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PRISM: A COMPOSABLE PERSON IMAGE SYNTHESIS
MODEL WITH COMPOSITIONAL CONSISTENCY AND
UNIFIED OPTIMIZATION
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Single G&A

Triple G&A

Multiple G&A

Double G&A

A girl, hands clasped, 
with one leg kicked up.

A girl with one leg raised 
and one hand stretched out.

A woman squatting next to a 
statue and making a V sign.

A person standing on a street, 
holding bags in both hands.

A woman standing with her 
legs crossed and saluting.

A woman sitting on the stairs 
with their legs crossed.

A person sitting on the stairs 
with their legs crossed.

Figure 1: Showcasing Prism’s exceptional ability to preserve facial identity while faithfully re-
taining garment, accessory, and background details. The method delivers striking results across
scenarios featuring one, two, three, or even more garments and accessories.

ABSTRACT

While multi-subject reference generation has witnessed rapid advancements, con-
ditional image generation focusing on human-environment interaction, particu-
larly person-centric multi-conditional generation, has received comparatively less
attention. This domain encompasses multi-subject referencing, portrait synthesis,
and scene guidance. To address this gap, we introduce Prism, a unified architec-
ture designed to generate coherent images that satisfy all input conditions, even
in the absence of textual prompts. Prism excels at maintaining identity and fa-
cial characteristics while aligning with specified backgrounds. Addressing the
scarcity of aligned reference and target image sets, we developed a dedicated
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pipeline, termed HMS-Dataset, to construct a large-scale training dataset from
single images containing individuals. Building upon this, Prism first encodes fa-
cial identity, pertinent clothing elements, and background context into sequences.
These sequences are subsequently fused via a novel MM-Attention mechanism.
Furthermore, we propose a Compositional Consistency Losses (CCL) strategy to
incorporate facial similarity, clothing feature preservation, and background consis-
tency, which are specifically designed to boost facial fidelity, retain intricate cloth-
ing details, and enhance overall background coherence. Subsequently, guided by
the Minimum Variance Distortionless Response criterion, we propose a Unified
Gradient Optimization (UGO) update strategy, which enables fair perceptual op-
timization for multi-objective optimization problems. Ultimately, Prism demon-
strates robust identity preservation and seamless human-environment interaction.
Evaluated on our proposed PrismBench, Prism achieves state-of-the-art fidelity
and controllability, significantly advancing practical applications in character edit-
ing and customizable scene synthesis.

1 INTRODUCTION

Recent advances in diffusion–based models have reshaped image synthesis, delivering major gains
in both fidelity and controllability. Early approaches (Rombach et al., 2022; Ramesh et al., 2022;
Song et al., 2020; Sohl-Dickstein et al., 2015; Gal et al., 2022) relied solely on text prompts, and
later work (Ye et al., 2023; Wang & Shi, 2023; Ruiz et al., 2023; Zhang et al., 2023; Xu et al.,
2023) broadened conditioning to include visual inputs. To meet the demand for higher precision,
many methods now provide specialized controls, such as identity preservation (ID) (Li et al., 2024;
Wang et al., 2024b; Ye et al., 2025; Yuan et al., 2025), pose transfer (Zhang et al., 2023), depth map
guidance (Zhang et al., 2023), and stylization (Hertz et al., 2024). As models have grown in scale
and capability, subject-driven generation using single or multiple reference objects has become a
central focus. At the same time, practical applications such as virtual try-on (VTON) are emerging,
bringing generative AI closer to real-world deployment.

However, far less attention has been paid to person-centric multi-conditional generation, the prob-
lem of producing one coherent picture that simultaneously obeys several heterogeneous visual con-
straints coming from different parts of an image. Typical scenarios involve synthesizing a complete
figure that fuses a target identity with several referenced garments and companions and then plac-
ing that person into a user-provided background under consistent lighting and perspective while
faithfully preserving facial details.

