave out201

some methods that are less relevant to the overall202

analysis, though we explain them in Appendix B203

for completeness.204

3.1 Word-Level vs. Sentence-Level Objectives205

First, we discuss models using external parallel206

data—sentence-parallel or word-parallel—which is207

a plurality of methods in this survey. In some cases,208

a sentence-parallel corpus is used and word-level209

alignments are induced before training. We tabu-210

late the methods based on whether the proposed211

objectives focus on word-level alignments, or only212

sentence-level ones. “Both levels” refers mostly to213

methods using multiple alignment objectives. In214

many cases, the alignment objective is combined215

with a regularisation or joint objective.216

Word-level alignment. Cao et al. (2020) is an217

influential early work in explicit cross-lingual align-218

ment training, using parallel texts. The objective219

is “contextual word retrieval”, searching for word220

matches over the entire corpus using CSLS (Lam-221

ple et al., 2018), which deals better than cosine222

similarity with hubness issues. As a regulariser,223

they keep the model similar to its initialisation.224

Wu and Dredze (2020) propose a similar objective225

with a contrastive loss, which is “strong” or “weak” 226

based on whether negative examples are consid- 227

ered from both the source and target language or 228

only from the target language. Zhao et al. (2021) 229

also use a similar alignment process and combine 230

it with batch normalisation, i.e., forcing “all em- 231

beddings of different languages into a distribution 232

with zero mean and unit variance”. Alqahtani et al. 233

(2021), meanwhile, formulate cross-lingual word 234

alignment as an optimal transport problem. XLM- 235

Align (Chi et al., 2021b) combines denoising word 236

alignment with self-labelled word alignment in an 237

EM manner. 238

Word- and Sentence-level. These models either 239

use multiple objectives, or use objectives that are 240

hard to categorise as either word- or sentence-level. 241

For instance, Hu et al. (2021b) propose both a 242

Sentence Alignment and a Bidirectional Word Align- 243

ment objective inspired by MT for their AMBER 244

model, which they train from scratch. 245

Among modified models, Chi et al. (2021a) pro- 246

pose the sentence-level cross-lingual (momentum) 247

contrast objective for InfoXLM. However, they 248

also emphasise the importance of MLM and TLM 249

(translation language modelling) for token-level 250

mutual information, casting both in information- 251

theoretic terms. nmT5 (Kale et al., 2021) combines 252

T5 training with a standard MT loss, which ar- 253

guably targets both granularity levels. DeltaLM 254

(Ma et al., 2021) is also an encoder-decoder model 255

using T5-style training objectives on monolingual 256

and parallel data. The model is initialised with 257

InfoXLM and modified from there. Ouyang et al. 258

(2021) propose the new objectives Cross-Attention 259

MLM and Back-Translation MLM for ERNIE-M. 260

Sentence-embedding models. Models specifi- 261

cally targeting sentence-level tasks are typically 262

concerned only with sentence-level alignment. One 263

of these is multilingual Sentence-BERT (Reimers 264

and Gurevych, 2020), an XLM-R model tuned with 265

an English S-BERT model as a teacher. Using par- 266

allel data, the model learns to represent target lan- 267

guage sentences similarly to the English source. 268

This makes for strong cross-lingual alignment and 269

good cross-lingual retrieval performance. 270

Among pre-trained models, LASER (Artetxe 271

and Schwenk, 2019) is a 5-layer BiLSTM trained 272

on machine translation, with the decoder being dis- 273

carded. Its successor LASER3 (Heffernan et al., 274

2022) is a 12-layer Transformer model, but trained 275
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Objectives From Existing Model From Scratch
Parallel,
sentence-level

Multilingual S-BERT (Reimers and Gurevych,
2020); Sentence-level MoCo (Pan et al., 2021);
OneAligner (Niu et al., 2022); One-pair su-
pervised (Tien and Steinert-Threlkeld, 2022);
mSimCSE supervised (Wang et al., 2022);
LAPCA (Abulkhanov et al., 2023)

LASER (Artetxe and Schwenk,
2019); LASER3 (Heffernan et al.,
2022); LaBSE (Feng et al., 2022);
LASER3-CO (Tan et al., 2023)

Parallel,
word-level

Cao et al. (2020); Weak/Strong Alignment
(Wu and Dredze, 2020); Joint-Align + Norm
(Zhao et al., 2021); VECO (Luo et al., 2021);
WEAM (Yang et al., 2021); WordOT (Alqah-
tani et al., 2021); XLM-Align (Chi et al.,
2021b); WAD-X (Ahmat et al., 2023)

Parallel,
both levels

Kvapilíková et al. (2020)*; InfoXLM (Chi
et al., 2021a); nmT5 (Kale et al., 2021);
HiCTL (Wei et al., 2021); ERNIE-M (Ouyang
et al., 2021); DeltaLM (Ma et al., 2021)

ALM (Yang et al., 2020); AM-
BER (Hu et al., 2021b); XLM-E
(Chi et al., 2022); XY-LENT (Patra
et al., 2023)

