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ABSTRACT

We investigate the problem of estimating uncertainty for training data, so that
deep neural networks can make use of the results for learning from limited su-
pervision. However, neither the prediction probability nor the entropy can accu-
rately capture the uncertainty of out-of-distribution data. In this paper, we present
a novel approach that measures the uncertainty from the vibration of sequential
data, e.g., the output probability during the training procedure. The key obser-
vation is that, a training sample that suffers heavier vibration often offers richer
information when it is manually labeled. We make use of the Fourier Transforma-
tion to measure the extent of vibration, deriving a powerful tool that can be used
for semi-supervised, active learning, and one-bit supervision. Experiments on the
CIFAR10, CIFAR100, and mini-ImageNet datasets validate the effectiveness of
our approach.

1 INTRODUCTION

Recently deep learning (LeCun et al., 2015) has become the main methodology for the computer
vision tasks. However, training deep neural network usually needs tremendous labeled data which
costs amounts of labors. Researchers have proposed some approaches (Rasmus et al., 2015; Grand-
valet et al., 2005; Han et al., 2021; Luo et al., 2013) for learning from limited supervision, including
semi-supervised learning and active learning. All of them aim to utilize the large amounts of unla-
beled data to improve the model training. Hence, obtaining an accurate estimation to the predictive
uncertainty for unlabeled data is quite important. The existing uncertainty estimated methods, e.g.,
the predictive probabilities (Lewis & Gale, 1994) and the entropy (Wang et al., 2016), usually fail in
estimating the uncertainty for the out-of-distribution data. We argue that they cannot reflect the real
model uncertainty. From another aspect, Bayesian methods offer a natural probabilistic representa-
tion of uncertainty in deep learning. We develop a Gaussian approximation to connect the model
optimization to the Bayesian procedure by sampling from the latter part of the training procedure.

We propose a novel approach that estimates the predictive uncertainty using the sampled sequential
information. A series of predictive probabilities for each unlabeled sample can be obtained by a
forward pass after each training epoch. To satisfy the requirement of Bayesian approximation, the
sequence is formed by using the latter training epochs. We consider to estimate the uncertainty by
measuring the vibration of this sequence. The description to vibration contains two keys: (i) where
the baseline it fluctuates around, and (ii) how large is its fluctuations. This inspires us to utilize the
Fourier Transformation (FT) to measure it, in which the direct component represents the fluctuation
baseline, and the high frequency parts reflect the fluctuation degree. Combining these two parts we
will obtain the accurate estimation to the uncertainty. Notably here the usage to FT is independent
of the order of the sequence, which is consistent with the sampling theory. To further improve this
approach, we consider to combine it with the label flipping information. By fusing them with a
weight parameter, a more accurate uncertainty estimation will be obtained. As show in Figure 1, the
instantaneous probabilities often provide inaccurate estimation to uncertainty, e.g., the image with
high probability and high vibration owns a wrong prediction. Our approach that takes an overall
consideration to the fluctuation baseline and intensity will avoid this bother.

We apply this uncertainty estimation approach to improve the model that learning from limited
supervision, e.g., semi-supervised learning, active learning and the recently proposed one-bit su-
pervision (Hu et al., 2020). Semi-supervised approaches roughly can be categorised into two types,
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Figure 1: The four types of selected samples, including the images and their corresponding scatter
diagram of probabilities sequence. The textboxes on the images represent their predictive labels,
where the red text denotes a correct prediction while the black texts denote incorrect ones. The
experiments are conducted on ImageNet trained using ∼ 3% labeled samples.

i.e., the consistency-based approaches and the pseudo-labeling based approaches. Here we show that
these two kinds of approaches can be combined by using the latter to improve the former. We use the
proposed approach to select the reliable pseudo labels and generate accurate weights for unlabeled
samples, to improve the consistency-based baseline. For active learning, we utilize our approach to
select and annotate the most uncertain samples and re-train the model, to show its effectiveness in
selecting the informative samples. Finally, we apply the proposed approach to one-bit supervision,
a recently proposed weakly supervised algorithm which annotates an image by answering whether
it belongs to a specific class. To improve this method, we propose a mix annotation approach which
combining the advantage of full-bit and one-bit annotation. In particular, we select the appropriate
samples based on the estimated uncertainty for the two kinds of annotation method to maximize the
gains.

