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InNeRF: Learning Interpretable Radiance Fields for Generalizable
3D Scene Representation and Rendering

Anonymous Authors

ABSTRACT
We propose Interpretable Neural Radiance Fields (InNeRF) for gen-
eralizable 3D scene representation and rendering. In contrast to pre-
vious image-based rendering, which used two independent working
processes of pooling-based fusion and MLP-based rendering, our
framework unifies source-view fusion and target-view rendering
processes via an end-to-end interpretable Transformer-based net-
work. InNeRF enables the investigation of deep relationships be-
tween the target-rendering view and source views that were previ-
ously neglected by pooling-based fusion and fragmented rendering
procedures. As a result, InNeRF improves model interpretability
by enhancing the shape and appearance consistency of a 3D scene
in both the surrounding view space and the ray-cast space. For a
query rendering 3D point, InNeRF integrates both its projected 2D
pixels from the surrounding source views and its adjacent 3D points
along the query ray and simultaneously decodes this information
into the query 3D point representation. Experiments show that
InNeRF outperforms state-of-the-art image-based neural rendering
methods in both scene-agnostic and per-scene finetuning scenarios,
especially when there is a considerable disparity between source
views and rendering views. The interpretation experiment shows
that InNeRF can explain a query rendering process.

CCS CONCEPTS
• Computing methodologies→ Computer vision; Rendering.

KEYWORDS
Neural Rendering, Network Interpretability

1 INTRODUCTION
Novel view synthesis is a long-standing open problem concerned
with the rendering of unseen views of a 3D scene given a set of
observed views [16, 21]. Recent remarkable NeRF research [11, 12,
14, 18, 30] introduces neural radiance field scene representations,
which use multi-layer perceptrons (MLPs) to map a continuous 3D
location and view direction to its density and color.

However, these models need to optimize a specific 3D repre-
sentation for each scene, which is time-consuming and does not
learn the shared information among scenes. Subsequently, to learn
prior knowledge in diverse scenes, researchers [4, 22, 25, 29] gen-
eralize the radiance field scene representation by incorporating a
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pooling-based multi-view feature as the conditional input. These
prior NeRFs generally contain three basic components: a CNN-
based single-view feature extraction module, a pooling-based multi-
view fusion module, and an MLP-based NeRF module.

Despite the intrinsic connection between these modules, each
module is designed and studied independently, making the overall
framework disjointed. This incoherent framework design damages
the model interpretability from three aspects: 1) Separating feature
extraction of each source view overlooks their relevancy in repre-
senting 3D scenes. 2) Pooling-based fusion cannot fully explore the
complicated relationship among source views. 3) The MLP network
rendering the color and density from a single aggregated feature
struggles to decode intricate relationships between observed views
and the rendering view. The reason for this framework design is that
previous NeRFs are built on MLPs that are incapable of processing
an arbitrary number of observed views. Consequently, they need
an auxiliary fusion model to aggregate multi-view information, and
pooling-based fusion provides such a straightforward technique.

This limitation also impairs the capability of NeRFs to learn a
view-consistent 3D scene representation from observed views, espe-
cially for the scenario where source views have a more complicated
relationship with the target view, e.g. the observed source views are
captured at camera poses that are very different from the camera
pose of the target view. When camera poses of source views are
similar to the rendering view, source views and the target view
are distributed in a local region in 3D scene representation space,
making it possible to approximate their relationship by a linear
function as in previous work [4, 22, 25, 29]. However, as the differ-
ence between observed views and the rendering view increases, the
correlation becomes more complicated, making it challenging for
these approaches to synthesize a realistic novel view. In this sce-
nario, existing MLP-based NeRFs, using a pooling-based function
to fuse the multi-view, are insufficient to tackle this challenge.

