

000 GEOFAR: GEOGRAPHY-INFORMED FREQUENCY- 001 002 AWARE SUPER-RESOLUTION FOR CLIMATE DATA 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010
011 Super-resolving climate data is crucial for fine-grained decision-making in vari-
012 ous domains, ranging from agriculture to environmental conservation. However,
013 existing super-resolution approaches struggle to generate the high-frequency spa-
014 tial information present in climate data, especially over regions showing complex
015 terrain variability. A key obstacle lies in a frequency bias existing in both deep
016 neural networks (DNNs) and climate data: DNNs exhibit such bias by overfit-
017 ting to low-frequency information, which is further exacerbated by the preva-
018 lence of low-frequency components in climate data (e.g., plains, oceans). As a
019 consequence, geography-dependent high-frequency details are hard to reconstruct
020 from coarse climate inputs with DNNs. To improve the fidelity of climate super-
021 resolution (SR), we introduce GeoFAR: by explicitly encoding climatic patterns at
022 different frequencies, while learning implicit geographical neural representations
023 (i.e., related to location and elevation), our approach provides frequency-aware
024 and geography-informed representations for climate SR, thereby reconstructing
025 fine-grained climate information at high resolution. Experiments show that Geo-
026 FAR is a model-agnostic approach that can mitigate high-frequency prediction
027 errors in both deterministic and generative SR models, demonstrating state-of-
028 the-art performance across various spatial resolutions, atmospheric variables, and
029 downscaling ratios. Datasets and code will be released.

030 1 INTRODUCTION 031

032 The inherent complexity of the climate system leads to complex regional climate variations at local
033 scales. As an example, NOAA’s HeatWatch campaigns show intra-urban air-temperature differ-
034 ences of up to 9°C in records only a few kilometers apart, mostly due to terrain and ventilation
035 variability (NOAA Climate Program Office, 2025). Fine-grained, accurate climate observations or
036 estimations are thus crucial for site-specific decision-making in areas as diverse as agriculture, envi-
037 ronmental conservation, and hydrological management.

038 Climate downscaling provides a way to obtain such fine-scale climate details from coarse inputs by
039 either physics-based dynamical methods or data-driven statistical methods (Sun et al., 2024). With
040 respect to the latter, climate downscaling has come to be formulated as a super-resolution (SR) task
041 with deep learning methods (Vandal et al., 2017; Stengel et al., 2020; Baño-Medina et al., 2022).
042 Compared to physics-based dynamical models, deep neural networks (DNNs) achieve competitive
043 performance with much lower computational cost (Lopez-Gomez et al., 2025), making image SR
044 approaches an effective solution for climate downscaling.

045 However, the loss of high-frequency details remains a challenge in image SR (Jiang et al., 2021;
046 Wang et al., 2020), and this is exacerbated in climate SR. Compared to natural images (Martin
047 et al., 2001), climate data is severely biased towards low-frequency components, as shown in the
048 comparison of frequency distributions in Figure 1a. The frequency distribution in climate data is
049 also location- and elevation-dependent: plains are dominated by low-frequency variations, whereas
050 mountainous regions contain richer high-frequency content. The inherent frequency bias of deep
051 neural networks (Rahaman et al., 2019) is further exacerbated by this geographical bias in climate
052 SR: DNNs are prone to fit the large amount of smoothly changing regions (e.g, ocean and plains), and
053 fail to reproduce the high-frequency climate details, usually associated with complex terrain variabil-
ity. Such bias toward low frequencies leads to over-smoothed or hallucinated regional estimations

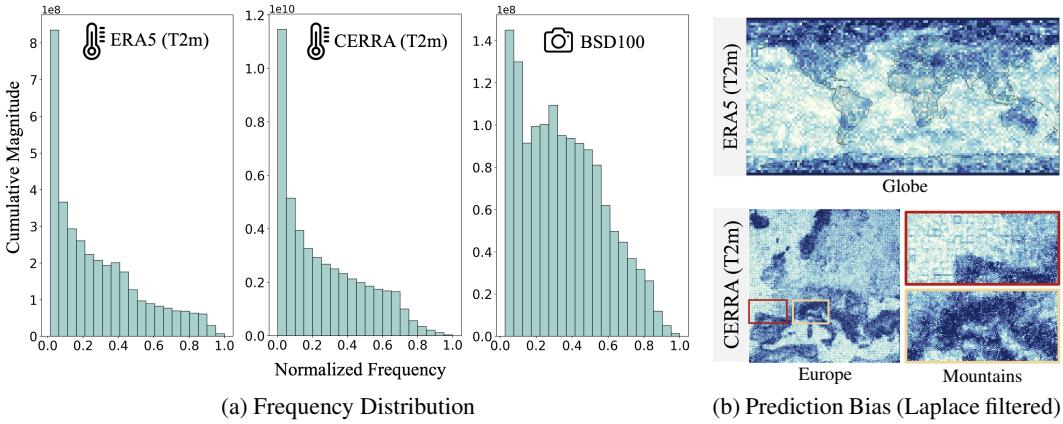


Figure 1: **Frequency bias in climate super-resolution.** (a) Climate data (ERA5, CERRA) contains much higher low-frequency information compared to natural images (BSD100) (x-axis: the radial spatial frequency scaled to $[0,1]$; y-axis: the sum of Fourier frequency magnitudes in each bin). (b) An example of SR results shows geography-dependent high-frequency errors: the Laplace filtered prediction bias highlights errors over polar regions (Globe), coastlines (Europe), and mountains.

(see Appendix A.8). This behavior of geography-dependent high-frequency loss is illustrated in Figure 1b: the Laplace filtered prediction bias (where darker blue denotes a larger high-frequency deficit) reveals a concentrated high-frequency error over polar regions, coastlines, and mountains.

To address the above-mentioned challenges in climate SR, we introduce a Geography-Informed and Frequency-Aware Super-Resolution (GeoFAR) approach for high-fidelity climate downscaling. GeoFAR mitigates the low-frequency aggregation in climate data by learning fine-grained Frequency-Aware Representations (FAR) with frequency-aware convolution kernels that explicitly encode both low-frequency components and high-frequency details. In addition, GeoFAR learns implicit neural representations for geography (Geo-INR) specific to climate SR. Geo-INR goes beyond location-only encoding in prior studies (Rußwurm et al., 2024; Mai et al., 2020) by jointly encoding location and elevation (terrain)-specific implicit representations to inform climate SR, thereby capturing the dependency of climate states on fine-grained geographical characteristics.

Experiments on three heterogeneous climate downscaling datasets (ERA5, PRISM, and the proposed CERRA high-resolution datasets) show that GeoFAR learns frequency-aware and geography-informed representations to accurately reconstruct local-scale climate information. Our proposed geography-informed learning (Geo-INR) outperforms baselines that stack elevation as an additional channel to the atmospheric variables for SR. Across both deterministic and generative SR baselines, GeoFAR significantly reduces high-frequency prediction errors and achieves state-of-the-art performance: 1) across global (ERA5), global-to-local (ERA5→PRISM), and local downscaling (CERRA) settings (Table 1); 2) on both surface (*e.g.*, 2m-temperature) and pressure-level variables (*e.g.*, geopotential-500hPa, temperature-850hPa) (Table 3a); and 3) of $44 \rightarrow 5.5\text{km}$ resolution gains with errors below half a unit (Table 3b). **In summary, our contributions are:**

- We propose a Geography-Informed and Frequency-Aware (GeoFAR) approach for high-fidelity climate SR: GeoFAR learns fine-grained frequency-aware representations for climate data and modulates these representations with geographical implicit neural representations.
- GeoFAR effectively tackles the geography-dependent frequency bias in climate SR: by mitigating low-frequency aggregation and reconstructing geography-related high-frequency climatic details, GeoFAR yields significant improvements in regions with complex terrain.
- Experiments on reanalysis (ERA5, CERRA) and observational (PRISM) climate data demonstrate GeoFAR’s adaptability to both deterministic and generative baselines, achieving state-of-the-art performance across diverse spatial resolutions, atmospheric variables, and downscaling ratios.

108

2 RELATED WORK

109

2.1 CLIMATE DOWNSCALING

110 Traditional climate downscaling methods simulate regional climate from global climate models.
 111 This is referred as *dynamical downscaling* (Tapiador et al., 2020; Sun et al., 2024). While grounded
 112 in physical principles, dynamical downscaling is computationally expensive and inherits the biases
 113 of the global models. Data-driven *statistical downscaling* (Sun et al., 2024) has achieved competitive
 114 accuracy at much lower computational cost with growing adoption of DNNs inspired by image
 115 super-resolution (SR) (Dong et al., 2016; Lim et al., 2017; Liang et al., 2021). We categorize these
 116 SR-based approaches into deterministic and generative models. *Deterministic models* learn a sin-
 117 gle mapping from coarse-scale to higher-resolution climate data by minimizing the loss at the pixel
 118 level. Early works, such as DeepSD (Vandal et al., 2017), utilize cascade convolutional neural net-
 119 work (CNN) blocks with concatenated climate and topographic inputs. More recent methods further
 120 extend DeepSD to downscale multi-modal ensembles (Baño-Medina et al., 2022) or integrate atmo-
 121 spheric processes as constraints (de Roda Husman et al., 2024; Chen et al., 2022). However, deter-
 122 ministic models tend to smooth the high-frequency details and do not model prediction uncertainty.
 123 *Generative models* address these challenges by sampling from a distribution conditioned on the
 124 low-resolution image, therefore learning to represent fine-scale details and capture local variations
 125 and extremes. Previous efforts have applied Generative Adversarial Networks (GANs, (Goodfellow
 126 et al., 2020)) for physics-informed climate downscaling (Stengel et al., 2020; Iotti et al., 2025; Li &
 127 Cao, 2025; Lopez-Gomez et al., 2025). More recently, diffusion-based models (Liu & Tang, 2025;
 128 Ho et al., 2020) have been adapted to iteratively denoise coarse inputs, surpassing deterministic
 129 models in fine-scale variance and offering probabilistic outputs for climate downscaling (Watt &
 130 Mansfield, 2024b; Srivastava et al., 2024). Despite this progress, **existing studies do not explicitly**
 131 **investigate the geography-dependent frequency characteristics of climate downscaling, leading to**
 132 **a limited utilization of the (geographic) domain knowledge to modulate high-frequency content in**
 133 **complex terrains, and therefore often resulting in oversmoothed SR outputs.**

134

2.2 FREQUENCY-AWARE MODELING

135 Every signal (from audio, images, to videos) exhibits a combination of high and low frequency
 136 components, while DNNs are known to be biased towards low frequency components: they con-
 137 verge well on low-frequency components but struggle with the high-frequency ones (Schwarz et al.,
 138 2021; Tancik et al., 2020; Xu et al., 2020). **This has motivated a line of work on improving high-**
 139 **frequency modeling for both generic architectures and task-specific settings.** Generic methods,
 140 including periodic activation functions (Sitzmann et al., 2020), Fourier Neural Operators (Li et al.,
 141 2021), and frequency-aware Vision Transformers (Bai et al., 2022; Lee et al., 2025), aim to enhance
 142 the representation of high-frequency information regardless of the downstream task. Task-specific
 143 frequency-aware methods (e.g., using Wavelet Transform (Kingsbury, 2001)) are proposed to en-
 144 hance high-frequency components (Jiang et al., 2021; Wu et al., 2023) in image reconstruction,
 145 eliminate small artifacts in SR (Korkmaz et al., 2024; Fuoli et al., 2021; Kim et al., 2025), or com-
 146 press the model with frequency-aware models (Xie et al., 2021). **Another line of frequency-aware**
 147 **modeling introduces attention mechanisms to enhance specific frequency components.** Frequency
 148 **attention first decouples channels into different frequency bands, and then learns frequency-aware**
 149 **reweighting (Qin et al., 2021; Ulicny et al., 2022; Chen et al., 2024).** However, classic wavelet-based
 150 approaches with four frequency bands tend to provide limited separation of high-frequency content
 151 in climate data, whose distribution is concentrated at low frequencies. On the contrary, learnable
 152 frequency attention is mainly designed for recognition tasks (e.g., classification) and can further
 153 exacerbate the loss of high-frequency information due to its frequency truncation and the neural
 154 network’s inherent bias towards low frequencies. A fine-grained and unbiased decoupling method
 155 tailored for climate data is still missing.