We evaluate our approach on CIFAR10, CIFAR100 and Mini-ImageNet for the three tasks. The
extensive experiments demonstrate that, the proposed approach enjoys superiority in selecting no
matter reliable pseudo labels and the informative samples, and most of all, making an accurate
estimation to the uncertainty for each unlabeled data.

2 RELATED WORK

Semi-Supervised Learning (Rasmus et al., 2015; Laine & Aila, 2016; Miyato et al., 2018) often
can be categorised into two types according to their usages of unlabeled data. The first type assigns
pseudo labels (Cascante-Bonilla et al., 2020) to the unlabeled data and optimizes them with the
labeled data together. (Lee et al., 2013) proposed to use the class with the maximum probability as
the true labels for the unlabeled data. (Iscen et al., 2019) improved it by using a transductive label
propagation method to obtain more accurate pseudo labels. The second type utilizes the consistency
regularization (Kuo et al., 2020; Han et al., 2021) to facilitate the model training. The methods
to form the consistency are various, e.g., Mean Teacher (Tarvainen & Valpola, 2017) inputted the
sample with different perturbations into the teacher and student model respectively to make their
outputs similar. WCP (Zhang & Qi, 2020) imposed additive noise on network weights and making
structural changes. In addition, some methods aim to combine these two types of approaches, e.g.,
MixMatch (Berthelot et al., 2019b) introduced a single loss to seamlessly reduce the entropy while
maintaining consistency. ReMixMatch (Berthelot et al., 2019a) improved it by introducing two new
techniques of distribution alignment and augmentation anchoring.

2



Under review as a conference paper at ICLR 2022

Active Learning aims to select informative samples to annotate to reduce the labeling cost. Accord-
ing to the selection criterion it can be classified into two groups. Firstly, the diversity-based methods
select samples that can represent the whole distribution of the unlabeled pool, e.g., (Shi & Yu, 2019)
proposed to identify a small number of samples that best represent the overall data space. (Sener &
Savarese, 2017) proposed to choose a subset that minimizes a bound between an average loss over it
and the remaining data. (Sinha et al., 2019) utilized the variational autoencoder and adversarial net-
work to choose samples that are not well represented in the labeled set. The second type utilizes the
uncertainty (Ash et al., 2019) to select samples that can decrease the model uncertainty, e.g., using
the probability of a predicted class (Lewis & Gale, 1994), the entropy of the class posterior probabil-
ities (Wang et al., 2016), and the target losses (Yoo & Kweon, 2019). BALD (Houlsby et al., 2011)
chose data points that are expected to maximise the mutual information between predictions and
model posterior. BatchBALD (Kirsch et al., 2019) selected informative samples utilizing a tractable
approximation to the mutual information between a batch of samples and model parameters.

Uncertainty Estimated Approaches usually are used to select the informative data for active learn-
ing, e.g., (Gao et al., 2020) used the consistency-based metric for selecting uncertain samples.
(Huang et al., 2021) did this by evaluating the discrepancy of outputs of different optimization
steps which can be used to estimate the sample loss. They can also be used for other tasks, e.g.,
UPS (Rizve et al., 2020) used the MC Dropout (Gal & Ghahramani, 2016) method to measure the
predictive uncertainty to selected reliable pseudo labels. AUM (Pleiss et al., 2020) utilized the av-
erage difference between the logit values for a sample’s assigned class and its highest non-assigned
class to identify the mislabeled data.

3 APPROACH

In this section, we introduce the proposed approach that estimates the predictive uncertainty from the
view of sequential data. Here we firstly introduce the setting of learning from limited supervision,
and show the significance of acquiring uncertainty for this task. Then we elaborate the proposed
approach to provide a solution for this. Finally, to verify its effectiveness we apply our approach to
three tasks of learning from limited supervision, namely, semi-supervised learning, active learning
and one-bit supervision.