Satisfying all of these requirements in a single forward pass proves difficult for two main reasons.
First, the supervision is inherently compositional: preserving facial identity limits pose freedom,
while enforcing background consistency restricts how the foreground can be synthesized. Second,
the community lacks a public dataset that contains perfectly aligned triplets of face, clothing, and
scene at a scale large enough to train diffusion models from scratch. Existing pipelines therefore lean
on prompt engineering, template-specific fine-tuning, or iterative inpainting, each of which tends to
introduce identity drift, geometric artifacts, or mismatched color tones.

To address these limitations, we introduce Prism, a unified architecture for person-centric multi-
conditional generation. Given a face image, target garment images, and a scenic background, Prism
seamlessly fuses these inputs into a coherent image that faithfully respects all specified elements.
To tackle the scarcity of aligned reference-target pairs, we construct a comprehensive data pipeline
that builds a large-scale dataset from single-person images. Moreover, we design a set of special-
ized loss functions to explicitly enhance facial similarity and preserve fine-grained garment details.
Extensive experiments demonstrate that Prism outperforms state-of-the-art methods, including the
closed-source models Nano Banana (Google, 2025) and SeedDream 4.0 (ByteDance, 2025), across
both quantitative and qualitative evaluations.

Our main contributions are:

• We formulate person-centric multi-conditional generation, highlighting challenges in identity,
clothing, and background coherence.
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• We build HMS-Dataset and propose Prism, featuring MM-Attention, Compositional Consistency
Losses, and Unified Gradient Optimization.

• The performance of our proposed PrismBench demonstrates state-of-the-art performance in fi-
delity, controllability, and human-environment alignment.

2 RELATED WORK

Diffusion Model. Diffusion has become the dominant text-to-image paradigm, evolving from text-
conditioned systems with strong language encoders and classifier-free guidance (Ho & Salimans,
2021) to efficient latent-space models with high fidelity and broad controllability (Esser et al., 2024;
Ramesh et al., 2022; Podell et al., 2023; Feng et al., 2023; Balaji et al., 2022). Controllability,
specialization, and personalization are advanced by external conditioning branches and parameter-
efficient tuning (e.g., LoRA), enabling structural guidance, rapid domain adaptation, and image-
conditioned generation via adapters or attention controls (Zhang et al., 2023; Mou et al., 2024; Hu
et al., 2022; Gal et al., 2022; Ruiz et al., 2023; Ye et al., 2023; Chen et al., 2024; Cao et al., 2023),
motivating unified, instruction-driven pipelines (Xiao et al., 2025; Wu et al., 2025a; Chen et al.,
2025b). A concurrent shift replaces convolutional U-Nets with transformer backbones operating
over tokenized latents and text, improving global reasoning and scalability through full-sequence
attention and adaptive normalization (Peebles & Xie, 2023; Chen et al., 2023). Treating all inputs as
tokens in a shared attention space jointly models intra-image structure and cross-modal interactions,
and naturally supports multi-subject customization by injecting reference-image token groups with
simple positional/type embeddings, masking, or gating—enabling consistent multi-identity scene
assembly (Xiao et al., 2025).

Subject-Driven Image Generation. seeks to synthesize customized images that faithfully preserve
the unique identity and attributes of a given reference subject, effectively bridging the gap between
purely text-driven and purely image-driven synthesis. Early methods in this area have split into two
principal directions. Tuning-based approaches (Ruiz et al., 2023; Gal et al., 2022; Gu et al., 2023;
Kumari et al., 2023) deliver strong fidelity but typically require multiple reference images and ad-
ditional conditions like a unique identifier. In contrast, tuning-free methods (Li et al., 2024; 2023;
Kim et al., 2024; Huang et al., 2025) offer greater convenience and flexibility, yet they often strug-
gle with identity preserving and maintaining consistent subject features across varied prompts and
contexts. Recent advancements (Xie et al., 2023; Chen et al., 2025a; Xiao et al., 2025; Mou et al.,
2025; Wu et al., 2025b) in subject-driven generation have focused on enhancing architectural com-
ponents to improve subject consistency, particularly in multi-subject contexts. OmniControl (Xiao
et al., 2025) leverages the generative model itself as a reference encoder, while others have intro-
duced novel mechanisms such as systematic data generation pipelines (Wu et al., 2025b), attention-
focusing routers (Mou et al., 2025), and token-specific modulation via text streams (Chen et al.,
2025a). Despite progress, composable person synthesis remains underexplored yet central in prac-
tice (e.g., Nano Banana, Seedream 4.0). We introduce PRISM, a dedicated framework combining
robust identity preservation with seamless, context-consistent background integration.

