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Abstract

Existing online learning algorithms for adversarial Markov Decision Processes
achieve O(

√
T ) regret after T rounds of interactions even if the loss functions are

chosen arbitrarily by an adversary, with the caveat that the transition function has
to be fixed. This is because it has been shown that adversarial transition functions
make no-regret learning impossible. Despite such impossibility results, in this
work, we develop algorithms that can handle both adversarial losses and adversarial
transitions, with regret increasing smoothly in the degree of maliciousness of the
adversary. More concretely, we first propose an algorithm that enjoys Õ(

√
T +CP)

regret where CP measures how adversarial the transition functions are and can be
at most O(T ). While this algorithm itself requires knowledge of CP, we further
develop a black-box reduction approach that removes this requirement. Moreover,
we also show that further refinements of the algorithm not only maintains the same
regret bound, but also simultaneously adapts to easier environments (where losses
are generated in a certain stochastically constrained manner as in Jin et al. [2021])
and achieves Õ(U+

√
UCL+CP) regret, where U is some standard gap-dependent

coefficient and CL is the amount of corruption on losses.

1 Introduction

Markov Decision Processes (MDPs) are widely-used models for reinforcement learning. They are
typically studied under a fixed transition function and a fixed loss function, which fails to capture
scenarios where the environment is time-evolving or susceptible to adversarial corruption. This
motivates many recent studies to overcome these challenges. In particular, one line of research,
originated from Even-Dar et al. [2009] and later improved or generalized by e.g. Neu et al. [2010a,b],
Zimin and Neu [2013], Rosenberg and Mansour [2019a], Jin et al. [2020], takes inspiration from
the online learning literature and considers interacting with a sequence of T MDPs, each with an
adversarially chosen loss function. Despite facing such a challenging environment, the learner can
still ensure O(

√
T ) regret (ignoring other dependence; same below) as shown by these works, that is,

the learner’s average performance is close to that of the best fixed policy up to O(1/
√
T ).

∗Equal contribution.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



However, one caveat of these studies is that they all still require the MDPs to have to the same
transition function. This is not for no reason — Abbasi Yadkori et al. [2013] shows that even
with full information feedback, achieving sub-linear regret with adversarial transition functions is
computationally hard, and Tian et al. [2021] complements this result by showing that under the more
challenging bandit feedback, this goal becomes even information-theoretically impossible without
paying exponential dependence on the episode length.

To get around such impossibility results, one natural idea is to allow the regret to depend on some
measure of maliciousness CP of the transition functions, which is 0 when the transitions remain the
same over time and O(T ) in the worst case when they are completely arbitrary. We review several
such attempts at the end of this section, and point out here that they all suffer one issue: even when
CP = 0, the algorithms developed in these works all suffer linear regret when the loss functions are
completely arbitrary, while, as mentioned above, O(

√
T ) regret is achievable in this case. This begs

the question: when learning with completely adversarial MDPs, is O(
√
T + CP) regret achievable?

In this work, we not only answer this question affirmatively, but also show that one can perform even
better sometimes. More concretely, our results are as follows.

1. In Section 3, we develop a variant of the UOB-REPS algorithm [Jin et al., 2020], achieving
Õ(
√
T + CP) regret in completely adversarial environments when CP is known. The algorithmic

modifications we propose include an enlarged confidence set, using the log-barrier regularizer, and
a novel amortized bonus term that leads to a critical “change of measure” effect in the analysis.

2. We then remove the requirement on the knowledge of CP in Section 4 by proposing a black-
box reduction that turns any algorithm with Õ(

√
T + CP) regret under known CP into another

algorithm with the same guarantee (up to logarithmic factors) even if CP is unknown. Our
reduction improves that of Wei et al. [2022] by allowing adversarial losses, which presents extra
challenges as discussed in Pacchiano et al. [2022]. The idea of our reduction builds on top of
previous adversarial model selection framework (a.k.a. Corral [Agarwal et al., 2017, Foster et al.,
2020, Luo et al., 2022]), but is even more general and is of independent interest: it shows that the
requirement from previous work on having a stable input algorithm is actually redundant, since
our method can turn any algorithm into a stable one.

3. Finally, in Section 5 we also further refine our algorithm so that it simultaneously adapts to the
maliciousness of the loss functions and achieves Õ(min{

√
T ,U +

√
UCL}+ CP) regret, where

U is some standard gap-dependent coefficient and CL ≤ T is the amount of corruption on losses
(this result unfortunately requires the knowledge of CP, but not U or CL). This generalizes
the so-called best-of-both-worlds guarantee of Jin and Luo [2020], Jin et al. [2021], Dann et al.
[2023] from CP = 0 to any CP, and is achieved by combining the ideas from Jin et al. [2021]
and Ito [2021] with a novel optimistic transition technique. In fact, this technique also leads to
improvement on the dependence of episode length even when CP = 0.

Related Work Here, we review how existing studies deal with adversarially chosen transition
functions and how our results compare to theirs. The closest line of research is usually known as
corruption robust reinforcement learning [Lykouris et al., 2019, Chen et al., 2021, Zhang et al., 2021,
Wei et al., 2022], which assumes a ground truth MDP and measures the maliciousness of the adversary
via the amount of corruption to the ground truth — the amount of corruption is essentially our CL,
while the amount of corruption is essentially our CP (these will become clear after we provide their
formal definitions later). Naturally, the regret in these works is defined as the difference between the
learner’s total loss and that of the best policy with respect to the ground truth MDP, in which case
Õ(
√
T + CP + CL) regret is unavoidable and is achieved by the state-of-the-art [Wei et al., 2022].

On the other hand, following the canonical definition in online learning, we define regret with respect
to the corrupted MDPs, in which case Õ(

√
T + CP) is achievable as we show (regardless how large

CL is). To compare these results, note that the two regret definitions differ from each other by an
amount of at most O(CP + CL). Therefore, our result implies that of Wei et al. [2022], but not vice
versa — what Wei et al. [2022] achieves in our definition of regret is again Õ(

√
T + CP + CL),

which is never better than ours and could be Ω(T ) even when CP = 0.

In fact, our result also improves upon that of Wei et al. [2022] in terms of the gap-dependent
refinement — their refined bound is Õ(min{

√
T ,G}+ CP + CL) for some gap-dependent measure
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G that is known to be no less than our gap-dependent measure U ; on the other hand, based on earlier
discussion, our refined bound in their regret definition is Õ(min{

√
T ,U +

√
UCL}+ CP + CL) =

Õ(min{
√
T ,U}+CP +CL) and thus better. The caveat is that, as mentioned, for this refinement our

result requires the knowledge of CP, but Wei et al. [2022] does not.2 However, we emphasize again
that for the gap-independent bound, our result does not require knowledge of CP and is achieved via
an even more general black-box reduction compared to the reduction of Wei et al. [2022].

Finally, we mention that another line of research, usually known as non-stationary reinforcement
learning, also allows arbitrary transition/loss functions and measures the difficulty by either the
number of changes in the environment [Auer et al., 2008, Gajane et al., 2018] or some smoother
measure such as the total variation across time [Wei and Luo, 2021, Cheung et al., 2023]. These results
are less comparable to ours since their regret (known as dynamic regret) measures the performance of
the learner against the best sequence of policies, while ours (known as static regret) measures the
performance against the best fixed policy.

2 Preliminaries

We consider the problem of sequentially learning T episodic MDPs, all with the same state space
S and action space A. We assume without loss of generality (similarly to Jin et al. [2021]) that the
state space S has a layered structure and is partitioned into L+ 1 subsets S0, . . . , SL such that S0

and SL only contain the initial state s0 and the terminal state sL respectively, and transitions are only
possible between consecutive layers. For notational convenience, for any k < L, we denote the set of
tuples Sk ×A× Sk+1 by Wk. We also denote by k(s) the layer to which state s ∈ S belongs.

Ahead of time, knowing the learner’s algorithm, the environment decides the transition functions
{Pt}Tt=1 and the loss functions {ℓt}Tt=1 for these T MDPs in an arbitrary manner (unknown to the
learner). Then the learner sequentially interacts with these T MDPs: for each episode t = 1, . . . , T ,
the learner first decides a stochastic policy πt : S × A → [0, 1] where πt(a|s) is the probability
of taking action a when visiting state s; then, starting from the initial state st,0 = s0, for each
k = 0, . . . , L − 1, the learner repeatedly selects an action at,k sampled from πt(·|st,k), suffers
loss ℓt(st,k, at,k) ∈ [0, 1], and transits to the next state st,k+1 sampled from Pt(·|st,k, at,k) (until
reaching the terminal state); finally, the learner observes the losses of those visited state-action pairs
(a.k.a. bandit feedback).

Let ℓt(π) = E
[∑L−1

h=0 ℓt(sh, ah)|Pt, π
]

be the expected loss of executing policy π in the t-th MDP
(that is, {(sh, ah)}L−1

h=0 is a stochastic trajectory generated according to transition Pt and policy π).
Then, the regret of the learner against any policy π is defined as RegT (π) = E

[∑T
t=1 ℓt(πt)−ℓt(π)

]
.