156

2.3 GEOGRAPHY-INFORMED LEARNING

157 Climatic processes are strongly shaped by geography, since sharp changes in location and terrain can
 158 produce pronounced local climatic responses (Pepin & Lundquist, 2008). Consequently, it is impor-
 159 tant for climate models to incorporate geography (i.e. location and elevation information) to improve
 160 their physical realism, internal consistency, and predictive performance. In the context of climate

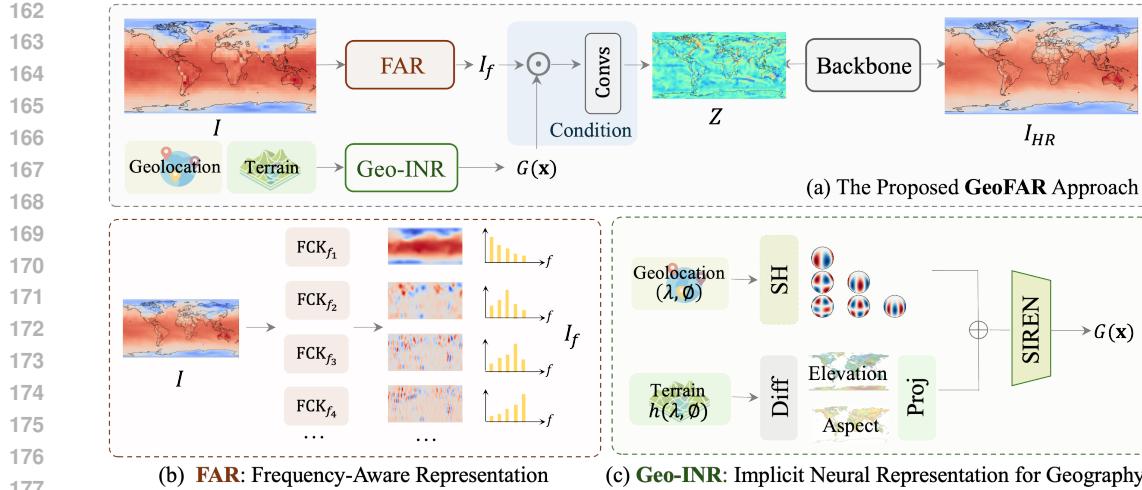


Figure 2: **An overview of GeoFAR.** (a) Model pipeline, which can be directly plugged into deterministic models or used as the generator in generative models. (b) The frequency-aware representation decomposes the image into frequency subbands with frequency-aware convolution kernels (FCK). (c) Geo-INR encodes both location and terrain information for geography-informed SR.

downscaling, classic methods usually incorporate location as geographically weighted regression to enhance performance (Zhao et al., 2017), and topography is sometimes used as an additional predictor (Fiddes & Gruber, 2014). For example, recent deep learning-based climate downscaling approaches have included elevation as an additional channel input to CNNs (Vandal et al., 2017). However, simply stacking elevation alongside climate variables is suboptimal: **the model has to process together fundamentally different data types. A growing line of research is exploring how to better encode geographic priors into deep learning models** for a wide range of geospatial tasks (e.g., species distribution modeling (Cole et al., 2023), satellite image classification (Ayush et al., 2021), weather forecasting (Verma et al., 2024)). These works project geographic locations into implicit neural representations to more faithfully capture spatial relationships and better inform the downstream task (Mai et al., 2020; Rußwurm et al., 2024). **However, geographic implicit representations remain underexplored in climate downscaling: climatic states vary significantly with both location and elevation, making it essential to go beyond current single-factor methods (conditioning on location *or* elevation) and rather jointly condition the super-resolution process on both.**

3 GEOGRAPHY-INFORMED FREQUENCY-AWARE SUPER-RESOLUTION

Let an atmospheric variable be defined on a grid $I \in \mathbb{R}^{H \times W}$ for representation learning with neural networks (Nguyen et al., 2023), where $H \times W$ is the spatial extent, either defined for the whole globe or for a specific region at a given resolution. Climate downscaling seeks to provide a high-resolution output $I_{HR} \in \mathbb{R}^{H' \times W'}$ conditioned on the input I .

To enhance the fidelity of climate downscaling, GeoFAR aims to learn geography-informed and frequency-aware climate representations $Z \in \mathbb{R}^{d \times H \times W}$ specific to SR, where each spatial location is associated with a d -dimensional feature vector. The resulting model-agnostic representations can be fed to either deterministic or generative SR pipelines (see Appendix A.5 for the details of the GeoFAR adaptation to different SR models). As shown in Figure 2a, GeoFAR first applies a frequency-aware projector P_ψ to obtain frequency-aware representations $I_f = P_\psi(I) \in \mathbb{R}^{d \times H \times W}$. Then, GeoFAR encodes geography as implicit neural representations $\mathbf{G} \in \mathbb{R}^{d \times H \times W}$. Finally, we perform pixel-wise frequency-aware conditioning between I_f and \mathbf{G} (*i.e.*, feature-wise modulation) (Perez et al., 2018), getting:

$$M = I_f \odot \mathbf{G}, \quad (1)$$

where \odot denotes per-pixel multiplication. This is followed by three 3×3 refinement convolutions, yielding Z . These representations are then fed into the SR backbone to predict the target image I_{HR} , whose learning process is supervised by the Mean Squared Error (MSE) loss by default. In what

216 follows, we separately explain frequency-aware (Figure 2b) and geography-informed (Figure 2c)
 217 representation learning of GeoFAR.
 218

219 **3.1 FREQUENCY-AWARE REPRESENTATION LEARNING**
 220

221 Encoding different frequency components separately is beneficial for neural networks to capture pat-
 222 terns at different frequencies (Fuoli et al., 2021; Pan et al., 2022; Patro & Agneeswaran, 2023). For
 223 climate SR, we introduce a Frequency-Aware Representation (FAR) learning method that explicitly
 224 encodes both high-frequency variability (local-scale climate fluctuations) and low-frequency com-
 225 ponents (macro climate state) into separate channels, as shown in Figure 2b. Unlike Discrete Wavelet
 226 Transforms (DWT), where the decomposed data (LL/LH/HL/HH) is mostly concentrated in the low-
 227 frequency subband (LL), we design a Frequency-aware Convolution Kernel (FCK) that achieves
 228 multi-granular FAR to avoid low-frequency aggregation in climate data (See Appendix A.8).
 229

230 The FCK weights are parameterized directly by the bases of the Discrete Cosine Transform (DCT),
 231 such that each kernel corresponds to a specific frequency component. By **fixing** kernel weights with
 232 DCT bases of varying frequencies, the convolution acts as a localized filter bank that decouples the
 233 input into multiple variants, each **one** emphasizing a specific frequency band. **Such filter bank con-**
 234 **tains many high-frequency sensitive kernels. By repeatedly sampling high-frequency components**
 235 **in the data, the network is exposed to more high-frequency inputs, which strengthens its reliance**
 236 **on these components for target reconstruction.** Formally, for a patch $P \in \mathbb{R}^{h \times w}$ in the 2D grids
 $I \in \mathbb{R}^{H \times W}$, the 2D DCT is defined as:

$$237 \quad C(u, v) = c(u) c(v) \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} P(x, y) \cos \left[\frac{\pi(2x+1)u}{2N} \right] \cos \left[\frac{\pi(2y+1)v}{2N} \right], \quad (2)$$

240 where N is the block size, (x, y) are the spatial coordinates, (u, v) denote frequency indices rang-
 241 ing from 0 to $N - 1$, with larger values corresponding to higher frequencies. $c(u)$ and $c(v)$ are
 242 normalizing constants. The corresponding DCT basis function is given by:

$$243 \quad B_{u,v}(x, y) = c(u)c(v) \cos \left[\frac{\pi(2x+1)u}{2N} \right] \cos \left[\frac{\pi(2y+1)v}{2N} \right]. \quad (3)$$

244 We leverage these bases to define the weights of the convolution kernels: each kernel in the FCK
 245 is aligned with one basis function with frequency pair $f_n = (u, v)$. For each patch, the frequency-
 246 specific response is obtained via:

$$247 \quad P_{u,v}(i, j) = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} P(x, y) B_{u,v}(x, y). \quad (4)$$

248 We use FCK to convolve across all patches and apply different frequencies to different channels,
 249 yielding frequency-aware representations $I_f \in \mathbb{R}^{d \times H \times W}$ where $d = N^2$.
 250

251 **3.2 IMPLICIT NEURAL REPRESENTATION FOR GEOGRAPHY**
 252

253 Implicit neural representation (INR) allows to learn a continuous mapping between the input coor-
 254 dinates and the output signal with neural networks. When trained on sufficient data, INRs can either
 255 memorize signals with near-lossless fidelity or learn coordinate-feature functions that generalize
 256 across coordinates, powering view synthesis, data compression, and geo-embeddings (Mildenhall
 257 et al., 2021; Huang & Hoefer, 2023; Mai et al., 2020; Rußwurm et al., 2024).

258 Here, we introduce an INR for geography (Geo-INR) that jointly encodes the location- and terrain-
 259 driven characteristics of climate processes. To this end, we define climate downscaling on the 3D
 260 geographic manifold $\mathcal{M} = \mathbb{S}^2 \times \mathbb{R}$. Each point on \mathcal{M} is $\mathbf{x} = (\lambda, \phi, h)$ with latitude $\lambda \in [-\frac{\pi}{2}, \frac{\pi}{2}]$
 261 and longitude $\phi \in [-\pi, \pi]$ defined on the unit sphere \mathbb{S}^2 , while surface elevation $h \in \mathbb{R}$. Our goal is
 262 to learn a mapping of each point \mathbf{x} to a geographical representation of dimension d :

$$263 \quad G : \mathcal{M} \rightarrow \mathbb{R}^d, \quad G(\mathbf{x}) = \text{NN}(\text{PE}(\mathbf{x})), \quad (5)$$

264 where PE is the positional encoding function and NN is a neural network that projects positional
 265 encodings into geographical implicit representations. The full map on the 3D geographic manifold

270 is thus projected to the grid coordinate space as $\mathbf{G} \in \mathbb{R}^{d \times H \times W}$. Concretely, Geo-INR employs
 271 **fine-scale** spherical location encoding and terrain-differential encoding **at the target resolution** for
 272 PE, and their joint use within an NN for geography-informed representations, which are explained
 273 separately in the following.

274 **Spherical location encoding.** We first encode (λ, ϕ) with a band-limited spherical-harmonic (SH)
 275 expansion. Let $\{Y_\ell^m\}_{\ell \geq 0, |m| \leq \ell}$ be the real SH basis (ℓ : degree, m : order) orthonormal on \mathbb{S}^2 :

$$277 \int_{\mathbb{S}^2} Y_\ell^m(\omega) Y_{\ell'}^{m'}(\omega) d\omega = \delta_{\ell\ell'} \delta_{mm'}. \quad (6)$$

279 We truncate at degree L , yielding a multiscale and rotation-aware encoding:

$$280 \mathbf{Y}_L(\lambda, \phi) = [Y_\ell^m(\lambda, \phi)]_{\ell=0 \dots L, m=-\ell \dots \ell} \in \mathbb{R}^{(L+1)^2}, \quad (7)$$

282 where smaller ℓ captures large-scale patterns on the sphere and larger ℓ represents fine details; Y_ℓ^m
 283 are eigenfunctions of the Laplace-Beltrami operator with eigenvalue $\ell(\ell+1)$ (Atkinson & Han, 2012;
 284 Rußwurm et al., 2024). In practice, we use $L = 7$, giving rise to $(L+1)^2 = 64$ SH channels.

285 **Terrain-differential encoding.** Beyond location, climate states also depend on both absolute elevation
 286 and local slope information. In addition to absolute elevation h , which is an implicit function
 287 of locations $h(\lambda, \phi)$, we add first-order surface derivatives with respect to the latitude and longitude
 288 directions to better reflect the slope information:

$$289 \nabla_{\mathbb{S}^2} h(\lambda, \phi) = (\partial_\lambda h, \partial_\phi h). \quad (8)$$

290 Elevation and slope information then jointly define the terrain vector:

$$292 \mathbf{T}(h(\lambda, \phi)) = [h(\lambda, \phi), \partial_\lambda h(\lambda, \phi), \partial_\phi h(\lambda, \phi)] \in \mathbb{R}^3. \quad (9)$$

293 A learnable $(3 \times 3 \text{ conv})$ layer $\Psi : \mathbb{R}^3 \rightarrow \mathbb{R}^{(L+1)^2}$ is used to align the elevation with aspect information,
 294 producing terrain-differential encoding $\hat{\mathbf{T}} = \Psi(\mathbf{T})$.

295 **Geography-informed representation.** We first define the final positional encoding of Geo-INR as
 296 the linear fusion of spherical location and terrain-differential encodings:

$$298 \text{PE}(\mathbf{x}) = \mathbf{Y}_L(\lambda, \phi) + \hat{\mathbf{T}}(h(\lambda, \phi)) \in \mathbb{R}^{d_0}, \quad (10)$$

299 where d_0 is unified as the number of SH channels. The positional encodings are then passed through
 300 a SIREN (Sitzmann et al., 2020)-based MLP:

$$301 G(\mathbf{x}) = f_K \circ f_{K-1} \circ \dots \circ f_1(\text{PE}(\mathbf{x})), \quad f_k(\mathbf{z}) = \sin(\omega_k \mathbf{W}_k \mathbf{z} + \mathbf{b}_k), \quad (11)$$

302 where ω_k controls the angular period of sinusoidal waves, \mathbf{W}_k and \mathbf{b}_k are learnable weights and
 303 bias of the k^{th} layer. Leveraging SIREN’s ability to model fine details, we project the positional
 304 encodings to the composite geographical representation $G(\mathbf{x}) \in \mathbb{R}^d$ of each point on the 3D manifold
 305 that helps the SR backbone reconstruct region-specific structures.

307 4 EXPERIMENTS

309 4.1 EXPERIMENTAL SETUP

311 **Datasets and experimental settings.** We conduct experiments on three heterogeneous climate
 312 databases: **ERA5 Reanalysis** (Hersbach et al., 2020), **PRISM** (PRISM Climate Group, 2025),
 313 **CERRA** (Ridal et al., 2024), which are explained in detail in Appendix A.2. **We also assess the**
 314 **model’s generalization to satellite observations with MODIS (Appendix A.7).** To assess the effec-
 315 **tiveness of GeoFAR on different spatial resolutions, atmospheric variables, and downscaling ratios,**
 316 **we consider the following settings:**

317 • **Spatial resolutions.** We assess the model on global (ERA5: 5.625° to ERA5: 2.8125°), global-to-
 318 local (ERA5: 2.8125° to PRISM: 0.75°), and local (CERRA: 22km to CERRA: 11km) SR scales.
 319 For the global and global-to-local settings, we follow the ClimateLearn benchmark (Nguyen et al.,
 320 2023): we downscale 2m-temperature (T2m) in ERA5 from 5.625° to 2.8125° with hourly inter-
 321 vals in the global setting; in the global-to-local setting, we downscale daily max T2m from a
 322 reanalysis dataset to an observational dataset (from 2.8125° ERA5 data to 0.75° PRISM) over the
 323 same region at daily intervals. For the local setting, we construct a new high-resolution SR dataset
 by processing the CERRA database, and use T2m with 3-hour updates.

324 Table 1: Results on global (ERA5: 5.625° to 2.8125°), global-to-local (ERA5: 2.8125° to PRISM: 325 0.75°), and local settings (CERRA: 22km to 11km) on T2m (K). We omit Pearson’s correlation 326 coefficient (r) in global and local downscaling settings since all models achieve $r \approx 1.0$. Values in 327 **bold** and underlined indicate the best and second-best results among learning-based methods. For 328 RMSE and LFD, lower values indicate better performance; for mean bias, values closer to 0.0 are 329 better; and for Pearson’s r , higher values are better.

