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Abstract
Extracting meaningful entities belonging to pre-
defined categories from Visually-rich Form-
like Documents (VFDs) is a challenging task.
Visual and layout features such as font, back-
ground, color, and bounding box location and
size provide important cues for identifying en-
tities of the same type. However, existing
models commonly train a visual encoder with
weak cross-modal supervision signals, result-
ing in a limited capacity to capture these non-
textual features and suboptimal performance.
In this paper, we propose a novel Visually-
Asymmetric coNsistenCy Learning (VANCL)
approach that addresses the above limitation by
enhancing the model’s ability to capture fine-
grained visual and layout features through the
incorporation of color priors. Experimental
results on benchmark datasets show that our
approach substantially outperforms the strong
LayoutLM series baseline, demonstrating the
effectiveness of our approach. Additionally,
we investigate the effects of different color
schemes on our approach, providing insights
for optimizing model performance. We believe
our work will inspire future research on multi-
modal information extraction.

1 Introduction

Information extraction (IE) for visually-rich form-
like documents (VFDs) aims to handle various
types of business documents, such as invoices, re-
ceipts, and forms, that may be scanned or digitally
generated. This task has attracted significant atten-
tion from the research and industrial communities
(Xu et al., 2020; Garncarek et al., 2021; Gu et al.,
2021; Li et al., 2021a,b). As shown in Figure 1, the
goal of IE for VFDs is to identify and extract mean-
ingful semantic entities, such as company/person
names, dates/times, and contact information, from
serialized OCR (Optical Character Recognition)
output in the documents. Since a single modal-
ity may not capture all the semantic information
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Figure 1: Motivation of this work. Semantic entities
of the same type often have similar visual and layout
properties, such as the same or similar font, background,
color, and the location and size of bounding boxes, pro-
viding important indications for recognizing entities and
their types. Despite the importance of these properties,
existing LMMs for information extraction in VFDs of-
ten rely on a limited visual encoder that cannot fully
capture such fine-grained features. Therefore, this work
focuses on incorporating these visual priors using colors
into the task of IE for VFDs.

present in the document, it is necessary to leverage
multimodal information, including text, spatial, and
visual data. Therefore, large-scale pretrained Mul-
timodal Models (LMMs) (Gu et al., 2021; Li et al.,
2021a; Appalaraju et al., 2021; Xu et al., 2021;
Huang et al., 2022; Wang et al., 2022a; Lee et al.,
2022), which are models that can process multiple
modalities of data, have emerged as the dominant
approach in IE for VFDs in recent years. State-of-
the-art LMMs integrate advanced computer vision
models (Ren et al., 2015; He et al., 2016) within
BERT-like architectures (Devlin et al., 2019) to
leverage spatial and visual information along with
text and learn multimodal fused representations for
form-like documents. However, these representa-
tions are biased toward textual and spatial modal-
ities (Cooney et al., 2023) and have limited per-



formance, especially when the data contains richer
visual information. This is because the visual en-
coder in these models usually plays a secondary
role compared to advanced text encoders.

There are two problems with the visual encoder
in previous LMMs. First, these models only impose
coarse-grained cross-modal constraints during pre-
training (e.g., text-image, word-patch, and layout-
text alignment (Xu et al., 2021; Huang et al., 2022;
Wang et al., 2022a)) to enhance feature extraction
from the visual channel, but this does not capture
sufficient fine-grained visual features, leading to
limited performance and underutilization of prior
knowledge in vision. Second, the visual encoders
in previous LMMs have weaker representational
capabilities than those in the latest Optical Char-
acter Recognition (OCR) engines because they do
not consider the intermediate tasks such as text
segment detection and bounding box regression,
which are important for accurately localizing and
extracting fine-grained visual features.

To address the issues mentioned above, inspired
by recent works on consistency learning (Zhang
et al., 2018; Miyato et al., 2019; Xie et al., 2020;
Lowell et al., 2021a; Liang et al., 2021; Chen
et al., 2021b), we propose a novel vision-enhanced
training approach, called Visually-Asymmetric
coNsistenCy Learning (VANCL). By incorporating
color priors with category-wise colors as additional
cues to capture visual and layout features, VANCL

can enhance the learning of unbiased multimodal
representations in LMMs. Our approach aims to
jointly consider the training objectives of the text
segment (or bounding box) detection task and the
entity type prediction objective, thereby bridging
the preprocessing OCR stage with the downstream
information extraction stage.