Target task
data

xTune (Zheng et al., 2021); FILTER (teacher
model) (Fang et al., 2021); XeroAlign (Gritta
and Iacobacci, 2021); Cross-Aligner (Gritta
et al., 2022); X-MIXUP (Yang et al., 2022)

FILTER (student model)

Other
sources

RotateAlign (Kulshreshtha et al., 2020);
CoSDA-ML (Qin et al., 2020); DuEAM
(Goswami et al., 2021); Syntax-augmentation
(Ahmad et al., 2021); RS-DA (Huang et al.,
2021); EPT/APT (Ding et al., 2022); mSim-
CSE NLI supervision (Wang et al., 2022)

DICT-MLM (Chaudhary et al.,
2020); ALIGN-MLM (Tang et al.,
2022)

Monolingual
only

MAD-X (Pfeiffer et al., 2020); Adversarial
& Cycle (Tien and Steinert-Threlkeld, 2022);
BAD-X (Parović et al., 2022); X2S-MA (Häm-
merl et al., 2022); mSimCSE unsupervised
(Wang et al., 2022); LSAR (Xie et al., 2022)

RemBERT (Chung et al., 2021);
XLM-R XL & XXL (Goyal et al.,
2021); mT5 (Xue et al., 2021);
XLM-V (Liang et al., 2023); mDe-
BERTaV3 (He et al., 2023);

Table 1: Proposed strategies for improved zero-shot transfer by training objectives and initialisation (training from
scratch vs. modifying an existing model). *Uses only monolingual data and/or synthetic parallel data.

using a student-teacher setting, where the teacher276

is similar to the original LASER. This follow-up277

also emphasises support for lower-resource lan-278

guages, training a student for each group of similar279

languages. By contrast, LaBSE (Feng et al., 2022)280

relies entirely on monolingual data and mined paral-281

lel data, but is pre-trained with standard MLM and282

TLM. Then, it uses translation ranking with nega-283

tive sampling and additive margin softmax (Yang284

et al., 2019a) to train sentence embeddings.285

3.2 Modified Pre-Training Schemes286

Many of the proposed strategies rely on parallel287

data. However, several models are trained from288

scratch using only monolingual data while modify- 289

ing specific aspects: a larger vocabulary (XLM-V, 290

Liang et al., 2023), rebalanced pre-training vs. fine- 291

tuning parameters (RemBERT, Chung et al., 2021), 292

or using training objectives that had been tested in 293

an English-only context, such as mDeBERTaV3 294

(He et al., 2023) and mT5 (Xue et al., 2021). Mean- 295

while, Goyal et al. (2021) improve performance 296

by significantly scaling up model size, producing 297

models with 3.5B and 10.7B parameters. 298

Like mDeBERTaV3, XLM-E (Chi et al., 2022) 299

is pre-trained using the ELECTRA training scheme 300

(Clark et al., 2020), but XLM-E does use both 301

monolingual and parallel data. The later XY-LENT 302
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(Patra et al., 2023) uses the same objectives, fo-303