3 METHODOLOGY

3.1 PRELIMINARIES

In Diffusion Transformers (DiTs) (Peebles & Xie, 2023), multi-modal self-attention integrates image
and text tokens. At each step, the latent image zt is patchified into tokens X ∈ RN×d, while the
text encoder provides CT ∈ RM×d. After positional encodings (e.g., RoPE ()), the concatenated
sequence [X;CT ] is processed by multi-head self-attention, enabling bidirectional information flow
between visual and textual tokens at every layer:

Attn([X;CT ]) = softmax

(
QK⊤
√
d

)
V (1)

Training adopts straight-line flow matching. Intermediate states are defined by

zt = t z0 + (1− t) ϵ, t ∈ [0, 1], ϵ ∼ N (0, I), (2)
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Insightface

Qwen-Vl-Max

Kontext

Extract only the 
\{item_name\}……

Seamlessly fill in the background, 
analyzing the surrounding environment…

You are an 
expert fashion 
analyst and a 
precise object 
detection AI. 
Your primary 
function is ……

(a) Face

(b) Garments and Accessories

(c) Background

Data Curation Pipeline

Figure 2: Data Curation Pipeline. Structured conditions—face, garments, and background—are
extracted using InsightFace (Deng et al., 2019), Qwen-VL-Max (Wang et al., 2024a), and inpainting-
based background reconstruction.

with target velocity v⋆ = z0 − ϵ. The network regresses vθ(zt, t, CT ) using mean-squared error:

Ldiff = E
[
∥ v⋆ − vθ(zt, t, CT ) ∥22

]
, (3)

3.2 HMS-DATASET

Overview. To support composable human generation, we introduce HMS-Dataset, a high-quality
dataset featuring disentangled and multimodal conditions, including face identity, garments, acces-
sories, background, and pose. Unlike existing datasets that lack such fine-grained annotations, HMS
is built through an automated and scalable pipeline applied to real-world human images, ensuring
both fidelity and diversity.

Conditions Extraction. We design a structured pipeline to extract diverse conditioning signals:
(1) Face ID. Instead of cropping faces from the target image—which may cause overfitting—we
retrieve face crops from other images of the same identity (Fig. 2(a)), enhancing generalization and
identity robustness. (2) Garments & Accessories. Qwen-VL-Max is used to detect and describe
visible items (type, color, position), which are then fed into Kontext to generate clean, catalog-style
images per item (Fig. 2(b)), enabling disentangled control. (3) Background. Kontext, guided by
a background-specific prompt, removes humans while preserving scene semantics, offering clean,
realistic background conditions.

Data Filtering. To ensure high-quality supervision signals, we filter out low-quality samples based
on facial clarity, pose correctness, and the success of garment and background generation. Duplicate
identities are eliminated through face clustering using embedding similarity. This pipeline results in
the HMS-Dataset, which contains approximately 1 million composable samples with diverse and
well-aligned conditions, offering clean identities, realistic garments, and semantically consistent
backgrounds suitable for conditional generation tasks.

3.3 PRISM

In this work, we propose Prism, a flexible and unified framework for human image generation with
multiple reference images and background guidance, as illustrated in Fig. 3. Prism first encodes
multiple input conditions—e.g., background, facial identity, and garments—using a VAE-based (?)
architecture. To enforce subject-level consistency across modalities, we incorporate a multi-modal
attention mechanism inspired by MM-Attention (Xie et al., 2023).