	Global Downscaling			Global-to-Local Downscaling				Local Downscaling		
	RMSE	MB	LFD	RMSE	MB	Pearson	LFD	RMSE	MB	LFD
Nearest	3.116	-0.002	11.028	2.911	-0.051	0.893	9.257	0.663	0.000	11.664
Bilinear	2.457	-0.002	10.665	2.637	0.125	0.910	8.997	0.517	0.000	11.165
ResNet	1.138	0.004	9.173	1.636	-0.152	0.964	8.093	0.345	0.110	10.205
U-Net	1.103	0.004	<u>9.114</u>	1.501	-0.094	0.970	7.953	0.272	0.068	9.769
ViT	1.121	0.009	9.154	2.163	-0.147	0.937	8.652	0.380	0.033	10.496
EDSR	1.164	-0.007	9.221	2.860	0.315	0.914	9.073	0.243	0.058	9.647
FFL	1.140	-0.003	9.187	2.175	-0.196	0.937	8.705	0.710	0.011	11.824
SwinIR	1.117	0.002	9.141	1.879	<u>-0.087</u>	0.952	8.392	0.212	<u>-0.001</u>	9.450
SRFormer	1.138	0.000	9.176	1.877	-0.094	0.952	8.390	0.219	<u>0.001</u>	9.499
SRGAN	1.149	0.007	9.196	1.718	-0.143	0.961	8.206	0.245	0.000	9.739
DeepSD	1.396	0.002	9.590	1.955	-0.198	0.949	8.451	0.344	-0.004	10.401
FACL	1.373	0.156	9.490	7.240	0.133	0.928	10.182	0.700	-0.053	11.761
SmCL	2.184	-0.002	10.508	2.637	0.125	0.910	8.997	0.465	0.000	11.014
STVD	1.310	-0.029	9.462	1.781	-0.185	0.960	8.288	0.255	-0.065	9.747
ClimateDiffuse	1.451	0.005	9.679	2.279	-0.097	0.955	8.582	0.265	-0.011	9.858
DSFNO	1.265	0.019	9.397	1.546	-0.032	0.968	8.015	0.343	0.004	10.397
GeoFAR[SRGAN]	1.137	0.002	9.175	1.561	-0.089	0.967	7.971	0.192	<u>0.001</u>	9.240
GeoFAR[DSFNO]	1.126	-0.003	9.160	1.474	-0.121	0.971	7.904	0.190	0.00	9.234
GeoFAR[ViT]	1.099	0.001	9.117	1.745	-0.097	0.959	8.226	0.191	<u>-0.001</u>	9.245
GeoFAR[U-Net]	1.076	0.001	9.068	1.468	-0.137	0.972	7.836	0.180	0.003	9.127

351 • *Atmospheric variables.* In addition to single-variable experiments, we also perform a joint down- 352 scaling of multi-variables with CERRA (22km to 11km), including: 2m-temperature (T2m), 10m- 353 **u**-component-of-wind (10u), 10m-**v**-component-of-wind (10v), 2m-relative-humidity (Rh2m), 354 surface-pressure (Sp). In complement to the surface-level results, we also perform global-scale 355 downscaling of several pressure-level variables: we downscale geopotential-500hPa (Z500) and 356 temperature-850hPa (T850) in the global setting using ERA5.

357 • *Downscaling ratios.* In this setting, we explore different downscaling ratios from the first (local) 358 setting on the CERRA dataset. We propose two more challenging downscaling ratios: 4 \times (from 359 22km to 5.5km) and 8 \times (from 44km to 5.5km). This is to evaluate the model’s ability to recover 360 high-frequency and high-resolution details from very coarse input.

361 **Comparison methods.** We compare GeoFAR with both *generic methods* and *climate-oriented* 362 methods for climate SR, leading to one of the most comprehensive comparisons to date in the 363 machine learning community. Generic methods include ResNet (He et al., 2016), U-Net (Ronneberger 364 et al., 2015), ViT (Dosovitskiy et al., 2021), EDSR (Lim et al., 2017), FFL (Jiang et al., 2021), 365 SwinIR (Liang et al., 2021), SRFormer (Zhou et al., 2023), and SRGAN (Ledig et al., 2017). 366 Climate-oriented methods include DeepSD (Vandal et al., 2017), FACL (Yan et al., 2024), and 367 SmCL (Harder et al., 2023). Detailed descriptions of baselines and their implementations can be 368 found in the Appendix A.4.

369 **Metrics.** We use two types of evaluation metrics: *spatial domain* and *frequency-aware* metrics. By 370 following previous works (Nguyen et al., 2023), Rooted Mean Square Error (RMSE), Mean Bias 371 (MB), and Pearson Coefficient are used to evaluate the SR performance in the spatial domain. Log 372 Frequency Distance (LFD, (Jiang et al., 2021)) and a proposed Wavelet-based Metric are used for 373 the frequency-aware evaluation in Section 4.4.

374 4.2 COMPARATIVE PERFORMANCE

375 **Results across spatial resolutions.** Table 1 shows the SR results on global (ERA5), global-to-local 376 (ERA5-PRISM), and local (CERRA) scales. GeoFAR is adaptable to both deterministic baselines

378
379

Table 2: Results on joint downscaling of multiple variables with CERRA (22km to 11km).

380
381
382
383
384

	T2m (K)			10u (ms ⁻¹)			10v (ms ⁻¹)			Rh2m (%)			Sp (Pa)		
	RMSE	MB	LFD	RMSE	MB	LFD	RMSE	MB	LFD	RMSE	MB	LFD	RMSE	MB	LFD
ViT	0.457	0.033	10.966	0.341	0.002	10.395	0.355	-0.011	10.472	1.799	-0.012	13.708	277.719	-11.007	23.808
GeoFAR	0.262	0.001	9.859	0.184	0.000	9.163	0.186	0.000	9.187	1.215	-0.003	12.921	47.922	0.375	20.291

Table 3: Results on ERA5 pressure-level variables (Z500, T850: 5.625° to 2.8125°) and larger downscaling ratios on the CERRA dataset (T2m, K). [S] and [U] denote GeoFAR using SRGAN and U-Net as baselines, respectively.

388
389

(a) Results on Z500 and T850 of ERA5

	Z500 (m ² s ⁻²)			T850 (K)		
	RMSE	MB	LFD	RMSE	MB	LFD
Bilinear	134.063	0.028	18.564	1.504	0.001	9.699
U-Net	49.060	-0.980	16.661	0.973	0.001	8.883
ViT	51.023	0.799	16.748	0.999	0.002	8.941
EDSR	52.602	-1.758	16.794	1.040	-0.015	9.010
SRGAN	50.374	0.905	16.715	1.039	-0.059	9.005
DeepSD	60.469	0.069	17.073	1.152	-0.004	9.216
GeoFAR[S]	50.170	-0.780	16.713	1.024	0.006	8.983
GeoFAR[U]	48.683	-0.195	16.651	0.971	-0.001	8.881

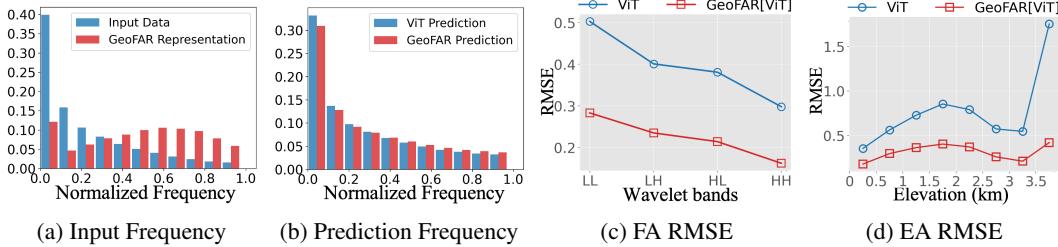
(b) $\times 4$, $\times 8$ upsampling results on CERRA

	22~5.5km ($\times 4$)			44~5.5km ($\times 8$)		
	RMSE	MB	LFD	RMSE	MB	LFD
Bilinear	0.610	0.000	12.878	0.861	0.000	13.578
U-Net	0.326	0.068	11.517	0.482	0.034	12.389
ViT	0.458	0.077	12.072	0.564	-0.011	12.706
EDSR	0.299	0.031	11.495	0.449	0.039	12.307
SRGAN	0.375	0.030	11.943	0.594	0.047	12.859
DeepSD	0.388	0.024	12.024	0.579	0.034	12.815
GeoFAR[S]	0.253	-0.002	11.172	0.434	-0.001	12.244
GeoFAR[U]	0.235	0.000	11.023	0.393	0.005	12.047

(e.g., U-Net, ViT, **DSFNO**) and generative methods (e.g., SRGAN). When applied to simple deterministic baselines such as U-Net, GeoFAR outperforms not only advanced generic SR methods (e.g., SRFormer) but also climate-specific SR methods that incorporate domain priors (e.g., DeepSD with elevation input, SmCL with physics constraints), achieving the state-of-the-art performance across all three settings. These gains are significant, especially in the local-scale fine-grained downscaling (CERRA) setting: the RMSE decreases by 0.092, and the frequency-domain LFD is reduced by 0.642 compared to U-Net. **Results also indicate that the gains of geography-informed learning are affected by spatial resolution: as the resolution increases (from ERA5 to CERRA), fine-grained geography-informed representations enable more precise modulation of local-scale SR, yielding larger performance gains.**

Results across atmospheric variables. In Table 2, we also report results for a joint SR of multiple variables. For a fair comparison, we stack all variables as channels for both the ViT and the ViT-based GeoFAR. Due to fundamentally different physical meanings of variables, jointly super-resolving them with a shared model does not necessarily improve the performance (e.g., the RMSE increases from 0.380 to 0.457 on T2m, ViT). Nevertheless, GeoFAR still provides consistent improvement across variables, especially for variables strongly tied to terrain variability such as surface pressure. In addition to surface-level atmospheric variables, Table 3a provides SR results on different pressure levels (*i.e.*, geopotential-500hPa: Z500, temperature-850hPa: T850). The SR of these pressure-level variables is even more challenging than surface-level variables since their variability is dominated by atmospheric dynamics with comparatively weak high-frequency energy (Nastrom & Gage, 1985; Skamarock et al., 2014), and high sensitivity to location errors since small displacements of ridges or frontal zones can cause large losses (Ebert, 2008). Despite these challenges, our approach (for both UNet and SRGAN adaptation) yields consistent gains over other methods on both Z500 and T850, achieving the state-of-the-art performance.

Results across downscaling ratios. We also investigate how models perform on more challenging downscaling ratios. Table 3b shows the SR results on the CERRA high-resolution dataset with $\times 4$, $\times 8$ downscaling ratios. At these ratios, local-scale fine-grained information is heavily smoothed and blurred in the input, and thus pixel-wise errors are nearly doubled as we move from $\times 2$ (Table 1) to $\times 8$. Nevertheless, GeoFAR degrades slowly, and the RMSE is always kept under 0.5, while the Mean Bias is near 0, consistently outperforming the other methods at various scales. This suggests that, even when the input is eight times coarser than the target, GeoFAR still yields locally consistent results relative to real-world atmospheric conditions (with RMSE < 0.5 Kelvin at $\times 8$). Overall, GeoFAR is robust to large downscaling factors, maintaining low error and near-zero bias while consistently outperforming the other methods, which is crucial for real-world applications.

432 4.3 ABLATION STUDY
433434 We quantify the contribution of each GeoFAR component compared to alternative design choices.
435436 **Comparison with alternative designs.** The grey rows in Table 4 show the results for design choices
437 different from ours. As an alternative to our FCK, the Discrete Wavelet Transform (DWT) is com-
438 monly used to perform frequency decomposition. However, this strategy (Table 4, w/ DWT) does not
439 improve results on both datasets, probably due to the unbalanced low and high-frequency compo-
440 nents in different wavelength channels (LL/LH/HL/HH), aggravating the already skewed frequency
441 distribution. In addition, as an alternative to Geo-INR, we concatenate the input data with the ele-
442 vation map when super-resolving the target field. Results in Table 4 (w/ Elevation) show that this
443 simple fusion only yields minor gain, mainly due to the domain gap with the target variable and
444 limited interaction with input variables.
445446 **Individual effectiveness.** The black rows in Table 4 show the changes in metrics by
447 adding each component of GeoFAR one by
448 one. We begin with a strong residual baseline
449 (+Residual): instead of regressing the high-
450 resolution image directly, the model pre-
451 dicted the residual between the input and the
452 target, directing capacity to high-frequency
453 corrections. Based on this, incorporating
454 frequency-aware (+ FCK) and geography-
455 informed (+ Geo-INR) representations fur-
456 ther reduces the RMSE on both global and
457 local datasets. Jointly modeling location and
458 elevation in INR performs better than the
459 location-only method (+ 2D-INR). Fine-grained local-scale SR benefits more from our approach
460 by learning a more accurate mapping between the geographical data and target variables.
461462 4.4 BEYOND GENERIC METRICS: IN-DEPTH ANALYSES OF GEOFAR EFFECTIVENESS
463464 **Figure 3: Frequency and elevation encoding analyses.** On CERRA, we compare the frequency
465 distribution of (a) input data with GeoFAR representations; and (b) the output predictions of
466 GeoFAR[ViT] and ViT. We also perform: (c) frequency-aware (FA) evaluation on Wavelet decomposed
467 subbands; and (d) elevation-aware (EA) evaluation across increasing elevations by comparing
468 GeoFAR[ViT] with ViT.
469470 To further investigate the effectiveness of GeoFAR, we conduct in-depth frequency-aware and
471 geography-aware analyses, beyond generic SR metrics. We first perform a frequency analysis on
472 CERRA to assess how GeoFAR affects learning in the frequency domain. In climate data, low-
473 frequency components are usually related to large-scale structures (e.g., meridional temperature
474 gradients), whereas the high-frequency components capture localized events such as sharp frontal
475 zones and topographically induced anomalies. Figure 3a shows the frequency distributions of the
476 raw input data and the frequency-aware climate representations: the high-frequency information
477 of the input data has been enhanced by learning frequency-aware variants of the input data, miti-
478 gating the low-frequency bias in DNNs. This mitigation is also reflected in the output predictions
479 as shown in Figure 3b: GeoFAR generates more high-frequency components than ViT. We also
480 perform a frequency-aware evaluation to analyze how accurate the enhanced high-frequency infor-
481
482
483
484
485