3.1 LEARNING FROM LIMITED SUPERVISION

For the setting of learning from limited supervision, we often have a dataset D = {xn}Nn=1, where
xn is the n-th sample of image data and N is the total number of training samples. Let y?n denote
the ground-truth class label of xn with C kinds of values, and they are mostly unseen in our setting.
An initial set of samples S0 is chose randomly to partition the dataset into two subsets DS and
DU, where the superscripts respectively represent ‘supervised’ and ‘unsupervised’. Learning from
limited supervision aims to utilize the unlabeled data to reduce the model uncertainty. Hence, we
write the objective as,

L(θ) = Ex∈DS`(y?
n, f(x;θ)) + λ · Ex∈DUh (q, f(x;θ)), (1)

where f(x;θ) represents the model function and θ is the learnable parameters. The `(·, ·) is the
cross-entropy loss for the labeled samples. The h (·, ·) denotes the corresponding loss function
and q is the obtained information from the unlabeled data using semi-supervised methods or active
learning methods. Since the main idea for learning from limited supervision is the utilization of
unlabeled data, measuring the uncertainty to distinguish each of them is very significant for this
task. Hence, it is necessary to develop an approach to accurately estimate the uncertainty.

3.2 UNCERTAINTY ESTIMATION

The conventional measures, e.g., the maximum predictive probabilities, the entropy and the gradi-
ents, are often estimated using the instantaneous information. We argue that they cannot measure the
real uncertainty for their failure in dealing with the out-of-distribution data, i.e., they might predict a
high probability with the wrong label for an outlier. However, Bayesian probability theory provides
us a mathematical tool to analysis model uncertainty. The predictive distribution for a Bayesian
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procedure is defined as:

p(y∗|x∗,D) =

∫
p(y∗|θ,x∗)p(θ|D)dθ, (2)

where x∗ and y∗ are test inputs and outputs. The posterior distribution p(θ|D) in equation 2 is in-
tractable. Next we will show how to develop a Gaussian approximation to the posterior from SGD
iterations. According to the deduction in (Mandt et al., 2017), when the gradients or the learning
rates are small enough and the optimization is confined to a small enough region, the iterations of
stochastic gradient descent equal to a stochastic process, namely Ornstein-Uhlenbeck process (Uh-
lenbeck & Ornstein, 1930). The OU process has an analytic stationary distribution q(θ) which is
Gaussian:

q(θ) ∝ exp

{
−1

2
θ>Σ−1θ

}
, (3)

where Σ is the corresponding covariance matrix. We can approximate q(θ) by the Monte Carlo
sampling procedure, e.g., drawing θ from the latter part of the training procedure. Then we use
this Gaussian distribution to approximate the posterior p(θ|D), to make it possible to describe the
predictive distribution.

In the following, we introduce how to estimate the uncertainty based on the above theory. Here we
give a general description to this question. Supposing we have the sequence e= {ei}Ri=0 where R
is the length, and it is the results sampled from the satisfactory training epochs. We aim to utilize
this sequential data to estimate the predictive uncertainty for each unlabeled data. To achieve this
goal, we consider to calculate the vibration of this sequence. In general, if the sequence has higher
vibration intensity around a lower baseline, it represents the prediction is more uncertain. This
inspires us to utilize the Fourier Transformation to capture the vibration. In the following, we will
introduce the technical details for our approach.

3.3 VIBRATION-BASED APPROACH

Now we we get back to the tasks of learning from limited supervision. Firstly we train an initial
model for T epochs in a semi-supervised type, e.g., the Mean Teacher algorithm. We select the
latter part of the training procedure, e.g., starting from the M -th epoch and ending at the L-th epoch
(where the model converges). Then by conducting forward pass at the corresponding training epoch,
we can obtain the sequence of outputs

{
yM
n ,yM+1

n , . . . ,yL
n

}
, where yi

n is the C-dimension vector
for n-th sample of i-th epoch. To better describe the vibration, we re-form the sequence by using the
probabilities of a specified class, i.e., defining the sequence as sn =

{
sin
}i=L

i=M
where sin is the c-th

element of yi
n and c is the class with maximum probability predicted in L-th epoch. We utilize the

Fourier Transformation to estimate the uncertainty from the frequency domain, which is denoted as

Sk = L {sn} =

L∑
i=M

sin · e−j
2π
L−M ki. (4)

By calculating the real part of Sk, we obtain the amplitude values {A0, A1, . . . , AL−M+1} for the cor-
responding frequency components. Because of the conjugate symmetry of Discrete Fourier Trans-
formation, we just use the half part of the obtained amplitudes