We denote by π̊ one of the optimal policies in hindsight such that RegT (̊π) = maxπ RegT (π) and
use RegT ≜ RegT (̊π) as a shorthand.

Maliciousness Measure of the Transitions If the transition functions are all the same, Jin et al.
[2020] shows that RegT = Õ(L|S|

√
|A|T ) is achievable, no matter how the loss functions are

decided. However, when the transition functions are also arbitrary, Tian et al. [2021] shows that
RegT = Ω(min{T,

√
2LT}) is unavoidable. Therefore, a natural goal is to allow the regret to

smoothly increase from order
√
T to T when some maliciousness measure of the transitions increases.

Specifically, the measure we use is

CP ≜ min
P ′∈P

T∑
t=1

L−1∑
k=0

max
(s,a)∈Sk×A

∥Pt(·|s, a)− P ′(·|s, a)∥1 , (1)

where P denotes the set of all valid transition functions. Let P be the transition that realizes the
minimum in this definition. Then CP can be regarded as the same corruption measure used in Chen
et al. [2021]; there, it is assumed that a ground truth MDP with transition P exists, and the adversary
corrupts it arbitrarily in each episode to obtain Pt, making CP the total amount of corruption measured
in a certain norm. For simplicity, in the rest of this paper, we will also take this perspective and call

2When CP + CL is known, Lykouris et al. [2019] also achieves Õ(min{
√
T ,U}+ CP + CL) regret, but

similar to earlier discussions on gap-independent bounds, their regret definition is weaker than ours.
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CP the transition corruption. We also use CP
t =

∑L−1
k=0 max(s,a)∈Sk×A ∥Pt(·|s, a)− P (·|s, a)∥1 to

denote the per-round corruption (so CP =
∑T

t=1 C
P
t ). It is clear that CP = 0 when the transition

stays the same for all MDPs, while in the worst case it is at most 2TL. Our goal is to achieve
RegT = O(

√
T + CP) (ignoring other dependence), which smoothly interpolates between the result

of Jin et al. [2020] for CP = 0 and that of Tian et al. [2021] for CP = O(T ).

Enlarged Confidence Set A central technique to deal with unknown transitions is to maintain a
shrinking confidence set that contains the ground truth with high probability [Rosenberg and Mansour,
2019a,b, Jin et al., 2020]. With a properly enlarged confidence set, the same idea extends to the
case with adversarial transitions [Lykouris et al., 2019]. Specifically, all our algorithms deploy the
following transition estimation procedure. It proceeds in epochs, indexed by i = 1, 2, · · · , and each
epoch i includes some consecutive episodes. An epoch ends whenever we encounter a state-action
pair whose total number of visits doubles itself when compared to the beginning of that epoch. At the
beginning of each epoch i, we calculate an empirical transition P̄i as:

P̄i(s
′|s, a) = mi(s, a, s

′)/mi(s, a), ∀(s, a, s′) ∈Wk, k = 0, . . . L− 1, (2)

where mi(s, a) and mi(s, a, s
′) are the total number of visits to (s, a) and (s, a, s′) prior to epoch i.3

In addition, we calculate the following transition confidence set.
Definition 2.1. (Confidence Set of Transition Functions) Let δ ∈ (0, 1) be a confidence parameter.
With known corruption CP, we define the confidence set of transition functions for epoch i as

Pi =
{
P ∈ P :

∣∣P (s′|s, a)− P̄i(s
′|s, a)

∣∣ ≤ Bi(s, a, s
′), ∀(s, a, s′) ∈Wk, k = 0, . . . , L− 1

}
,

(3)
where the confidence interval Bi(s, a, s

′) is defined, with ι = |S||A|T/δ as

Bi(s, a, s
′) = min

{
1, 16

√
P̄i(s′|s, a) log (ι)

mi(s, a)
+ 64 · C

P + log (ι)

mi(s, a)

}
. (4)

Note that the confidence interval is enlarged according to how large the corruption CP is. We denote
by ECON the event that P ∈ Pi for all epoch i, which is guaranteed to happen with high-probability.
Lemma 2.2. With probability at least 1− 2δ, the event ECON holds.

Occupancy Measure and Upper Occupancy Bound Similar to previous work [Rosenberg
and Mansour, 2019a, Jin et al., 2020], given a stochastic policy π and a transition function
P̄ , we define the occupancy measure qP̄ ,π as the mapping from S × A × S to [0, 1] such that
qP̄ ,π(s, a, s′) is the probability of visiting (s, a, s′) when executing policy π in an MDP with tran-
sition P̄ . Further define qP̄ ,π(s, a) =

∑
s′∈S qP̄ ,π(s, a, s′) (the probability of visiting (s, a)) and

qP̄ ,π(s) =
∑

a∈A qP̄ ,π(s, a) (the probability of visiting s). Given an occupancy measure q, the
corresponding policy that defines it, denoted by πq , can be extracted via πq(a|s) ∝ q(s, a).

Importantly, the expected loss ℓt(π) defined earlier equals
〈
qPt,π, ℓt

〉
, making our problem a variant

of online linear optimization and enabling the usage of standard algorithmic frameworks such as
Online Mirror Descent (OMD) or Follow-the-Regularized-Leader (FTRL). These frameworks operate
over a set of occupancy measures in the form of either Ω(P̄ ) = {qP̄ ,π : π is a stochastic policy}
for some transition function P̄ , or Ω(P̄) = {qP̄ ,π : P̄ ∈ P̄, π is a stochastic policy} for some set of
transition functions P̄ .

Following Jin et al. [2020], to handle partial feedback on the loss function ℓt, we need to construct
loss estimators ℓ̂t using the (efficiently computable) upper occupancy bound ut:

ℓ̂t(s, a) =
It(s, a)ℓt(s, a)

ut(s, a)
, where ut(s, a) = max

P̂∈Pi(t)

qP̂ ,πt(s, a), (5)

It(s, a) is 1 if (s, a) is visited during episode t (so that ℓt(s, a) is revealed), and 0 otherwise, and i(t)
denotes the epoch index to which episode t belongs. We also define ut(s) =

∑
a∈A ut(s, a).

3When mi(s, a) = 0, we simply let the transition function to be uniform, that is, P̄i(s
′|s, a) = 1/

∣∣Sk(s′)

∣∣.
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3 Achieving O(
√
T + CP) with Known CP

As the first step, we develop an algorithm that achieves our goal when CP is known. To introduce our
solution, we first briefly review the UOB-REPS algorithm of Jin et al. [2020] (designed for CP = 0)
and point out why simply using the enlarged confidence set Eq. (3) when CP ̸= 0 is far away from
solving the problem. Specifically, UOB-REPS maintains a sequence of occupancy measures {q̂t}Tt=1

via OMD: q̂t+1 = argminq∈Ω(Pi(t+1)) η⟨q, ℓ̂t⟩+Dϕ(q, q̂t). Here, η > 0 is a learning rate, ℓ̂t is the
loss estimator defined in Eq. (5), ϕ is the negative entropy regularizer, and Dϕ is the corresponding
Bregman divergence.4 With q̂t at hand, in episode t, the learner simply executes πt = πq̂t . Standard
analysis of OMD ensures a bound on the estimated regret REG = E[

∑
t⟨q̂t − qP,̊π, ℓ̂t⟩], and the rest

of the analysis of Jin et al. [2020] boils down to bounding the difference between REG and RegT .

First Issue This difference between REG and RegT leads to the first issue when one tries to analyze
UOB-REPS against adversarial transitions — it contains the following bias term that measures the
difference between the optimal policy’s estimated loss and its true loss:

E

[
T∑

t=1

〈
qP,̊π, ℓ̂t − ℓt

〉]
= E

[
T∑

t=1

∑
s,a

qP,̊π(s, a)ℓt(s, a)

(
qPt,πt(s, a)− ut(s, a)

ut(s, a)

)]
. (6)

When CP = 0, we have P = Pt, and thus under the high probability event ECON and by the definition
of upper occupancy bound, we know qPt,πt(s, a) ≤ ut(s, a), making Eq. (6) negligible. However,
this argument breaks when CP ̸= 0 and P ̸= Pt. In fact, Pt can be highly different from any
transitions in Pi(t) with respect to which ut is defined, making Eq. (6) potentially huge.

Solution: Change of Measure via Amortized Bonuses Given that qP,πt(s, a) ≤ ut(s, a) does
still hold with high probability, Eq. (6) is (approximately) bounded by

E

[
T∑

t=1

∑
s,a

qP,̊π(s, a)
|qPt,πt(s, a)− qP,πt(s, a)|

ut(s, a)

]
= E

[
T∑

t=1

∑
s

qP,̊π(s)
|qPt,πt(s)− qP,πt(s)|

ut(s)

]

which is at most E
[∑T

t=1

∑
s q

P,̊π(s)
CP

t

ut(s)

]
since

∣∣qPt,πt(s)− qP,πt(s)
∣∣ is bounded by the per-

round corruption CP
t (see Corollary D.3.6). While this quantity is potentially huge, if we could

“change the measure” from qP,̊π to q̂t, then the resulting quantity E
[∑T

t=1

∑
s q̂t(s)

CP
t

ut(s)

]
is at most

|S|CP since q̂t(s) ≤ ut(s) by definition. The general idea of such a change of measure has been
extensively used in the online learning literature (see Luo et al. [2021] in a most related context) and
can be realized by changing the loss fed to OMD from ℓ̂t to ℓ̂t − bt for some bonus term bt, which, in
our case, should satisfy bt(s, a) ≈ CP

t

ut(s)
. However, the challenge here is that CP

t is unknown!