VANCL involves a standard learning flow and an
extra vision-enhanced flow. The inputs are asym-
metric in the visual modality, with the original doc-
ument images input to the standard flow, while im-
ages to the vision-enhanced flow are the synthetic
painted images. The vision-enhanced flow also can
be detached when deploying the model. During
training, we encourage the inner visual encoder to
be as strong as the outer visual encoder via consis-
tency learning. As a result, VANCL outperforms
existing methods while (1) extremely little manual
effort to create synthetic painted images, (2) no
need to train from scratch, whilst (3) no increase in
the deployment model size.

Our contributions can be summarized as follows:

• We propose a novel consistency learning
approach using visually-asymmetric inputs,
called VANCL, which effectively incorporates
prior visual knowledge into multimodal repre-
sentation learning.

• We demonstrate the effectiveness of VANCL

by applying it to the task of form document
information extraction using different LMM
backbones. Experimental results show that the
improvements using VANCL are substantial
and independent of the backbone used.

• We investigate how different color schemes
affect performance, and the findings are con-
sistent with cognitive psychology theory.

2 Problem Formulation

We treat the Semantic Entity Recognition (SER)
task as a sequential tagging problem. Given a doc-
ument D consisting of a scanned image I and a
list of text segments within OCR bounding boxes
B = {b1, . . . , bN}, we formulate the problem as
finding an extraction function FIE(D : ⟨B, I⟩) →
E that predicts the corresponding entity types for
each token in D. The predicted sequence of labels
E is obtained using the "BIO" scheme – {Begin,
Inside, Other} and a pre-defined label set. We train
our sequential tagging model based on pretrained
LMMs and perform Viterbi decoding during testing
to predict the token labels. Each bounding box bi
contains a set of M tokens transcribed by an OCR
engine and coordinates defined as (x1i , x

2
i ) for the

left and right horizontal coordinates and (y1i , y
2
i )

for the top and bottom vertical coordinates.

3 Approach

Our model architecture for visually-asymmetric
consistency learning is illustrated in Figure 2. In-
spired by mutual learning (Zhang et al., 2018), we
start with a standard learning flow and an extra
vision-enhanced flow, which are learned simul-
taneously to transfer knowledge from the vision-
enhanced flow to the standard learning flow. It is
worth noting that the input images for the vision-
enhanced flow are colorful prompt paints, while
the input images for the standard flow are original
images. Therefore, the information contained in
the visual inputs to the vision-enhanced flow and
the standard model is asymmetric.
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Figure 2: The overall illustration of the VANCL framework. It encourages knowledge transfer from the extra
vision-enhanced flow to the standard flow through consistency losses.

3.1 Overall architecture

The proposed approach consists of two entity recog-
nition networks: a Standard Learning (SL) flow
to train the backbone LMMs and an extra vision-
enhanced (VE) flow to transfer the prior visual
knowledge. The two networks have the same struc-
ture and share the parameter weights Θ in the back-
bone LMMs. Note that the Vision-Enhanced flow
has an extra visual encoder, and thus it has addi-
tional parameter weights Θv during training. The
two flows are logically formulated as follows:

PY = fSL(X; Θ), (1)

PỸ = fVE(X̃; Θ,Θv), (2)

where PY and PỸ are the predicted probability dis-
tributions output by the standard learning flow and
the extra vision-enhanced flow, which are the la-
tent outputs after softmax normalization (i.e., soft
label). Note that the inputs for two networks are
different, namely X and X̃ , the former is the origi-
nal document image, and the latter is the synthetic
document image (with additional color patches).

The training objective contains two parts: super-
vision loss Lsup and consistency loss Lcons. The
supervision losses are formulated using the stan-
dard cross-entropy loss on the annotated images as
follows:

Lsup =
1

|DK |
∑

x∈DK

Lce

((
P (y|⟨Bk, Ik⟩; Θ),y∗)

+ L̃ce

(
P (ỹ|⟨Bk, Ĩk⟩; Θ,Θv),y

∗)), (3)

where Lce is the cross-entropy loss function and
y∗ is the ground truth. P (y|⟨Bk, Ik⟩; Θ) and
P (ỹ|⟨Bk, Ĩk⟩; Θ,Θv) refer to the corresponding
predicted probability distributions of standard and
vision-enhanced models, respectively. Bk, Ik de-
note the bounding box position information and the
original image of the k-th document. Ĩk refers to
the synthetic image with color patches.

The consistency loss defines the proximity be-
tween two predictions. During training, there exists
inconsistency due to asymmetric information in the
inputs to the standard learning flow and the vision-
enhanced flow. Concretely, it is necessary to penal-
ize the gap between two soft label signals (i.e., the
prediction distributions) generated by the standard
and vision-enhanced flows. The consistency loss is
computed as:

Lcons =
1

|DK |
∑

x∈DK

Q
(
P (y|⟨Bk, Ik⟩; Θ),

P (ỹ|⟨Bk, Ĩk⟩; Θ,Θv)
)
, (4)

where Q is a distance function that measures the
divergence between the two distributions.