Prism further integrates two core components for effective optimization: (1) Compositional Con-
sistency Modeling (CCM), and (2) Unified Gradient Optimization (UGO). The former explicitly
enforces faithful preservation of facial identity, precise reconstruction of garments and accessories,
and accurate alignment with the background, each guided by its corresponding reference input.
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RoPE

Text Encoder VAE

MM-Attention
FFN

LoRA🔥

LoRA🔥
🔄

VAE

Ref2Ref1 Ref KTarget

A women is poised at
the edge of a balcony…

ArcFace...
(a) Model Structure

Subject 
consistency  injection
👉

Compositional 
Consistency Loss

Unified 
Gradient Optimization

(c) Unified Gradient Optimization

(b) Compositional 
Consistency Loss

MVDR

Task gradient matrix

Parameter Update

Figure 3: An overview of the Prism framework. (a) Model Structure: Multi-condition refer-
ences—including face, garments, and background- are encoded via a VAE, with subject consistency
injected through MM-Attention and LoRA modules. (b) Compositional Consistency Loss: Iden-
tity preservation, garment/accessory fidelity, and background alignment are supervised by LFaceID,
LG&A, and LBCA, respectively.(c) Unified Gradient Optimization: Multi-objective gradients are har-
monized under the MVDR projection criterion to ensure fair and stable parameter updates.

The latter balances these multi-objective constraints under the Minimum Variance Distortionless
Response (MVDR) criterion, enabling fair and stable parameter updates across diverse loss signals.

3.3.1 COMPOSITIONAL CONSISTENCY LOSSES

We define Compositional Consistency Losses comprising three task-specific objectives: face iden-
tity loss (FIDL), garments and accessories loss (G&AL), and background correspondence attention
loss (BCAL), each enforcing consistency over critical aspects of the generated person.

FIDL: Face Identity Loss. To preserve the generated character’s facial identity, we employ a
cosine-based perceptual loss between embeddings of the generated face zgen ∈ Rd and reference
identity ztgt ∈ Rd, extracted via a pre-trained ArcFace backbone (Deng et al., 2019):

Lbase ID = 1−
zgen · ztgt

∥zgen∥2 · ∥ztgt∥2
. (4)

This baseline uniformly penalizes all samples, which may over-penalize challenging cases (e.g.,
occluded or extreme-pose faces). To account for generation difficulty, we introduce an adaptive
margin inspired by AdaFace (Kim et al., 2022), using the L2 norm of zgen as a quality proxy:

q̂gen = sg
(

clip
(∥zgen∥2 − µ∥z∥

σ∥z∥/h
,−1, 1

))
, (5)

where µ∥z∥ and σ∥z∥ are EMA-stabilized batch statistics, h controls concentration, and sg(·) stops
gradients. The final adaptive identity loss is:

LFaceID = 1−
(

zgen · ztgt

∥zgen∥2 · ∥ztgt∥2
−m · q̂gen

)
, (6)

with m controlling the maximum adaptive margin.

G&AL: Garments and Accessories Loss. Garments and accessories contain high-frequency de-
tails (textures, patterns, logos) that can be blurred by standard diffusion losses. To preserve local
structure, we define a center-of-attention coordinate map Fgarment for each query token qi at (x, y):

Fgarment,(x,y) =

Ngarment∑
k=1

Agarment→tgt[i, k] ·Gk, (7)
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where Agarment→tgt is the attention matrix and Gk are normalized reference coordinates. Smoothness
is enforced via total variation within the garment mask Mgarment:

LG&AL = ∥∇(Fgarment ⊙Mgarment)∥1. (8)
This encourages locally coherent attention, transferring textures and patterns accurately.

BCAL: Background Correspondence Attention Loss. Maintaining background consistency is
important for seamless composition. Instead of dense supervision, we use sparse semantic corre-
spondences Cbg = {(uj , vj)} between the reference background and target latent:

LBCAL = − 1

Pbg

Pbg∑
j=1

logAbg→tgt[uj , vj ]. (9)

This anchors key background points while allowing the model to plausibly fill in intermediate re-
gions, balancing fidelity and generative freedom.