Our solution is to introduce a type of efficiently computable amortized bonuses that do not change
the measure per round, but do so overall. Specifically, our amortized bonus bt is defined as

bt(s, a) =

{
4L

ut(s)
if
∑t

τ=1 I{⌈log2 uτ (s)⌉ = ⌈log2 ut(s)⌉} ≤ CP

2L ,
0 else,

(7)

which we also write as bt(s) since it is independent of a. To understand this definition, note
that −⌈log2 ut(s)⌉ is exactly the unique integer j such that ut(s) falls into the bin (2−j−1, 2−j ].
Therefore, the expression

∑t
τ=1 I{⌈log2 uτ (s)⌉ = ⌈log2 ut(s)⌉} counts, among all previous rounds

τ = 1, . . . , t, how many times we have encountered a uτ (s) value that falls into the same bin as
ut(s). If this number does not exceed CP

2L , we apply a bonus of 4L
ut(s)

, which is (two times of) the

maximum possible value of the unknown quantity CP
t

ut(s)
; otherwise, we do not apply any bonus. The

idea is that by enlarging the bonus to it maximum value and stopping it after enough times, even
though each bt(s) might be quite different from CP

t

ut(s)
, overall they behave similarly after T episodes:

4The original loss estimator of Jin et al. [2020] is slightly different, but that difference is only for the purpose
of obtaining a high probability regret guarantee, which we do not consider in this work for simplicity.

5



Algorithm 1 Algorithm for Adversarial Transitions (with Known CP)
Input: confidence parameter δ ∈ (0, 1), learning rate η > 0.
Initialize: epoch index i = 1; counters m1(s, a) = m1(s, a, s

′) = m0(s, a) = m0(s, a, s
′) = 0 for

all (s, a, s′); empirical transition P̄1 and confidence width B1 based on Eq. (2) and Eq. (4); occupancy
measure q̂1(s, a, s

′) = 1
|Sk||A||Sk+1| for all (s, a, s′); and initial policy π1 = πq̂1 .

for t = 1, . . . , T do
Execute policy πt and obtain trajectory (st,k, at,k) for k = 0, . . . , L− 1.
Construct loss estimator ℓ̂t as defined in Eq. (5).
Update bt(s) for all s based on Eq. (7).
Increase counters: for each k < L, mi(st,k, at,k, st,k+1)

+← 1, mi(st,k, at,k)
+← 1.

if ∃k, mi(st,k, at,k) ≥ max{1, 2mi−1(st,k, at,k)} then ▷ entering a new epoch

Increase epoch index i
+← 1.

Initialize new counters: ∀(s, a, s′), mi(s, a, s
′) = mi−1(s, a, s

′),mi(s, a) = mi−1(s, a).
Update confidence set Pi based on Eq. (3).

Let Dϕ(·, ·) be the Bregman divergence with respect to log barrier (Eq. (11)) and compute

q̂t+1 = argmin
q∈Ω(Pi)

η
〈
q, ℓ̂t − bt

〉
+Dϕ(q, q̂t). (8)

Update policy πt+1 = πq̂t+1 .

Lemma 3.1. The amortized bonus defined in Eq. (7) satisfies
∑T

t=1
CP

t

ut(s)
≤
∑T

t=1 bt(s) and∑T
t=1 q̂t(s)bt(s) = O(CP log T ) for any s.

Therefore, the problematic term Eq. (6) is at most E[
∑

t⟨qP,̊π, bt⟩], which, if “converted” to
E[
∑

t⟨q̂t, bt⟩] (change of measure), is nicely bounded by O(|S|CP log T ). As mentioned, such
a change of measure can be realized by feeding ℓ̂t − bt instead of ℓ̂t to OMD, because now standard
analysis of OMD ensures a bound on REG = E[

∑
t⟨q̂t − qP,̊π, ℓ̂t − bt⟩], which, compared to the

earlier definition of REG, leads to a difference of E[
∑

t⟨q̂t− qP,̊π, bt⟩] (see Appendix A.5 for details).

Second Issue The second issue comes from analyzing REG (which exists even if no bonuses
are used). Specifically, standard analysis of OMD requires bounding a “stability” term,
which, for the negative entropy regularizer, is in the form of E[

∑
t

∑
s,a q̂t(s, a)ℓ̂t(s, a)

2] =

E[
∑

t

∑
s,a q̂t(s, a)

qPt,πt (s,a)ℓt(s,a)
2

ut(s,a)2
] ≤ E[

∑
t

∑
s,a

qPt,πt (s,a)
ut(s,a)

]. Once again, when CP = 0 and
Pt = P , we have qPt,πt bounded by ut(s, a) with high probability, and thus the stability term is
O(T |S||A|); but this breaks if CP ̸= 0 and Pt can be arbitrarily different from transitions in Pi(t).

Solution: Log-Barrier Regularizer Resolving this second issue, however, is relatively straight-
forward — it suffices to switch the regularizer from negative entropy to log-barrier: ϕ(q) =

−
∑L−1

k=0

∑
(s,a,s′)∈Wk

log q(s, a, s′), which is first used by Lee et al. [2020] in the context
of learning adversarial MDPs but dates back to earlier work such as Foster et al. [2016] for
multi-armed bandits. An important property of log-barrier is that it leads to a smaller stabil-
ity term in the form of E[

∑
t

∑
s,a q̂t(s, a)

2ℓ̂t(s, a)
2] (with an extra q̂t(s, a)), which is at most

E[
∑

t

∑
s,a q

Pt,πt(s, a)ℓt(s, a)
2] = O(TL) since q̂t(s, a) ≤ ut(s, a). In fact, this also helps control

the extra stability term when bonuses are used, which is in the form of E[
∑

t

∑
s,a q̂t(s, a)

2bt(s, a)
2]

and is at most 4LE[
∑

t⟨q̂t, bt⟩] = O(L|S|CP log T ) according to Lemma 3.1.

Putting these two ideas together leads to our final algorithm (see Algorithm 1). We prove the following
regret bound in Appendix A, which recovers that of Jin et al. [2020] when CP = 0 and increases
linearly in CP as desired.
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Theorem 3.2. With δ = 1/T and η = min

{√
|S|2|A| log(ι)

LT , 1
8L

}
, Algorithm 1 ensures

RegT = O
(
L|S|

√
|A|T log (ι) + L|S|4|A| log2(ι) + CPL|S|4|A| log(ι)

)
.

4 Achieving O(
√
T + CP) with Unknown CP

In this section, we address the case when the amount of corruption is unknown. We develop a
black-box reduction which turns an algorithm that only deals with known CP to one that handles
unknown CP. This is similar to Wei et al. [2022] but additionally handles adversarial losses using
a different approach. A byproduct of our reduction is that we develop an entirely black-box model
selection approach for adversarial online learning problems, as opposed to the gray-box approach
developed by the “Corral” literature [Agarwal et al., 2017, Foster et al., 2020, Luo et al., 2022] which
requires checking if the base algorithm is stable. To achieve this, we essentially develop another layer
of reduction that turns any standard algorithm with sublinear regret into a stable algorithm. This
result itself might be of independent interest and useful for solving other model selection problems.

More specifically, our reduction has two layers. The bottom layer is where our novelty lies: it takes
as input an arbitrary corruption-robust algorithm that operates under known CP (e.g., the one we
developed in Section 3), and outputs a stable corruption-robust algorithm (formally defined later) that
still operates under known CP. The top layer, on the other hand, follows the standard Corral idea
and takes as input a stable algorithm that operates under known CP, and outputs an algorithm that
operates under unknown CP. Below, we explain these two layers of reduction in details.

Bottom Layer (from an Arbitrary Algorithm to a Stable Algorithm) The input of the bottom
layer is an arbitrary corruption-robust algorithm, formally defined as:
Definition 4.1. An adversarial MDP algorithm is corruption-robust if it takes θ (a guess on the
corruption amount) as input, and achieves the following regret for any random stopping time t′ ≤ T :

max
π

E

 t′∑
t=1

(ℓt(πt)− ℓt(π))

 ≤ E
[√

β1t′ + (β2 + β3θ)I{t′ ≥ 1}
]
+ Pr[CP

1:t′ > θ]LT

for problem-dependent constants and log(T ) factors β1 ≥ L2, β2 ≥ L, β3 ≥ 1, where CP
1:t′ =∑t′

τ=1 C
P
τ is the total corruption up to time t′.

While the regret bound in Definition 4.1 might look cumbersome, it is in fact fairly reasonable: if the
guess θ is not smaller than the true corruption amount, the regret should be of order

√
t′+θ; otherwise,

the regret bound is vacuous since LT is its largest possible value. The only extra requirement is that
the algorithm needs to be anytime (i.e., the regret bound holds for any stopping time t′), but even this
is known to be easily achievable by using a doubling trick over a fixed-time algorithm. It is then clear
that our algorithm in Section 3 (together with a doubling trick) indeed satisfies Definition 4.1.