Therefore, the fundamental issue is how to free the intrinsic in-
terpretability of NeRFs from the previously fragmented frameworks
for learning generalizable radiance fields. To tackle this unmet need,
we present Interpretable Neural Radiance Fields (InNeRF), an end-
to-end Transformer-based architecture that unifies source-view
fusion and target-view rendering processes for generalizable 3D
scene representation and rendering. In the rendering process of a
query 3D point, InNeRF is divided into two stages: the first works
in the surrounding-view space, integrating information of the pro-
jected 2D pixels at the surrounding source views for the query 3D
point; and the second works in the ray-cast space, fusing the neigh-
boring 3D points along the query ray into the representation of the
query 3D point, as shown in Fig 1. This design provides our model
with a comprehensive understanding of the shape and appearance
consistency of a 3D scene in both the surrounding-view space and
ray-cast spaces. Furthermore, the Transformer-based framework
taking advantage of the attention mechanism enables our rendering

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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process to learn in-depth and complicated relationships between
source views and the rendering view, which is essential for novel
view synthesis. Therefore, InNeRF has improved interpretability
and learns a more comprehensive general neural radiance field.

Our contributions can be summarized as follows:

• We propose Interpretable Neural Radiance Fields (InNeRF), a
unified Transformer-based framework, to study deep correla-
tions between observed and rendering views and simultane-
ously integrate this intricate information into a generalizable
neural radiance field.
• InNeRF exploits geometry and appearance consistency of
a neural radiance field in both the surrounding view space
and the ray-cast space, strengthening its interpretability.
• Experiments show that InNeRF achieves more realistic ren-
dering results than state-of-the-art methods in both scene-
agnostic and per-scene fine-tuning settings, especially when
source views are captured at camera poses that differ signifi-
cantly from the rendering view.
• InNeRF explains a query rendering process by utilizing its
attention layers. Experiments show that the interpretation
of InNeRF is consistent with human perception.

2 RELATEDWORK
Novel View Synthesis. The goal of novel view synthesis is to ren-
der unseen views of a scene from its multiple observed images. The
essence of novel view synthesis is exploring and learning a view-
consistent 3D scene representation from a sparse set of input views.
The early work focused on modeling 3D shapes by discrete geomet-
ric 3D representations, such as mesh surface [7, 8, 17], point cloud
[10, 19] and voxel grid [1, 24, 28]. Although explicit 3D geometry-
based representations are intuitive, they are discrete and sparse,
making them incapable of learning high-resolution renderings with
sufficient quality for complex scenes.

More recently, the impressive neural radiance field (NeRF) [16]
has shown a solid ability to synthesize novel views by represent-
ing continuous scenes as 5D radiance fields in MLPs. Nevertheless,
NeRF optimizes each scene representation independently, not ex-
ploring the shared information amongst scenes and being time-
consuming. Subsequently, researchers proposed models, such as
PixelNeRF [29], MVSNeRF [4], IBRNet [25], which receives as con-
ditional inputs multiple observed views to learn a general neural
radiance field. These methods are proposed using the divide-and-
conquer strategy and have two separate components: a CNN feature
extractor for each observed image and anMLP as the NeRF network.
However, pooling-based fusion models in these methods barely ex-
plore the complex relationship across multiple views for 3D scene
understanding. Furthermore, processing each 3D point indepen-
dently ignores the geometry consistency of a 5D radiance field of a
scene.

Here, we propose an encoder-decoder Transformer framework,
InNeRF, to represent the neural radiance field scene for novel view
synthesis. Compared with the pooling-based fusion in previous
work, InNeRF can explore deep relationships among multiple views
and aggregate multi-view information into the coordinate-based
scene representation by the attention mechanism in a unified net-
work. Meanwhile, InNeRF can learn the consistency of shape and

appearance in a scene by considering the corresponding informa-
tion in the surrounding view space and the ray-cast space.

Transformer. Transformer recently emerged as a promising
network framework and has achieved impressive performance in
natural language processing [2, 20, 27] and computer vision [3, 5, 6,
9, 13, 31]. The main idea behind this approach is to utilize the multi-
head self-attention operation to explore the dependence within
input tokens and learn a global feature representation. In the object
detection task, DETR [3] presents a new framework combining
a 2D CNN with a Transformer and predicts object detection in
parallel as a sequence of output tokens. In image classification, ViT
[6] demonstrates the impressive ability to learn global contexts in
Transformer even without using CNN features [23]. In 3D scene
understanding, FlatFormer [13] introduces a new window attention
mechanism to optimize the computational efficiency and achieve
improved performance in reconstruction.