3.3.2 UNIFIED GRADIENT OPTIMIZATION (UGO)

We formulate the training process as a multi-objective optimization problem, aiming to jointly min-
imize a vector of four task-specific objectives:

min
θ

L(θ) = [Ldiff(θ), LFaceID(θ), LG&AL(θ), LBCAL(θ)]
⊤ (10)

Here, Ldiff denotes the standard denoising loss (see Eq. 3), while LFaceID, LG&AL, and LBCAL (Eqs. 6-
9) serve as auxiliary terms enforcing identity preservation, geometric alignment, and background
consistency, respectively. Rather than minimizing a scalarized combination of these losses—which
typically requires manual weight tuning-we seek a Pareto-optimal solution, where no objective can
be improved without degrading at least one other. This requires a principled mechanism to resolve
potentially conflicting gradient directions.

To this end, we adopt a subspace projection approach inspired by the Minimum Variance Distor-
tionless Response (MVDR) principle (Wolfel & McDonough, 2005). Specifically, we constrain
the final update direction g to lie within the subspace spanned by the individual task gradients
{gi = ∇θLi}4i=1. The optimal direction is obtained by solving the constrained optimization:

min
g=Gα

∥g∥2, s.t. v⊤g = 1 (11)

where G = [g1, . . . ,g4] is the task gradient matrix, and v is a target direction (e.g., normalized
mean gradient). This problem admits a closed-form solution:

α = (G⊤G+ δI)−1G⊤v, g =
Gα

v⊤Gα
(12)

where δ is a small regularization constant for numerical stability. The resulting g yields the
minimum-norm update aligned with the target direction, ensuring stable and balanced optimization
across tasks. Since G⊤G is a 4× 4 system, the computation is lightweight and efficient.

After obtaining the projected update g, we directly apply it to the model parameters. Instead of
backpropagating through a weighted sum of losses, we manually overwrite the ‘.grad‘ fields with
g—reshaped and mapped to each parameter tensor—and perform standard gradient descent:

θ ← θ − ηg (13)
where η is the learning rate. This strategy decouples gradient aggregation from loss formulation,
enabling more principled and flexible multi-objective training. It integrates seamlessly with com-
mon optimizers such as SGD or Adam, and ensures each step follows a Pareto-improving direc-
tion under linearly independent task gradients—thus satisfying key assumptions for convergence in
multi-objective optimization.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Implementation Details. Building on the Diffusion Transformer (DiT) architecture (Peebles &
Xie, 2023) and adopting FLUX.1 dev (Labs et al., 2025) as the backbone, we propose Prism for
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Table 1: Quantitative comparison of composable person image generation on PrismBench. Gray
rows indicate closed-source models evaluated via official interfaces.

Method FaceSim ↑ G&ASim ↑ BackSim ↑ LPIPS ↓ Sem. Cons. ↑
UNO (Wu et al., 2025b) 40.52 79.78 59.71 70.16 33.32
DreamO (Mou et al., 2025) 52.42 79.67 57.44 72.37 34.29
OmniGen (Xiao et al., 2025) 51.30 84.27 65.86 67.20 33.07
OmniGen2 (Wu et al., 2025a) 52.86 83.05 67.92 66.06 34.28
Xverse (Chen et al., 2025a) 43.59 78.11 55.18 71.82 33.02
SeedDream 4.0 (closed-source) 55.06 81.39 79.51 37.81 34.20
Nano Banana (closed-source) 54.15 84.52 81.35 35.62 34.62
Prism (Ours) 55.27 89.32 84.38 32.51 34.52

composable person-image synthesis. We equip the network with LoRA adapters (Hu et al., 2022)
of rank 128 and an alpha value of 64. The model is optimized with AdamW (Kingma, 2015) at a
learning rate of 1e-4, using a batch size of 4 per GPU and training for a fixed number of steps. All
training images are resized to 1024 × 768, and the experiments are run on 64 H20 GPUs.