As mentioned, the output of the bottom layer is a stable robust algorithm. To characterize stability, we
follow Agarwal et al. [2017] and define a new learning protocol that abstracts the interaction between
the output algorithm of the bottom layer and the master algorithm from the top layer:
Protocol 1. In every round t, before the learner makes a decision, a probability wt ∈ [0, 1] is revealed
to the learner. After making a decision, the learner sees the desired feedback from the environment
with probability wt, and sees nothing with probability 1− wt.

In such a learning protocol, Agarwal et al. [2017] defines a stable algorithm as one whose regret
smoothly degrades with ρT = 1

mint∈[T ] wt
. For our purpose here, we additionally require that the

dependence on CP in the regret bound is linear, which results in the following definition:
Definition 4.2 ( 12 -stable corruption-robust algorithm). A 1

2 -stable corruption-robust algorithm is one
that, with prior knowledge on CP, achieves RegT ≤ E

[√
β1ρTT + β2ρT

]
+β3C

P under Protocol 1
for problem-dependent constants and log(T ) factors β1 ≥ L2, β2 ≥ L, and β3 ≥ 1.

For simplicity, we only define and discuss the 1
2 -stability notion here (the parameter 1

2 refers to the
exponent of T ), but our result can be straightforwardly extended to the general α-stability notion for
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Algorithm 2 STable Algorithm By Independent Learners and Instance SElection (STABILISE)

Input: CP and a base algorithm satisfying Definition 4.1.
Initialize: ⌈log2 T ⌉ instances of the base algorithm ALG1, . . . ,ALG⌈log2 T⌉, where ALGj is config-
ured with the parameter

θ = θj ≜ 2−j+1CP + 16L log(T ).

for t = 1, 2, . . . do
Receive wt.
if wt ≤ 1

T then
play an arbitrary policy πt

continue (without updating any instances)
Let jt be such that wt ∈ (2−jt−1, 2−jt ].
Let πt be the policy suggested by ALGjt .
Output πt.
If feedback is received, send it to ALGjt with probability 2−jt−1

wt
, and discard it otherwise.

α ∈ [ 12 , 1) as in Agarwal et al. [2017]. Our main result in this section is then that one can convert any
corruption-robust algorithm into a 1

2 -stable corruption-robust algorithm:

Theorem 4.3. If an algorithm is corruption robust according to Definition 4.1 for some constants
(β1, β2, β3), then one can convert it to a 1

2 -stable corruption-robust algorithm (Definition 4.2) with
constants (β′

1, β
′
2, β

′
3) where β′

1 = O(β1 log T ), β
′
2 = O(β2 + β3L log T ), and β′

3 = O(β3 log T ).

This conversion is achieved by a procedure that we call STABILISE (see Algorithm 2 for details). The
high-level idea of STABILISE is as follows. Noticing that the challenge when learning in Protocol 1
is that wt varies over time, we discretize the value of wt and instantiate one instance of the input
algorithm to deal with one possible discretized value, so that it is learning in Protocol 1 but with a
fixed wt, making it straightforward to bound its regret based on what it promises in Definition 4.1.

More concretely, STABILISE instantiates O(log2 T ) instances {ALGj}⌈log2 T⌉
j=0 of the input algo-

rithm that satisfies Definition 4.1, each with a different parameter θj . Upon receiving wt from the
environment, it dispatches round t to the j-th instance where j is such that wt ∈ (2−j−1, 2−j ], and
uses the policy generated by ALGj to interact with the environment (if wt ≤ 1

T , simply ignore this
round). Based on Protocol 1, the feedback for this round is received with probability wt. To equalize
the probability of ALGj receiving feedback as mentioned in the high-level idea, when the feedback
is actually obtained, STABILISE sends it to ALGj only with probability 2−j−1

wt
(and discards it

otherwise). This way, every time ALGj is assigned to a round, it always receives the desired feedback
with probability wt · 2

−j−1

wt
= 2−j−1. This equalization step is the key that allows us to use the

original guarantee of the base algorithm (Definition 4.1) and run it as it is, without requiring it to
perform extra importance weighting steps as in Agarwal et al. [2017].

The choice of θj is crucial in making sure that STABILISE only has CP regret overhead instead of
ρTC

P. Since ALGj only receives feedback with probability 2−j−1, the expected total corruption
it experiences is on the order of 2−j−1CP. Therefore, its input parameter θj only needs to be of
this order instead of the total corruption CP. This is similar to the key idea of Wei et al. [2022]
and Lykouris et al. [2018]. See Appendix B.1 for more details and the full proof of Theorem 4.3.

Top Layer (from Known CP to Unknown CP) With a stable algorithm and a regret guarantee
in Definition 4.2, it is relatively standard to convert it to an algorithm with Õ(

√
T + CP) regret

without knowing CP. Similar arguments have been made in Foster et al. [2020], and the idea is to
have another specially designed OMD/FTRL-based master algorithm to choose on the fly among a
set of instances of this stable base algorithm, each with a different guess on CP (the probability wt in
Protocol 1 is then decided by this master algorithm). We defer all details to Appendix B. The final
regret guarantee is the following (Õ(·) hides log(T ) factors).
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Theorem 4.4. Using an algorithm satisfying Definition 4.2 as a base algorithm, Algorithm 3 (in the
appendix) ensures RegT = Õ

(√
β1T + β2 + β3C

P
)

without knowing CP.

5 Gap-Dependent Refinements with Known CP

Finally, we discuss how to further improve our algorithm so that it adapts to easier environments and
enjoys a better bound when the loss functions satisfy a certain gap condition, while still maintaining
the O(

√
T + CP) robustness guarantee. This result unfortunately requires the knowledge of CP

because the black-box approach introduced in the last section leads to
√
T regret overhead already.

We leave the possibility of removing this limitation for future work.

More concretely, following prior work such as Jin and Luo [2020], we consider the following general
condition: there exists a mapping π⋆ : S → A, a gap function ∆ : S ×A→ (0, L], and a constant
CL ≥ 0, such that for any policies π1, . . . , πT generated by the learner, we have

E

[
T∑

t=1

〈
qP,πt − qP,π⋆

, ℓt

〉]
≥ E

 T∑
t=1

∑
s̸=sL

∑
a ̸=π⋆(s)

qP,πt(s, a)∆(s, a)

− CL. (9)

It has been shown that this condition subsumes the case when the loss functions are drawn from a
fixed distribution (in which case π⋆ is simply the optimal policy with respect to the loss mean and P ,
∆ is the gap function with respect to the optimal Q-function, and CL = 0), or further corrupted by an
adversary in an arbitrary manner subject to a budget of CL; we refer the readers to Jin and Luo [2020]
for detailed explanation. Our main result for this section is a novel algorithm (whose pseudocode is
deferred to Appendix C due to space limit) that achieves the following best-of-both-world guarantee.
Theorem 5.1. Algorithm 4 (with δ = 1/T 2 and γt defined as in Definition 5.2) ensures

RegT (̊π) = O
(
L2|S||A| log (ι)

√
T +

(
CP + 1

)
L2|S|4|A|2 log2 (ι)

)
always, and simultaneously the following gap-dependent bound under Condition (9):

RegT (π
⋆) = O

(
U +

√
UCL +

(
CP + 1

)
L2|S|4|A|2 log2(ι)

)
,

where U = L3|S|2|A| log2(ι)
∆MIN

+
∑

s̸=sL

∑
a̸=π⋆(s)

L2|S||A| log2(ι)
∆(s,a) and ∆MIN = min

s ̸=sL,a̸=π⋆(s)
∆(s, a).

Aside from having larger dependence on parameters L, S, and A, Algorithm 4 maintains the same
O(
√
T + CP) regret as before, no matter how losses/transitions are generated; additionally, the

√
T

part can be significantly improved to O(U +
√
UCL) (which can be of order only log2 T when CL

is small) under Condition (9). This result not only generalizes that of Jin et al. [2021], Dann et al.
[2023] from CP = 0 to any CP, but in fact also improves their results by having smaller dependence
on L in the definition of U . In the rest of this section, we describe the main ideas of our algorithm.

FTRL with Epoch Schedule Our algorithm follows a line of research originated from Wei and
Luo [2018], Zimmert and Seldin [2019] for multi-armed bandits and uses FTRL (instead of OMD)
together with a certain self-bounding analysis technique. Since FTRL does not deal with varying
decision sets easily, similar to Jin et al. [2021], we restart FTRL from scratch at the beginning of
each epoch i (recall the epoch schedule described in Section 2). More specifically, in an episode
t that belongs to epoch i, we now compute q̂t as argminq

〈
q,
∑t−1

τ=ti
(ℓ̂τ − bτ )

〉
+ ϕt(q), where ti

is the first episode of epoch i, ℓ̂t is the same loss estimator defined in Eq. (5), bt is the amortized
bonus defined in Eq. (7) (except that τ = 1 there is also changed to τ = ti due to restarting), ϕt is a
time-varying regularizer to be specified later, and the set that q is optimized over is also a key element
to be discussed next. As before, the learner then simply executes πt = πq̂t for this episode.