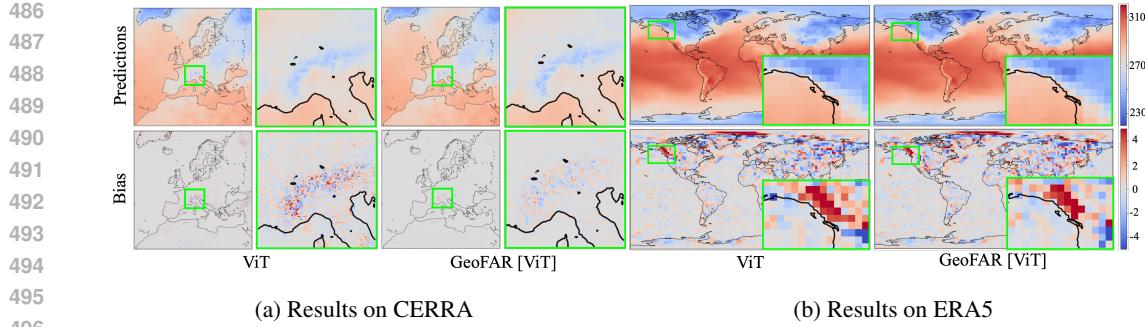


Figure 4: **An example of super-resolved climate data.** Compared to ViT, GeoFAR addresses the oversmoothing by recovering high-frequency details in complex terrains on (a) CERRA and (b) ERA5. Meanwhile, GeoFAR significantly mitigates the prediction bias in both datasets.

mentation is: we first decouple different frequency components in predictions with DWT into four bands (LL/LH/HL/HH), then calculate RMSE for each band. [Results in Figure 3c show a consistent reduction of RMSE across frequency bands](#), with high-frequency subband (HH) showing the largest relative improvement. This indicates that GeoFAR improves the reconstruction of both large-scale and fine-scale local climate structures.

Second, we perform analyses to investigate how GeoFAR performs in different regions. In Figure 3d, we first group regions according to elevation ranges, then evaluate the RMSE within each group: [the RMSE has been consistently reduced from lowlands to high plateaus, while the most significant gains are observed at high elevations](#): in regions over 3km elevation, RMSE significantly drops from 1.755 to 0.210, [showing the particular benefit of terrain-guided Geo-INR in complex mountainous areas](#). In Europe, such high-elevation areas are concentrated in the Alps and Pyrenees, where rugged topography induces rapidly varying atmospheric fields, making SR particularly challenging. The super-resolved climate data in Figure 4a shows that even in the challenging Alps, GeoFAR reproduces fine-grained temperature patterns between adjacent valleys and ridges and recovers local details under geographic conditioning. To further probe the learned geography-informed representations, we measure the dot-product similarities of a predefined location with respect to the full map. Figure 5 shows high similarity between a city in the Alps (Zermatt) and other mountainous regions (*e.g.*, Pyrenees); in comparison, the representation of Napoli (a relatively flat coastal city) aligns more with other flat areas and regions close to the Mediterranean Sea.

5 CONCLUSION AND OUTLOOK

Super-resolving climate data is crucial for fine-grained mapping of local climate states. In this paper, we introduce GeoFAR, a model-agnostic approach that learns frequency-aware and geography-informed representations for high-fidelity climate super-resolution. Across three datasets spanning multiple spatial resolutions, atmospheric variables, and downscaling factors, GeoFAR consistently improves both deterministic and generative baselines by recovering high-frequency structure and modulating outputs specific to real-world location and terrain variations. With its broad adaptability, GeoFAR lays the groundwork for precise, geography-aware, and physically consistent climate downscaling. We hope our findings can provide valuable insights for preserving the inherent relationships between geographic factors and climate states during downscaling, and inform broader applications such as weather forecasting and climate projections.

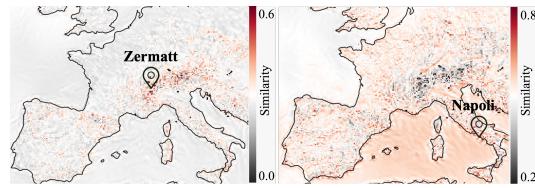


Figure 5: **GeoFAR representation similarities.** Red (black) indicates higher (lower) similarity, for Zermatt (left) and Napoli (right).

540 REPRODUCIBILITY STATEMENT

541

542 We provide all necessary details to ensure reproducibility. Model descriptions and experimental
 543 setups are described in the main text and the appendix. The CERRA dataset and code will be
 544 released publicly.

545

546 REFERENCES

547

548 Kendall Atkinson and Weimin Han. *Spherical harmonics and approximations on the unit sphere: an introduction*, volume 2044. Springer Science & Business Media, 2012.

549

550 Kumar Ayush, Burak Uzkent, Chenlin Meng, Kumar Tanmay, Marshall Burke, David Lobell, and
 551 Stefano Ermon. Geography-aware self-supervised learning. In *IEEE International Conference on*
 552 *Computer Vision*, pp. 10181–10190, 2021.

553

554 Jiawang Bai, Li Yuan, Shu-Tao Xia, Shuicheng Yan, Zhifeng Li, and Wei Liu. Improving vision
 555 transformers by revisiting high-frequency components. In *European Conference on Computer*
 556 *Vision*, pp. 1–18. Springer, 2022.

557

558 Jorge Baño-Medina, Rodrigo Manzanas, Ezequiel Cimadevilla, Jesús Fernández, Jose González-
 559 Abad, Antonio Santiago Cofiño, and José Manuel Gutiérrez. Downscaling multi-model climate
 560 projection ensembles with deep learning (deepesd): contribution to cordex eur-44. *Geoscientific*
Model Development Discussions, 2022:1–14, 2022.

561

562 Pedro Bolgiani, Carlos Calvo-Sancho, Javier Díaz-Fernández, Lara Quitián-Hernández, Mariano
 563 Sastre, Daniel Santos-Muñoz, JI Farrán, Juan Jesús González-Alemán, Francisco Valero, and
 564 ML Martín. Wind kinetic energy climatology and effective resolution for the era5 reanalysis.
Climate Dynamics, 59(3):737–752, 2022.

565

566 Linwei Chen, Bowen Fang, Lei Zhao, Yu Zang, Weiquan Liu, Yiping Chen, Cheng Wang, and
 567 Jonathan Li. Deepurbandownscale: A physics informed deep learning framework for high-
 568 resolution urban surface temperature estimation via 3d point clouds. *International Journal of*
Applied Earth Observation and Geoinformation, 106:102650, 2022.

569

570 Linwei Chen, Ying Fu, Lin Gu, Chenggang Yan, Tatsuya Harada, and Gao Huang. Frequency-aware
 571 feature fusion for dense image prediction. *IEEE Transactions on Pattern Analysis and Machine*
 572 *Intelligence*, 2024.

573

574 Elijah Cole, Grant Van Horn, Christian Lange, Alexander Shepard, Patrick Leary, Pietro Perona,
 575 Scott Loarie, and Oisin Mac Aodha. Spatial implicit neural representations for global-scale
 576 species mapping. In *International Conference on Machine Learning*, pp. 6320–6342. PMLR,
 577 2023.

578

579 Sophie de Roda Husman, Zhongyang Hu, Maurice van Tiggelen, Rebecca Dell, Jordi Bolibar,
 580 Stef Lhermitte, Bert Wouters, and Peter Kuipers Munneke. Physically-informed super-resolution
 581 downscaling of antarctic surface melt. *Journal of Advances in Modeling Earth Systems*, 16(7):
 582 e2023MS004212, 2024.

583

584 Chao Dong, Chen Change Loy, and Xiaoou Tang. Accelerating the super-resolution convolutional
 585 neural network. In *European Conference on Computer Vision*, pp. 391–407. Springer, 2016.

586

587 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 588 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 589 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition
 590 at scale. In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.

591

592 Elizabeth E. Ebert. Fuzzy verification of high-resolution gridded forecasts: A review and proposed
 593 framework. *Meteorological Applications*, 15(1):51–64, 2008. doi: 10.1002/met.25.

594

595 J Fiddes and S Gruber. Toposcale v. 1.0: downscaling gridded climate data in complex terrain.
 596 *Geoscientific Model Development*, 7(1):387–405, 2014.

594 Dario Fuoli, Luc Van Gool, and Radu Timofte. Fourier space losses for efficient perceptual image
 595 super-resolution. In *IEEE International Conference on Computer Vision*, pp. 2360–2369, 2021.
 596

597 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 598 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the
 599 ACM*, 63(11):139–144, 2020.

600 Paula Harder, Alex Hernandez-Garcia, Venkatesh Ramesh, Qidong Yang, Prasanna Sattegeri,
 601 Daniela Szwarcman, Campbell Watson, and David Rolnick. Hard-constrained deep learning for
 602 climate downscaling. *Journal of Machine Learning Research*, 24(365):1–40, 2023.
 603

604 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 605 nition. In *IEEE Conference on Computer Vision and Pattern Recognition*, pp. 770–778, 2016.
 606

607 Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquín Muñoz-Sabater,
 608 Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, et al. The era5 global reanalysis.
 609 *Quarterly journal of the royal meteorological society*, 146(730):1999–2049, 2020.

610 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 611 Neural Information Processing Systems*, 33:6840–6851, 2020.
 612

613 Langwen Huang and Torsten Hoefer. Compressing multidimensional weather and climate data into
 614 neural networks. In *The Eleventh International Conference on Learning Representations*, 2023.
 615 URL <https://openreview.net/forum?id=Y5SEe3dfniJ>.

616 Marcello Iotti, Paolo Davini, Jost von Hardenberg, and Giuseppe Zappa. Rainscalegan: a con-
 617 ditional generative adversarial network for rainfall downscaling. *Artificial Intelligence for the
 618 Earth Systems*, 2025.

619

620 Liming Jiang, Bo Dai, Wayne Wu, and Chen Change Loy. Focal frequency loss for image recon-
 621 struction and synthesis. In *IEEE Conference on Computer Vision and Pattern Recognition*, pp.
 622 13919–13929, 2021.

623 Eunjin Kim, Hyeonjin Kim, Kyong Hwan Jin, and Jaejun Yoo. Bf-stvsr: B-splines and fourier—
 624 best friends for high fidelity spatial-temporal video super-resolution. In *IEEE Conference on
 625 Computer Vision and Pattern Recognition*, pp. 28009–28018, 2025.

626

627 Nick Kingsbury. Complex wavelets for shift invariant analysis and filtering of signals. *Applied and
 628 computational harmonic analysis*, 10(3):234–253, 2001.
 629

630 Cansu Korkmaz, A Murat Tekalp, and Zafer Dogan. Training generative image super-resolution
 631 models by wavelet-domain losses enables better control of artifacts. In *IEEE Conference on
 632 Computer Vision and Pattern Recognition*, pp. 5926–5936, 2024.

633

634 Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro
 635 Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe Shi. Photo-
 636 realistic single image super-resolution using a generative adversarial network. In *IEEE Confer-
 637 ence on Computer Vision and Pattern Recognition*, 2017.

638

639 Dong-Jae Lee, Jiwan Hur, Jaehyun Choi, Jaemyung Yu, and Junmo Kim. Frequency-aware token
 640 reduction for efficient vision transformer. In *The Thirty-ninth Annual Conference on Neural In-
 641 formation Processing Systems*, 2025. URL <https://openreview.net/forum?id=Dr06Wjh45k>.
 641

642 Guiye Li and Guofeng Cao. Generative adversarial models for extreme geospatial downscaling.
 643 *International Journal of Applied Earth Observation and Geoinformation*, 139:104541, 2025.
 644

645 Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
 646 tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
 647 differential equations. In *International Conference on Learning Representations*, 2021. URL
<https://openreview.net/forum?id=c8P9NQVtmnO>.

648 Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. SwinIR:
 649 Image restoration using swin transformer. In *IEEE International Conference on Computer Vision*,
 650 pp. 1833–1844, 2021.

651 Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual
 652 networks for single image super-resolution. In *IEEE Conference on Computer Vision and*
 653 *Pattern Recognition Workshops*, pp. 136–144, 2017.

654 Xiaoyi Liu and Hao Tang. Diffffno: Diffusion fourier neural operator. In *IEEE Conference on*
 655 *Computer Vision and Pattern Recognition*, pp. 150–160, 2025.

656 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 657 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the*
 658 *IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.

659 Ignacio Lopez-Gomez, Zhong Yi Wan, Leonardo Zepeda-Núñez, Tapio Schneider, John Anderson,
 660 and Fei Sha. Dynamical-generative downscaling of climate model ensembles. *Proceedings of the*
 661 *National Academy of Sciences*, 122(17):e2420288122, 2025.

662 Gengchen Mai, Krzysztof Janowicz, Bo Yan, Rui Zhu, Ling Cai, and Ni Lao. Multi-scale representation
 663 learning for spatial feature distributions using grid cells. In *International Conference on*
 664 *Learning Representations*, 2020. URL <https://openreview.net/forum?id=rJ1jdh4KDh>.

665 David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented
 666 natural images and its application to evaluating segmentation algorithms and measuring ecological
 667 statistics. In *IEEE International Conference on Computer Vision*, volume 2, pp. 416–423. IEEE,
 668 2001.

669 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
 670 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications*
 671 *of the ACM*, 65(1):99–106, 2021.