cusing on many-to-many bitexts rather than only304

English-centric data.305

3.3 Adapter Tuning306

Several other methods modify existing models us-307

ing monolingual text: MAD-X (Pfeiffer et al.,308

2020) and BAD-X (Parović et al., 2022) are both309

adapter-based frameworks, combining language310

adapters and task adapters for improved cross-311

lingual transfer performance. The latter builds on312

the former by using ‘bilingual’ language adapters,313

which are trained on monolingual corpora of both314

the source and the target language. WAD-X (Ah-315

mat et al., 2023) is another, later method that adds316

“word alignment adapters” using parallel text.317

In a somewhat different approach, Luo et al.’s318

(2021) VECO uses a “plug-and-play” cross-319

attention module which is trained during continued320

pre-training, and can be used again in fine-tuning321

if appropriate parallel data is available.322

3.4 Contrastive Learning323

Contrastive learning has become popular in NLP324

for a variety of use cases. For cross-lingual align-325

ment, it has also been used in several papers, since326

it aims to improve the similarity of positive ex-327

amples and the dissimilarity of negative examples328

jointly. In effect, contrastive learning should help329

representations to fulfil our requirement number 1)330

as mentioned in § 2.1.331

It can be used very effectively on the word level332

(InfoXLM, HiCTL, Wu and Dredze (2020)). For333

example, HiCTL (Wei et al., 2021) stands for Hier-334

archical Contrastive Learning, which includes both335

a sentence-level and a word-level contrastive loss.336

Still, contrastive learning is especially popular337

for sentence embedding models. Examples in-338

clude OneAligner (Niu et al., 2022), which targets339

two sentence retrieval tasks, is an XLM-R version340

trained on OPUS-100 data. One version uses all341

available English-centric pairs, another only uses342

the single highest-resource corpus, while setting343

a fixed data budget. Their training objective is344

based on BERT-Score, with in-batch normalisation345

and negatives. Abulkhanov et al. (2023), for their346

retrieval model LAPCA, emphasise “strong” cross-347

lingual alignment, mining both roughly parallel348

positive passages and hard negatives. mSimCSE349

(Wang et al., 2022) is a contrastive framework using350

in-batch negatives, which has multiple supervised351

and unsupervised settings.352

Among pre-trained models, the popular LaBSe 353

also uses contrastive learning to achieve good 354

sentence-embeddings, and LASER3-CO (Tan et al., 355

2023) extends the LASER3 paradigm by adding 356

contrastive learning to the distillation process. 357

3.5 Data Augmentation 358

Some methods create pseudo-parallel data by min- 359

ing sentence pairs or machine translating monolin- 360

gual text. For example, Kvapilíková et al. (2020) 361

fine-tune XLM-100 using TLM, but they do this 362

with 20k synthetic translation pairs, which they cre- 363

ate for this purpose. However, there are also more 364

complex data augmentation strategies being pro- 365

posed: Yang et al.’s (2020) Alternating Language 366

Model (ALM) uses artificially code-switched sen- 367

tences constructed from real parallel data. Yang 368

et al. (2021) propose a “cross-lingual word ex- 369

change”, where representations from the source 370

language are used to predict target language tokens. 371

DICT-MLM (Chaudhary et al., 2020) and 372

ALIGN-MLM (Tang et al., 2022) both rely on a 373

bilingual dictionary resource. DICT-MLM trains 374

the model to predict translations of the masked to- 375

kens. ALIGN-MLM rather combines traditional 376

MLM with an alignment loss to optimise aver- 377

age cosine similarity between translation pairs. 378

CoSDA-ML (Qin et al., 2020) also uses dictionar- 379

ies in a similar way, but is not trained from scratch. 380

3.6 Transformation of Representations 381

Although most models take advantage of fine- 382

tuning techniques and deep learning, linear trans- 383

formations can equally be applied to Transformer 384

models. For instance, RotateAlign (Kulshreshtha 385

et al., 2020) uses either dictionaries or parallel 386

data—although parallel data is more effective—to 387

find transformation matrices for each of the last 388

four Transformer layers, combined with language- 389

centering normalisation. LSAR (Xie et al., 2022) 390

works without any parallel data, by projecting away 391

language-specific elements of the representation 392

space. Both Rajaee and Pilehvar (2022) and Häm- 393

merl et al. (2023) find that mean-centering repre- 394

sentations and forcing them to be highly isotropic 395

can improve cross-lingual retrieval performance. 396

And the in-batch normalisation used by Zhao et al. 397

(2021) and (Niu et al., 2022) also targets the intu- 398

ition that centering individual language-subspaces 399

will lead to closer cross-lingual alignment. 400

With the fine-tuning framework X-MIXUP 401

(Yang et al., 2022), the transformation is rather 402
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built into the fine-tuning process again, by adding403