Optimistic Transition An important idea from Jin et al. [2021] is that if FTRL optimizes q over
Ω(P̄i) (occupancy measures with respect to a fixed transition P̄i) instead of Ω(Pi) (occupancy
measures with respect to a set of plausible transitions) as in UOB-REPS, then a critical loss-shifting
technique can be applied in the analysis. However, the algorithm lacks “optimism” when not using
a confidence set, which motivates Jin et al. [2021] to instead incorporate optimism by subtracting
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a bonus term BONUS from the loss estimator (not to be confused with the amortized bonus bt we
propose in this work). Indeed, if we define the value function V P̄ ,π(s; ℓ) as the expected loss one
suffers when starting from s and following π in an MDP with transition P̄ and loss ℓ, then they show
that the BONUS term is such that V P̄i,π(s; ℓ − BONUS) ≤ V P,π(s; ℓ) for any state s and any loss
function ℓ, that is, the performance of any policy is never underestimated.

Instead of following the same idea, here, we propose a simpler and better way to incorporate
optimism via what we call optimistic transitions. Specifically, for each epoch i, we simply define an
optimistic transition function P̃i such that P̃i(s

′|s, a) = max
{
0, P̄i(s

′|s, a)−Bi(s, a, s
′)
}

(recall
the confidence interval Bi defined in Eq. (4)). Since this makes

∑
s′ P̃i(s

′|s, a) less than 1, we
allocate all the remaining probability to the terminal state sL (which breaks the layer structure but
does not really affect anything). This is a form of optimism because reaching the terminate state
earlier can only lead to smaller loss. More formally, under the high probability event ECON, we prove
V P̃i,π(s; ℓ) ≤ V P,π(s; ℓ) for any policy π, any state s, and any loss function ℓ (see Lemma C.8.3).

With such an optimistic transition, we simply perform FTRL over Ω(P̃i) without adding any additional
bonus term (other than bt), making both the algorithm and the analysis much simpler than Jin et al.
[2021]. Moreover, it can also be shown that V P̄i,π(s; ℓ− BONUS) ≤ V P̃i,π(s; ℓ) (see Lemma C.8.4),
meaning that while both loss estimation schemes are optimistic, ours is tighter than that of Jin et al.
[2021]. This eventually leads to the aforementioned improvement in the U definition.

Time-Varying Log-Barrier Regularizers The final element to be specified in our algorithm is
the time-varying regularizer ϕt. Recall from discussions in Section 3 that using log-barrier as the
regularizer is critical for bounding some stability terms in the presence of adversarial transitions. We
thus consider the following log-barrier regularizer with an adaptive learning rate γt : S ×A→ R+:
ϕt(q) = −

∑
s̸=sL

∑
a∈A γt(s, a) · log q(s, a). The learning rate design requires combining the

loss-shifting idea of [Jin et al., 2021] and the idea from [Ito, 2021], the latter of which is the first
work to show that with adaptive learning rate tuning, the log-barrier regularizer leads to near-optimal
best-of-both-world gaurantee for multi-armed bandits.

More specifically, following the same loss-shifting argument of Jin et al. [2021], we first observe that
our FTRL update can be equivalently written as

q̂t =argmin
q∈Ω(P̃i)

〈
q,

t−1∑
τ=ti

(ℓ̂τ − bτ )

〉
+ ϕt(q) = argmin

x∈Ω(P̃i)

〈
q,

t−1∑
τ=ti

(gτ − bτ )

〉
+ ϕt(q),

where gτ (s, a) = QP̃i,πτ (s, a; ℓ̂τ )− V P̃i,πτ (s; ℓ̂τ ) for any state-action pair (s, a) (Q is the standard
Q-function; see Appendix C for formal definition). With this perspective, we follow the idea of Ito
[2021] and propose the following learning rate schedule:
Definition 5.2. (Adaptive learning rate for log-barrier) For any t, if it is the starting episode of
an epoch, we set γt(s, a) = 256L2|S|; otherwise, we set γt+1(s, a) = γt(s, a) +

Dνt(s,a)
2γt(s,a)

where

D = 1/log(ι), νt(s, a) = qP̃i(t),πt(s, a)2
(
QP̃i(t),πt(s, a; ℓ̂t)− V P̃i(t),πt(s; ℓ̂t)

)2
, and i(t) is the

epoch index to which episode t belongs.

Such a learning rate schedule is critical for the analysis in obtaining a certain self-bounding quantity
and eventually deriving the gap-dependent bound. This concludes the design of our algorithm; see
Appendix C for more details.

6 Conclusions

In this work, we propose online RL algorithms that can handle both adversarial losses and adversarial
transitions, with regret gracefully degrading in the degree of maliciousness of the adversary. Specifi-
cally, we achieve Õ(

√
T + CP) regret where CP measures how adversarial the transition functions

are, even when CP is unknown. Moreover, we show that further refinements of the algorithm not
only maintain the same regret bound, but also simultaneously adapt to easier environments, with the
caveat that CP must be known ahead of time. We leave how to further remove this restriction as a key
future direction.
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Important Notations Throughout the appendix, we denote the transition associated with the
occupancy measure q̂t by P̂t so that q̂t = qP̂t,πt . Recall i(t) is the epoch index to which episode
t belongs. Importantly, the notation mi(s, a) (and similarly mi(s, a, a

′)), which is a changing
variable in the algorithms, denotes the initial value of this counter in all analysis, that is, the
total number of visits to (s, a) prior to epoch i. Finally, for convenience, we define m̂i(s, a) =
max

{
mi(s, a), C

P + log (ι)
}

, and it can be verified that the confidence interval, defined in Eq. (4)
as

Bi(s, a, s
′) = min

{
1, 16

√
P̄i(s′|s, a) log (ι)

mi(s, a)
+ 64 · C

P + log (ι)

mi(s, a)

}
,

can be equivalently written as

Bi(s, a, s
′) = min

{
1, 16

√
P̄i(s′|s, a) log (ι)

m̂i(s, a)
+ 64 · C

P + log (ι)

m̂i(s, a)

}
since whenever m̂i(s, a) ̸= mi(s, a), the two definitions both lead to a value of 1.

A Omitted Details for Section 3

In this section, we provide more details of the modified UOB-REPS algorithm as shown in Algo-
rithm 1. In the algorithm, the occupancy measure for each episode t is computed as

q̂t+1 = argmin
q∈Ω(Pi(t+1))

η
〈
q, ℓ̂t − bt

〉
+Dϕ(q, q̂t), (10)

where η > 0 is the learning rate and Dϕ(q, q
′) is the Bregman divergence defined as

Dϕ(q, q
′) = ϕ(q)− ϕ(q′)− ⟨∇ϕ(q′), q − q′⟩ . (11)

The Bregman divergence is induced by the log-barrier regularizer ϕ given as:

ϕ(q) =

L−1∑
k=0

∑
s∈Sk

∑
a∈A

∑
s′∈Sk+1

log

(
1

q(s, a, s′)

)
. (12)

We note that the loss estimator is constructed based upon upper occupancy bound ut, which can be
efficiently computed by COMP-UOB [Jin et al., 2020].

In the rest of this section, we prove Theorem 3.2 which shows that the expected regret is bounded by

O
(
L|S|

√
|A|T log(ι) + L|S|4|A| log2(ι) + CPL|S|4|A| log(ι)

)
.

Our analysis starts from a regret decomposition similar to Jin et al. [2020], but with the amortized
bonuses taken into account:

RegT = E

[
T∑

t=1

〈
qPt,πt − qPt ,̊π, ℓt

〉]

= E

[
T∑

t=1

〈
qPt,πt − qP̂t,πt , ℓt

〉]
︸ ︷︷ ︸

ERROR

+E

[
T∑

t=1

〈
qP̂t,πt , ℓt − ℓ̂t

〉]
︸ ︷︷ ︸

BIAS1

+ E

[
T∑

t=1

〈
qP̂t,πt − qP,̊π, ℓ̂t − bt

〉]
︸ ︷︷ ︸

REG

+E

[
T∑

t=1

〈
qP,̊π, ℓ̂t − ℓt

〉
+

T∑
t=1

〈
qP̂t,πt − qP,̊π, bt

〉]
︸ ︷︷ ︸

BIAS2

+ E

[
T∑

t=1

〈
qP,̊π − qPt ,̊π, ℓt

〉]
,

where the last term can be directly bounded by O
(
LCP

)
using Corollary D.3.7, and ERROR, BIAS1,

REG, and BIAS2 are analyzed in Appendix A.2, Appendix A.3, Appendix A.4 and Appendix A.5
respectively.
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A.1 Equivalent Definition of Amortized Bonuses

For ease of exposition, we show an alternative definition of the amortized bonus bt(s), which is
equivalent to Eq. (7) but is useful for our following analysis. Recall from Eq. (7) that

bt(s) = bt(s, a) =

{
4L

ut(s)
if
∑t

τ=1 I{⌈log2 uτ (s)⌉ = ⌈log2 ut(s)⌉} ≤ CP

2L ,
0 else,

(13)

In Eq. (13), the value of bt(s) relies on the cumulative sum of I{⌈log2 uτ (s)⌉ = ⌈log2 ut(s)⌉} and
whether the cumulative sum exceeds the threshold CP

2L . To reconstruct this, we define yt(s) as the
unique integer value j = −⌈log2 ut(s)⌉ such that ut(s) ∈ (2−j−1, 2−j ] and define zjt (s) as the total
number of times from episode τ = 1 to τ = t where yτ (s) = j holds. With these definitions, the
condition under which bt(s) = 4L

ut(s)
can be represented by

∑
j I{yt(s) = j}I

{
zjt (s) ≤ CP

/2L
}

where the summation is over all integers that −⌈log2 ut(s)⌉ can take. Notice that since ut(s) ≥ 1
|S|T

holds for all s and t (see Lemma D.2.8), the largest possible integer value we need to consider is
⌈log2 (|S|T )⌉. Therefore, bt(s) can be equivalently defined as:

bt(s) = bt(s, a) =
4L

ut(s)

⌈log2(|S|T )⌉∑
j=0

I{yt(s) = j}I
{
zjt (s) ≤

CP

2L

}
,∀s ∈ S, ∀t ∈ {1, . . . , T}.