For novel view synthesis, we introduce an end-to-end Trans-
former framework to implicitly model the continuous 3D scene
as a neural radiance field representation. Our model leverages the
advantage of Transformer in exploring deep relationships among
observed images to learn a consistent generalizable 3D scene repre-
sentation.

3 METHODOLOGY
3.1 Framework
We propose InNeRF to learn an interpretable generic radiance field
representation for novel scenes. Given captured multi-view images
{I𝑚}𝑀

𝑚=1 (𝑀 source views) of diverse scenes and their camera pa-
rameters {Θ𝑚}𝑀

𝑚=1 (camera poses, intrinsic parameters and scene
bounds), InNeRF reconstructs a generic radiance field 𝐹InNeRF to
learn the prior knowledge:

(𝜎, c) ← 𝐹InNeRF ((𝑥,𝑦, 𝑧), d; {I𝑚,Θ𝑚}𝑚) , (1)

where (𝑥,𝑦, 𝑧) is a 3D point location, d denotes a unit-length di-
rection of a viewing ray and outputs are a differential volumetric
density 𝜎 and a directional emitted color c.

As shown in Fig. 1, for rendering a query 3D point on a target-
viewing ray, the proposed InNeRF includes two stages: 1) In the
surrounding-view space, ourDecoder𝑣𝑖𝑒𝑤𝑠

𝜎 (Sec. 3.2) andDecoder𝑣𝑖𝑒𝑤𝑠
𝑐

(Sec. 3.4) fuse source views and query spatial information ((𝑥,𝑦, 𝑧),
d) into the latent density and color representations for the query
point; 2) In the ray-cast space, we use Decoder𝑟𝑎𝑦𝜎 (Sec. 3.3) and
Decoder𝑟𝑎𝑦𝑐 (Sec. 3.5) to enhance the query density and color repre-
sentations by considering neighboring points along the target ray.
Finally, we obtain the density and color for the query point on a
target-viewing ray.

3.2 Density Decoder in Surrounding-view Space
We first present our density decoder in surrounding-view space
(Decoder𝑣𝑖𝑒𝑤𝑠

𝜎 ) decoding the projected pixels at source views into
the query latent density code.

For each source view, we first extract its feature volume by a
pre-trained view-shared U-Net. A query 3D point (𝑥,𝑦, 𝑧) is then
projected into each source view I𝑚 by its camera projection matrix
Θ𝑚 to extract the corresponding RGB color {c𝑚𝑠𝑟𝑐 }𝑀𝑚=1 and fea-
ture vector {f𝑚𝑠𝑟𝑐 }𝑀𝑚=1 at the projected 2D pixel {p𝑚}𝑀

𝑚=1 location
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Figure 1: Workflow of the proposed InNeRF. Module A is the density decoder in surrounding-view space (Sec. 3.2). Module B is
the density decoder in ray-cast space (Sec. 3.3). Module C is the color decoder in surrounding-view space (Sec. 3.4). Module D is
the color decoder in ray-cast space (Sec. 3.5).

through bilinear interpolation. In each source view, we also record
its viewing direction {d𝑚𝑠𝑟𝑐 }𝑀𝑚=1 for the projected pixel from the
source camera pose. Based on it, we obtain the initial source-view
embeddings {x𝑚0 }

𝑀
𝑚=1 for source views.

For the query point, Decoder𝑣𝑖𝑒𝑤𝑠
𝜎 receives the initial source-

view embeddings {x𝑚0 }
𝑀
𝑚=1 and the learnable query density embed-

ding x𝜎0 as inputs X0. Decoder𝑣𝑖𝑒𝑤𝑠
𝜎 can be formulated as follows:

X0 = [x𝜎0 ; x
1
0; x

2
0; · · · ; x

𝑀
0 ] , (2)

X̃𝑙+1 = Norm(Pixels×Query𝜎 (X𝑙 ) + X𝑙 ) , (3)

X𝑙+1 = Norm(FFN(X̃𝑙+1) + X̃𝑙+1) , (4)

where 𝑙 denotes the index of a basic block (𝑙 = 1, · · · , 𝐿), “Norm”
is a layer normalization function, and “FFN” is a position-wise
feed-forward network. At the 𝐿-th block, we can obtain X𝐿 =