MSE between source and target to the fine-tuning404

loss, as well as the Kullback-Leibler divergence405

of source and target probability distributions for406

classification tasks.407

3.7 Tuning with Task Data408

We have so far focused on methods for pre-training409

or continued pre-training. Some methods do fine-410

tuning on the task data and cross-lingual alignment411

in the same step, often using (translated) task data412

for a translate-train setting. Such methods cannot413

be directly compared to the zero-shot transfer set-414

ting, but they are really quite effective at achieving415

good transfer performance on the target tasks.416

These include xTune (Zheng et al., 2021), a fine-417

tuning framework for cross-lingual transfer tasks418

which can be combined with other models. xTune419

also includes consistency regularisation, which420

can work without translated data. Gritta and Ia-421

cobacci’s (2021) XeroAlign adds a Mean-Squared-422

Error (MSE) loss between the source and target423

sentence to the fine-tuning process. Cross-Aligner424

(Gritta et al., 2022) further adds a loss operating425

on entity level. Fang et al.’s (2021) FILTER frame-426

work first trains a teacher model in the translate-427

train paradigm, then a student model is trained with428

a self-teaching loss aimed to bridge the gap of label429

transfer across languages.430

4 Evaluation of “Aligned” Models431

There is no single metric reported by all these pa-432

pers. Many report performance on XNLI (Con-433

neau et al., 2018), in the zero-shot transfer and/or434

translate-train settings. We compile XNLI results435

in Tables 2 and 4. Cross-lingual retrieval is also436

popular, although the specific tasks reported vary.437

We show Tatoeba-36 (Artetxe and Schwenk, 2019;438

Hu et al., 2020) results in Table 3.439

Several other tasks are reported relatively often,440

and we compile more results in Appendix C. For441

this section, we focus on XNLI, as we find that442

methods which work well on XNLI mostly also do443

well on other tasks, although the ranking changes.444

Unfortunately, there are a number of cases where445

authors report results for a task but do not use all446

test languages of the most commonly-used version,447

meaning that the average results are not compara-448

ble. We omit the results in those cases.449

Additionally, App. D shows which authors pro-450

vide code or model downloads for reproducibility.451

Model Size XNLI
mBERT (Hu et al., 2020) 110M 65.4
mBERT + EPT/APT ∼110M 68.4
DICT-MLM ∼110M 68.6
mBERT+JointAlign+Norm ∼110M 72.3
WordOT ∼110M 75.4
AMBER 172M 71.6
XLM-Rbase + EPT/APT ∼270M 75.8
XLM-ALIGN ∼270M 76.2
InfoXLMbase ∼270M 76.5
ERNIE-Mbase ∼270M 77.3
HiCTLbase ∼270M 77.3
XLM-R+JointAlign+Norm ∼270M 77.6
mDeBERTaV3 ∼276M 79.8
XLM-Ebase 279M 76.6
mT5small 300M 67.5
XY-LENTbase 447M 80.5
XLM-R (Hu et al., 2020) 550M 68.2
HiCTLlarge ∼550M 81.0
InfoXLMlarge ∼550M 81.4
ERNIE-Mlarge ∼550M 82.0
XLM-Rlarge + xTune 550M 82.6
RemBERT 575M 80.8
mT5base 580M 75.4
VECOout 662M 79.9
XLM-V ∼750M 76.0
XLM-Elarge 840M 81.3
XY-LENTXL 2.1B 84.8
XLM-EXL 2.2B 83.7
XLM-RXL 3.5B 82.3
mT5XL 3.7B 82.9
XLM-RXXL 10.7B 83.1
mT5XXL 13B 85.0

Table 2: Zero-shot transfer XNLI performance reported
by various papers, ordered by model size. Many papers
do not report exact parameter counts, so we make an
estimate (∼) based on the model they modify, or on
hyperparameters where reported.

4.1 What works well? 452

The best results we see in zero-shot cross-lingual 453

transfer are from a mix of newly-trained and modi- 454

fied models. WordOT, a modified mBERT with an 455

optimal transport objective, yields the best result in 456

its size band. In the next size group, mDeBERTaV3 457

performs best. This is a model trained from scratch 458

with only monolingual data, with the ELECTRA 459

pre-training objective and additional improvement 460

in the form of gradient-disentangled embeddings. 461

XLM-E, which does not have this additional ele- 462
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Model Size Tatoeba
mBERT (Hu et al., 2020) 110M 38.7
mBERT + LSAR ∼110M 44.6
DICT-MLM ∼110M 47.3
LaBSe ∼110M 95.0
X2S-MA ∼270M 68.1
XLM-Ebase 279M 65.0
XLM-R (Hu et al., 2020) 550M 57.3
HiCTLlarge ∼550M 59.7
XLM-R + LSAR ∼550M 65.1
T&ST (unsup) ∼550M 74.2
T&ST (one-pair) ∼550M 80.4
ERNIE-Mlarge ∼550M 87.9
OneAligner 550M 92.9
mSimCSE uns. ∼550M 78.0
mSimCSE sup. ∼550M 88.3
mSimCSE NLI ∼550M 91.4
VECOout 662M 75.1

Table 3: Tatoeba-36 performance reported by various
papers, ordered by parameter counts.