{
A0, · · · , A(L−M+1)/2

}
(assuming it

is even). The A0 represents the direct component of the frequency, which reveals the baseline where
the sequence fluctuates. And the

{
A1, . . . , A(L−M+1)/2

}
represents the high frequency part which

tells the vibration intensity. To avoid the negative effect of the noise, we drop a few components
with the highest frequency after P -th amplitude. Therefore, we define the predictive uncertainty
using the sequence information by

vc =

P∑
i=1

Ai − µ ·A0, (5)

where µ is the weight coefficient for balancing the high frequency parts and the direct component.
Here the summation to the high frequency parts lets the sequence lose its order, which makes it no
conflict with the sampling theory. We believe that utilizing equation 5 to estimate the uncertainty
will be more accurate. In addition, we consider that the other kind of information within the outputs,
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namely the label flipping, is also useful for estimating the uncertainty. Generally, a prediction is
more uncertain when the predicted label flips more frequent in the training process. Hence, we
define a sequence with binary values {bM , bM+1, . . . , bL} for each unlabeled sample, where bi = 1
denotes arg maxyi

n is equal to arg maxyL
n and bi =0 denotes they are different.

For the label flipping sequence, we also conduct Discrete Fourier Transformation on it and calculate
its vibration according to equation 5, which denoted as vl. To conveniently combine these two
measures, we conduct min-max normalization for them to obtain the results v̂c and v̂l respectively.
Finally, we define the fused predictive uncertainty by a weight parameter α as:

vf = (1− α) · v̂c + α · v̂l (6)

Our approach can make more accurate estimation to the uncertainty than the methods using instan-
taneous probabilities or the entropy, which can be verified by the experiments in section 4.2. We
attribute this to the approach of calculating vibration for the sequential data. Several methods also
attempted to utilize the dynamic information to improve the model training. (Zhou et al., 2020b) in-
troduced the approach of dynamic instance hardness to guide curriculum learning procedure. (Zhou
et al., 2020a) extended this approach to train with noisy labels. Our approach is different from them
in three respects, firstly, they conducted on the labeled data while our approach is applied to the
unlabeled data. Secondly, they calculated the hardness by exponential moving average of an instan-
taneous measure (e.g., the losses) over time, while we use the Fourier Transformation to capture the
vibration of the sequential data.

3.4 APPLYING TO LEARNING FROM LIMITED SUPERVISION

In this section, we introduce to apply the proposed approach to the tasks of learning from limited
supervision, e.g., semi-supervised learning and active learning, including the recently proposed one-
bit supervision. We argue that the difference among these tasks is the usage to the unlabeled data.
Semi-supervised learning utilizes the initial labeled samples and the amounts of unlabeled samples
to train the model. By the usage of unlabeled data we can classify it into two groups, namely, the
consistency-based and the pseudo-labeling based methods. The former often utilizes a consistency
loss to optimize the unlabeled samples, which equals to define the h (·, ·) in equation 1 as a mean
square error loss and set q as the outputs of samples with perturbation. The latter often utilizes the
model trained on the labeled set to generate pseudo labels for unlabeled samples, which equals to
set q to the pseudo labels and uses a cross-entropy loss to optimize them.

Comparing to semi-supervised learning, except for the initial labeled set, active learning also select
informative samples to annotate to improve the performance of learning from limited supervision.
The objective of active learning is equal to set h (·, ·) in equation 1 as the cross entropy and let q be
the ground-truth labels of the selected samples. Different from active learning which annotates the
true label for each image, one-bit supervision uses a weakly annotation method which annotates an
image by asking the labeler if it belongs to a guessing class. It improves the tasks of learning from
limited supervision by proposing a new weakly annotation method. All of the three tasks start by
training the initial model using DS and DU. In the following, we will introduce these applications
in detail.