[x𝜎
𝐿
; x1

𝐿
; x2

𝐿
; · · · ; x𝑀

𝐿
]. In Decoder𝑣𝑖𝑒𝑤𝑠

𝜎 , we concatenate the embed-
ding x𝜎

𝐿
and its 3D coordinate location (𝑥,𝑦, 𝑧) as the latent density

code for the query point.
Pixels×Query Density Attention layers explore deep relation-

ships among source views, defined as follows:

Pixels×Query𝜎 (X) = MH-Attn(X,X,X) , (5)

where the multi-head attention function is defined as:

MH-Attn(Q,K,V) = Cat(A1, · · · ,A𝐻 )W , (6)
where Aℎ = Attention(Qℎ,Kℎ,Vℎ) ,

Qℎ = QW𝑞

ℎ
;Kℎ = KW𝑘

ℎ
;Vℎ = VW𝑣

ℎ
.

Here, W𝑞

ℎ
,W𝑘

ℎ
∈ R𝑑𝑘×𝑑ℎ ;W𝑣

ℎ
∈ R𝑑𝑣×𝑑ℎ and W ∈ R𝐻𝑑ℎ×𝑑𝑘 are

parameter matrices (𝐻 × 𝑑ℎ = 𝑑𝑘 and 𝑑ℎ is the feature dimension

in each head). The Attention function is computed by

Attention(Q,K,V) = softmax(QK𝑇√︁
𝑑𝑘

)V , (7)

Here, 𝑁𝑞 queries are stacked in Q = [q1; q2; · · · ; q𝑁𝑞
] ∈ R𝑁𝑞×𝑑𝑘 ,

a set of 𝑁𝑘 key-value pairs are stacked in K = [k1; k2; · · · ; ; k𝑁𝑘
] ∈

R𝑁𝑘×𝑑𝑘 and V = [v1; v2; · · · ; v𝑁𝑘
] ∈ R𝑁𝑘×𝑑𝑣 , 𝑑𝑘 is used as a scalar

for normalization. Our Decoder𝑣𝑖𝑒𝑤𝑠
𝜎 is invariant to permutations

of source views and can receive an arbitrary number of source
views.

3.3 Density Decoder in Ray-cast Space
The density decoder in ray-cast space (Decoder𝑟𝑎𝑦𝜎 ) decodes the
density information of the query point by aggregating the density
features of the neighboring 3D points along the target-view ray.

For the query point and neighboring 2𝑛 points along the target-
viewing ray, we denote [𝜎𝑖−𝑛0 ; · · ·𝜎𝑖0 · · · ;𝜎

𝑖+𝑛
0 ] as their initial den-

sity representations at the input end of the Decoder𝑟𝑎𝑦𝜎 , where
the query point is denoted as 𝑃𝑖 and neighboring 2𝑛 points are
{𝑃𝑖−𝑛, · · · , 𝑃𝑖−1, 𝑃𝑖+1, · · · , 𝑃𝑖+𝑛}. Here, the initial density represen-
tation for each 3D point is computed via an FC layer based on the
Decoder𝑣𝑖𝑒𝑤𝑠

𝜎 output for the corresponding point (𝜎0 = FC(x𝜎
𝐿
⊙

(𝑥,𝑦, 𝑧)), where ⊙ is the concatenation operation). Then positional
encodings E𝑝𝑜𝑠 are added to density representations of neighboring
points to keep their position information in the ray-cast space. Each
positional encoding informs each point of its 3D spatial location,
which is computed by utilizing sine and cosine functions of different
frequencies as [3].
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Decoder𝑟𝑎𝑦𝜎 is formulated as follows:

D0 = [𝜎𝑖−𝑛0 ; · · ·𝜎𝑖0 · · · ;𝜎
𝑖+𝑛
0 ] + E𝑝𝑜𝑠 , (8)

D̃𝑙+1 = Norm(Points×Query𝜎 (D𝑙 ) + D𝑙 ) , (9)

D𝑙+1 = Norm(FFN(D̃𝑙+1) + D̃𝑙+1) , (10)

where the Points×Query Density Attention layer is computed as
Points×Query𝜎 = MH-Attn(D,D,D) fusing information of sur-
rounding 3D points on the target-viewing ray. At the end block,
the Decoder𝑟𝑎𝑦𝜎 outputs the density representation 𝜎𝑖

𝐿
of the query

3D point, and then we use an FC layer to project it to the density
value.