The final training objective for visually-
asymmetric consistency learning is written as:

Lfinal = Lsup(y
∗|Θ,Θv) + λLcons(Py, Pỹ), (5)

where λ is a hyperparameter for the trade-off
weight. The above loss function takes into account
the consistency between hard and soft labels, which
also reduces the overconfidence of the model.



3.2 Painting with colors

Visual-text alignment is essential for learning mul-
timodal representations, but fine-grained alignment
at the bounding box level has not been adequately
captured by previous models. Therefore, it is im-
perative to explore methods for bridging the gap
between text segment (or bounding box) detection
and entity classification tasks.

One natural solution is to integrate label informa-
tion using colors, which could effectively enhance
visual-text alignment by representing entity-type
information with color patches. However, the man-
ual creation of these visual prompts would be ex-
tremely time-consuming and laborious. To tackle
this problem, we adopt a simple and ingenious pro-
cess that uses OCR bounding box coordinates to
automatically paint the bounding boxes with colors
in the original image copies.

Let Dk denote the k-th document, consisting
of ⟨Bk, Ik⟩. First, we make an image copy I ′k

for each training instance of VFD. Then, we paint
the bounding boxes in the image copy with the
colors responding to entity types according to the
coordinates [(x1i , x

2
i ), (y

1
i , y

2
i )] of bounding box

bi. Hence, we obtain a new image Ĩk with color
patches after painting. This process can be repre-
sented as follows:

Ĩk = Paint
[
ROIAlign

(
⟨Bk, I ′k⟩

)]
, (6)

where ROIAlign obtains fine-grained image areas
corresponding to bounding boxes within the region
of interest (here refers to Bk). Ĩk is the newly gen-
erated synthetic image that preserves the original
visual information as well as the bounding box pri-
ors with label information. We use these prompt
paints to train the extra vision-enhanced flow.

3.3 Dual-flow training

Avoiding label leakage becomes a major concern
in this task when directly training backbone LMMs
with prompt paints using only the standard flow.
Fortunately, the dual-flow architecture used in our
model not only allows for detaching the vision-
enhanced flow and discarding prompt paints when
testing but also enables the use of arbitrary back-
bone LMMs and any available visual encoders in
the outer visual channel. This strategy avoids label
leakage and enhances the visual feature-capturing
ability of the original LMM through a consistency
learning-based strategy similar to adversarial learn-

ing. These are exciting and interesting findings in
this work.

4 Experiments

4.1 Datasets

We conduct our experiments on three datasets,
FUNSD (Jaume et al., 2019), SROIE (Huang et al.,
2019), and a large in-house dataset SEABILL (See
Table 1). Details refer to Appendix A.1.

Dateset # Train # Test

Doc BD Token Doc BD Token

FUNSD 149 21K 33K 50 8K 12K
SROIE 626 34K 155K 347 19K 86K
SEABILL 3,562 250K 1.5M 953 74K 0.5M

Table 1: Statistics of the used datasets, including the
numbers of documents (Doc), bounding boxes (BD),
and tokens (Token).

4.2 Backbone networks

We conduct our experiments using LayoutLM
series backbones, a family of transformer-based
well-pertained LMMs specifically designed for
visually-rich document understanding tasks.
LAYOUTLM Vanilla LayoutLM model
LAYOUTLM-BASE-UNCASED (Xu et al., 2020)
pretrained only using text and layout information.
LAYOUTLM w/ img Given the vanilla LayoutLM
model does not utilize the visual information, we
integrate LayoutLM with ResNet-101 (He et al.,
2016) to enable the capability of feature extraction
from the visual channel1.
LAYOUTLMV2/LAYOUTLMV3 We also make
comparisons by substituting the backbone with
LAYOUTLMV2-BASE-UNCASED (Xu et al., 2021)
and LAYOUTLMV3-BASE (Huang et al., 2022).
VANCL (this work) We initialize the VANCL from
existing pretrained LayoutLM backbones and
share the parameter weights of the LayoutLMs
in the standard learning and vision-enhanced
flows, including the text encoder (e.g., BERT), the
inner visual encoder (e.g., ResNet, ResNeXt, and
Linear), the position encoders, the Transformer
layers, and the classifier. For the outer visual
encoder, we use ResNet-101 as the default and
also test non-pretrained CNN and ResNet.