672 G. D. Nastrom and K. S. Gage. A climatology of atmospheric wavenumber spectra of wind and
 673 temperature observed by commercial aircraft. *Journal of the Atmospheric Sciences*, 42(9):950–
 674 960, 1985. doi: 10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

675 Tung Nguyen, Jason Jewik, Hritik Bansal, Prakhar Sharma, and Aditya Grover. Climatelearn:
 676 Benchmarking machine learning for weather and climate modeling. *Advances in Neural Information*
 677 *Processing Systems*, 36:75009–75025, 2023.

678 NOAA Climate Program Office. New heat maps help cities prepare for longer, more intense heat
 679 waves. <https://cpo.noaa.gov/new-heat-maps-help-cities-prepare-for-longer-more-intense-heat-waves/>, 2025. Accessed: 2025-08-21.

680 Zizheng Pan, Jianfei Cai, and Bohan Zhuang. Fast vision transformers with hilo attention. *Advances*
 681 *in Neural Information Processing Systems*, 35:14541–14554, 2022.

682 Badri Patro and Vijay Agneeswaran. Scattering vision transformer: Spectral mixing matters. *Advances*
 683 *in Neural Information Processing Systems*, 36:54152–54166, 2023.

684 NC Pepin and JD Lundquist. Temperature trends at high elevations: patterns across the globe.
 685 *Geophysical Research Letters*, 35(14), 2008.

686 Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
 687 reasoning with a general conditioning layer. In *Proceedings of the AAAI conference on artificial*
 688 *intelligence*, volume 32, 2018.

689 PRISM Climate Group. Prism climate data. <https://prism.oregonstate.edu/>, 2025.
 690 Accessed on August 30, 2025.

691 Zequn Qin, Pengyi Zhang, Fei Wu, and Xi Li. Fcanet: Frequency channel attention networks. In
 692 *IEEE International Conference on Computer Vision*, pp. 783–792, 2021.

702 Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
 703 Bengio, and Aaron Courville. On the spectral bias of neural networks. In *International Conference
 704 on Machine Learning*, pp. 5301–5310. PMLR, 2019.

705

706 Martin Ridal, Eric Bazile, Patrick Le Moigne, Roger Randriamampianina, Semjon Schimanke, Ulf
 707 Andrae, Lars Berggren, Pierre Brousseau, Per Dahlgren, Lisette Edvinsson, et al. Cerra, the
 708 copernicus european regional reanalysis system. *Quarterly Journal of the Royal Meteorological
 709 Society*, 150(763):3385–3411, 2024.

710

711 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 712 image segmentation. In *International Conference on Medical Image Computing and Computer-assisted
 713 Intervention*, pp. 234–241. Springer, 2015.

714

715 Marc Rußwurm, Konstantin Klemmer, Esther Rolf, Robin Zbinden, and Devis Tuia. Geographic location
 716 encoding with spherical harmonics and sinusoidal representation networks. In *The Twelfth
 717 International Conference on Learning Representations*, 2024.

718

719 Katja Schwarz, Yiyi Liao, and Andreas Geiger. On the frequency bias of generative models. *Advances
 720 in Neural Information Processing Systems*, 34:18126–18136, 2021.

721

722 Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit
 723 neural representations with periodic activation functions. *Advances in Neural Information
 724 Processing Systems*, 33:7462–7473, 2020.

725

726 William C. Skamarock, Sung-Gyo Park, Joseph B. Klemp, and Chris Snyder. Atmospheric kinetic
 727 energy spectra from global high-resolution simulations. *Journal of the Atmospheric Sciences*, 71
 728 (11):4369–4381, 2014. doi: 10.1175/JAS-D-14-0114.1.

729

730 Prakhar Srivastava, Ruihan Yang, Gavin Kerrigan, Gideon Dresdner, Jeremy McGibbon, Christopher
 731 Bretherton, and Stephan Mandt. Precipitation downscaling with spatiotemporal video diffusion. In
 732 *Advances in Neural Information Processing Systems*, volume 37, pp. 56374–56400. Curran
 733 Associates, Inc., 2024. doi: 10.5220/079017-1795.

734

735 Karen Stengel, Andrew Glaws, Dylan Hettinger, and Ryan N King. Adversarial super-resolution of
 736 climatological wind and solar data. *Proceedings of the National Academy of Sciences*, 117(29):
 16805–16815, 2020.

737

738 Yongjian Sun, Kefeng Deng, Kaijun Ren, Jia Liu, Chongjiu Deng, and Yongjun Jin. Deep learning
 739 in statistical downscaling for deriving high spatial resolution gridded meteorological data: A
 740 systematic review. *ISPRS Journal of Photogrammetry and Remote Sensing*, 208:14–38, 2024.

741

742 Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
 743 Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
 744 high frequency functions in low dimensional domains. *Advances in Neural Information Processing
 745 Systems*, 33:7537–7547, 2020.

746

747 Francisco J Tapiador, Andrés Navarro, Raúl Moreno, José Luis Sánchez, and Eduardo García-
 748 Ortega. Regional climate models: 30 years of dynamical downscaling. *Atmospheric Research*,
 749 235:104785, 2020.

750

751 Matej Ulicny, Vladimir A Krylov, and Rozenn Dahyot. Harmonic convolutional networks based on
 752 discrete cosine transform. *Pattern Recognition*, 129:108707, 2022.

753

754 Thomas Vandal, Evan Kodra, Sangram Ganguly, Andrew Michaelis, Ramakrishna Nemani, and
 755 Auroop R Ganguly. DeepSD: Generating high resolution climate change projections through
 756 single image super-resolution. In *Proceedings of the 23rd ACM SIGKDD international conference
 757 on knowledge discovery and data mining*, pp. 1663–1672, 2017.

758

759 Yogesh Verma, Markus Heinonen, and Vikas Garg. ClimODE: Climate and weather forecasting
 760 with physics-informed neural ODEs. In *The Twelfth International Conference on Learning
 761 Representations*, 2024. URL <https://openreview.net/forum?id=xuY33XhEGR>.

762

763 Zhihao Wang, Jian Chen, and Steven CH Hoi. Deep learning for image super-resolution: A survey.
 764 *IEEE transactions on pattern analysis and machine intelligence*, 43(10):3365–3387, 2020.

756 Robbie A Watt and Laura A Mansfield. Generative diffusion-based downscaling for climate. *arXiv*
757 *preprint arXiv:2404.17752*, 2024a.
758

759 Robbie A Watt and Laura A Mansfield. Generative diffusion-based downscaling for climate. *arXiv*
760 *preprint arXiv:2404.17752*, 2024b.
761

762 Zhijie Wu, Yuhe Jin, and Kwang Moo Yi. Neural fourier filter bank. In *IEEE Conference on*
763 *Computer Vision and Pattern Recognition*, pp. 14153–14163, 2023.
764

765 Wenbin Xie, Dehua Song, Chang Xu, Chunjing Xu, Hui Zhang, and Yunhe Wang. Learning
766 frequency-aware dynamic network for efficient super-resolution. In *IEEE International Con-*
767 *ference on Computer Vision*, pp. 4308–4317, October 2021.
768

769 Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-Kuang Chen, and Fengbo Ren. Learning in the
770 frequency domain. In *IEEE Conference on Computer Vision and Pattern Recognition*, June 2020.
771

772 Chiu-Wai Yan, Shi Quan Foo, Van Hoan Trinh, Dit-Yan Yeung, Ka-Hing Wong, and Wai-Kin Wong.
773 Fourier amplitude and correlation loss: Beyond using l2 loss for skillful precipitation nowcasting.
774 *Advances in Neural Information Processing Systems*, 37:100007–100041, 2024.
775

776 Qidong Yang, Alex Hernandez-Garcia, Paula Harder, Venkatesh Ramesh, Prasanna Sattigeri,
777 Daniela Szwarcman, Campbell D Watson, and David Rolnick. Fourier neural operators for arbi-
778 trary resolution climate data downscaling. *Journal of Machine Learning Research*, 25(420):1–30,
779 2024.
780

781 Na Zhao, Tianxiang Yue, Xun Zhou, Mingwei Zhao, Yu Liu, Zhengping Du, and Lili Zhang. Sta-
782 tistical downscaling of precipitation using local regression and high accuracy surface modeling
783 method. *Theoretical and Applied Climatology*, 129(1):281–292, 2017.
784

785 Yupeng Zhou, Zhen Li, Chun-Le Guo, Song Bai, Ming-Ming Cheng, and Qibin Hou. SRFormer:
786 Permuted self-attention for single image super-resolution. In *IEEE International Conference on*
787 *Computer Vision*, pp. 12734–12745, 2023.
788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810
811
A APPENDIX812
813 The appendix contains the following information:814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
172100
172101
172102
172103
172104
172105
172106
172107
172108
172109
172110
172111
172112
172113
172114
172115
172116
172117
172118
172119
172120
172121
172122
172123
172124
172125
172126
172127
172128
172129
172130
172131
172132
172133
172134
172135
172136
172137
172138
172139
172140
172141
172142
172143
172144
172145
172146
172147
172148
172149
172150
172151
172152
172153
172154
172155
172156
172157
172158
172159
172160
172161
172162
172163
172164
172165
172166
172167
172168
172169
172170
172171
172172
172173
172174
172175
172176
172177
172178
172179
172180
172181
172182
172183
172184
172185
172186
172187
172188
172189
172190
172191
172192
172193
172194
172195
172196
172197
172198
172199
172200
172201
172202
172203
172204
172205
172206
172207
172208
172209
172210
172211
172212
172213
172214
172215
172216
172217
172218
172219
172220
172221
172222
172223
172224
172225
172226
172227
172228
172229
172230
172231
172232
172233
172234
172235
172236
172237
172238
172239
172240
172241
172242
172243
172244
172245
172246
172247
172248
172249
172250
172251
172252
172253
172254
172255
172256
172257
172258
172259
172260
172261
172262
172263
172264
172265
172266
172267
172268
172269
172270
172271
172272
172273
172274
172275
172276
172277
172278
172279
172280
172281
172282
172283
172284
172285
172286
172287
172288
172289
172290
172291
172292
172293
172294
172295
172296
172297
172298
172299
172300
172301
172302
172303
172304
172305
172306
172307
172308
172309
172310
172311
172312
172313
172314
172315
172316
172317
172318
172319
172320
172321
172322
172323
172324
172325
172326
172327
172328
172329
172330
172331
172332
172333
172334
172335
172336
172337
172338
172339
172340
172341
172342
172343
172344
172345
172346
172347
172348
172349
172350
172351
172352
172353
172354
172355
172356
172357
172358
172359
172360
172361
172362
172363
172364
172365
172366
172367
172368
172369
172370
172371
172372
172373
172374
172375
172376
172377
172378
172379
172380
172381
172382
172383
172384
172385
172386
172387
172388
172389
172390
172391
172392
172393
172394
172395
172396
172397
172398
172399
172400
172401
172402
172403
172404
172405
172406
172407
172408
172409
172410
172411
172412
172413
172414
172415
172416
172417
172418
172419
172420
172421
172422
172423
172424
172425
172426
172427
172428
172429
172430
172431
172432
172433
172434
172435
172436
172437
172438
172439
172440
172441
172442
172443
172444
172445
172446
172447
172448
172449
172450
172451
172452
172453
172454
172455
172456
172457
172458
172459
172460
172461
172462
172463
172464
172465
172466
172467
172468
172469
172470
172471
172472
172473
172474
172475
172476
172477
172478
172479
172480
172481
172482
172483
172484
172485
172486
172487
172488
172489
172490
172491
172492
172493
172494
172495
172496
172497
172498
172499
172500
172501
172502
172503
172504
172505
172506
172507
172508
172509
172510
172511
172512
172513
172514
172515
172516
172517
172518
172519
172520
172521
172522
172523
172524
172525
172526
172527
172528
172529
172530
172531
172532
172533
172534
172535
172536
172537
172538
172539
172540
172541
172542
172543
172544
172545
172546
172547
172548
172549
172550
172551
172552
172553
172554
172555
172556
172557
172558
172559
172560
172561
172562
172563
172564
172565
172566
172567
172568
172569
172570
172571
172572
172573
172574
172575
172576
172577
172578
172579
172580
172581
172582
172583
172584
172585
172586
172587
172588
172589
172590
172591
172592
172593
172594
172595
172596
172597
172598
172599
172600
172601
172602
172603
172604
172605
172606
172607
172608
172609
172610
172611
172612
172613
172614
172615
172616
172617
172618
172619
172620
172621
172622
172623
172624
172625
172626
172627
172628
172629
172630
172631
172632
172633
172634
172635
172636
172637
172638
172639
172640
172641
172642
172643
172644
172645
172646
172647
172648
172649
172650
172651
172652
172653
172654
172655
172656
172657
172658
172659
172660
172661
172662
172663
172664
172665
172666
172667
172668
172669
172670
172671
172672
172673
172674
172675
172676
172677
172678
172679
172680
172681
172682
172683
172684
172685
172686
172687
172688
172689
172690
172691
172692
172693
172694
172695
172696
172697
172698
172699
172700
172701
172702
172703
172704
172705
172706
172707
172708
172709
172710
172711
172712
172713
172714
172715
172716
172717
172718
172719
172720
172721
172722
172723
172724
172725
172726
172727
172728
172729
172730
172731
172732
172733
172734
172735
172736
172737
172738
172739
172740
172741
172742
172743
172744
172745
172746
172747
172748
172749
172750
172751
172752
172753
172754
172755
172756
172757
172758
172759
172760
17

864
865
866 Table 6: Summary of meteorological variables.
867
868
869
870
871
872
873
874
875

Abbreviation	Full Name	Source	Unit
T2m	2m temperature	ERA5, CERRA	K
Z500	geopotential 500hPa	ERA5	m^2s^{-2}
T850	temperature 850hPa	ERA5	K
10u	10m u component of wind	CERRA	ms^{-1}
10v	10m v component of wind	CERRA	ms^{-1}
Rh2m	2m relative humidity	CERRA	%
Sp	surface pressure	CERRA	Pa
LST	land surface temperature	MODIS	K
SKT	skin temperature	ERA5-Land	K

876
877
878 A.2 DATA879
880 A.2.1 DATASET DETAILS

881 **ERA5 Reanalysis.** ERA5 Reanalysis (Hersbach et al., 2020) is maintained by the European Center
 882 for Medium-Range Weather Forecasting (ECMWF). ERA5 is a reanalysis that combines diverse ob-
 883 servational data with forecasts from the state-of-the-art Integrated Forecasting System (IFS). It pro-
 884 vides the estimation of the state of the atmosphere and land-surface variables at any given time. In
 885 its raw format, ERA5 provides hourly data from 1979 to the present on a 0.25° global grid, covering
 886 a range of atmospheric variables at 37 pressure levels in addition to surface conditions. We prepro-
 887 cess the 2m-temperature (T2m), geopotential at 500hPa (Z500), and temperature at 850hPa (T850)
 888 in ERA5 according to the ClimateLearn benchmark into 5.625° (32×64) and 2.8125° (64×128)
 889 global grids with hourly updates for climate downscaling, we use the years 1981-2015 for training,
 890 the year 2016 for validation, and 2017-2018 for testing.