Semi-Supervised Learning. For semi-supervised learning, we consider that the consistency-based
methods still can benefit from the accurate pseudo labels. In particular, after obtaining the initial
model M0, we calculate the uncertainty for each unlabeled sample according to equation 6, by using
the two kinds of sequential data, namely, the series of probabilities and label flipping outputted by
M0. Then, we select K samples with the smallest vibration values from DU and use M0 to generate
pseudo labels for them. Then adding the selected samples to DS and fine-tuning the model to M1

by equation 1 using all the information. In the next stage, we moderately increase the number of
selected samples to obtain more accurate pseudo labels. The cycle of selecting certain samples and
fine-tuning the model will continue until the training converges. Because the selected samples are
with the least uncertainty, we believe that these generated reliable pseudo labels will be accurate
enough to improve its consistency-based baseline.

Besides selecting certain samples to obtain their pseudo labels, we also assign weights for the unla-
beled data in each stage. The consistency-based methods often treat all the unlabeled data equally,
i.e., each of the sample share the same weight in the unlabeled loss. In general, the samples with dif-
ferent uncertainty will have different impacts to the training. And the more emphasis on the highly
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uncertain samples will hurt the training. Hence, we consider to use our uncertainty estimation ap-
proach to generate weights for each unlabeled sample. The weights is defined as:

w = 1− vf −min vf
max vf −min vf

. (7)

Active Learning. We apply the proposed uncertainty estimation approach to active learning by
using it to select the most uncertain samples. The training process of active learning often consists
of several iterations and each of them annotates a batch of selected samples. In the cycle t, we utilize
Mt−1 to estimate the uncertainty for the unlabeled data according to equation 5 and equation 6. Here
we use both the single measure and the fused measure for active learning to verify the superiority
of the latter one. Then selecting J samples with the largest values of vf to check their ground-truth,
and adding them to DS

t−1 by removing them from DU
t−1. Then we update the model to Mt using

both DS
t and DU

t .

One-bit Supervision. Though better performance has been achieved, one-bit supervision still has
its limitations, i.e., it fails in obtaining the correct labels of the most uncertain samples. To address
this issue, we propose a mix annotation approach which combines the full-bit and one-bit annota-
tion approach. Notably one-bit supervision maintains a budget of supervision and partitions it into
several stages to use. The training process is similar to that of active learning. To avoid repetition,
we only introduce the difference between them. For the t-th stage, after calculating the uncertainty
estimation for the unlabeled samples according to equation 6, we select I samples with the largest
vibration values to conduct full-bit annotation, then adding them to DF, the subset of full-bit an-
notated samples. Next, we select a subset DO

t from DU
t and use Mt−1 to make predictions for

them to conduct one-bit annotation. We know that conducting one-bit annotation for the samples
with the predictive probabilities around 0.5 will achieve the highest gains. Hence, we select the
middle-uncertain samples, i.e., the samples around the boundary of the accuracy sorted by the ob-
tained uncertainty. By checking the ground-truth, we add the correctly predicted samples to the set
of right guesses DO+, and the incorrectly predicted ones are added to the wrong guessing set DO−.
Then combining the positively labeled set DS ∪DF ∪DO+, the negatively labeled set DO− and the
unlabeled set DU

t to update the model.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

Dataset. For semi-supervised learning and active learning, we do experiments on three classification
benchmarks CIFAR10, CIFAR100 (Krizhevsky et al., 2009) and Mini-ImageNet. CIFAR10 and
CIFAR100 are standard datasets with 10 and 100 classes respectively. They both contains 60K
images in which 50K for training and 10K for testing. All of them are 32 × 32 RGB images and
uniformly distributed over all classes. For Mini-ImageNet, we use the training/testing split created
in (Ravi & Larochelle, 2016), which contains 100 classes, 50K training images and 10K testing
images. For one-bit supervision, the experiments are conducted on CIFAR100 and Mini-ImageNet.

Implementation details. In order to better compared with other methods, we use the Wide ResNet-
28-2 (Zagoruyko & Komodakis, 2016) as the backbone for CIFAR10 and CIFAR100, and use the
ResNet-18 (He et al., 2016) for Mini-ImageNet, for the experiments of semi-supervised learning.
For active learning, the ResNet-18 is used as the backbone for the three datasets. For one-bit su-
pervision, we follow the experimental setting in (Hu et al., 2020) by using ResNet-50 for Mini-
ImageNet, and a 26-layer deep residual network (He et al., 2016) with Shake-Shake regulariza-
tion (Gastaldi (2017)) for CIFAR100. All the experiments are conducted based on the Mean Teacher
algorithm (Tarvainen & Valpola, 2017). The experiments are all trained for 180 epochs in each stage,
and the consistency parameter is set to 10, 1,000 and 100 respectively. The balance coefficient µ is
set to 0.1 for all experiments. The fused weight α is set to 0.2 for CIFAR10 (α = 0.8 for the first
two active learning cycles) and CIFAR100, and 0.5 for Mini-ImageNet.

