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Abstract. Evaluating deformable image registration (DIR) is challeng-
ing due to the inherent trade-off between achieving high alignment ac-
curacy and maintaining deformation regularity. However, most existing
DIR works either address this trade-off inadequately or overlook it alto-
gether. In this paper, we highlight the issues with existing practices and
propose an evaluation scheme that captures the trade-off continuously
to holistically evaluate DIR methods. We first introduce the alignment-
regularity characteristic (ARC) curves, which describe the performance
of a given registration method as a spectrum under various degrees of reg-
ularity. We demonstrate that the ARC curves reveal unique insights that
are not evident from existing evaluation practices, using experiments on
representative deep learning DIR methods with various network archi-
tectures and transformation models. We further adopt a HyperNetwork-
based approach that learns to continuously interpolate across the full
regularization range, accelerating the construction and improving the
sample density of ARC curves. Finally, we provide general guidelines for
a nuanced model evaluation and selection using our evaluation scheme
for both practitioners and registration researchers. 1
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1 Introduction

Image registration is one of the most fundamental tasks in medical imaging and
analysis. The core aim of image registration is to find spatial transformations
that align anatomical structures or functional elements across two or multiple
images. This is often achieved by automatically adjusting a transformation model
to optimize the alignment according to a predefined dissimilarity measure. In de-
formable image registration, the transformation model is allowed high degrees of
freedom, which warrants additional regularization to enforce desirable properties,
or regularity, and constrains the solution space for more efficient optimization.
Concretely, many deformable image registration algorithms, including iterative

1 Code is available at: https://anonymous.4open.science/r/arc-3F80
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Fig. 1: Illustration of the balance between alignment accuracy and transforma-
tion regularity during inter-subject brain registration.

optimization registration and modern learning-based registration methods, solve
the following energy optimization problem to register a pair of images [17,19]:

ϕ̃ = argmin
ϕ

[D(T (Im, ϕ), If ) + λR(ϕ)] (1)

Here the dissimilarity term D quantifies the alignment between the moving im-
age Im transformed by T using the transformation ϕ (moved), and the reference
image If . The transformation is constrained by the regularization term R, which
is usually derived to enforce desirable properties on the transformation, such as
smoothness or topology-preservation. This governs the regularity of the trans-
formation. The weighting hyperparameter λ in Eq. (1) influences the balance
between the two energy terms. The resulting dynamic is a trade-off between the
accuracy of the alignment and the regularity of the transformation. A visual
illustration of this trade-off is shown in Fig. 1. Formally, we term this trade-off
as the alignment-regularity characteristic (ARC) of a given registration algo-
rithm, inspired by the use of receiver operating characteristic (ROC) curves [3]
in evaluating classification methods under the precision-recall trade-off.
Issues with current practices: Evaluating DIR algorithms in the context
of ARC is not trivial. We observe that many registration works do not con-
sider the ARC trade-off when evaluating and comparing results. For example,
many methods only tune λ to maximize alignment accuracy. We argue that this
is problematic in a few ways: 1) Lack of controlled comparison: Performance
between methods is often compared without controlling for alignment or regu-
larity. For example, many works in learning-based deformable image registration
(LDIR) regard the optimal hyperparameter λ value to be the one that maximizes
anatomical alignment (e.g., Dice score) [2,13,4]. Therefore, alignment results are
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often reported with non-comparable regularity of the transformation. As we
demonstrate later, this can lead to misleading or ambiguous conclusions since
it is unclear whether a higher degree of alignment at the expense of regularity
is preferable. 2) Discrete-points bias: Most existing DIR works in the litera-
ture report and compare results at discrete points on the alignment-regularity
trade-off spectrum [5,8] (with the only limited exception found in [10]). How-
ever, we found that LDIR methods often exhibit different relative performances
at different levels of the regularity. This renders comparison on discrete points
incomplete even if alignment or regularity are controlled to be comparable, since
different conclusions can be drawn at different points of the spectrum. More-
over, finding comparable discrete points for evaluation can be challenging. The
parameters and configurations of the algorithms usually do not control the metric
values precisely and continuously due to the stochastic nature of the optimiza-
tion process. As demonstrated later, adopting a more continuous comparison
scheme could help mitigate this issue. 3) Ignoring application-dependent prefer-
ences: An incomplete evaluation of the alignment and regularity trade-off omits
crucial information since the desired registration algorithm properties are of-
ten application-dependent. For example, atlas-based segmentation may tolerate
topological changes to improve structural matching and label propagation, while
applications such as multi-modal fusion or respiratory motion tracking expect
the transformation to be well-behaved and topology-preserving. Providing per-
formance evaluation in a wider range of settings provides the users with more
information enabling them to select the optimal algorithm for their applications.
Contributions: To address the issues mentioned above, we introduce an eval-
uation scheme that examines the alignment-regularity characteristic of DIR al-
gorithms holistically to better inform model evaluation and selection. We focus
on deep learning methods that utilize the optimization objective in Eq. 1, al-
though our evaluation scheme is not limited to learning-based methods. Our
contributions are summarized as follows:

1. We propose the construction of ARC curves based on alignment accuracy
and deformation regularity metrics, demonstrating that these curves provide
valuable and unique insights for method evaluation and comparison.

2. We employ a HyperNetwork-based approach that learns a continuous func-
tional mapping between the regularization hyperparameters to the registra-
tion networks parameters, as a model-agnostic solution to accelerate ARC
curve construction.

3. We demonstrate our evaluation scheme on representative methods and two
widely-used datasets from the Learn2Reg challenge, namely the MRI brain
dataset OASIS and the CT lung dataset NLST.

2 Alignment-Regularity Characteristics Curve

Method: To construct the alignment-regularity characteristic (ARC) curve for
a given registration algorithm and dataset, we perform registration using varying
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levels of regularization by varying the weighting λ in Eq. 1. The ARC curve is
then generated by aggregating the metric measurements across the test dataset
and plotting the accuracy metric against the regularity metric. Crucially, we use
the regularity metric instead of the regularization weight to normalize across the
variation of loss formulation and implementation between methods. Examples
of these curves are shown in Figure 2. In the following sections, we show empir-
ically that valuable insights and comprehensive performance evaluation can be
obtained by comparatively analyzing different methods using ARC curves.
Experimental settings: We acquire registration results and construct ARC
curves using a range of different registration methods and two distinctive datasets.

• Network Architectures: We trained and evaluated several well-studied and
state-of-the-art methods that demonstrate different architectural character-
istics. We include VoxelMorph [2] and TransMorph [4], which are single-
resolution models learning non-parametric dense deformations using a U-
Net [16] and a Swin-Transformer [11]-based architecture, respectively. We
also include two representative methods that focus on multi-resolution (LapIRN
[13]) or multi-cascade (RCN [21]) refinement through composition.

• Transformation models: To study the effect of transformation models on
ARC, we include MIDIR [15] which learns a parametric transformation
model based on control points (free-form deformation or FFD [18]), as well
as variants of all the aforementioned architectures that predict the station-
ary velocity field (SVF) [1] for diffeomorphic large deformation. We set the
number of Scaling-and-Squaring integration steps to 7 for all SVF models.
Non-parametric displacement field methods are denoted by “Disp”.

• Training strategy: To obtain the ARC spectrum, we trained each method
with a set of regularization weights λ = (0.0, 0.001, 0.005, 0.1, 0.2, 0.5, 1.0)
for 300 epochs each, using the ADAM [9] optimizer with a learning rate of
10−4 and a batch size of 2. We use negative normalized cross-correlation
(NCC) as the dissimilarity term (D) and the diffusion regularizer [7] (R).

• Datasets: We perform our experiments on two widely-benchmarked datasets
from the Learn2Reg challenge [5]. With the OASIS [12] dataset, we construct
inter-subject registration pairs out of the T1-weighted brain MR images
and 4-label segmentations2 of 394 subjects for training/validation, and 20
subjects for testing. From the NLST [20] dataset, we use 150 pairs of inhale-
exhale CT scans with lung masks and automatically detected landmarks for
intra-subject registration, with a 90%-10% train/val-test split.