3.4 Color Decoder in Surrounding-view Space
The color decoder in surrounding-view space (Decoder𝑣𝑖𝑒𝑤𝑠

𝑐 ) de-
codes the projected pixels’ information from source views into the
query color representation.

Decoder𝑣𝑖𝑒𝑤𝑠
𝑐 can be formulated as follows:

Ỹ𝑙+1 = Norm(Pixels×Query𝑐 (Y𝑙 , X̂, Ĉ) + Y𝑙 ) , (11)

Y𝑙+1 = Norm(FFN(Ỹ𝑙+1) + Ỹ𝑙+1) . (12)

In Pixels×Query Color Attention layers, the initial query color
embedding is represented as Y0 = FC(𝜎𝑖

𝐿
) ⊙ d𝑡𝑔𝑡 , where 𝜎𝑖

𝐿
is

the latent density representation from Decoder𝑟𝑎𝑦𝜎 and d𝑡𝑔𝑡 is the
target-viewing direction for the query point. Pixels×Query Color
Attention layer is calculated as:

Pixels×Query𝑐 (Y, X̂, Ĉ) = MH-Attn(Y, X̂, Ĉ) , (13)

where the value is Ĉ = [𝛾 (c1𝑠𝑟𝑐 ); · · · ;𝛾 (c𝑀𝑠𝑟𝑐 )] (𝛾 (·) is the embedding
function) and the key is X̂ = [FC(x1

𝐿
) ⊙ d1𝑠𝑟𝑐 ; · · · ; FC(x𝑀𝐿 ) ⊙ d𝑀𝑠𝑟𝑐 ]

representing the projected pixels’ representations in source views.
The output Y𝐿 is the latent color code for the query 3D point.

3.5 Color Decoder in Ray-cast Space
The color decoder in ray-cast space (Decoder𝑟𝑎𝑦𝑐 ) learns a query
color by fusing latent color codes of adjacent 3D points along the tar-
get ray in Points×Query Color Attention layers (Points×Query𝑐 (Z) =
MH-Attn(Z,Z,Z)). Decoder𝑟𝑎𝑦𝑐 is represented as:

Z0 = [z𝑖−𝑛0 ; · · · z𝑖0 · · · ; z
𝑖+𝑛
0 ] + E𝑝𝑜𝑠 , (14)

Z̃𝑙+1 = Norm(Points×Query𝑐 (Z𝑙 ) + Z𝑙 ) , (15)

Z𝑙+1 = Norm(FFN(Z̃𝑙+1) + Z̃𝑙+1) . (16)

where the query latent color code from Decoder𝑣𝑖𝑒𝑤𝑠
𝑐 is assigned to

the corresponding z𝑖0 and likewise for adjacent 2𝑛 points in ray-cast
space.

Subsequently, after the Decoder𝑟𝑎𝑦𝑐 , we use an FC layer to project
the output color embedding z𝑖

𝐿
to its output predicted color value.

Then the predicted density and color of each query point along a
ray of the desired virtual camera are put forward to the classical
volume rendering. The implementation details of the network and
training are described in the supplementary material.

4 EXPERIMENTS
The proposed approach is evaluated in the following experimental
settings:

• Scene-agnostic setting: we train a single scene-agnosticmodel
on a large training dataset that includes various camera se-
tups and scene types. We test its generalization ability to
unseen scenes on all test scenes.
• Per-scene fine-tuning setting: our pretrained scene-agnostic
model is finetuned on each test scene. We evaluate each
finetuned scene-specific model separately.

We train and evaluate our method on a collection of multi-view
datasets containing both synthetic data and real data, as in IBRNet
[25]. For novel view synthesis, we quantitatively evaluate the ren-
dered image quality based on PSNR, SSIM [26] (higher is better),
and LPIPS [32] (lower is better).