Evaluation Details. Existing benchmarks for controlled image generation primarily target object-
centric synthesis or virtual try-on tasks, lacking datasets tailored to composable person image syn-
thesis with fine-grained control. To address this gap, we introduce PrismBench, curated from
person-centric subsets of DreamBench (Ruiz et al., 2023) and XVerseBench (Chen et al., 2025a),
and extended with additional high-quality portraits.PrismBench comprises 30 identities of diverse
ethnicities, with canonical portraits on clean backgrounds, and includes varied apparel types (sin-
gle to layered garments), accessories, and backgrounds (from simple to cluttered). Each composite
image is paired with a background-only counterpart for disentanglement evaluation. The bench-
mark supports comprehensive evaluation using identity similarity (Face ID, ReID), condition con-
sistency (CLIP-I, CLIP-AS), background preservation (LPIPS, DINOv2), and text–image alignment
(CLIP-T). We compare our method with recent multi-subject guided generation models, including
MIP-Adapter (Zhong et al., 2025), UNO (Wu et al., 2025b), Dream-O (Mou et al., 2025), Omni-
Gen (Xiao et al., 2025), OmniGen2 (Wu et al., 2025a), and Xverse (Chen et al., 2025a). In addition,
we evaluate against two closed-source models, SeedDream 4.0 (ByteDance, 2025) and Nano Ba-
nana (Google, 2025), via their official interfaces for fair comparison. To further complement quan-
titative evaluation, we conduct user studies involving 30 participants across 100 randomly sampled
cases.

4.2 MAIN RESULTS

Quantitative Results. Table 1 presents a comprehensive comparison of controlled image generation
methods on PrismBench. Prism consistently surpasses both open-source and closed-source base-
lines across all metrics. In terms of facial identity preservation, Prism achieves the highest FaceSim
score (55.27), marginally outperforming the strongest baseline (SeedDream 4.0, 55.06). For garment
and accessory consistency (G&ASim), Prism reaches 89.32, significantly surpassing the next-best
(Nano Banana, 84.52). On BackSim, which evaluates background alignment, Prism achieves 84.38,
indicating a clear advantage over OmniGen2 (67.92) and all others. Prism also yields the lowest
LPIPS (32.51), demonstrating superior perceptual quality. While Semantic Consistency remains
competitive (34.52), these results collectively confirm Prism’s strength in jointly preserving identity,
apparel details, and scene structure—crucial for composable person image synthesis. Notably, even
when compared with closed-source models accessed via their official interfaces (gray rows), Prism
sets a new state-of-the-art across the board.

Qualitative Results. Fig. 4 presents qualitative comparisons between our method and existing ap-
proaches such as DreamO, UNO, and Xverse. Compared to these baselines, Prism demonstrates
substantial improvements in both facial similarity and garment consistency, while also producing
more natural background integration and pose interactions. Notably, our method consistently pre-
serves background coherence across all cases, ensuring spatial continuity even under complex com-
positional settings. In multi-object interaction scenarios, such as those illustrated in the fourth and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

DreamOReference UNO Omnigen2 Nano BananaOmnigen Xverse Seedream 4Prism(Ours)Prompt

A teen with red 
hair standing 
inside a store

She sits on a cab
inet, with a doll c
lose by.

The people 
wearing a hat is 
holding a wallet

A brown-haired 
woman squats by 
the swimming pool, 
holding her glasses.

A turbaned 
person sits on 
a stool

Figure 4: Qualitative Comparison. We compare with Nano Banana and SeedDream 4.0 using their
official interfaces, enabling a fair evaluation against closed-source models.

Figure 5: User study on our models with Nano Banana and SeedDream 4.0.

fifth rows, Prism effectively maintains visual consistency between subjects and their accessories.
Overall, Prism achieves high fidelity in identity preservation, apparel composition, and coherent
integration with the surrounding environment.

User Studies. We conduct pairwise user preference studies against SeedDream 4.0 and Nano Ba-
nana across three dimensions: Human Interaction, Image Quality, and Overall Naturalness. As
shown in Fig. 5, Prism consistently outperforms both baselines, with notable advantages in natural-
ness (71% vs. SeedDream, 63% vs. Nano Banana) and interaction fidelity. These results validate
the perceptual quality and controllability of our proposed Prism.