891 **PRISM.** PRISM (PRISM Climate Group, 2025) is a dataset of observed atmospheric variables,
 892 including precipitation and temperature, covering the conterminous United States at varying spatial
 893 and temporal resolutions from 1895 to the present. At its highest publicly available resolution,
 894 PRISM provides daily data on a 4×4 km grid, corresponding to a matrix of 621×1405 cells.
 895 Following the ClimateLearn benchmark, we process daily max T2m in PRISM to 0.75° . We crop
 896 the corresponding regions in ERA5 to align with PRISM when downscaling. The training period is
 897 from 1981 to 2015, validation is in 2016, and the testing period is from 2017 to 2018.

898 **CERRA.** Copernicus European Regional Reanalysis for Europe (CERRA) is a pan-European re-
 899 gional reanalysis produced by C3S/ECMWF at 5.5 km horizontal resolution, with the core produc-
 900 tion spanning September 1984 to June 2021. For single-variable experiments (Table 1 and Table 3b),
 901 we specifically employ the 2-m air temperature (t2m) field available as a single-level variable via
 902 the C3S Climate Data Store. For our experiments, we use bilinear interpolation to process the native
 903 5.5 km data (1069×1069) to grids of 5.5 (1068×1068), 11 (534×534), 22 (267×267), and
 904 44 (133×133) km with 3-hour updates to define multiple evaluation settings, we use 2010-2017
 905 for training, 2018-2021 for validation and testing. For multi-variable experiments (Table 2), we
 906 employ the 2m-temperature (T2m), 10m-u-component-of-wind (10u), 10m-v-component-of-wind
 907 (10v), 2m-relative-humidity (Rh2m), and surface-pressure (Sp). The native 5.5 km data are further
 908 preprocessed with bilinear interpolation to grids of 11 (534×534), 22 (267×267) km with 3-hour
 909 updates for the $2 \times$ super-resolution. The training set is from 2010 to 2017, and the val/test sets are
 910 from 2018 to 2021, leading to a large-scale multi-variable downscaling dataset of roughly 200GB.

911 **MODIS.** Moderate Resolution Imaging Spectroradiometer (MODIS) is a satellite from NASA,
 912 whose data are used to create a number of operational products. To assess the model’s general-
 913 ization ability on this data source, we construct a new dataset aiming at downscaling the daily skin
 914 temperature (SKT) from ERA5-Land to the MODIS land surface temperature (LST). Specifically,
 915 we download both datasets over Switzerland, which is a very challenging region with complex at-
 916 mospheric processes, due to its complex alpine topography. We preprocess ERA5-Land to 11 km
 917 resolution (21×46), and MODIS to roughly 1.1 km resolution (210×460) via bilinear interpolation,
 918 leading to a challenging setting of $\times 10$ downscaling. The training set is from 2018 to 2022, and the
 919 testing set is from 2023.

918 A.2.2 DATA PRE-PROCESSING
919920 We normalize both the input and target image $I \in \mathbb{R}^{H \times W}$ to stabilize model training:
921

922
$$\tilde{I}(x, y) = \frac{I(x, y) - \mu}{\sigma + \varepsilon}, \quad (x, y) \in \{1, \dots, H\} \times \{1, \dots, W\}, \quad (12)$$

923

924 where μ and σ are the mean and standard deviation (computed over the training set), and $\varepsilon > 0$
925 ensures numerical stability. In addition, we add a constant offset (1.0) to the frequency-aware repre-
926 sentation I_f , to prevent near-zero entries in I_f from nullifying the contribution of the geographical
927 embedding during the per-pixel product.
928929 A.3 EVALUATION METHODS
930931 In the introduction, we use the Laplace operator to filter the prediction bias in Figure 1. In the
932 experiment section, we use two types of evaluation metrics: *spatial domain* and *frequency-aware*
933 metrics.
934935 A.3.1 LAPLACE OPERATOR
936937 In Figure 1, we use the Laplace operator as a high-pass filter to visualize the prediction bias. The
938 Laplace operator is written as:
939

940
$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}. \quad (13)$$

941

- f indexes the prediction bias in 2D;
- $\frac{\partial^2 f}{\partial x^2}$ is the second derivative of f with respect to x -direction measuring curvature or varia-
942 tion along x .
- $\frac{\partial^2 f}{\partial y^2}$ is the second derivative along the y -direction.
943

944 The Laplacian highlights details, high-frequency features, and regions where prediction bias changes
945 sharply, while smoothing out low-frequency components.
946947 A.3.2 SPATIAL DOMAIN METRICS
948949

- **RMSE (Rooted Mean Square Error):**

950
$$\text{RMSE} = \frac{1}{N} \sum_{k=1}^N \sqrt{\frac{1}{H \times W} \sum_{i=1}^H \sum_{j=1}^W L(i) (\tilde{X}_{k,i,j} - X_{k,i,j})^2}, \quad (14)$$

951

952

- $k = 1, \dots, N$ indexes samples;
- $i = 1, \dots, H$ and $j = 1, \dots, W$ index grid rows and columns;
- $X_{k,i,j}$ is the ground-truth value at pixel (i, j) of sample k ;
- $\tilde{X}_{k,i,j}$ is the corresponding prediction;
- $L(i)$ is an optional latitude (row) weight. We use the normal RMSE without reweight-
953 ing, so $L(i)$ is set to 1.

954

- **MB (Mean Bias):** measures the difference between the spatial mean of the prediction and
955 the spatial mean of the ground truth. A positive mean bias shows an overestimation, while
956 a negative mean bias shows an underestimation of the mean value.
957

958
$$\text{MB} = \frac{1}{N \times H \times W} \sum_{k=1}^N \sum_{i=1}^H \sum_{j=1}^W \tilde{X}_{k,i,j} - \frac{1}{N \times H \times W} \sum_{k=1}^N \sum_{i=1}^H \sum_{j=1}^W X_{k,i,j}, \quad (15)$$

959

960 where N is the number of samples, $H \times W$ the grid size, $X_{k,i,j}$ the ground truth, and $\tilde{X}_{k,i,j}$
961 the prediction.
962

972
 973 • **Pearson Coefficient**: measures the correlation between the prediction and the ground truth.
 974 We first flatten the prediction \tilde{X} and ground truth X , and compute the metric as follows:

975
$$\rho_{\tilde{X}, X} = \frac{\text{cov}(\tilde{X}, X)}{\sigma_{\tilde{X}} \sigma_X}, \quad (16)$$

 976
 977

978 where $\text{cov}(\cdot, \cdot)$ is the covariance and $\sigma_{\tilde{X}}, \sigma_X$ are standard deviations. The coefficient mea-
 979 sures linear association, with range $[-1, 1]$ (1 = perfect positive, 0 = no linear correlation,
 980 -1 = perfect negative).

981 A.3.3 FREQUENCY-AWARE METRICS
 982

983 • **Log Frequency Distance (LFD)** (Jiang et al., 2021):

984
$$\text{LFD} = \log \left[\frac{1}{H \times W} \left(\sum_{u=0}^{H-1} \sum_{v=0}^{W-1} |F_p(u, v) - F_g(u, v)|^2 \right) + 1 \right], \quad (17)$$

 985
 986

987 where $F_p(u, v), F_g(u, v)$ denote the Fourier transformed predictions and ground truth, re-
 988 spectively, the logarithm is only used to scale the value into a reasonable range. A lower
 989 LFD is better.

990 • **Wavelet-based Metric**: In order to evaluate the performance on different frequency bands
 991 in Figure 3c, we use the Discrete Wavelet Transform (DWT) to decouple the predicted
 992 image and the ground truth target into four bands (LL/LH/HL/HH), then evaluate the RMSE
 993 for each band.
 994
 995 • **Kinetic Energy Spectral RMSE (RMSE_{KE})**: To assess the scale-dependent consistency
 996 of the predicted wind fields, we compare their isotropic kinetic energy (KE) spectra (Bol-
 997 giani et al., 2022) to the one of the ground truth. Given horizontal winds $u(x, y)$ and
 998 $v(x, y)$, we remove the spatial mean, apply a 2D Hann window, and compute the 2D
 999 Fourier transform to obtain the KE power spectral density $\text{PSD}(k_x, k_y) = \frac{1}{2}(|\hat{u}(k_x, k_y)|^2 +$
 1000 $|\hat{v}(k_x, k_y)|^2)$. Using the radial wavenumber $k_r = \sqrt{k_x^2 + k_y^2}$, we perform ring averaging
 1001 in Fourier space to obtain an isotropic KE spectrum $E_b(k_i)$ for batch index b and wavenum-
 1002 ber bin i . We then define the kinetic energy spectral RMSE between predicted $E_b^p(k_i)$ and
 1003 target spectra $E_b^t(k_i)$ as

1004
 1005
$$\text{RMSE}_{\text{KE}} = \sqrt{\frac{1}{B N_k} \sum_{b=1}^B \sum_{i=1}^{N_k} (E_b^p(k_i) - E_b^t(k_i))^2}. \quad (18)$$

 1006
 1007

1008 This error directly measures how well the model reproduces the distribution of kinetic
 1009 energy across spatial scales.

1010
 1011 A.4 COMPARISON METHODS
 1012

1013 We re-implemented both *generic methods* and *climate-oriented methods* for climate SR, making it
 1014 one of the most comprehensive comparisons to date in the machine learning community.

1015
 1016 A.4.1 GENERIC METHODS

1017 Generic methods include ResNet (He et al., 2016), U-Net (Ronneberger et al., 2015), ViT (Dosovit-
 1018 skiy et al., 2021), EDSR (Lim et al., 2017), FFL (Jiang et al., 2021), SwinIR (Liang et al., 2021),
 1019 SRFormer (Zhou et al., 2023), and SRGAN (Ledig et al., 2017). The implementations of ResNet,
 1020 U-Net, and ViT follow the ClimateLearn paper (Nguyen et al., 2023) to ensure a fair comparison.

1021
 1022 **EDSR** EDSR (Lim et al., 2017) is a refined version of the ResNet architecture for SR. EDSR
 1023 removes batch normalization layers and simplifies residual blocks, making it better suited for single-
 1024 image super-resolution. The simplified architecture enables the construction of deeper networks
 1025 stabilized via residual scaling, which significantly boosts SR results. We implement EDSR with 28
 residual blocks which aligns with the implementation of ResNet in ClimateLearn.

1026 **FFL** Focal Frequency Loss (FFL (Jiang et al., 2021)) encourages models to adaptively focus on
 1027 frequency components that are difficult to synthesize. By down-weighting the low-frequency com-
 1028 ponents and emphasizing the higher-frequency components, FFL helps preserve and recover fine
 1029 textures and details in reconstructed images. Though primarily applied to generative models (*e.g.*,
 1030 VAE, pix2pix, StyleGAN2). We build the FFL based on the ViT model in ClimateLearn.
 1031

1032 **SwinIR** SwinIR (Liang et al., 2021) is based on the Swin Transformer (Liu et al., 2021). The
 1033 architecture comprises three stages: shallow feature extraction, deep feature extraction using resi-
 1034 dential Swin Transformer blocks (RSTBs), and high-quality image reconstruction. SwinIR leverages
 1035 the Swin Transformer’s hierarchical shifted-window attention within a residual learning framework.
 1036 We set the depths to [3, 3, 3] and num_heads to 4 for better alignment with the parameters of ViT
 1037 in ClimateLearn.
 1038

1039 **SRFormer** SRFormer (Zhou et al., 2023) introduces a permuted self-attention (PSA), which
 1040 strikes an appropriate balance between the channel and spatial information for self-attention. PSA
 1041 enables efficient computation of long-range pairwise correlations within significantly larger atten-
 1042 tion windows, achieving better coverage of spatial context. We set the depths to [3, 3, 3, 3] and
 1043 num_heads to 4 for better alignment with the parameters of ViT in ClimateLearn.
 1044

1045 **SRGAN** SRGAN (Ledig et al., 2017) is the first generative adversarial network (GAN) frame-
 1046 work designed to produce photo-realistic high-resolution images at $4\times$ upscaling factors. SRGAN
 1047 employs a perceptual loss that combines a content loss based on high-level feature maps from a
 1048 pretrained VGG network and an adversarial loss from a discriminator, encouraging reconstructions
 1049 that lie on the manifold of natural images. To balance the model parameters, we build the SRGAN
 1050 with 16 residual blocks in the generator and 8 convolutional blocks in the discriminator.
 1051

A.4.2 CLIMATE-ORIENTED METHODS

1052 Climate-oriented methods include DeepSD (Vandal et al., 2017), FACL (Yan et al., 2024), and
 1053 SmCL (Harder et al., 2023).
 1054