4.1 Conditional Source-view Set
Experiments are designed to examine whether the proposed InNeRF
can effectively learn a neural radiance field scene representation
in scenarios where the variation degree between the conditional
source view set and the target rendering view changes. Here, we
sample 10 views from the surrounding view set as the conditional
source-view set to render a target view. Given the camera pose,
we can compute and sort the difference between each surrounding
view and the target rendering view.

Based on the sorted order, we construct 𝑁𝑠 conditional source-
view sets ({S𝑖 }𝑁𝑠

𝑖=1) from the surrounding-view set to render each test
view. For the real evaluation dataset, there are 𝑁𝑠 = 3 sets, i.e. top
10 (S1), middle 10 (S2), and bottom 10 (S3) views. For the synthetic
evaluation dataset, there are 𝑁𝑠 = 4 sets which are the top 10 (S1),
middle 10 (S2), 3/4th 10 (S3), and bottom 10 (S4) views, respectively.
Fig. 4 shows visual examples of S1 and S4 for illustration.

4.2 Results
In both the scene-agnostic (Sec. 4.2.1) and per-scene fine-tuning
experiments (Sec. 4.2.2), we evaluate competing methods in sce-
narios where the source views belong to different source view sets
{S𝑖 }𝑁𝑠

𝑖=1 defined in Sec. 4.1. To render a testing view, each competing
approach receives as input the same source-view set. In Sec. 4.2.3,
we provide the interpretation results of InNeRF.

4.2.1 Scene-agnostic Experiments. In scene-agnostic experiments,
InNeRF is compared with PixelNeRF [29], MVSNeRF [4] and IBR-
Net [25] on the real forward-facing dataset [15] and the realistic
synthetic dataset [25].

Tab. 1 shows that the proposed InNeRF outperforms other meth-
ods on both datasets under the scene-agnostic setting. To facilitate
the quantitative comparison in each metric, the best scores are
marked in bold. It shows that InNeRF has a better generalization
ability to novel scenes though it is trained on datasets with notice-
ably different scenes and view distribution. The detailed results in
the supplementary material also reveal that InNeRF has a better
performance for each scene.

The superior generalization ability of InNeRF is also reflected in
qualitative results. As shown in Fig. 2, we compare the performance
of methods on rendering the same randomly-selected testing view
based on different source-view sets. The results of other approaches
contain more obvious artifacts than InNeRF and even become worse
in the S3 scenario where the difference between source views and
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Table 1: Quantitative comparison of methods on the scene-agnostic setting for the realistic synthetic dataset [16] and the real
forward-facing dataset [15].

PSNR ↑ SSIM ↑ LPIPS ↓
Dataset S𝑖 PixelNeRF MVSNeRF IBRNet InNeRF PixelNeRF MVSNeRF IBRNet InNeRF PixelNeRF MVSNeRF IBRNet InNeRF

realistic
synthetic

S1 21.20 22.47 25.31 26.45 0.857 0.874 0.913 0.922 0.161 0.143 0.104 0.092
S2 17.00 18.44 21.80 23.16 0.732 0.755 0.805 0.842 0.295 0.286 0.236 0.183
S3 15.88 17.43 20.99 22.70 0.660 0.687 0.749 0.810 0.355 0.328 0.270 0.211
S4 14.67 16.25 19.97 21.72 0.567 0.597 0.672 0.758 0.440 0.400 0.322 0.248

real
forward-facing

S1 19.02 20.09 24.96 24.97 0.651 0.680 0.813 0.816 0.380 0.347 0.208 0.205
S2 16.30 17.68 22.69 22.94 0.576 0.614 0.749 0.760 0.459 0.422 0.273 0.260
S3 13.56 15.21 20.33 20.81 0.489 0.543 0.683 0.701 0.551 0.504 0.340 0.318

Table 2: Quantitative comparisons of methods on the per-scene fine-tuning setting for the realistic synthetic dataset [16] and
the real forward-facing dataset [15].