(14)

A.2 Bounding ERROR

Lemma A.2.1 (Bound of ERROR). Algorithm 1 ensures

ERROR = O
(
L|S|

√
|A|T log(ι) + L|S|2|A| log(ι) log(T ) + CPL|S||A| log(T ) + δLT

)
.

Proof. For this proof, we consider two cases, whether the event ECON ∧ EEST holds or not, where ECON,
defined above Eq. (4), and EEST, defined in Proposition D.5.2, are both high probability events.

Suppose that ECON ∧ EEST holds. We have
T∑

t=1

〈
qPt,πt − qP̂t,πt , ℓt

〉
≤

T∑
t=1

L−1∑
k=0

∑
s∈Sk

∑
a∈A

∣∣∣qPt,πt(s, a)− qP̂t,πt(s, a)
∣∣∣

=

T∑
t=1

L−1∑
k=0

∑
s∈Sk

∣∣∣qP̂t,πt(s)− qP,πt(s)
∣∣∣

≤
T∑

t=1

L−1∑
k=0

∑
s∈Sk

k−1∑
h=0

∑
u∈Sh

∑
v∈A

∑
w∈Sh+1

qPt,πt(u, v)
∣∣∣P̂t(w|u, v)− Pt(w|u, v)

∣∣∣ qP̂t,πt(s|w)

≤ L

T∑
t=1

L−1∑
h=0

∑
u∈Sh

∑
v∈A

qPt,πt(u, v)
∥∥∥P̂t(·|u, v)− Pt(·|u, v)

∥∥∥
1

≤ L

T∑
t=1

L−1∑
h=0

∑
u∈Sh

∑
v∈A

qPt,πt(u, v)
(
∥Pt(·|u, v)− P (·|u, v)∥1 +

∥∥∥P̂t(·|u, v)− P (·|u, v)
∥∥∥
1

)

≤ L

T∑
t=1

L−1∑
h=0

∑
u∈Sh

∑
v∈A

qPt,πt(u, v)
∥∥∥P̂t(·|u, v)− P (·|u, v)

∥∥∥
1
+ L

T∑
t=1

L−1∑
h=0

CP
t,h

= L

T∑
t=1

L−1∑
h=0

∑
u∈Sh

∑
v∈A

qPt,πt(u, v)
∥∥∥P̂t(·|u, v)− P (·|u, v)

∥∥∥
1
+ LCP, (15)
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where the first step follows from the fact that ℓt(s, a) ∈ [0, 1] for any (s, a); the third step applies
Lemma D.3.3; the fourth step rearranges the summation and uses the fact that

∑
s,a q

P̂t,πt(s, a|w) ≤
L; and in the sixth step we define CP

t,h = maxs∈Sh,a∈A ∥Pt(·|s, a)− P (·|s, a)∥1, so that CP =∑T
t=1

∑L−1
h=0 C

P
t,h. We continue to bound the first term above as:

T∑
t=1

L−1∑
h=0

∑
u∈Sh

∑
v∈A

qPt,πt(u, v)
∥∥∥P̂t(·|u, v)− P (·|u, v)

∥∥∥
1

≤
T∑

t=1

L−1∑
h=0

∑
u∈Sh

∑
v∈A

qPt,πt(u, v)
(∥∥∥P̂t(·|u, v)− P̄i(t)(·|u, v)

∥∥∥
1
+
∥∥P̄i(t)(·|u, v)− P (·|u, v)

∥∥
1

)

≤
L−1∑
h=0

T∑
t=1

∑
u∈Sh

∑
v∈A

qPt,πt(u, v) O

(√
|Sh+1| log(ι)
m̂i(t)(u, v)

+
CP + |Sh+1| log(ι)

m̂i(t)(u, v)

)

≤ O

(
L−1∑
h=0

(√
|Sh||Sh+1||A|T log(ι) + |Sh||A| log(T )

(
|Sh+1| log(ι) + CP)+ log(ι)

))

≤ O

(
L−1∑
h=0

(
(|Sh|+ |Sh+1|)

√
|A|T log(ι) + |Sh||A| log(T )

(
|Sh+1| log(ι) + CP)+ log(ι)

))
≤ O

(
|S|
√
|A|T log(ι) + |S|2|A| log(ι) log(T ) + CP|S||A| log(T )

)
, (16)

where the first step uses the triangle inequality; the second step applies Corollary D.2.6 to bound two
norm terms based on the fact that P̂t, P̄i(t) ∈ Pi(t); the third step follows the definition of EEST from
Proposition D.5.2; the fourth step uses the AM-GM inequality. Putting the result of Eq. (16) into
Eq. (15) yields the first three terms of the claimed bound.

Now suppose that ECON ∧ EEST does not hold. We trivially bound
∑T

t=1

〈
qPt,πt − qP̂t,πt , ℓt

〉
by LT .

As the probability that this case occurs is at most O (δ), this case contributes to at most O (δLT )
regret. Finally, combining these two cases and applying Lemma D.1.1 finishes the proof.

A.3 Bounding BIAS1

Lemma A.3.1 (Bound of BIAS1). Algorithm 1 ensures

BIAS1 = O
(
L|S|

√
|A|T log(ι) + |S|4|A| log2(ι) + CPL|S|4|A| log(ι) + δLT

)
.

Proof. We can rewrite BIAS1 as

BIAS1 =

T∑
t=1

E
[〈

qP̂t,πt , ℓt − ℓ̂t

〉]
=

T∑
t=1

E
[〈

qP̂t,πt ,Et

[
ℓt − ℓ̂t

]〉]
,

where the second step uses the law of total expectation and the fact that qP̂t,πt is deterministic given
all the history up to t. For any state-action pair (s, a), we have

Et

[
ℓt(s, a)− ℓ̂t(s, a)

]
= ℓt(s, a)

(
1− qPt,πt(s, a)

ut(s, a)

)
= ℓt(s, a)

(
ut(s, a)− qPt,πt(s, a)

ut(s, a)

)
.

Then, we can further rewrite and bound BIAS1 as:

BIAS1 = E

[
T∑

t=1

∑
s,a

qP̂t,πt(s, a)ℓt(s, a)

(
ut(s, a)− qPt,πt(s, a)

ut(s, a)

)]

≤ E

[
T∑

t=1

∑
s,a

qP̂t,πt(s, a)

(∣∣ut(s, a)− qPt,πt(s, a)
∣∣

ut(s, a)

)]
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≤ E

[
T∑

t=1

∑
s∈S

∣∣ut(s)− qPt,πt(s)
∣∣] ,

where the third step follows from the fact that qP̂t,πt(s, a) ≤ ut(s, a) according to the definition of
the upper occupancy measure.

Similar to the proof of Lemma A.2.1, we first consider the case when the high probability event
ECON ∧ EEST holds:∑

s∈S

∣∣ut(s)− qPt,πt(s)
∣∣

≤
∑
s∈S

∣∣ut(s)− qP,πt(s)
∣∣+∑

s∈S

∣∣qP,πt(s)− qPt,πt(s)
∣∣

≤
∑
s∈S

∣∣ut(s)− qP,πt(s)
∣∣+ LCP

t

≤ O

LCP
t +

∑
s∈S

k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v)

√
P (w|u, v) log (ι)

m̂i(t)(s, a)
qP,πt(s|w)


+O

(
|S|3

∑
s,a

qP,πt(s, a)
CP + log (ι)

m̂i(t)(s, a)

)

≤ O

LCP
t + L

L−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v)

√
P (w|u, v) log (ι)

m̂i(t)(s, a)


+O

(
|S|3

∑
s,a

qP,πt(s, a)
CP + log (ι)

m̂i(t)(s, a)

)
,

where the first step uses the triangle inequality; the second step uses Corollary D.3.6; the third step
uses Lemma D.3.8; the last step follows from the fact that

∑
s∈S qP,πt(s|w) ≤ L.