1055 **DeepSD** DeepSD (Vandal et al., 2017) adapts stacked Super-Resolution Convolutional Neural
 1056 Networks (SRCNNs) for climate data downscaling. Each SRCNN performs a small upscaling step,
 1057 and stacking them enables large-scale resolution enhancement, similar to multi-stage image super-
 1058 resolution pipelines. The method also integrates high-resolution static features such as elevation as
 1059 auxiliary inputs, analogous to conditioning strategies in SR models. We train the DeepSD with the
 1060 original architecture proposed in (Vandal et al., 2017).
 1061

1062 **FACL** Fourier Amplitude and Correlation Loss (FACL (Yan et al., 2024)), comprises two com-
 1063plementary components: Fourier Amplitude Loss (FAL) and Fourier Correlation Loss (FCL). FAL
 1064 constrains the Fourier amplitude of model outputs to better capture spectral content, while FCL ad-
 1065 dresses missing or misaligned phase information by enforcing correlation structures in the frequency
 1066 domain. We build the FACL based on the ViT model in ClimateLearn.
 1067

1068 **SmCL** SmCL (Harder et al., 2023) introduces a climate downscaling method that incorporates
 1069 hard physical constraints (*e.g.*, conservation of mass or energy) directly into the model architecture,
 1070 ensuring physically consistent high-resolution outputs. We build the SmCL based on the ViT model
 1071 in ClimateLearn.
 1072

1073 **ClimateDiffuse** ClimateDiffuse (Watt & Mansfield, 2024a) performs climate downscaling as a
 1074 generative task with a diffusion model, providing both target prediction and probability estimation,
 1075 which can be used for risk assessment. ClimateDiffuse serves as a simple yet effective baseline to
 1076 assess the capability of diffusion-based models for climate variables.
 1077

1078 **STVD** STVD (Srivastava et al., 2024) extends recent video diffusion methods to super-resolving
 1079 precipitation data by combining a deterministic model with a temporally-conditioned diffusion
 1080 model to generate high-frequency patterns. We adapt this model to perform temporally indepen-
 1081 dent climate downscaling that aligns with the setting of this paper.
 1082

DSFNO DSFNO (Yang et al., 2024) formulates statistical downscaling as learning a resolution-agnostic operator in Fourier space. It is trained on low-/high-resolution pairs with a small, fixed upsampling factor and is then applied in a zero-shot fashion to downscale inputs to unseen higher resolutions. In this paper, we train DSFNO on our datasets and use it as the backbone on which we build our proposed method GeoFAR.

A.5 DETAILED METHOD DESCRIPTION

In this section, we explain how to plug our approach into deterministic and generative baselines given the geography-informed representation Z :

Deterministic downscaling learns a single mapping by empirical risk minimization:

$$\hat{\theta} = \arg \min_{\theta} \mathbb{E}_{(I, I_{\text{HR}})} [\mathcal{L}(f_{\theta}(Z), I_{\text{HR}})], \quad (19)$$

where \mathcal{L} is typically an ℓ_n -based loss, and f_{θ} upsamples the input to the HR grid. Geo-INR steers f_{θ} toward geography-consistent high frequency details while maintaining fidelity.

Generative downscaling like SRGAN (Ledig et al., 2017) can also be plugged with our method for geo-conditioned learning to better generate plausible high-frequency details. Let g_{θ} be the Geo-conditioned generator that maps Z to an HR image, and D_{ϕ} a discriminator. The generator update minimizes fidelity loss via the Mean Squared Error (MSE):

$$\min_{\theta} \mathcal{L}_{\text{G}} = \mathbb{E} [\|g_{\theta}(Z) - I_{\text{HR}}\|_2^2], \quad (20)$$

while the discriminator update minimizes the binary cross-entropy (BCE) loss corresponding to the classic minimax game:

$$\min_{\phi} \mathcal{L}_{\text{D}} = -\mathbb{E} [\log D_{\phi}(I_{\text{HR}})] - \mathbb{E} [\log (1 - D_{\phi}(g_{\theta}(Z)))].$$

This updates the adversarial training signal on D_{ϕ} (as in SRGAN) while directing g_{θ} strictly toward high-fidelity reconstruction via MSE. The Geo-INR modulation anchors the generation of high-resolution data to geography information (location and terrain), helping recover region-specific high-frequency details and mitigating GAN artifacts.

A.6 IMPLEMENTATION DETAILS

All experiments are run on a working station with one NVIDIA RTX A5500 GPU and an Intel Xeon Silver 4410Y CPU (1 socket, 12 physical cores, 2 threads/core).

We implement our method and re-implement baselines using the ClimateLearn training pipeline (Nguyen et al., 2023). For **ERA5** and **PRISM**, we train for 50 epochs with batch size 16, learning rate 2×10^{-4} , and weight decay 1×10^{-4} . For **CERRA** ($\times 2$), we train for 20 epochs with batch size 4, learning rate 2×10^{-4} , and weight decay 2×10^{-4} . For **CERRA** ($\times 4, \times 8$), we keep the learning rate and weight decay at 2×10^{-4} and reduce the batch size to 1 due to memory constraints. **For ERA5 to MODIS, we train for 50 epochs with batch size 8, learning rate 2×10^{-4} , and weight decay 1×10^{-4} .** Early stopping is applied in all settings if the validation loss does not decrease for 5 consecutive epochs.

In GeoFAR, we set the embedding dimension d to 64, and use two layers of SIREN to embed the geographical information. For FCK, we set the kernel size (N) to 8, the stride to 1 and the zero-padding to length 4, so that we generate 64 (N^2) channels aligned with the dimension d of Geo-INR.

A.7 ADDITIONAL EXPERIMENTS

Robustness and generalization. We investigate GeoFAR’s robustness to random initialization, its sensitivity to smoothed low-resolution inputs, and its ability to generalize to remote sensing observations:

- Table 7a reports the performance of GeoFAR on downscaling CERRA T2m from 22 km to 11 km under different initialization seeds. The performance is stable across the different seeds: RMSE remains unchanged, the mean bias and LFD only fluctuate within ± 0.002 .

1134
 1135 **Table 7: Robustness and generalization analysis that investigates GeoFAR’s robustness to (a) initial-
 1136 ization seeds and (b) smoothed inputs (Methods with * denote results with original inputs), as well
 1137 as (c) models’ generalization on downscaling ERA5 (SKT, 11km) to MODIS land surface tempera-
 1138 ture (LST, 1.1km).**

(a) Initialization seeds				(b) Smoothed inputs (CERRA $\times 2$)				(c) ERA5 to MODIS			
Seed	RMSE	MB	LFD	Method	RMSE	MB	LFD	Method	RMSE	Pearson	MB
0	0.191	-0.001	9.245	ViT*	0.380	0.033	10.496	ViT	3.474	0.771	1.822
23	0.191	0.000	9.243	ViT	0.436	0.071	10.824	U-Net	3.715	0.720	1.696
149	0.191	0.001	9.242	GeoFAR[ViT]*	0.191	-0.000	9.245	GeoFAR[ViT]	3.266	0.766	0.309
71	0.191	-0.002	9.244	GeoFAR[ViT]	0.213	0.003	9.466	GeoFAR[U-Net]	2.718	0.844	0.717

1145
 1146 **Table 8: Additional experiments on CERRA ($\times 2$) that investigate (a) the effects of the number of
 1147 embeddings **on accuracy and inference speed (FPS)**, (b) the effects of different positional encodings,
 1148 and (c) the utility of information **from** terrain vectors **in** GeoFAR. ‘Elevation’ means only using
 1149 location and elevation as the input of INR, ‘Vectors’ mean using the location and terrain-differential
 1150 vector as input.**

(a) Embedding dimension					(b) Positional encoding				(c) Terrain vector			
Dim.	RMSE	MB	LFD	FPS	PE	RMSE	MB	LFD	Vector	RMSE	MB	LFD
36	0.192	-0.001	9.254	11.3	Direct	0.195	-0.001	9.256	w/o	0.198	-0.001	9.310
64	0.191	-0.001	9.245	11.1	Space2Vec	0.192	0.001	9.253	Elevation	0.193	-0.001	9.260
100	0.190	0.000	9.235	10.7	SH	0.191	-0.001	9.245	Vectors	0.191	-0.001	9.245

1151
 1152 • Table 7b compares performances when using smoothed inputs versus the original inputs (CERRA
 1153 22 km) for downscaling to CERRA 11 km. In the main paper, we constructed the CERRA dataset
 1154 by downsampling the raw data from 5.5km to resolution variants for SR using bilinear interpo-
 1155 lation. Here, we assess robustness to smoothed input simulations by first downsampling the raw
 1156 data to 11 km and then to 22 km, applying Gaussian smoothing with $\sigma = 1$ at each stage to obtain
 1157 the smoothed inputs. Compared to the results without Gaussian smoothing, both methods suffer
 1158 from a slight decrease of performance (RMSE, ViT: $0.380 \rightarrow 0.436$, GeoFAR: $0.191 \rightarrow 0.213$).
 1159 However, GeoFAR still substantially improves the baseline (RMSE: $0.436 \rightarrow 0.213$) and shows
 1160 better robustness to input degradation (RMSE: ViT 0.380 vs. 0.436, GeoFAR: 0.191 vs. 0.213).
 1161 • To analyze the generalization ability on diverse data products, Table 7c presents the results on
 1162 downscaling from ERA5-Land (SKT, 11km) to MODIS (LST, 1.1km), i.e. when training the
 1163 model to downscale from reanalysis products (ERA5) to remote sensing observations (MODIS).
 1164 This task is more challenging than other settings due to large domain and resolution gaps between
 1165 the input and output, leading to higher errors than observed on the ERA5 and CERRA datasets
 1166 (Table 1). Nonetheless, this challenging dataset still benefits from GeoFAR, with RMSE and Mean
 1167 Bias markedly reduced with respect to both the ViT (RMSE: $3.474 \rightarrow 3.266$) and U-Net (RMSE:
 1168 $3.715 \rightarrow 2.718$) baselines.

1169
 1170 **Hyper-parameter analysis.** Table 8a presents the effects of the embedding dimension d in Equa-
 1171 tion 5. We set $L \in \{5, 6, 7\}$, yielding $(L+1)^2 = \{36, 64, 100\}$ spherical-harmonics (SH) channels
 1172 (i.e., d). Increasing SH channels from 36 to 100 reduces RMSE by 0.002 and LFD by 0.019, **while**
 1173 **slightly decreasing the inference speed by 0.6 frames per second (FPS)**. To balance accuracy and
 1174 cost, we use $d = 64$ in all experiments.

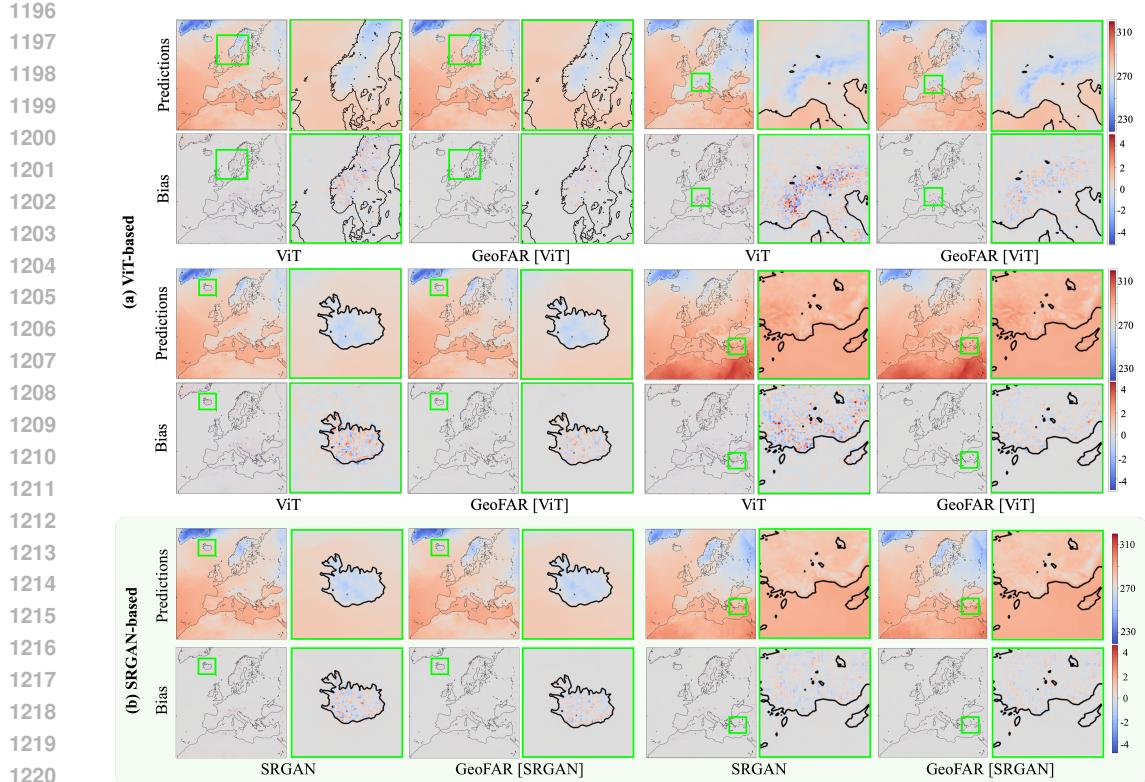
1175
 1176 **More ablations for Geo-INR.** Table 8b compares three location encoders (latitude/longitude
 1177 based): *Direct* stacks (lat, lon) into d channels as INR input; *Space2Vec* uses sine and cosine func-
 1178 tions of different frequencies to encode positions in space (Mai et al., 2020); *SH* uses spherical
 1179 harmonics (Rußwurm et al., 2024). Among them, *SH* achieves the best overall performance, so
 1180 we adopt it as our default location encoder. Table 8c evaluates terrain-aware embeddings on top
 1181 of the SH location encoder. Removing terrain-differential cues degrades RMSE by $\sim 4\%$ (from
 1182 0.191 to 0.198) and worsens the frequency metric LFD (from 9.245 to 9.310). Using only elevation
 1183 partially recovers accuracy (RMSE 0.193). The composite terrain-differential embedding yields the
 1184 best results (RMSE 0.191, LFD 9.245).