PSNR ↑ SSIM ↑ LPIPS ↓
Dataset S𝑖 PixelNeRF MVSNeRF IBRNet InNeRF PixelNeRF MVSNeRF IBRNet InNeRF PixelNeRF MVSNeRF IBRNet InNeRF

realistic
synthetic

S1 24.06 27.04 29.27 30.79 0.877 0.913 0.940 0.952 0.140 0.103 0.076 0.064
S2 20.15 23.30 25.91 27.76 0.770 0.813 0.847 0.881 0.263 0.221 0.187 0.142
S3 19.27 22.56 25.23 27.35 0.714 0.759 0.802 0.849 0.301 0.256 0.216 0.165
S4 18.23 21.57 24.33 26.65 0.639 0.689 0.739 0.803 0.358 0.306 0.254 0.195

real
forward-facing

S1 20.72 23.32 26.61 26.65 0.693 0.758 0.847 0.853 0.325 0.260 0.177 0.173
S2 18.28 21.11 24.69 24.99 0.625 0.696 0.788 0.811 0.384 0.313 0.225 0.212
S3 15.66 18.62 22.62 23.25 0.544 0.623 0.727 0.767 0.458 0.377 0.276 0.256

Figure 2: Qualitative results for the Trex and the Fern scenes [15] under the scene-agnostic setting.
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Figure 3: Qualitative results for the Fern scene [15] under the per-scene finetuning setting.

Figure 4: Qualitative results for the Hotdog scene under the per-scene finetuning setting. The source-view sets S1 and S4 are
listed in the yellow frame.

the target view is larger than that in S1 and S2. As highlighted in
colored frames, other methods cannot synthesize clean boundaries
of guardrails and fronds and recover thin structures.

From the above qualitative results, we observe that there exists
a gradual degradation in the synthesized view when the difference
between source views and the target rendering view increases from
S1 to S3. Similarly, in quantitative results from S1 to S3, PSNR and
SSIM values both decrease while LPIPS increases for all competing
methods. It reveals that the more different the source views are
with respect to the target rendering view, the more difficult novel
view synthesis becomes. Tab. 1 also indicates that the advantage
of InNeRF becomes more significant than other methods with the
increase of the difference between source views and the target
view. It demonstrates that InNeRF has a strong ability to explore
complicated relationships between source views and the target view

and learn a better scene representation in challenging scenarios.
More results are provided in the supplementary material.

4.2.2 Per-scene Finetuning Experiments. In the per-scene finetun-
ing experiment, pretrained models of competing methods are fine-
tuned for each scene.

As shown in Tab. 2, InNeRF outperforms other methods after
per-scene finetuning. Similar to scene-agnostic results, per-scene
finetuning results further validate that InNeRF can provide more
satisfactory novel view rendering than other methods in differ-
ent source-view settings. Meanwhile, performance gaps between
InNeRF and other methods become larger in contrast with that
in the scene-agnostic setting, which indicates that per-scene fine-
tuning can further fulfill the potential of InNeRF. Similar to quan-
titative results, Fig. 3 shows that InNeRF provides more realistic
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Figure 5: Interpretation results of finetuned InNeRF for a target view of Chair scene based on source-view set S4.

Figure 6: Interpretation results of fine-tuned InNeRF for a
target view of the Lego scene.

view synthesis results with fewer artifacts in comparison to other
approaches.

In Fig. 4, InNeRF is compared with IBRNet in four source-view
sets (S1, S2, S3 and S4). Here, we randomly select one view from the
hotdog scene as the target rendering view. To show the difference
between source view sets, we display overall source views in S1
and S4 at the bottom of Fig. 4. It is obvious that the view angles of
source views in S1 are closer to the rendering view compared with
those in S4. In Fig. 4, the top two rows display the rendering views
of competing methods based on four source-view sets. The artifacts
in the rendering views of IBRNet are perceptible in S2 and become
worse in S3 and S4. In contrast, the artifacts in rendering views of
InNeRF remain at a low degree in four source-view sets. It illustrates
InNeRF can obtain better rendering results than IBRNet in different
source-view sets, especially when there is a large difference between
the source views and the rendering view.

4.2.3 Analysis of Interpretability in InNeRF. Based on the atten-
tion mechanism, InNeRF utilizes shape and appearance consistency

in both the surrounding-view space and the ray-cast space, thus
improving the model interpretability. Here, we evaluate the in-
terpretability of InNeRF to examine whether it is consistent with
human perception.