Taking the summation over all episodes yields the following:

T∑
t=1

∑
s∈S

∣∣ut(s)− qPt,πt(s)
∣∣

≤ O

 T∑
t=1

LCP
t + L

T∑
t=1

L−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v)

√
P (w|u, v) log (ι)

m̂i(t)(u, v)


+O

(
|S|3

T∑
t=1

∑
s,a

qP,πt(s, a)
CP + log (ι)

m̂i(t)(s, a)

)

≤ O

(
LCP + |S|3

L−1∑
k=0

(
CP + log (ι)

)
|Sk||A| log (ι)

)

+O

L

T∑
t=1

L−1∑
k=0

∑
(u,v)∈Sk×A

qP,πt(u, v)

√
|Sk+1| log (ι)
m̂i(t)(u, v)


≤ O

|S|4|A| (CP + log (ι)
)
log (ι) + L

T∑
t=1

L−1∑
k=0

∑
(u,v)∈Sk×A

qPt,πt(u, v)

√
|Sk+1| log (ι)
m̂i(t)(u, v)


+O

L

T∑
t=1

L−1∑
k=0

∑
(u,v)∈Sk×A

∣∣qP,πt(u, v)− qPt,πt(u, v)
∣∣√ |S| log (ι)

m̂i(t)(u, v)


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≤ O

|S|4|A| (CP + log (ι)
)
log (ι) + L

T∑
t=1

L−1∑
k=0

∑
(u,v)∈Sk×A

qPt,πt(u, v)

√
|Sk+1| log (ι)
m̂i(t)(u, v)


+O

L
√
|S|

T∑
t=1

L−1∑
k=0

∑
(u,v)∈Sk×A

∣∣qP,πt(u, v)− qPt,πt(u, v)
∣∣

≤ O

(
|S|4|A|

(
CP + log (ι)

)
log (ι) + L

L−1∑
k=0

√
|Sk+1| log (ι)

(√
|Sk||A|T + |Sk||A| log (ι)

))
= O

(
|S|4|A|

(
CP + log (ι)

)
log (ι) + L|S|

√
|A|T log (ι)

)
,

where the second step uses the Cauchy-Schwartz inequality:
∑

w∈Sk+1

√
P (w|u, v) ≤

√
|Sk+1|

and also applies Lemma D.5.3; the fourth step bounds m̂i(t)(u, v) ≥ log(ι) for any (u, v)
and |Sk+1| ≤ |S|; the fifth applies Proposition D.5.2, and Corollary D.3.7 to bound∑T

t=1

∑L−1
k=0

∑
(u,v)∈Sk×A

∣∣qP,πt(u, v)− qPt,πt(u, v)
∣∣ by O

(
LCP

)
; the last step uses the fact that

√
xy ≤ x+ y for any x, y ≥ 0, and thus we have

∑L−1
k=0

√
|Sk| |Sk+1| ≤ 2

∑L−1
k=0 |Sk| = 2 |S|.

Finally, using a similar argument in the proof of Lemma A.2.1 to bound the case that ECON ∧ EEST

does not hold, we complete the proof.

A.4 Bounding REG

Lemma A.4.1 (Bound of REG). If learning rate η satisfies η ∈ (0, 1
8L ], then, Algorithm 1 ensures

REG = O
(
|S|2|A| log (ι)

η
+ η

(
L|S|CP log T + LT

)
+ δLT

)
.

Proof. We consider a specific transition P0 defined in Lee et al. [2020, Lemma C.4] and occupancy
measure u such that

u =

(
1− 1

T

)
qP,̊π +

1

T |A|
∑
a∈A

qP0,πa ,

where πa is a policy such that action a is selected at every state.

By direct calculation, we have

Dϕ(u, q̂1) =

L−1∑
k=0

∑
(s,a,s′)∈Wk

(
log

(
q̂1(s, a, s

′)

u(s, a, s′)

)
+

u(s, a, s′)

q̂1(s, a, s′)
− 1

)

=

L−1∑
k=0

∑
(s,a,s′)∈Wk

log

(
q̂1(s, a, s

′)

u(s, a, s′)

)
+

L−1∑
k=0

∑
(s,a,s′)∈Wk

(|Sk||A||Sk+1|u(s, a, s′)− 1)

=

L−1∑
k=0

∑
(s,a,s′)∈Wk

log

(
q̂1(s, a, s

′)

u(s, a, s′)

)
≤ 3|S|2|A| log (ι) ,

where the second step uses the definition q̂1(s, a, s
′) = 1

|Sk||A||Sk+1| for k = 0, · · · , L − 1 and
the fourth step lower-bounds u(s, a, s′) ≥ 1

T 3|S|2|A| from [Lee et al., 2020, Lemma C.10], thereby
u(s, a, s′) ≥ 1

ι3 , and upper-bounds q̂1(s, a, s′) ≤ 1.

According to [Lee et al., 2020, Lemma C.4], we have qP0,πa ∈ ∩i Ω (Pi). Therefore, u is a convex
combination of points in that convex set, and we can use Lemma A.4.2 (included after this proof) to
show〈

qP̂t,πt − u, ℓ̂t − bt

〉
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≤ 3|S|2|A| log (ι)
η

+ 2η

(
T∑

t=1

∑
s,a

qP̂t,πt(s, a)2ℓ̂t(s, a)
2 +

T∑
t=1

∑
s,a

qP̂t,πt(s, a)2bt(s)
2

)
. (17)

On the one hand, we bound the first summation in Eq. (17) as

T∑
t=1

∑
s,a

qP̂t,πt(s, a)2ℓ̂t(s, a)
2 =

T∑
t=1

∑
s,a

qP̂t,πt(s, a)2 · ℓt(s, a)
2It{s, a}

ut(s, a)2
≤ LT,

since qP̂t,πt(s, a) ≤ ut(s, a) by definition of the upper occupancy bound.

On the other hand, we bound the second summation in Eq. (17) as

T∑
t=1

∑
s,a

qP̂t,πt(s, a)2bt(s)
2 ≤ 4L

T∑
t=1

∑
s

qP̂t,πt(s)bt(s) = O
(
L|S|CP log T

)
, (18)

where the first step uses the facts that bt(s)2 ≤ 4Lbt(s) and
∑

a q
P̂t,πt(s, a)2 ≤ qP̂t,πt(s), and the

last step applies Lemma 3.1.

Putting these inequalities together concludes the proof.

Lemma A.4.2. With η ∈ (0, 1
8L ], Algorithm 1 ensures

T∑
t=1

〈
q̂t − u, ℓ̂t − bt

〉
≤ Dϕ(u, q̂1)

η
+ 2η

T∑
t=1

∑
s,a

q̂t(s, a)
2
(
ℓ̂t(s, a)

2 + bt(s)
2
)
, (19)

for any u ∈ ∩i Ω (Pi).

Proof. To use the standard analysis of OMD with log-barrier (e.g.,see [Agarwal et al., 2017, Lemma
12]), we need to ensure that ηq̂t(s, a, s′)

(
ℓ̂t(s, a)− bt(s)

)
≥ − 1

2 , since log (1 + x) ≥ x−x2 holds

for any x ≥ − 1
2 . Clearly, by choosing η ∈ (0, 1

8L ], we have

ηq̂t(s, a, s
′)
(
ℓ̂t(s, a)− bt(s)

)
≥ −ηq̂t(s, a, s′)bt(s)

≥ −4Lη q̂t(s, a, s
′)

ut(s)

≥ −4Lη

≥ −1

2
,

where the first step follows from the fact that ℓ̂t(s, a) ≥ 0 for all t, s, a; the second step follows from
the definition of amortized bonus in Eq. (7); the third step bounds q̂t(s, a, s′) ≤ ut(s).

Now, we are ready to apply the standard analysis to show that

T∑
t=1

〈
q̂t − u, ℓ̂t − bt

〉
≤
∑T

t=1 (Dϕ(u, q̂t)−Dϕ(u, q̂t+1))

η
+ η

T∑
t=1

∑
s,a,s′

q̂t(s, a, s
′)2
(
ℓ̂t(s, a)− bt(s)

)2
=

Dϕ(u, q̂1)−Dϕ(u, q̂T+1)

η
+ η

T∑
t=1

∑
s,a,s′

(
q̂t(s, a)P̂t(s

′|s, a)
)2 (

ℓ̂t(s, a)− bt(s)
)2

≤ Dϕ(u, q̂1)

η
+ η

T∑
t=1

∑
s,a

q̂t(s, a)
2
(
ℓ̂t(s, a)− bt(s)

)2
·

(∑
s′

P̂t(s
′|s, a)2

)
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≤ Dϕ(u, q̂1)

η
+ η

T∑
t=1

∑
s,a

q̂t(s, a)
2
(
ℓ̂t(s, a)− bt(s)

)2
≤ Dϕ(u, q̂1)

η
+ 2η

T∑
t=1

∑
s,a

q̂t(s, a)
2
(
ℓ̂t(s, a)

2 + bt(s)
2
)
,

where the second step uses the fact that q̂t(s, a, s′) = q̂t(s, a) · P̂t(s
′|s, a) (see [Jin et al., 2020,

Lemma 1] for more details); the third step follows from the fact that the Bregman divergence is
non-negative; the fourth step follows from the fact

∑
s′ P̂t(s

′|s, a) = 1; the last step uses the fact
that (x− y)

2 ≤ 2
(
x2 + y2

)
for any x, y ∈ R.