• Evaluation metrics: Due to the lack of ground truth transformation, eval-
uations of alignment accuracy in DIR are usually measured with surrogate
metrics. For OASIS, we evaluate the alignment by measuring the overlap
between the segmentation labels of the fixed scan and the warped moving
scan via Dice score. For NLST, we utilize the available anatomical land-
marks and evaluate the Target Registration Error (TRE), which measures
the Euclidean distance between registered landmarks. The transformation
regularity is evaluated by both the percentage of grid points with a negative

2 https://github.com/adalca/medical-datasets/blob/master/neurite-oasis.md

https://github.com/adalca/medical-datasets/blob/master/neurite-oasis.md
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Jacobian determinant (folding ratio), which is a proxy metric for topolog-
ical changes, and the standard deviation of the logarithm of the Jacobian
determinant (stdLogJ)[5], which indicates deformation smoothness.
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(a) Full ARC spectrum.
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(b) ARC spectrum with < 0.3% folding.

Fig. 2: Full spectrum (a) and low folding ratio regime of the same spectrum (b)
of the ARC curves for representative methods for inter-subject brain registration
on OASIS dataset. The red dashed line on (a) indicates a 0.3% folding ratio. The
shaded ellipse around each data point indicates the standard deviation of the
metrics across the test pairs.

Insight 1. Holistic model comparison using ARC curves: Existing learning-
based deformable image registration methods often tune the regularization level
to optimize an alignment accuracy metric, such as the Dice score, without con-
sidering whether or not the transformation regularity at these operating points
is comparable with competing methods [2,13]. The issue with this approach is
exposed when we compare a few methods using the proposed ARC evaluation,
as we empirically demonstrate with ARC curves constructed from a range of
methods using the OASIS dataset shown in Fig. 2.

Firstly, we can see that different methods exhibit optimal Dice scores with
distinctively different folding ratios. This means simply comparing the maximum
Dice score omits the differences in regularity and their consequences in different
applications. For example, we can see from Fig. 2a that the TransMorph-SVF,
TransMorph-Dips, and RCN-Disp all outperform LapIRN-SVF in terms of max-
imal Dice score, but at the cost of much higher (∼ 6×) folding ratio. There-
fore, one cannot conclude that LapIRN-SVF performs inferior compared to the
other two methods without considering if this higher deformation irregularity
is acceptable in their specific application. For applications that require well-
regularized transformations (i.e. lower folding), the LapIRN-SVF model should
be preferred. We highlight this by focusing on the low-folding regime of the
ARC curves shown in Fig. 2b. Secondly, while existing works report relative
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(a) SVF vs. Disp models.
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(b) NLST TRE vs. stdLogJ.

Fig. 3: ARC curves demonstrating (a) the effect of the SVF vs Disp transforma-
tion models on the performance under varying levels of regularization and (b)
different metrics using the NLST dataset.

performances with comparable but discrete points of alignment accuracy and
regularity (numbers in tables), the effectiveness of such comparisons is hindered
by the choice of where the values are compared on the spectrum. Different con-
clusions can be drawn from “slicing” at different points on the ARC spectrum,
as made evident by comparing Fig. 2a with Fig. 2b. Therefore, a continuous
representation of performances is necessary to compare models comprehensively
across the entire regularity spectrum. Similar conclusions can be reached when
examining ARC curves with landmark-based TRE as alignment accuracy and
Jacobian variation as regularity on the NLST dataset, as shown in Fig. 3b.

Insight 2. Influence of transformation models: In this section, we examine
the effect of the SVF model on the performance of LDIR methods using ARC
curves. SVF is a diffeomorphic transformation model with good theoretical reg-
ularity while capable of modeling large deformations. We noticed that recent
SVF-based models reported in registration literature often under-perform mod-
els using simple displacement fields with the same network architecture [4,13].
However, from our experiments shown in Fig. 3a, we observe that SVF methods
are only less accurate than displacement methods in the extreme low-folding
regime. Both SVF models show higher accuracy than their displacement coun-
terparts when allowed a slightly higher folding ratio (e.g. around 1%, which is
still significantly lower than the displacement models at optimal Dice). We hy-
pothesize that researchers often apply higher regularization on the velocity fields
to enforce zero folding since SVF models are expected to be diffeomorphic, re-
sulting in lower accuracy and narrowly missing the optimal operating points. In
addition, we found that the SVF models are more robust to lower regularization
weights, especially in the lower folding ratio zone. These insights are valuable to
model selection and are only revealed through the ARC curves.
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3 Amortized alignment-regularity characteristic
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(a) Original non-hyper models.
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(b) HyperNetwork models.