ment, does markedly worse than mDeBERTaV3.463

Only few points behind, ERNIE-M, HiCTL and464

the JointAlign+Norm method sit at a near-identical465

performance. All modify an existing model in dif-466

ferent ways: InfoXLM uses information theory,467

ERNIE-M focuses on aligning the attention pa-468

rameters, whereas JointAlign+Norm looks at the469

output vector space. In the next group, xTune’s470

consistency regulation proves highly effective, with471

ERNIE-Mlarge and InfoXLM just behind.472

In both zero-shot transfer and translate-train,473

once we cross the threshold of 1B parameters, XY-474

LENTXL is the best available method—we do not475

know, at this point, if this model would be outper-476

formed by another method being scaled up. Trained477

from scratch, XY-LENT specifically uses a lot of478

parallel data that is not only English-centric, which479

seems to work well. XLM-RXXL lags behind XY-480

LENTXL and XLM-EXL while outperforming its481

own XL counterpart. Interestingly, mT5, which482

underperforms in smaller configurations, is com-483

petitive in XL size and does very well in XXL.484

In the translate-train setting, mDeBERTaV3485

again wins its size group. However, in the next486

larger group of models, X-MIXUP proves the most487

effective. It also improves mBERT’s performance488

by a large margin. This method directly addresses489

representation discrepancies between different lan-490

guages by linear interpolation between the hidden491

states of translation pairs. HiCTL, VECO, and 492

ERNIE-Mlarge come close to the performance of 493

X-MIXUP on this task, while needing more re- 494

sources. The contrastive learning approaches in 495

these tables do well (HiCTL, InfoXLM), although 496

they are not necessarily the most performant. We 497

must add the caveat that not all relevant models are 498

listed in the tables, since not all papers report the 499

full XNLI results. 500

For Tatoeba, the range of results is especially 501

large—the task has indeed been criticised for its 502

large variability. Here, contrastive training ap- 503

proaches are both very common and very success- 504

ful. LaBSE, OneAligner, and mSimCSE with NLI 505

supervision attain the best overall results. LaBSE 506

uses both negative sampling and additive margin 507

softmax, OneAligner uses in-batch negatives, and 508

mSimCSE follows a contrastive training approach 509

as well, indicating the strength of these methods 510

for the task. OneAligner additionally uses in-batch 511

normalisation to offset the hubness problem. 512

4.2 What to use? 513

Besides the obvious conclusion that larger models 514

usually outperform smaller ones, we recommend 515

using (multi-directional) parallel data if available, 516

and designing models carefully. Mined or pseudo- 517

parallel data can fulfil that function in some cases. 518

Use the available translated task data when optimis- 519

ing for a specific application. When pre-training 520

encoder models, ELECTRA-style replaced token 521

detection may be the way to go. Contrastive learn- 522

ing is popular for good reason, especially in the 523

retrieval paradigm. Methods like OneAligner also 524

show that models can learn from one language pair 525

to transfer better to multiple language pairs. Repre- 526

sentation normalisation and ensuring that language 527

means are closer together can be very effective and 528

make models competitive with larger ones. These 529

could also be helpful when not enough data or re- 530

sources are available for a larger training effort. 531

5 Multilingual Generative Models 532

Recently, the field has turned much attention to gen- 533

erative Large Language Models (LLMs). In this 534

space, there are still fewer intentionally multilin- 535

gual models (e.g., Workshop et al., 2023; Lin et al., 536

2022), and unfortunately they skew more heavily 537

towards English data than models in our survey. 538

However, we believe that multilingual generation 539

will become increasingly relevant as applications 540
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scale. Thus, we point out several areas of future re-541

search, including how cross-lingual alignment will542

interact with multi- and cross-lingual generation.543

There exist some efforts to benchmark multi-544

lingual generation (Asai et al., 2023; Ahuja et al.,545

2023; Gehrmann et al., 2022), but this presents546

unique challenges compared to multilingual clas-547

sification, or monolingual generation tasks. Mul-548

tilingual classification tasks, by contrast, are of-549

ten solved considerably less well by generative550

methods—typically using in-context learning or551

zero-shot prompting—than by fine-tuned encoder552

models (Lin et al., 2022). Further, the zero-shot553

cross-lingual transfer paradigm encounters issues554

in generative settings, since well-aligned represen-555

tations can lead to generation in the wrong lan-556

guage (Xue et al., 2021; Li and Murray, 2023).557

Essentially, where encoder-based classification558

tasks must rely on language-neutral axes of repre-559

sentations, generative tasks must rely not only on560

language-neutral aspects of semantics, but also on561

language-specific information about the target lan-562

guage, such as its specific vocabulary and syntax.563

5.1 Until Now: Encoder-Only Models564

We have surveyed primarily encoder-only models,565

though we include a few encoder-decoder mod-566

els. Encoder-only models transform the inputs567

into a latent space representation which is then568

used by a downstream task “head”. For any tasks569

where the set of outputs does not depend on the570

language, the model needs to primarily rely on571

language-neutral axes of the representations. Intu-572

itively, strong cross-lingual alignment will be help-573

ful here, including more “radical” methods such as574

mean-centering language-specific subspaces.575

5.2 Encoder-Decoder Models576

Due to their pre-training tasks, encoders can pre-577

dict the most likely tokens to fill a masked posi-578

tion, but encoder-decoder models are more suited579

to generative tasks due to their architecture. In this580

framework, the encoder is responsible for creating581

the latent space representation, while the decoder582

predicts the next tokens one-by-one. Conceptually,583

the encoder should still represent the semantics584

of different languages as closely aligned. How-585

ever, both language-neutral and language-specific586

information will be present and necessary in the587

encodings. If we want to use established cross-588

lingual alignment techniques in generative models,589

the encoder is the most natural target for them.590

The decoder, meanwhile, must learn to focus 591

more on language-specific information in order to 592

generate tokens in the target language. It is there- 593

fore likely that, e.g., mean-centering the language 594

subspaces in the encoder output would be harmful. 595

That said, language-neutral semantic information 596

from the encoder must also be taken into account. 597

We suggest training for both cross-lingual align- 598

ment and language-specificity at the decoding step. 599

An approach such as OneAligner, where one or a 600

few target languages are used for training along 601

with the source language, could help to remain 602

resource-efficient. Note that this is different from 603

zero-shot cross-lingual transfer, where only one 604

(source) language is used for training. 605

5.3 Decoder-Only Models 606

Many recent LLMs (Brown et al., 2020; Touvron 607

et al., 2023) are decoder-only models, meaning they 608

use the decoder architecture throughout the model 609

and have no separate encoder layers. Thus, there is 610

no one obvious point at which cross-lingual align- 611

ment should be greatest. However, any training 612

scheme that can help an encoder-decoder model to 613

focus on language-neutral and language-specific 614

information—at the relevant times—could help 615

here as well. Since LLMs are hard to fine-tune, this 616

should be combined with approaches like LoRA 617

(Hu et al., 2021a)—or integrated in a multilingual 618

pre-training scheme. Assuming the output lan- 619

guage should be based on the input language and/or 620

explicit instructions in the input, this should also 621

be explored in instruction tuning datasets. 622

6 Conclusions 623

We have surveyed the literature of cross-lingual 624

alignment methods and compiled results in some 625

of the most popular evaluation tasks. Our analy- 626

sis confirms the strengths of methods such as con- 627

trastive learning and ELECTRA-style pre-training, 628

as well as the importance of using available par- 629

allel data. We further collated an overview of 630

which authors provide code or model downloads 631

for reproducibility. Going forward, new challenges 632

present themselves with respect to multilingual gen- 633

erative models: Simply maximising cross-lingual 634

alignment can lead to wrong-language generation. 635

We thus call for methods that effectively trade-off 636

cross-lingual semantic information with language- 637

specific axes, allowing models to generate fluent 638

and relevant content in many languages. 639
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Limitations640