For semi-supervised learning, we set the number of selected pseudo labels K to 20%, 40% and 60%
of the training set for the experiments on CIFAR10 using 1000, 2000 and 4000 labels respectively,
then increasing it by 5% in the next cycle. For CIFAR100, the K is set to 20% and 40% respectively
for experiments using 4000 and 10000 labels, and we increase it by 2% each cycle. The setting of
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Table 1: Test error (%) of semi-supervised methods on CIFAR10, CIFAR100 and Mini-ImageNet.
The methods with ∗ represent that using the CNN-13 architecture. For our method and the baseline
Mean Teacher, we report the mean and standard deviation over 3 runs.

CIFAR10 CIFAR100 Mini-ImageNet
Total Labels 1000 2000 4000 4000 10000 10000
PL (Lee et al., 2013) 30.91±1.73 21.96±0.42 16.21±0.11 - 36.21±0.19 -
TSSDL* (Shi et al., 2018) 21.13±1.17 - 10.90±0.23 - - -
DeepLP* (Iscen et al., 2019) 22.02±0.88 - 12.69±0.29 46.20±0.76 38.43±1.88 57.58±1.47
Π model (Laine & Aila, 2016) - - 14.01±0.38 - 37.88±0.11 -
VAT (Miyato et al., 2018) 18.64±0.40 14.40±0.15 11.05±0.31 - - -
MT (Tarvainen & Valpola, 2017) 21.54±0.12 15.59±0.95 11.48±0.21 52.36±0.39 38.00±0.17 56.91±0.16
Ours 16.94±0.18 12.09±0.60 9.33±0.08 46.56±0.43 34.55±0.21 54.91±0.08

Mini-ImageNet is similar to that for CIFAR100. We only run 4 cycles for each experiment which
is far smaller than (Rizve et al., 2020). For active learning on CIFAR10, we first randomly select
100 samples as the initial labeled set, and add 500 samples in each of the following stage, except for
the last one which we add 1000 samples. For CIFAR100, we initially select 5000 samples randomly
as the labeled set and add 1000 samples in the next stage. For Mini-ImageNet, we randomly select
20% samples as the initial set and add 5% in the following stage. We compare three commonly used
samples selecting approaches here. ”Random” represents random selection. ”Confidence” indicates
utilizing the maximum predictive probabilities to select. ”K-center” (Sener & Savarese, 2017) is a
diversity-based method which selects samples by maximizing the distance between the candidates
and its nearest neighbours. For one-bit supervision, we split the quota of supervision used in each
stage into two parts, 1000 full-bit annotations (about 6644 bits of supervision) and the remaining
one-bit annotations.

4.2 MAIN RESULTS
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Figure 2: The accuracy of the selected pseudo la-
bels by four kinds of methods, namely confidence,
entropy, consistency and the fused vibration mea-
sure. The ”Consistency” is calculated by the L2
distance between the two kinds of augmentations
on one image.