Fig. 4: ARC curves demonstrating the ARC spectrum of the (a) original versus
the (b) HyperNetwork SVF and Disp models.

Despite showing promise in improving evaluation, ARC curves constructed us-
ing the method introduced in Section 2 have two main drawbacks. First, ac-
quiring the curves is computationally expensive as each point on an ARC curve
is a training-testing instance of a LDIR model using a specific regularization
weight. This contributes to the second limitation, which is the sparsity of the
data points. This necessitates post-hoc interpolation to approximate a smooth
spectrum, which hinders the completeness of ARC curve-based evaluation as
data points usually do not cover the whole spectrum evenly, as exemplified by
Fig. 4a.

To address these problems, we leverage the hyperparameter amortization
framework from HyperMorph [6] to enable fast and dense sampling of ARC
data points without having to train a model for each regularization weighting λ.
This is facilitated by using HyperNetwork, which is a network that learns a con-
tinuous functional mapping between regularization weights to the parameters
of the registration networks. Consequently, we can sample the model regular-
ity at arbitrary points on the spectrum at test time significantly more densely
than conventional hyperparameter tuning without additional training. We favor
HyperMoprh over the conceptually similar conditional LapIRN [14] framework
as the former theoretically supports any network architecture. To meaningfully
utilize this system for our ARC evaluation scheme, we experiment with using
this framework to capture the regularization characteristics of different network
architectures and transformation models. Specifically, we trained HyperNets to
amortize λ for VoxelMorph but with a different transformation model (SVF)
and MIDIR [15], which has a different network architecture adapted for FFD.
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The results of these experiments are presented in Figure 4b, where the Hy-
perNetworks are shown to be capable of capturing relative performances be-
tween different network architectures and transformation models. More advan-
tageously, these hyper-models are able to sample the regularization weight λ
in a more continuous manner across the entire ARC spectrum without incur-
ring additional training time. This provides more detailed information for model
evaluation and selection in a computationally efficient way at test time.

4 Conclusion and Discussion

General guideline for model evaluation and selection: For researchers
working on DIR algorithms, we advocate for reporting ARC curves of any pro-
posed methods and baseline methods to enable a fairer assessment of the con-
tribution and provide a performance profile for downstream users. This could
also clarify research directions for the registration community. For practition-
ers applying registration algorithms, we recommend constructing ARC curves
for candidate algorithms with various configurations using a small subset of the
data. The application-dependent optimal range of regularity can be identified
by qualitatively examining the deformation field and deformed images at vary-
ing levels of regularity. Then, the best algorithm can be chosen according to
the performances and trends in the optimal/acceptable regularity range on the
ARC curve. The sensitivity of the competing algorithms to the regularization
hyperparameters can also be assessed via ARC curves, which can be critical in
selecting the optimal solution. In both cases, the amortized ARC system (Sec-
tion 3) can also be utilized to accelerate the evaluation process if the additional
computational cost can be afforded.
Limitations: The studies in this work should be expanded to more datasets,
algorithms, and evaluation metrics such as intensity-based metrics for alignment
and non-Jacobian-based metrics for regularity. A single-value metric, such as
area under the ARC curves (AUC-ARC) similar to AUC-ROC, can provide a
simpler solution to the evaluation problem. However, the exact formulation of
AUC-ARC is not trivial since the theoretical bounds are empirically difficult to
achieve. We are actively working on a solution and will present the results in a
future work.
Conclusion: This work highlights the issues in current evaluation practices of
deformable image registration under the alignment-regularity trade-off, and pro-
poses an evaluation scheme using alignment-regularity characteristic curves to
address these issues. We demonstrated the utility of such an evaluation system
through several unique and valuable insights gained from applying the system,
along with accelerated HyperNetwork-based variants. Finally, we provide gen-
eral guidelines for researchers and practitioners on using the ARC scheme to
evaluate and select deformable image registration methods.
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