1Note it is different from Xu et al. (2020) in which they
use Faster-RCNN (Ren et al., 2015) as the visual encoder.



Model #Param FUNSD SROIE SEABILL

P% ↑ R% ↑ F1% ↑ P% ↑ R% ↑ F1% ↑ P% ↑ R% ↑ F1% ↑

BERT1 110M 54.69 61.71 60.26 90.99 90.99 90.99 66.70 68.77 67.72
ROBERTA2 125M 63.49 69.75 66.48 91.07 91.07 91.07 64.35 67.76 66.01
UNILMV23 125M 63.49 69.75 66.48 94.59 94.59 94.59 - - -
BROS4 139M 80.56 81.88 81.21 94.93 96.03 95.48 - - -
DOCFORMER5 149M 77.63 83.69 80.54 - - - - - -
LILT[EN-R]6 - 87.21 89.65 88.41 - - - 84.67 86.02 85.64
LILT[INFOXLM]6 - 84.67 87.09 85.86 - - - 85.19 87.39 86.29
FORMNET7 217M 85.21 84.18 84.69 - - - - - -
STRUCTEXT8 107M 85.68 80.97 83.09 95.84 98.52 96.88 - - -
XYLAYOUTLM9 - - - 83.35 - - - 90.75 91.59 91.17
LAYOUTLM10 113M 75.97 81.55 78.66 94.38 94.38 94.38 86.93 89.16 88.03

LAYOUTLM(w/ img) 147M 79.68 80.74 80.20 95.53 96.08 95.80 87.50 89.89 88.68
VANCL[LAYOUTLM(w/ img)] +0M 80.78 81.89 81.33 96.32 96.67 96.50 89.06 90.24 89.65

LAYOUTLMV211 200M 80.29 85.19 82.76 96.25 96.25 96.25 90.90 91.73 91.31
VANCL[LAYOUTLMV2] +0M 82.95 83.29 83.12 97.45 97.58 97.51 91.61 92.17 91.89

LAYOUTLMV312 133M - - 90.29 96.59 96.94 96.77 89.53 91.78 90.64
VANCL[LAYOUTLMV3] +0M 91.76 92.95 92.35 97.09 97.30 97.20 90.64 92.07 91.35

Table 2: Precision, Recall, and F1 on the FUNSD, SORIE, and SEABILL datasets. [*] denotes the backbone model
used in VANCL. Bold indicates better scores comparing the model performance between the standard training
approach and VANCL. #Param refers to the number of parameters for deployment. 1(Devlin et al., 2019),2(Liu
et al., 2019b),3(Bao et al., 2020),4(Hong et al., 2021),5(Appalaraju et al., 2021),6(Wang et al., 2022a),7(Lee et al.,
2022),8(Li et al., 2021b), 9(Gu et al., 2022),10(Xu et al., 2020),11(Xu et al., 2021),12(Huang et al., 2022).

4.3 Experimental setups

We train all models based on the default parame-
ters using the Adam optimizer with γ of (0.9, 0.99)
without warmup. Our models are set to the same
learning rate of 5e−5. For the FUNSD and SROIE
datasets, we set the Dropout to 0.3 to prevent model
overfitting, while we reduce the Dropout to 0.1
for the SEABILL dataset. We set the training
batch size to 8 and train all models on an NVIDIA
RTX3090 GPU. We trained our models for 20 itera-
tions to reach convergence and achieve more stable
performance.

5 Result Analysis

5.1 Overall evaluation

Table 2 shows the scores of precision, recall, and
F1 on the form document information extraction
task. Our models outperform the baseline models
in terms of both LayoutLM (a model that only con-
siders text and spatial features) and LayoutLM w/
img/LayoutLMv2/LayoutLMv3 (models that also
consider visual features). It should be noted that
LayoutLM w/ img incorporates visual features af-
ter the spatial-aware multimodal transformer layers,
while LayoutLMv2 and LayoutLMv3 incorporate
visual features before these layers. It suggests that
VANCL could be easily applied to most of the ex-

isting LMMs for visually-rich document analysis
and information extraction tasks with little or no
significant modifications to the network architec-
ture. Please refer to Appendix A.3 for a detailed
case study.