Semi-Supervised Learning. The experi-
ments are conducted on CIFAR10, CIFAR100
and Mini-ImageNet. Expect for the main
baseline Mean Teacher, we also list several
semi-supervised methods including the pseudo-
labeling based methods PL (Lee et al., 2013),
TSSDL (Shi et al., 2018), and DeepLP (Is-
cen et al., 2019), and the consistency-based
methods Π model (Laine & Aila, 2016) and
VAT (Miyato et al., 2018). As shown in Ta-
ble 1, our approach achieves higher perfor-
mance than most of the listed consistency-
based and pseudo-labeling based methods. In
particular, comparing to the baseline Mean
Teacher, it brings 4.63%, 3.50% and 2.15%
accuracy gains on CIFAR10 respectively for
the experiments using 1000, 2000 and 4000 la-
bels. For CIFAR100, it achieves 5.80%, 3.45%
gains for the experiments using 4000, 10000 la-
bels respectively. The accuracy gain is 2.00%
for that using 10000 labels on Mini-IMageNet.
This results show that our approach brings ob-
vious improvements for semi-supervised learn-
ing by selecting reliable pseudo labels and weighting unlabeled samples. We attribute this to the
accurate estimation of the predictive uncertainty for all the unlabeled samples. As Figure 2 shows,
the proposed approach achieves higher accuracy of the pseudo labels for selecting the same per-
centage of samples, than the predictive probabilities, the entropy and the consistency methods. It
verifies that our approach selects more accurate pseudo labels to improve the consistency-based
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semi-supervised baseline. Notably, the proposed uncertainty estimation approach can be combined
with more powerful semi-supervised model and achieve better performance.
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(b) CIFAR100
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Figure 3: Active learning test accuracy on CIFAR10, CIFAR100 and Mini-ImageNet. The compari-
son methods are random selection, the maximal predictive paobabilities, and the k-center approach,
as well as the vibration measure using probability sequence.

Active Learning. To verify the effectiveness of our approach on active learning, we do experiments
on CIFAR10, CIFAR100 and Mini-ImageNet. From the results in Figure 3 we can obtain some
observations. Firstly, the approach using the probabilities sequence only (denoted by ”Vibration”)
achieves higher performance than all the baselines in most cases on three datasets. For example,
with 600 labels on CIFAR10, it outperforms ”Confidence” and ”K-center” respectively by ∼ 6.4%
and∼ 2.6%. With 6000 labels on CIFAR100, the accuracy gains become∼ 2.9% and∼ 0.6% when
compared to the ”Confidence” and ”K-center” method. This shows that our approach selects more
informative samples than the two baselines, especially the former using instantaneous probabilities.
Secondly, the fused approach further improves the performance on three datasets. In particular,
compared to the ”Vibration” approach, it brings∼ 1.9% and∼ 1.1% accuracy gains respectively on
CIFAR10 with 600 labels and CIFAR100 with 6000 labels. These results demonstrate the effective-
ness of our approach that incorporating the label flipping information to estimate the more accurate
uncertainty. In addition, our approach can be integrated easily with other structure of networks and
more powerful semi-supervised algorithms, which reveals its potential for the tasks of learning from
limited supervision.

One-bit Supervision. We also use the proposed approach to improve one-bit supervision, a weakly
annotation version of active learning. The experiments are conducted on CIFAR100 and Mini-
ImageNet. The proposed mix annotation approach achieves 76.07% and 49.71% accuracy respec-
tively on the two datasets. When compared to the semi-supervised baseline Mean Teacher, it brings
6.31% and 8.65% accuracy gains respectively on CIFAR100 and Mini-ImageNet. Mix annotation
still achieves 2.31% and 4.17% gains respectively compared to one-bit supervision. In addition, the
MixMatch (Berthelot et al., 2019b) and UDA (Xie et al., 2019) achieves 74.12 and 75.50 accuracy on
CIFAR100 using Wide ResNet-28-8 backbone, which is inferior to our approach. Such significant
improvements reveal that the proposed approach accurately captures the uncertainty for the unla-
beled data. And, the mix annotation approach which combines the full-bit and one-bit annotation
maximizes the labeling gains.

4.3 ANALYSIS

Transfer to large scale dataset. To verify the effectiveness of our approach on the large scale
dataset, we do experiments on ImageNet (Russakovsky et al., 2015) for semi-supervised learning.
The experiments are based on the ResNet-50 backbone. The accuracy for the experiments using
5% and 10% labels respectively is 52.70% and 59.88%. Comparing to our baseline Mean Teacher,
the proposed approach brings 4.89% and 2.87% accuracy gains respectively for the experiments
trained with 5% and 10% labels. This obvious improvements reveal its potential of applying to the
large scale dataset. We also argue that the uncertainty estimation approaches enjoy the superiority
of generalizing to large scale datasets for learning from limited supervision tasks.