4.3 ABLATION STUDIES

Impact of Compositional Consistency Objectives. As shown in Table 2, each objective contributes
substantially to the overall performance. Removing FIDL leads to a clear drop in facial similarity
(49.34 vs. 55.27), while excluding G&AL compromises garment alignment (77.96 vs. 89.32) and
degrades visual quality (LPIPS: 57.81 vs. 48.55). Eliminating BCAL significantly impacts back-
ground coherence (78.51 vs. 84.38) and weakens semantic alignment (29.56 vs. 34.52). The full
objective formulation achieves the best results across all dimensions, confirming the necessity of
jointly modeling facial identity, apparel, and scene consistency.

Impact of Unified Gradient Optimization. As reported in Table 3, introducing UGO consistently
improves all evaluation metrics. It enhances identity retention (55.27 vs. 49.65), improves composi-
tional alignment in clothing (89.32 vs. 78.74) and background (84.38 vs. 71.91), reduces perceptual
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Table 2: Impact of each loss terms on the performance of Prism, e.g., FIDL, G&AL, and BCAL.

Method FaceSim ↑ G&ASim ↑ BackSim ↑ LPIPS ↓ Sem. Cons. ↑
w/o FIDL 49.34 88.24 84.21 52.77 34.57
w/o G&AL 55.12 77.96 83.71 57.81 31.75
w/o BCAL 54.91 88.16 78.51 68.83 29.56

Prism (Ours) 55.27 89.32 84.38 48.55 34.52

Table 3: Impact of UGO.

Method FaceSim ↑ G&ASim ↑ BackSim ↑ LPIPS ↓ Sem. Cons. ↑
w/o UGO 49.65 78.74 71.91 69.72 32.78
w/ UGO 55.27 89.32 84.38 48.55 34.52

Reference Prompt w/o LG&Aw/o LFID Prismw/o LBCA

A person sitting on 
a chair with his 
hands crossed

A woman holding up 
her phone and 
making a "V" sign

w/o UGO

Figure 6: Qualitative results on different losses and UGO modules.

discrepancy (LPIPS: 48.55 vs. 69.72), and boosts semantic correspondence (34.52 vs. 32.78). These
improvements validate the effectiveness of UGO in balancing multi-objective optimization for high-
quality compositional generation.

Qualitative Results of Ablation Components. We provide visual comparisons in Fig. ?? to fur-
ther assess the contribution of each component. Each objective visibly enhances its corresponding
aspect—e.g., facial supervision improves identity fidelity, while garment alignment is better pre-
served with clothing-specific guidance. The addition of UGO leads to more coherent and natural
image synthesis, along with visibly improved global consistency, highlighting its role in stabilizing
multi-objective optimization.

5 CONCLUSION

We present Prism, a unified and composable framework for person-centric image generation under
multi-conditional settings, with a particular focus on modeling human-environment interactions. To
address the lack of structured supervision, we construct the large-scale HMS-Dataset, enabling fine-
grained conditioning from facial identity, garments, and background. Prism integrates a modality-
aware attention mechanism for condition fusion and introduces compositional consistency objectives
to jointly enforce identity preservation, clothing fidelity, and scene alignment. To further balance the
multi-objective optimization process, we develop a Unified Gradient Optimization strategy grounded
in the Minimum Variance Distortionless Response (MVDR) principle. Extensive evaluations on the
proposed PrismBench demonstrate that Prism achieves state-of-the-art controllability and visual fi-
delity, offering a scalable solution for character editing and customizable scene synthesis in complex,
real-world scenarios.
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Algorithm 1 Unified Gradient Optimization (Pseudocode, PyTorch-like)

def UGO_step(model, losses, optimizer, damping=1e-4, weights=None):
params = [p for p in model.parameters() if p.requires_grad]
Gs = []
for L in losses:

g = torch.autograd.grad(L, params, retain_graph=True, allow_unused=True)
g = [torch.zeros_like(p) if gi is None else gi for gi, p in zip(g, params)]
Gs.append(torch.cat([gi.reshape(-1) for gi in g]).detach())