In the surrounding-view space, we visualize the attention of
different source views to a target 3D point to interpret its render-
ing in Decoder𝑣𝑖𝑒𝑤𝑠

𝜎 and Decoder𝑣𝑖𝑒𝑤𝑠
𝑐 . Similarly, in the ray-cast

space, the rendering process of Decoder𝑟𝑎𝑦𝜎 and Decoder𝑟𝑎𝑦𝑐 can
be explored by visualizing the attention of surrounding 3D points
on the target-viewing ray to the target 3D point. Specifically, for
a 2D region (a 5 × 5 pixel region) in the rendering view, we first
compute the average depth value of the corresponding view direc-
tions for the target pixels based on our learned neural radiance field.
Then we retrieve the 3D point that is located closest to the average
depth in the average viewing direction as the target-interpreted 3D
point. For the target 3D point, we can explain its rendering process
in both surrounding-view and ray-cast spaces by visualizing the
corresponding attention layers in InNeRF.

To analyze the interpretability of InNeRF, we provide interpreta-
tion to a randomly selected testing view of the chair scene based on
source-view sets S4 in Fig. 5. The target rendering view is shown
in Fig. 5 (a) and the target location for interpretation is marked
as a red dot. For human visual perception, the source views are
divided into two groups depending on whether they capture the
target location (red dot) in the rendering view. Fig. 5 (b-1) shows
source views that capture the target location, and Fig. 5 (b-2) shows
source views that fail to capture.

For the target location (red dot) in Fig. 5 (a), Fig. 5 (c) and (d)
display attention of source views to the target location for rendering
the query density and color in Decoder𝑣𝑖𝑒𝑤𝑠

𝜎 and Decoder𝑣𝑖𝑒𝑤𝑠
𝑐 ,

respectively. In Fig. 5 (c) and (d), attention of the visible source
views in Fig. 5 (b) are colored blue for clarity. Source views (85,
41, and 61) with high attention values are consistent with those
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Figure 7: Interpretation results of InNeRF for (top) the wings of the nose spot, (middle) the leaves on the left side, and (bottom)
the black tile in the novel views under the per-scene finetuning setting.

with the visible target location. It indicates that the attention layers
in Decoder𝑣𝑖𝑒𝑤𝑠

𝜎 and Decoder𝑣𝑖𝑒𝑤𝑠
𝑐 can learn the important source

views that meet human perception. Fig. 5 (e) depicts the density
attention (green) and color attention (orange) among 3D points
along the target-viewing ray for rendering the query 3D point in
Decoder𝑟𝑎𝑦𝜎 and Decoder𝑟𝑎𝑦𝑐 . Here, the red index (83) denotes the
retrieved 3D point for the target location in the rendering view.
As shown in Fig. 5 (e), both density attention and color attention
in Decoder𝑟𝑎𝑦𝜎 and Decoder𝑟𝑎𝑦𝑐 exist a crest near the query 3D
point, which illustrates that InNeRF in the ray-cast space takes into
account the consistency of neighbor points when rendering the
query point.

Fig. 6 shows the top two source views that are of high-density
attention for the target location of Lego in the realistic synthetic
dataset, and the last two columns show the last two source views
with low-density attention. Given that the top-attention source
views capture the target location (red frame), it is reasonable that
they receive more attention for the query rendering.

Fig. 7 provides the interpretation results in the forward-facing
dataset. The leftmost column shows the rendering view and an
enlarged region framed by a blue box. The second and third columns

show the top two source views that are of high-density attention
for the target location, and the last two columns show the last two
source views with low-density attention. For different source view
sets, the top two source views of the framed leaf region both include
the corresponding leaf region while the last two source views do
not. It indicates that the interpretation results are reasonable for
human perception.

5 CONCLUSION
We propose a unified Transformer-based NeRF framework to learn a
general neural radiance field for novel view synthesis. The proposed
framework can explore complex relationships between source views
and the target rendering view. Meanwhile, the framework improves
intrinsic interpretability by utilizing the shape and appearance
consistency of 3D scenes. Experiments demonstrate that InNeRF
achieves state-of-the-art performance on real and synthetic datasets
in both scene-agnostic and per-scene finetuning settings. In the
future, we intend to extend InNeRF to conditional generative ra-
diance fields, employing learned prior knowledge to generate a
more expressive and interpretable 3D scene representation for the
conditional information.
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