5.2 Impact of consistency loss
As for a comprehensive evaluation of each mod-
ule, we conduct the additional ablation experiment
by examining the impact of using consistency loss.
The experimental results in Table 3 reveal that re-
moving the consistency loss leads to a decline in the
model’s performance to varying extents. This find-

Model FUNSD SROIE SEABILL

LAYOUTLM(w/ img)
+ VANCL 81.33 96.50 89.65
+ VANCL-CL 79.36(↓ 1.97) 95.68(↓ 0.82) 88.19(↓ 1.46)

LAYOUTLMV2
+ VANCL 83.12 97.51 91.89
+ VANCL-CL 81.52(↓ 1.60) 97.08(↓ 0.43) 89.28(↓ 2.61)

LAYOUTLMV3
+ VANCL 92.35 97.20 91.35
+ VANCL-CL 90.93(↓ 1.42) 96.98(↓ 0.22) 90.87(↓ 0.48)

Table 3: Ablation experiment by examining the impact
of using consistency loss on different backbones. - CL
means no consistency loss is used.

ing demonstrates the significance of consistency
loss in the model. Simultaneously, it indicates that
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Figure 3: Illustrating the architectures for (a) our approach VANCL, (b) mutual learning, (c) R-drop. ‘→’ means
forward operation and ‘- ->’ means loss of supervision.

without the driving force of consistency, the addi-
tion of color information may actually increase the
learning noise.

5.3 Different divergence metrics
There are many ways to measure the gap between
two distributions, and different measures can lead
to different consistency loss types, which can also
affect the final performance of the model on form
document extraction tasks. In this section, we ver-
ify two types of consistency loss, Jensen-Shannon
(JS) divergence (Lin, 1991) and Kullback-Leibler
(KL) divergence (Kullback and Leibler, 1951), on
the effect of form document extraction. While the

Model FUNSD SROIE SEABILL

LAYOUTLM(w/ img) 80.20 95.80 88.68
+VANCL-JS 80.75 96.50 89.36
+VANCL-KL 81.33 96.32 89.65

LAYOUTLMV2 82.76 96.25 91.31
+VANCL-JS 82.21 97.33 91.89
+VANCL-KL 83.12 97.51 91.58

LAYOUTLMV3 90.29 96.77 90.64
+VANCL-JS 92.35 97.07 91.16
+VANCL-KL 91.72 97.20 91.35

Table 4: Effect of different consistency losses using JS
and KL divergences on F1 scores. Bold indicates the
best and underline indicates the second best.

VANCL model outperforms the baseline in most
cases, regardless of the different backbone net-
works and datasets, it is still worth noting that the
choice of consistency loss varies depending on the
characteristics of the dataset, such as key type and
layout style, and whether overfitting occurs due to
the complexity of the model and the data size. As
shown in Table 4, different consistency losses are
used for different datasets and backbone networks
to achieve optimal results. For example, when us-
ing Jensen-Shannon divergence for LayoutLMv2,
VANCL achieved optimal results on the SEABILL
dataset, but second best on the FUNSD and SROIE

datasets.

5.4 Comparison with inner/outer consistency

To demonstrate the effectiveness of our proposed
method, we compare our approach versus R-Drop
(Liang et al., 2021) and mutual learning (Zhang
et al., 2018). R-Drop is a powerful and widely
used regularized dropout approach that considers
multiple model inner consistency signals. Fig-
ure 3 illustrates the different structures of the three
methods. Table 5 gives the results of incorporat-
ing LayoutLMs with R-Drop and mutual learning.
Compared to R-Drop and mutual learning, we ob-
serve a positive correlation between using VANCL

and the improvements on the FUNSD, SROIE,
and SEABILL datasets. The results indicate that
VANCL benefits from the vision priors.

Model FUNSD SROIE SEABILL

LAYOUTLM (w/ img) 80.20 95.80 88.68

+MUTUAL-LEARN 80.44 95.46 88.99
+R-DROP 80.38 96.02 89.13
+VANCL 81.33 96.50 89.65

Table 5: Comparison of F1 scores with inner and outer
consistencies using R-Drop (Liang et al., 2021) and
mutual learning (Zhang et al., 2018).

5.5 Visualization analysis

To more intuitively demonstrate the effect of
VANCL on the obtained visual encodings in the
visual channel, we visualize the encoding distribu-
tions before and after VANCL training via t-SNE.
Figure 4 shows the integration of visual informa-
tion in both flows. This demonstrates that VANCL

indirectly transfers the label prior distribution to
the standard flow by aligning the information in
the standard and vision-enhanced flows, which im-
proves the subsequent inference process. More
detailed results of the overall distribution visualiza-
tion can be found in Appendix A.4.