G = torch.stack(Gs, dim=1) # [D, m]
m, dev, dt = G.shape[1], G.device, G.dtype

w = torch.ones(m, device=dev, dtype=dt) / m if weights is None else torch.as_tensor(
weights, device=dev, dtype=dt)

w = w / (w.sum() + 1e-12)

v = (G / G.norm(dim=0).clamp_min(1e-12)) @ w # [D]
K = G.T @ G + damping * torch.eye(m, device=dev, dtype=dt)
b = G.T @ v
alpha = torch.linalg.solve(K, b.unsqueeze(-1)).squeeze(-1)
g = (G @ alpha) / torch.dot(v, G @ alpha).clamp_min(1e-12)

optimizer.zero_grad(set_to_none=True)
offset = 0
for p in params:

n = p.numel()
p.grad = g[offset:offset + n].view_as(p).clone()
offset += n

optimizer.step()

This supplementary material is organized into several sections, each offering additional details and
analysis related to HEAR. The topics covered include:

A MORE DETAILS

Implementation of UGO. The algorithm is illustrated in Algorithm. 1.

Limitation. While Prism demonstrates strong compositional controllability and fidelity, it relies
on well-aligned, instance-level reference inputs for each condition (e.g., clean backgrounds, clear
facial views, and detailed garments). This dependency may limit its generalization to in-the-wild
scenarios where input conditions are noisy, occluded, or incomplete. Additionally, the optimization
procedure assumes a fixed set of objectives, which may require adaptation when extending to other
compositional dimensions such as lighting, interaction dynamics, or unseen modalities.

Use of LLMs. We utilize LLMs to assist with formula derivations and writing refinement.

B SUPPLEMENTARY INFORMATION: DATA-CURATION PIPELINE

For completeness, we display the supplementary information that were truncated in Fig. 2, so readers
can more readily follow the entire data-curation workflow.
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B.1 GARMENTS & ACCESSORIES EXTRACTION

Prompt of Garment & Accessory Catalogue Generation

You are an expert fashion analyst and a precise object detection AI. Your primary function is
to meticulously analyze the provided image to identify every single garment and accessory
worn by the person.
Based on your analysis, you must generate a JSON object that strictly adheres to the follow-
ing rules:
- Scope: Your analysis must be strictly limited to garments (clothing) and accessories. Ig-
nore the person, handheld items (like phones or cups), and any background elements.
- item name: For each item, create a descriptive but concise name. Include its primary
color, pattern (if any), and type. For example:

• “shirt” to “white button-up shirt”
• “tie” to “blue and red striped necktie”
• “jeans” to “dark wash denim jeans”
• “glasses” to “black frame eyeglasses”

- category: Assign a category to each item. The only two valid categories are:

• Garment: For any piece of clothing (e.g., shirt, pants, jacket, dress, skirt).
• Accessory: For any non-clothing wearable item (e.g., tie, belt, hat, glasses, watch, jewelry,

scarf, handbag).

- total items count: This must be an integer representing the total number of items you
have identified in the ‘identified items‘ array.
- Output Format: Your entire response MUST be ONLY the JSON object, without any
surrounding text, explanations, or markdown code fences (like “‘json).
Now, analyze the image and provide the JSON output.

Garment & Accessory Catalogue

{
"total_items_count": n,
"identified_items": [

{
"item_name": "white button-up shirt",
"category": "Garment"

},
{

"item_name": "printed necktie",
"category": "Accessory"

},
...

]
}

Prompt of Garments & Accessories Extract

Extract only the {item name} from the image. Isolate this item completely, removing the
person, the background, and all other items. Recreate it as a clean, flattened studio product
shot, as if it’s laid perfectly flat and photographed from directly above. The final image must
feature only the {item name}, centered on a solid pure white background.
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B.2 BACKGROUND INPAINTING

Prompt of Background Reconstruction Guide

Seamlessly fill in the background, analyzing the surrounding environment with high pre-
cision. Isolate and erase the human figure(s) and all associated objects. Reconstruct the
missing background area by meticulously continuing all lines, patterns, and textures from
the surrounding context. Pay critical attention to maintaining correct perspective, shadow
continuity, and realistic depth of field. The inpainted section must be photorealistically inte-
grated, leaving no visible seams or artifacts.
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