Evaluation Tasks641

XNLI is reported in a plurality of papers in our642

survey, more often than any other single task. The643

relative prevalence of XTREME (Hu et al., 2020)644

means that this and several other tasks, including645

UD-POS, MLQA, PAWS-X, Tatoeba, BUCC2018646

and NER, are frequently reported in specific con-647

figurations. Most of these tasks are also popular on648

their own. Unfortunately, despite this, many papers649

do not report results for the full range of “standard”650

target languages, a problem that is more common651

the more target languages appear in a task. This652

particularly limits our ability to compare models653

across lower-resource languages, and we strongly654

urge researchers to report results for all standard655

languages when evaluating on a task.656

We chose here to compile results from657

XTREME, focusing on XNLI and Tatoeba, since658

the former is so common among fine-tuning tasks,659

and the latter functions under a different paradigm.660

We simply omit papers that do not report these re-661

sults, or do not report all target languages, from our662

tables. We do not calculate such missing results663

ourselves. Thus, our picture of model performance664

is admittedly narrow, with multiple kinds of tasks—665

particularly word-level ones—missing entirely, and666

many models missing from the ranking, even if they667

perform well on the tasks they do report.668

Bilingual vs. Multilingual Alignment669

Since we are talking about highly multilingual670

models, we are implicitly concerned with multi-671

lingual cross-lingual alignment. Many-to-many672

cross-lingual alignment makes for a hard optimi-673

sation problem, as mentioned in § 2.2. However,674

most of the parallel data involved in (re-)aligning675

the models or measuring transfer performance are676

parallel with English. Thus, in practice, bilingual677

alignments with English as a pivot language are the678

most common. To the extent that alignment in the679

models is measured (see § 2.4), this is typically also680

done between English and some target language,681

and less often between a non-English source and682

non-English target language. These circumstances683

significantly limit the training and evaluation of684

many-to-many cross-lingual alignment.685

Multimodality686

Alignment of representations between modali-687

ties adds further complexities compared to cross-688

lingual alignment. We omit multimodal models 689

from this survey, but note that cross-modal align- 690

ment should be similarly examined in future work. 691
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A Inclusion of Papers 1292

The majority of this literature review was done in 1293

early 2023, and we found papers by searching the 1294

ACL Anthology, Semantic Scholar, and arXiv.org, 1295

as well as following the citation graph. We focused 1296

on the initial search terms “zero-shot cross-lingual 1297

transfer” and “cross-lingual alignment”. 1298

B Further Models Explained 1299

We add here brief explanations of additional mod- 1300

els which we omitted from the main body. These 1301

are methods that are either quite similar to ones de- 1302

scribed in Section 3, or did not fit well into one of 1303

the larger categories which we exemplify. Several 1304

of these papers do not report results for the tasks 1305

we looked at. 1306
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B.1 More Word- and Sentence-Level methods1307