QUESTION ANSWER HEADER OTHER
MICRO-AVGcolor F1 color F1 color F1 color F1

1 #FF0000 83.88 #0000FF 85.51 #00FF00 56.31 #FFA500 77.36 81.33

2 #0000FF 84.42 #FF0000 85.49 #00FF00 57.92 #FFA500 75.83 81.28
3 #FFA500 84.01 #00FF00 85.22 #FF0000 54.08 #0000FF 77.38 81.27

4 #CCCCCC 83.67 #999999 84.78 #333333 57.18 #000000 77.47 81.16
5 #FF0000 83.52 #FF6699 84.88 #FF3366 56.02 #FF0099 76.23 80.75
6 #0000FF 83.98 #FF0000 84.59 #0099FF 56.40 #0066CC 76.42 80.76

7 #FF0000 83.43 #0000FF 83.62 #FFA500 55.73 #00FF00 76.30 80.23
8 #FFFFFF 83.45 #FFFFFF 84.21 #FFFFFF 61.40 #FFFFFF 75.58 80.38

SUPP. 2,542 3,294 374 2,356 8,566

Table 6: Results of using different color schemes on the FUNSD dataset. SUPP. denotes the number of supports for
each entity type in the test set.

Standard

Vision-enhanced

After training

VANCL

Figure 4: The t-SNE visualization of token-level visual
encodings of a particular type output by the standard
(red) and vision-enhanced (grayish purple) flows.

5.6 Changing the color scheme

To verify the effect of different background col-
ors on the model, we conduct experiments on the
FUNSD dataset. In addition to the standard color
scheme (red, blue, yellow, and green), we conduct
three additional experiments. First, we randomly
swap the colors used in the standard color scheme.
Second, we choose different shades or intensities
of the same color system for each label class. Third,
we only draw the bounding box lines with colors.
The results in Table 6 reveal three rules followed
by VANCL, which are consistent with the exist-
ing findings in cognitive science (Gegenfurtner,
2003; Elliot and Maier, 2014): 1) different shades
or intensities of the same color system do not sig-
nificantly affect the results; 2) swapping different
colors in the current color scheme does not signifi-
cantly affect the results; and 3) VANCL is effective
when using colors with strong contrasts while being
sensitive to grayscale.

Model Ratio (F1)

5% 12.5% 25% 50% 100%

LAYOUTLM(w/ img) 71.74 80.67 83.72 85.97 88.68
+VANCL 76.33 82.09 84.83 87.14 89.65

LAYOUTLMV2 80.63 84.48 88.12 89.47 91.31
+VANCL 84.75 87.42 89.34 91.18 91.89

Table 7: The impact of reducing the data size of the
training subset on the SEABILL dataset.

5.7 Low-resource scenario
To verify the effectiveness of VANCL in low-
resource scenarios, we investigate whether VANCL

improves the SER task when training the model
with different sizes of data. We choose LayoutLM
and LayoutLMv2 as the test backbone and com-
pare the results of VANCL with the correspond-
ing baseline by varying the training data sizes.
Specifically, we randomly draw a percentage p
of the training data, where p is chosen from the
set {5%, 12.5%, 25%, 50%}, from the SEABILL
dataset. Results in Table 7 reveal two key obser-
vations. First, VANCL consistently outperforms
the LayoutLM baselines for different sizes of train-
ing data. Second, the performance gap between
VANCL and the baseline is much larger in a low-
resource scenario, indicating that VANCL can boost
the model training in such scenarios.

5.8 Non-pretrained testing
To verify whether VANCL’s improvement is simply
due to pretrained visual encoders containing real-
world color priors, we deliberately tested visual
encoders that were not pretrained and initialized
their parameters when introduced into the model.
In this way, the visual encoder would need to learn
to extract visual features from scratch. Considering



Model Enc. #L Pre. FUNSD SEABILL

STAND. - - - 78.66 88.03

STAND. RESNET 101 Ë 80.20 88.68
STAND. RESNET 18 é 79.51 88.50
STAND. CNN 2 é 80.03 88.42

VANCL RESNET 101 Ë 81.33 89.65
VANCL RESNET 18 é 77.62 88.64
VANCL CNN 2 é 80.60 88.97

Table 8: Effect of using a non-pretrained outer visual
encoder on LAYOUTLM (w/img). Pre. means pretrained.
Enc. and #L denote the outer visual encoder and the
number of inside layers.

that deeper networks are usually more difficult to
train in a short time, we choose a smaller ResNet-
18 and an extremely simple two-layer CNN (Lecun
et al., 1998) as the outer visual encoders for our
experiments. The results in Table 8 show that even
simple visual encoder networks, such as CNN-2
and ResNet-18, can still surpass the standard base-
line models, indicating that the original backbone
models learn better visual features through visually-
asymmetric consistency learning (VANCL).