Position of starting epoch. We do experiments on CIFAR10 and CIFAR100 for the first active
learning stage to investigate the effect of starting epoch. The results are shown in the subfigure (a)
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Figure 4: Analysis to the sequence position, balance coefficient µ and fused weight α. The first row
lists the results of CIFAR10, and the second row lists the results of CIFAR100. Experiments are
conducted on the first iteration of active learning on the two datasets.

and (d) in Figure 4. We can observe that the overall performance of our approach is superior to
the ”Confidence” method on both two datasets, and the best results are achieved when setting the
starting point to the latter training epoch. This is in accord with our conduct that sampling from the
latter part of training procedure to approximate the posterior.

Robustness to Hyperparameters. Our approach introduces two hyperparameters, namely the bal-
ance coefficient µ and the fused coefficient α. Here we investigate the effect of these parameters
bring to our approach. The experiments are conducted on the first active learning stage on CIFAR10
and CIFAR100. The parameter µ plays the role of balancing the high frequency part and the direct
component. As shown in the subfigure (c) and (f) of Figure 4, we can observe that µ = 0.1 achieves
the best performance for both two datasets. It shows the importance to make a balance between
the vibration baseline and its intensity. We set µ = 0.1 for all the experiments, which shows the
robustness of our approach. The parameter α is used to balance the two components in the fused
measure. As shown in the subfigure (b) and (e) of Figure 4, we tune the α from 0.0 to 0.8. One can
observe that all the parameter settings achieve higher performance than the ”Confidence” method.
This indicates that our approach is robust to this parameter. Setting α to 0.8 and 0.2 achieves the best
accuracy respectively on on CIFAR10 and CIFAR100. By these analysis, we can conclude that the
proposed approach enjoys flexibility in hyperparameter adjustment, for the limited hyperparameter
numbers and the robustness to them.

5 CONCLUSIONS

In this paper we propose a novel approach that estimates the uncertainty by calculating the vibration
of the sequential data, and use it to improve learning from limited supervision. We argue that neither
the predictive probabilities nor the entropy can capture the accurate uncertainty because they usually
fail in dealing with the out-of-distribution data. Inspired by the Bayesian theory which provides a
natural probabilistic representation of uncertainty, we consider to approximate the predictive distri-
bution by sampling from the optimization iterations. After obtaining the sampled sequence data,
e.g., the probabilities, we measure its vibration using Fourier Transformation. By being equipped
with label flipping, we obtain a more accurate estimation which can be applied to semi-supervised
learning and active learning. The effectiveness of the proposed approach is verified by the extensive
experiments on CIFAR10, CIFAR100 and Mini-ImageNet. It is believed that the proposed approach
can be be integrated with stronger semi-supervised algorithms to achieve better performance, and in
the future we will investigate to extend it to other vision tasks, e.g., semantic segmentation.
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REPRODUCIBILITY STATEMENT

Here we show the efforts we make to strengthen the reproducibility of this work. Firstly, we give
the clear reference for the theory used in our work, e.g., in Section 3.2. Secondly, the technique
detail of the proposed approach is introduced in Section 3.3 and Section 3.4, to make sure the clear
understanding to others. Thirdly, we introduce the used datasets and the network structure, as well
as the specific experimental settings in Section 4.1 in considerable detail. This gives guarantee
to reproduce our experiments for the related researchers. Finally, we also promise to release the
corresponding code after we clear up it in a few weeks. This let the researchers who are interested
in our work develop their own works based on our approach.

ETHICS STATEMENT

This paper presents a new uncertainty estimation approach for learning from limited supervision.
We summarize the potential impact of our work in the following aspects.

• To training with limited supervision. It is an urgent requirement to extract knowledge
from unlabeled data. Our work offers a new method to estimate the uncertainty for unla-
beled data, which can obviously improve the tasks of learning from limited supervision.
We believe that it can be generalized to other vision tasks after follow-up efforts.

• To the community. The proposed approach estimates the predictive uncertainty from the
sequential view. This gives the community a new inspiration that defining the measures
using the sequence data can achieve better performance. We believe the study on these
problems can advance the research community.

• To the society. The debate on the impact that AI can bring to the human society is long-
lasting. Our method has the potential to generalize the existing AI algorithms to more
applications, while it also raises the concern of privacy. Therefore, our work can bring both
beneficial and harmful impacts and it depends on the motivation of the users.
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