1188 Table 9: A comparison of model size (**millions of parameters**) and inference speed (**frames per**
 1189 **second, FPS**). All models are tested on a working station with RTX A5500 GPU, on the CERRA
 1190 dataset with input image size 534×534 .

1191

Model	ResNet	U-Net	ViT	SRGAN	EDSR	SwinIR	GeoFAR[U-Net]	GeoFAR[ViT]	GeoFAR[SRGAN]
#Params (M)	8.3	11.6	2.6	6.1	9.0	2.3	12.5	3.5	7.0
Speed (FPS)	3.8	14.1	15.0	16.6	5.2	12.8	11.0	11.1	11.7

1195



1221

Figure 6: More examples of the super-resolution results on CERRA. (a) Results from ViT-based
 1222 methods; (b) Results from SRGAN-based methods.

1223

1224

1225

Computational cost. Table 9 compares the model size of baseline methods and our proposed method. Compared to baseline models like U-Net, our proposed approach only introduces 0.9M additional parameters and slightly slows down the performance by about 3 FPS. Even on a target image of 11 km resolution (534×534) covering the whole Europe, GeoFAR is able to run at over 11 FPS on a RTX A5500 GPU, offering a favorable trade-off between extra computation and accuracy gains.

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Physical fidelity. We evaluate the physical fidelity of predicted wind fields ($10u$, $10v$) on CERRA $\times 2$. Table 10 reports the RMSE for the 10 m zonal and meridional winds, as well as the kinetic energy spectral RMSE ($RMSE_{KE}$, equation 18), for the ViT baseline and GeoFAR. GeoFAR substantially reduces the pointwise errors of both $10u$ and $10v$, and, more importantly, lowers $RMSE_{KE}$ from 60.998 to 18.857, indicating a much closer match to the target kinetic energy distribution and a higher physical fidelity of the reconstructed wind fields across the frequency components.

Table 10: Comparison of physical fidelity for 10 m winds using RMSE and kinetic energy spectral RMSE ($RMSE_{KE}$) on CERRA.

Method	$RMSE_{10u}$	$RMSE_{10v}$	$RMSE_{KE}$
ViT	0.341	0.355	60.998
GeoFAR[ViT]	0.184	0.186	18.857

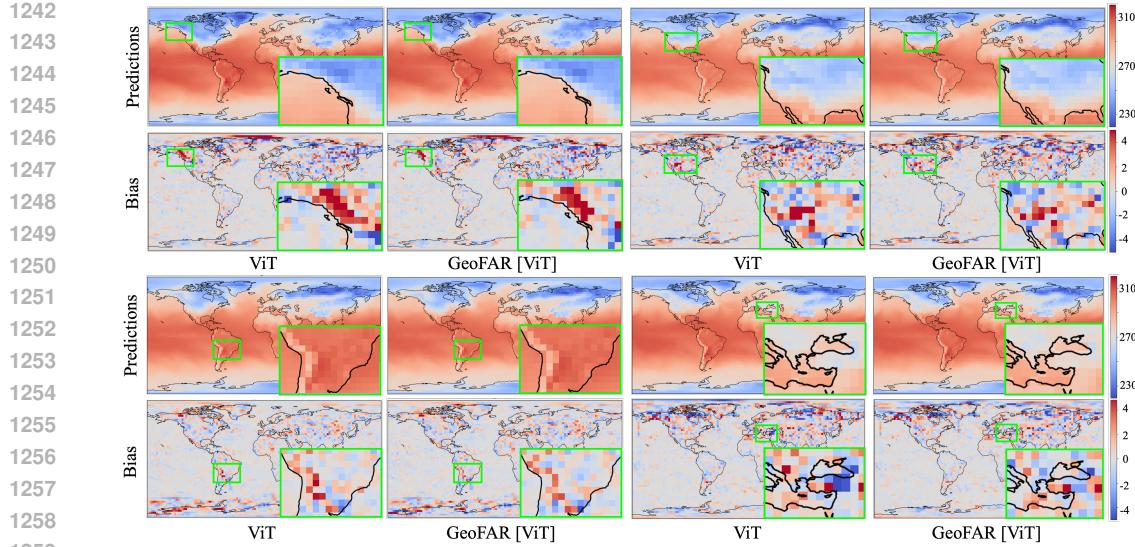


Figure 7: More examples of the super-resolution results on ERA5.

A.8 VISUAL RESULTS

In this section, we provide more visualizations of the super-resolution results (covering both deterministic models and generative models), as well as visualizations of the terrain information.

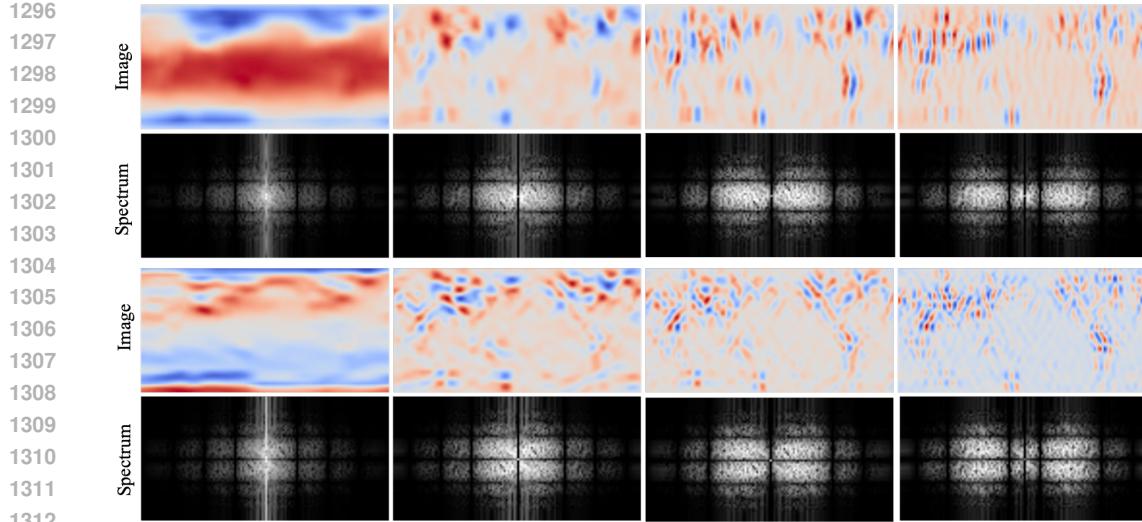
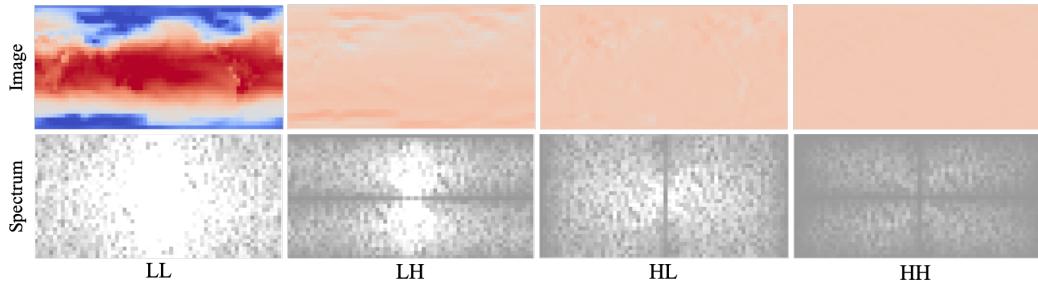
More results on CERRA and ERA5. Figure 6 and Figure 7 provides more examples on the CERRA and ERA5 dataset, covering both deterministic methods (*i.e.*, ViT, GeoFAR[ViT]) and generative methods (*i.e.*, SRGAN, GeoFAR[SRGAN]). In these two figures, we provide more examples of different regions across the globe: from Iceland, the Scandinavian Peninsula, the Alps, to Anatolia, our proposed method consistently improves the fidelity and reduces the prediction bias in the super-resolved results of baseline models. Compared to deterministic models, generative baselines provide a better modeling of high-frequency information, as shown in Figure 6 (b). Nevertheless, the method proposed in this paper further alleviates artifacts and reduces the prediction bias caused by terrain on the basis of GAN. Moreover, we also note that the gains are generally more visible on CERRA (5.5 km) than on the much coarser ERA5 grid (2.8125°), where each grid aggregates information over larger areas. Nevertheless, even on ERA5, we still observe reduced bias in difficult regions with strong high-frequency variability, such as Alaska and the Balkan Peninsula (Figure 7).

Frequency-aware representations. Figure 8 provides some examples of the frequency-aware representations in different channels: the first/third row shows images convolved by FCK, and the second/fourth row shows the corresponding Fourier spectrum. As the frequency indices increase, the image shows increasing frequency, and the Fourier spectrum shows higher energy towards boundary regions. Compared to the DWT-decomposed subbands (Figure 9), which are mostly concentrated in the LL band, FAR shows a more fine-grained representation of frequency components and balanced energy distribution in different channels, which is crucial for the already frequency-biased climate data.

Terrain information. Figure 10 shows the elevation map of the globe and Europe, which is used to get the terrain vectors in our Geo-informed representations.

A.9 LIMITATIONS AND FUTURE WORKS

In this paper, we focused on learning frequency-aware patterns and geo-informed representations to for climate downscaling. A limitation is that our geographic factors mainly characterize the land surface, whereas atmospheric dynamics at multiple pressure levels also shape near-surface variability. Extending the framework to multi-dimensional implicit neural representations that are conditioned on pressure level, height, and key atmospheric variables (*e.g.*, winds, humidity) is a natural next step. A second limitation is our single-variable setting: cross-variable relationships between vari-



ables (e.g., among temperature, humidity, pressure, precipitation, and wind) are not explicitly modeled. Future directions include multi-variable, physically consistent downscaling via shared latent fields and cross-variable operators, and the incorporation of soft or hard physical constraints (e.g., hydrostatic balance, thermodynamic identities) through physics-informed losses or differentiable solvers. More broadly, how to jointly capture cross-variable dependencies while enforcing physical consistency and providing calibrated uncertainty estimates remains an important open question.

A.10 LLM USAGE

We used LLMs as assistive tools during the writing of this paper. Specifically, LLMs were employed for polishing grammar and improving clarity. LLMs were not involved in research ideation and experimental design.

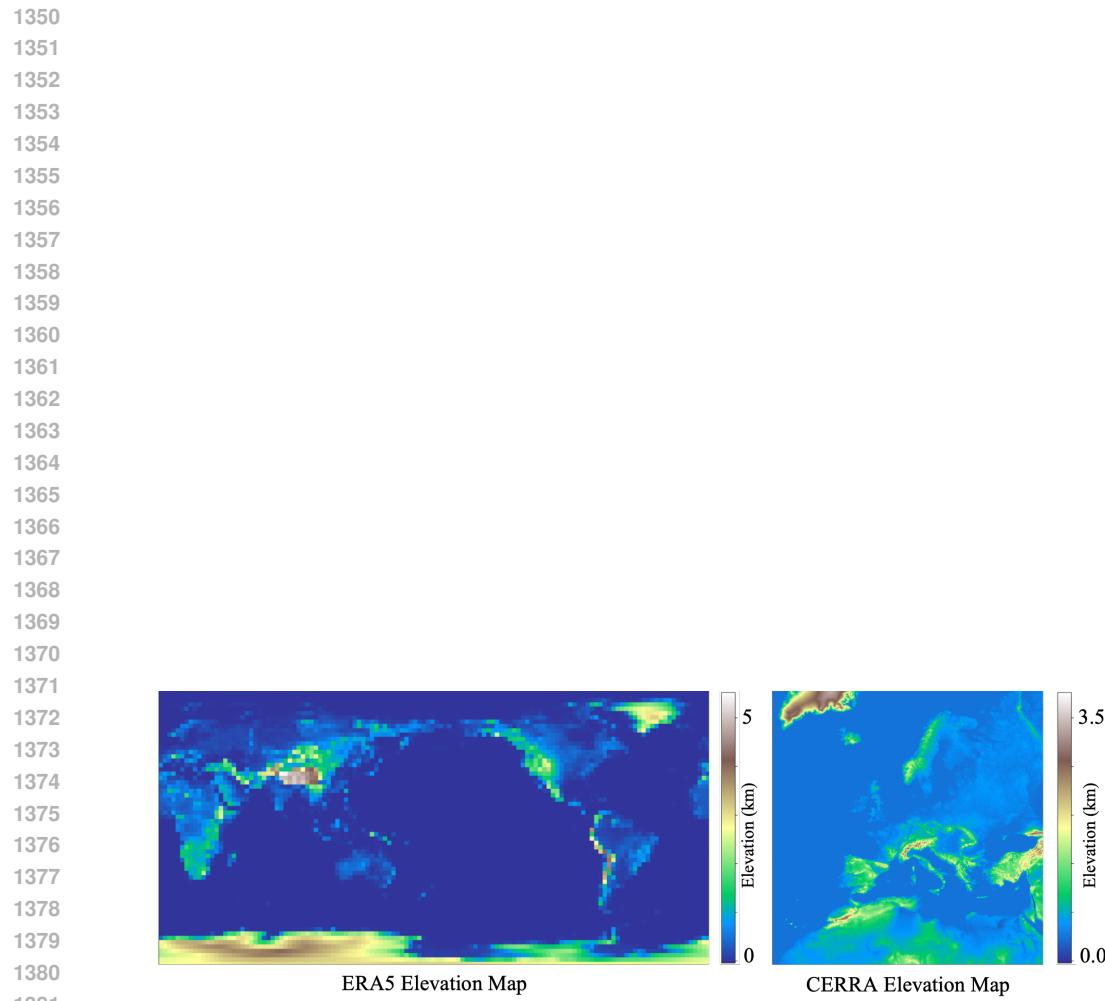


Figure 10: The elevation maps of ERA5 and CERRA.