Pan et al. (2021) propose a sentence-level momen-1308

tum contrast objective, which they combine with1309

TLM to train mBERT. This seems to be a similar1310

idea to InfoXLM. Unfortunately, the paper does not1311

include all languages on XNLI or MLQA results.1312

B.2 Further Sentence-embedding models1313

Tien and Steinert-Threlkeld (2022) propose two1314

different methods, one supervised by a single lan-1315

guage pair not unlike OneAligner, and one unsuper-1316

vised approach. Their unsupervised approach uses1317

an adversarial loss encouraging language distribu-1318

tions to become indistinguishable, and a Cycle loss1319

to keep them from degenerating. In both cases, they1320

freeze the parameters of XLM-R and only train a1321

linear mapping. Their one-pair supervised model is1322

competitive with OneAligner on BUCC2018, but1323

lags further behind on Tatoeba-36, which contains1324

more languages.1325

B.3 More Tuning with Task Data1326

DuEAM (Goswami et al., 2021) uses data from1327

the XNLI dataset while targeting semantic textual1328

similarity and bitext mining tasks. The objectives1329

used are Word Mover’s Distance and a translation1330

mining loss. The model performs reasonably well1331

but does not reach the performance of S-BERT.1332

B.4 More Data Augmentation1333

RS-DA (Huang et al., 2021) is “randomised1334

smoothing with data augmentation”—a kind of1335

robustness training during fine-tuning, using syn-1336

onym sets to create the augmented (English) data.1337

Ding et al. (2022) build on the idea of robust1338

regions and synonym-based data augmentation,1339

adding three objectives to ‘push’ and ‘pull’ the1340

embeddings and attention matrices appropriately1341

(EPT/APT in Tables 2 and 5). This model performs1342

well on PAWS-X but does not stand out on XNLI.1343

B.5 Other Approaches1344

X2S-MA (Hämmerl et al., 2022) is an approach1345

using monolingual data to first distill static embed-1346

dings from XLM-R, which are then aligned post-1347

hoc and used to train the model for similarity with1348

the aligned static embeddings. This model works1349

well on Tatoeba.1350

Ahmad et al. (2021), meanwhile, augment1351

mBERT with syntax information using dependency1352

parses. They employ a graph attention network to1353

learn the dependencies, which they then mix using 1354

further parameters with some attention heads in 1355

each layer. 1356

C More Task Results 1357

Table 7 compiles BUCC2018 (Zweigenbaum et al., 1358

2018) performance, as implemented by Hu et al. 1359

(2020). Tables 5 and 6 show zero-shot transfer and 1360

translate-train results for UD-POS (Zeman et al., 1361

2019), PAWS-X (Yang et al., 2019b) and MLQA 1362

(Lewis et al., 2020). 1363

Results on zero-shot transfer overall show a sim- 1364

ilar picture to XNLI, although details change. For 1365

example, XLM-ALIGN’s performance stands out 1366

on UD-POS but is “only” competitive on the other 1367

tasks. HiCTL, meanwhile, is fairly competitive in 1368

zero-shot XNLI performance but falls a bit further 1369

behind in Table 5. The authors of mDeBERTaV3 1370

do not report any of these other tasks, leaving XLM- 1371

ALIGN, XLM-Ebase, and ERNIE-Mbase to take the 1372

top spots: they all perform well on these three tasks 1373

but alternately take the lead. 1374

In the translate-train setting (Table 6), VECOin 1375

performs best on all three tasks, with HiCTLlarge 1376

on par for PAWS-X but not UD-POS or MLQA. 1377

For XNLI, the best translate-train performance was 1378

attained by X-MIXUP, which still does well on 1379

these tasks. Again, overall trends are very similar 1380

as for the XNLI task. 1381

Finally, BUCC2018 (Table 7) also conveys a 1382

similar picture as Tatoeba, although the variation is 1383

smaller, likely due the larger datasets and smaller 1384

selection of relatively high-resource languages. 1385

mSimCSE with NLI supervision performs best 1386

on this task—it also proved effective on Tatoeba- 1387

36. OneAligner is the second most effective on 1388

BUCC2018, with Tien and Steinert-Threlkeld’s 1389

(2022) one-pair supervision a close third. 1390

D Reproducibility 1391

In order to reproduce a method, or apply it to a new 1392

use case, detailed instructions and ease of reuse 1393

are vital. Providing implementation code is the 1394

most straightforward way to ensure that all neces- 1395

sary details are conveyed to a reader, and they do 1396

not waste time reimplementing them. Similarly, 1397

model downloads save time and make further ex- 1398

perimentation much easier. The larger the model 1399

in question, the more important model downloads 1400

become, since re-training them requires more time, 1401

effort, and compute. 1402

15



Model Size XNLI
mBERT (Hu et al., 2020) 110M 74.6
mBERT + X-MIXUP 110M 78.8
InfoXLMbase ∼270M 80.0
ERNIE-Mbase ∼270M 80.6
mDeBERTaV3 ∼276M 82.2
mT5small 300M 72.0
XY-LENTbase 447M 82.9
XLM-Rlarge + xTune ∼550M 82.6
FILTER ∼550M 83.6
FILTER + Self-teaching ∼550M 83.9
ERNIE-Mlarge ∼550M 84.2
HiCTLlarge ∼550M 84.5
XLM-Rlarge + X-MIXUP 550M 85.3
mT5base 580M 79.8
VECOin 662M 84.3
XY-LENTXL 2.1B 87.1
XLM-RXL 3.5B 85.4
mT5XL 3.7B 85.3
XLM-RXXL 10.7B 86.0
mT5XXL 13B 87.1

Table 4: Translate-train XNLI performance reported by
various papers, ordered by model size.

In Table 8, we list all papers that provide their1403

code, a model download, or both. Some of these1404

are well documented, some not so much. Some are1405

well-maintained, some not at all. We did not test1406

the provided code and links, simply checked that1407

they are online and contain what looks to be the1408

promised artifacts. Papers where we did not find1409

any artifacts are omitted.1410
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Model Size UDPOS PAWS-X MLQA (F1)
Zero-shot transfer
mBERT (Hu et al., 2020) 110M 71.5 81.9 61.4
mBERT + Syntax augm. ∼110M – 84.3 60.3
mBERT + EPT/APT ∼110M – 86.2 –
DICT-MLM ∼110M 71.6 84.8 –
XLM-Rbase + EPT/APT ∼270M – 87.1 –
XLM-ALIGN ∼270M 76.0 86.8 68.1
ERNIE-Mbase ∼270M – – 68.7
HiCTLbase ∼270M 71.4 84.5 65.8
InfoXLMbase ∼270M – – 68.1
XLM-Ebase 279M 75.6 88.3 68.3
mT5small 300M – 82.4 54.6
XY-LENTbase 447M – 89.7 71.3
XLM-R (Hu et al., 2020) 550M 73.8 86.4 71.6
HiCTLlarge ∼550M 74.8 87.5 72.8
ERNIE-Mlarge ∼550M – 89.5 73.7
InfoXLMlarge ∼550M – – 73.6
XLM-Rlarge + xTune 550M 78.5 89.8 74.4
RemBERT 575M 76.5 87.5 73.1
mT5base 580M – 86.4 64.6
VECOout 662M 75.1 88.7 71.7
XLM-V ∼750M – – 66.0
XL-LENTXL 2.1B – 91.0 75.4
XLM-RXL 3.5B – – 73.4
mT5XL 3.7B – 89.6 73.5
XLM-RXXL 10.7B – – 74.8
mT5XXL 13B – 90.0 76.0