6 Related Work

6.1 Visually-rich document understanding

To achieve the goal of understanding visually-rich
documents, a natural attempt is to enrich state-of-
the-art pretrained language representations by mak-
ing full use of the information from multiple modal-
ities including text, layout and visual features.
Researchers have proposed various paradigms,
such as text-based, grid-based, graph-based, and
transformer-based methods. Text-based methods,
e.g., XLM-RoBERT (Conneau et al., 2020), In-
foXLM (Chi et al., 2021), only consider the textual
modality, rely on the representation ability of large-
scaled pretrained language models. Grid-based
methods, e.g., Chargrid (Katti et al., 2018), Bert-
Grid (Denk and Reisswig, 2019), and ViBERTgrid
(Lin et al., 2021), represent documents using a 2D
feature map, allowing for the use of image seg-
mentation and/or object detection models in com-
puter vision (CV). GNN-based methods (Liu et al.,
2019a; Tang et al., 2021) treat text segments in
the document as nodes and model the associations
among text segments using graph neural networks.
Transformer-based methods leverage the latest
multimodal pretrained models to learn better se-
mantic representations for VFDs by capturing in-

formation from multiple modalities (Powalski et al.,
2021; Wang et al., 2022b). LayoutLM (Xu et al.,
2020) introduces 2D relative position information
based on BERT (Devlin et al., 2019), which enables
the model to perceive the 2D positions of text seg-
ments throughout the document. LayoutLMv2 (Xu
et al., 2021), StructText (Li et al., 2021b), Struct-
Textv2 (Yu et al., 2023) and LayoutLMv3 (Huang
et al., 2022) further integrate visual channel input
into a unified multimodal transformer framework
to fusing textual, visual, and spatial features. Thus,
these methods learn more robust multimodal rep-
resentations and have made promising progress in
visually rich document understanding tasks. Re-
cently, Wang et al. (2022a) recently propose a bi-
directional attention complementation mechanism
(BiACM) to enable cross-modality interaction in-
dependent of the inner language model. Lee et al.
(2022) exploit serializing orders of the text segment
output by OCR engines.

6.2 Consistency learning

In recent years, there have been significant advance-
ments in consistency learning, which aims to re-
duce variances across different model predictions.
The core idea of consistency learning is to con-
struct cross-view constraints that enhance consis-
tency across different model predictions. Previ-
ous research on consistency learning has focused
on adversarial or semi-supervised learning, which
provides supervised signals that help models learn
from unlabeled data (Miyato et al., 2019; Xie et al.,
2020; Lowell et al., 2021a). There is also inter-
est in incorporating consistency mechanisms into
supervised learning (Chen et al., 2021a; Lowell
et al., 2021b). Batra and Parikh (2017) propose
cooperative learning, allowing multiple networks
to learn the same semantic concept in different
environments using different data sources, which
is resistant to semantic drift. Zhang et al. (2018)
propose a deep mutual learning strategy inspired
by cooperative learning, which enables multiple
networks to learn from each other.

Previous works enable cross-modal learning ei-
ther using the classical knowledge distillation meth-
ods (Hinton et al., 2015) or modal-deficient gener-
ative adversarial networks (Ren and Xiong, 2021).
Hinton et al. (2015)’s method starts with a large,
powerful pretrained teacher network and performs
one-way knowledge transfer to a simple student,
while Ren and Xiong (2021)’s method attempts to



encourage the partial-multimodal flow as strong as
the full-multimodal flow. In contrast, we explore
the potential of cross-modal learning and informa-
tion transfer, and enhance the model’s ability to
information extraction by using visual clues. This
allows the model to learn a priori knowledge of
entity types, which is acquired before encounter-
ing the specific task or data. In terms of model
structure, our model architecture is more similar to
mutual learning (Zhang et al., 2018) or cooperative
learning (Batra and Parikh, 2017).

7 Conclusion

We present VANCL, a novel consistency learning
approach to enhance layout-aware pretrained mul-
timodal models for visually-rich form-like docu-
ment information extraction. Experimental results
show that VANCL successfully learns prior knowl-
edge during the training phase, surpassing exist-
ing state-of-the-art models on benchmark datasets
of varying sizes and a large-scale real-world form
document dataset. VANCL exhibits superior perfor-
mance against strong baselines with no increase in
model size. We also provide recommendations for
selecting color schemes to optimize performance.

Limitations

The limitations of our work in this paper are the
following points:

1. For the sake of simplicity, we only experiment
with the LayoutLM-BASE, LayoutLMv2-
BASE, and LayoutLMv3-BASE backbones, we
have not tested other backbones, e.g., Struc-
Text and StrucTexTv2 .

2. We have not studied the effectiveness of asym-
metric consistency learning in the training
stage.
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A Appendix

A.1 Dataset Details

FUNSD This dataset contains 199 well-annotated
scanned forms. Each semantic entity consists of
a unique identifier id, a label ({Question, Answer,
Header, or Other}), a bounding box, a list of links
to other entities, and a list of words.
SROIE The dataset contains 626 receipts for train-
ing and 347 receipts for testing. Each receipt con-
sists of its scanned image and OCR transcription,
organized as a list of text segments with bounding
box position information pairs. Each receipt is la-
beled with four types of entities, namely {Company,
Date, Address, Total}.
SEABILL The dataset is a complex collection of
documents derived from maritime business scenar-
ios and consists of 3,562 training documents and
953 test documents. The data consists of PDF im-
ages and rule-based transcriptions of the documents
with three labels {Question, Answer, Other}.

A.2 Effect of sharing weights

In this section, we design experiments to inves-
tigate the effect of sharing weight. As shown in
Table 9, we conduct experiments on three datasets
by controlling the variables of the inputs and model
weight sharing.

Visual Prompt FUNSD SROIE SEABILL

¬ shared
é 77.47 95.13 88.63
Ë 80.03 95.84 89.13

shared
é 80.38 96.02 89.13
Ë 81.33 96.50 89.65

Table 9: Effect of sharing weights of the network pa-
rameters between the inner and outer visual encoders in
LAYOUTLM (w/ img) on model F1 score. Sharing the
weights of the model brings significantly better results
than not sharing the weights.

It can be seen that sharing the parameters of
the visual encoder is better than not sharing the
weights in most cases (see Table 9), and the way of
sharing parameters also greatly reduces the overall
number of parameters of the model (see Table 2).
In addition, we also compare the results whether
using the colorful prompt paints under the settings
of weight sharing or not. Even under the condition
that model weights are not shared, we observe that
colored visual clues still significantly improve the
performance of the model.
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(a) Vanilla LAYOUTLM(w/ img) (left) vs. VANCL[LAYOUTLM(w/ img)] (right)

(b) Vanilla LAYOUTLMV3 (left) vs. VANCL[LAYOUTLMV3] (right)

Figure 5: Case study of the predicted results on the SEABILL dataset using the standard fine-tuning pipeline
LAYOUTLM(w/ img) (a) and LAYOUTLMV3 against the VANCL pipeline.

A.3 Case study

Figure 5(a) and Figure 5(b) visualize the cor-
responding prediction results using the vanilla
LAYOUTLM(w/ img) and LAYOUTLMV3 mod-
els against VANCL[LAYOUTLM(w/ img)] and
VANCL[LAYOUTLMV3] models on the SEABILL
dataset, respectively. In Figure 5(a), LAY-
OUTLM(w/ img) predicts wrong label “Other’
for “PLASTIC CLOSURE”, “装运工具 (Loading
way)”, “详细地址 (Detailed address)”, “23托 (23
GP)”, while VANCL[LAYOUTLM(w/ img)] can
make correct predictions that match the human-
annotated ground truths. There are ambiguous
cases that VANCL[LAYOUTLM(w/ img)] also
gives wrong predictions. For example, both
LAYOUTLM(w/ img) and VANCL[LAYOUTLM(w/
img)] predict “By sea (23 GP)” as “Other”, but the
true label is “Answer”.

Figure 5(b) shows that LAYOUTLMV3 gives
more accurate predictions than LAYOUTLM(w/
img). However, LAYOUTLMV3 also predicts the
entities with the wrong label “Other” for “货物描
述 (Goods description)”, “2176.000M”, “17PAL-
LETS”, “13094.86” though these entities are an-
notated as “Question” or “Answer” in the train-
ing data. For “KGS”, “CBM”, LAYOUTLMV3

also gives a wrong label “Question”, whereas
VANCL[LAYOUTLMV3] gives the right label.

A.4 Visualization
The full version of the t-SNE visualization is shown
in Figure 6. The upper left and upper right graphs
show a comparison of the visual encodings of the
two flows before and after VANCL training, respec-
tively. After training, the results show that each
classification cluster is more separated and the cor-
responding information of the two flows is more
aligned. The lower left and lower right graphs
show a comparison of the multimodal output of the
two flows before and after VANCL training, respec-
tively. In summary, VANCL effectively transfers
label information to the standard flow through the
vision-enhanced flow.
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Figure 6: The full t-SNE visualization result of hidden states from the outputs of the standard and vision-enhanced
flows. The uppers are visual encodings before and after VANCL training. The lowers are multimodal fused encodings
before and after VANCL training. The red bounding boxes indicate the clusters shown in Section 5.5.