Table 5: Zero-shot transfer UD-POS, PAWS-X, and MLQA performance reported by various papers, ordered by
model size. Many papers do not report exact parameter counts, so we make an estimate based on the model they
modify, or based on hyperparameters where reported. We mark the estimates with a tilde (∼). We draw dashed lines
between models of markedly different sizes.

17



Model Size UDPOS PAWS-X MLQA (F1)
Translate-train
mBERT (Hu et al., 2020) 110M – 86.3 65.6
mBERT + X-MIXUP 110M 76.5 89.7 69.0
mT5small 300M – 79.9 64.3
XY-LENTbase 447M – 92.4 –
XLM-R large + xTune ∼550M 78.5 89.8 75.0
FILTER ∼550M 76.2 91.2 75.8
FILTER + Self-teaching ∼550M 76.9 91.5 76.2
ERNIE-Mlarge ∼550M – 91.8 –
HiCTLlarge ∼550M 76.8 92.8 74.4
XLM-Rlarge + X-MIXUP 550M 78.4 91.8 76.5
mT5base 580M – 89.3 75.3
VECOin 662M 79.8 92.8 77.5
XL-LENTXL 2.1B – 92.6 –
mT5XL 3.7B – 91.0 75.1
mT5XXL 13B – 91.5 76.9

Table 6: Translate-train UD-POS, PAWS-X, and MLQA performance reported by various papers, ordered by model
size. Many papers do not report exact parameter counts, so we make an estimate based on the model they modify, or
based on hyperparameters where reported. We mark the estimates with a tilde (∼). We draw dashed lines between
models of markedly different sizes.

Model Size BUCC
mBERT (Hu et al., 2020) 110M 56.7
LaBSe ∼110M 89.7
LAPCA-LMbase ∼270M 71.3
XLM-Rlarge (Hu et al., 2020) 550M 66.0
HiCTLlarge ∼550M 68.4
Tien and Steinert-Threlkeld (2022) (unsup) ∼550M 82.4
Tien and Steinert-Threlkeld (2022) (one-pair) ∼550M 89.6
LAPCA-LMlarge ∼550M 83.5
OneAligner 550M 90.5
mSimCSE uns. ∼550M 87.5
mSimCSE sup. ∼550M 88.8
mSimCSE NLI ∼550M 95.2
Kvapilíková et al. (2020) ∼570M 75.8
VECOout 662M 85.0

Table 7: BUCC performance reported by various papers, ordered by model size.
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Model Name Code Available Model Download
Syntax Augmented mBERT (Ahmad et al., 2021) yes no
LASER (Artetxe and Schwenk, 2019) yes yes, fairseq
XLM-Align (Chi et al., 2021b) yes yes, HF
InfoXLM (Chi et al., 2021a) yes yes, HF
RemBERT (Chung et al., 2021) no yes, HF
EPT/APT (Ding et al., 2022) yes no
FILTER (Fang et al., 2021) yes no
LaBSE (Feng et al., 2022) no yes, TFH, HF
X2S-MA (Hämmerl et al., 2022) yes no
XLM-RXL/XXL (Goyal et al., 2021) yes yes, fairseq, HF
XeroAlign (Gritta and Iacobacci, 2021) yes no
CrossAligner (Gritta et al., 2022) yes no
mDeBERTaV3 (He et al., 2023) yes yes, HF
LASER3 (Heffernan et al., 2022) yes yes, fairseq
XLM-V (Liang et al., 2023) no yes, HF
XGLM (Lin et al., 2022) no yes, fairseq, HF
VECO (Luo et al., 2021) no* yes, fairseq
ERNIE-M (Ouyang et al., 2021) yes yes, HF
BAD-X (Parović et al., 2022) yes yes, AdapterHub
MAD-X (Pfeiffer et al., 2020) no yes, AdapterHub
Multilingual S-BERT (Reimers and Gurevych, 2020) yes yes, HF
ALIGN-MLM (Tang et al., 2022) yes no
Tien and Steinert-Threlkeld (2022) yes no
mSimCSE (Wang et al., 2022) yes yes, HF
Wu and Dredze (2020) yes no
LSAR (Xie et al., 2022) yes no
mT5 (Xue et al., 2021) yes yes, custom, HF
X-MIXUP (Yang et al., 2022) yes no
JointAlign + Norm (Zhao et al., 2021) yes yes
xTune (Zheng et al., 2021) yes no

Table 8: A list of those surveyed papers that provide code and/or model downloads. We do not test the provided
code, only making sure it remains online at time of writing. We sort by first author last name. *VECO has a
repository online that includes only fine-tuning code.
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