A.5 Bounding BIAS2

Lemma A.5.1 (Bound of BIAS2). Algorithm 1 ensures

BIAS2 = O
(
|S|CP log T + δLT

)
.

Proof. We first rewrite BIAS2 as

BIAS2 = E

[
T∑

t=1

Et

[〈
qP,̊π, ℓ̂t − ℓt

〉]
−

T∑
t=1

〈
qP,̊π, bt

〉]
︸ ︷︷ ︸

=:(I)

+E

[
T∑

t=1

〈
qP̂t,πt , bt

〉]
︸ ︷︷ ︸

=:(II)

,

where (II) is bounded by O
(
|S|CP log T

)
by Lemma 3.1 (whose proof is included after this proof).

Now, we show that (I) is bounded by O (δLT ). Suppose that ECON holds. We then have

Et

[〈
qP,̊π, ℓ̂t − ℓt

〉]
=
∑
s,a

qP,̊π(s, a)

(
qPt,πt(s, a)− ut(s, a)

ut(s, a)

)

≤
∑
s,a

qP,̊π(s, a)

(∣∣qPt,πt(s, a)− qP,πt(s, a)
∣∣+ qP,πt(s, a)− ut(s, a)

ut(s, a)

)

=
∑
s,a

qP,̊π(s, a) ·
∣∣qPt,πt(s)− qP,πt(s)

∣∣
ut(s)

+
∑
s,a

qP,̊π(s, a)

(
qP,πt(s, a)− ut(s, a)

ut(s, a)

)

≤
∑
s,a

qP,̊π(s, a) · CP
t

ut(s)
+
∑
s,a

qP,̊π(s, a)

(
qP,πt(s, a)− ut(s, a)

ut(s, a)

)

≤
∑
s,a

qP,̊π(s, a) · CP
t

ut(s)
,

where the fourth step applies Corollary D.3.6 to bound
∣∣qPt,πt(s)− qP,πt(s)

∣∣ ≤ CP
t , and in the last

step, the second term (in the fifth step) is bounded by 0 under ECON.

Since qP,̊π(s, a) is fixed over all episodes, we apply Lemma 3.1 to show

T∑
t=1

Et

[〈
qP,̊π, ℓ̂t − ℓt

〉]
−

T∑
t=1

〈
qP,̊π, bt

〉
≤
∑
s,a

qP,̊π(s, a)

T∑
t=1

(
CP

t

ut(s)
− bt(s)

)
≤ 0,

For the case that ECON does not occur, we bound the expected regret by O (δLT ). Combining two
cases via Lemma D.1.1, we conclude the proof.

Lemma A.5.2 (Restatement of Lemma 3.1). The amortized bonus defined in Eq. (7) satisfies∑T
t=1

CP
t

ut(s)
≤
∑T

t=1 bt(s) and
∑T

t=1 q̂t(s)bt(s) = O(CP log T ) for any s.
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Proof. In the following proof, we use the equivalent definition of bt(s) given in Eq. (14). We first

show
∑T

t=1
CP

t

ut(s)
≤
∑T

t=1 bt(s). On the one hand, we have

T∑
t=1

(
CP

t

ut(s)

)
=

T∑
t=1

⌈log(|S|T )⌉∑
j=0

I{yt(s) = j} CP
t

ut(s)

≤
T∑

t=1

⌈log(|S|T )⌉∑
j=0

I{yt(s) = j} CP
t

2−j−1

=

⌈log(|S|T )⌉∑
j=0

∑T
t=1 I{yt(s) = j}CP

t

2−j−1

≤
⌈log(|S|T )⌉∑

j=0

min{2L
∑T

t=1 I{yt(s) = j}, CP}
2−j−1

, (20)

where the second step uses the construction of the bin, i.e., if ut(s) falls into a bin (2−j−1, 2−j ], then,
it is lower-bounded by 2−j−1; the fourth step follows the facts that CP

t ≤ 2L and
∑T

t=1 C
P
t ≤ CP.

On the other hand, one can show

T∑
t=1

bt(s) = 4L

T∑
t=1

⌈log(|S|T )⌉∑
j=0

I{yt(s) = j}I
{
zjt (s) ≤ CP

2L

}
ut(s)

≥ 4L

⌈log(|S|T )⌉∑
j=0

∑T
t=1 I{yt(s) = j}I

{
zjt (s) ≤ CP

2L

}
2−j

≥ 2L

⌈log(|S|T )⌉∑
j=0

min{
∑T

t=1 I{yt(s) = j}, CP

2L}
2−j−1

=

⌈log(|S|T )⌉∑
j=0

min{2L
∑T

t=1 I{yt(s) = j}, CP}
2−j−1

, (21)

where the second step uses the construction of the bin, i.e., if ut(s) falls into a bin (2−j−1, 2−j ], then,
it is upper-bounded by 2−j , and the third step follows the definitions of yt(s) and zjt (s).

Combining Eq. (20) and Eq. (21), we complete the proof of
∑T

t=1
CP

t

ut(s)
≤
∑T

t=1 bt(s).

For the proof of
∑T

t=1 q̂t(s)bt(s) = O(|S|CP log T ), one can show

T∑
t=1

q̂t(s)bt(s) = 4L

T∑
t=1

⌈log(|S|T )⌉∑
i=0

qP̂t,πt(s)I{yt(s) = i}I
{
zit(s) ≤ CP

2L

}
ut(s)

≤ 4L

T∑
t=1

⌈log(|S|T )⌉∑
i=0

I{yt(s) = i}I
{
zit(s) ≤

CP

2L

}

= 4L

⌈log(|S|T )⌉∑
i=0

T∑
t=1

I{yt(s) = i}I
{
zit(s) ≤

CP

2L

}

≤ 4L

⌈log(|S|T )⌉∑
i=0

CP

2L

= O
(
CP log (|S|T )

)
= O

(
CP log (T )

)
,

where the first inequality uses the fact qP̂t,πt(s) ≤ ut(s), and the last equality uses |S| ≤ T .
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A.6 Proof of Theorem 3.2

For REG, we choose η = min

{√
|S|2|A| log(ι)

LT , 1
8L

}
. First consider the case η ̸= 1

8L :

REG = O
(
|S|2|A| log (ι)

η
+ η

(
L|S|CP log T + LT

)
+ LTδ

)
≤ O

(
|S|2|A| log (ι)

η
+ ηLT + |S|CP log T + LTδ

)
= O

(
|S|
√
|A| log (ι)LT + |S|CP log T + LTδ

)
,

where the second step uses η ≤ 1
8L , and the third step applies choice of η in the case of η ̸= 1

8L .

For the case of η = 1
8L , we have T ≤ 64L|S|2|A| ln(ι) and show

REG = O
(
L|S|2|A| log (ι) + |S|CP log T + LTδ

)
.

Finally, choosing δ = 1
T and putting the bound above together with ERROR, BIAS1, and BIAS2, we

complete the proof of Theorem 3.2.
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B Omitted Details for Section 4

B.1 Bottom Layer Reduction: STABILISE

Proof of Theorem 4.3. Define indicators

gt,j = I{wt ∈ (2−j−1, 2−j ]}
ht,j = I{ALGj receives the feedback for episode t}.

Now we consider the regret of ALGj . Notice that ALGj makes an update only when gt,jht,j = 1.
By the guarantee of the base algorithm (Definition 4.1), we have

E

[
T∑

t=1

(ℓt(πt)− ℓt(π))gt,jht,j

]

≤ E


√√√√β1

T∑
t=1

gt,jht,j + (β2 + β3θj)max
t≤T

gt,j

+ Pr

[
T∑

t=1

CP
t gt,jht,j > θj

]
LT. (22)

We first bound the last term: Notice that E[ht,j |gt,j ] = 2−j−1gt,j by Algorithm 2. Therefore,

T∑
t=1

CP
t gt,jE[ht,j |gt,j ] = 2−j−1

T∑
t=1

CP
t gt,j ≤ 2−j−1CP (23)

By Freedman’s inequality, with probability at least 1− 1
T 2 ,

T∑
t=1

CP
t gt,jht,j −

T∑
t=1

CP
t gt,jE[ht,j |gt,j ]

≤ 2

√√√√2

T∑
t=1

(CP
t )

2gt,jE[ht,j |gt,j ] log(T ) + 4L log(T )

≤ 4

√√√√L

T∑
t=1

CP
t gt,jE[ht,j |gt,j ] log(T ) + 4L log(T ) (CP

t ≤ 2L)

≤
T∑

t=1

CP
t gt,jE[ht,j |gt,j ] + 8L log(T ) (AM-GM inequality)

which gives

T∑
t=1

CP
t gt,jht,j ≤ 2

T∑
t=1

CP
t gt,jE[ht,j |gt,j ] + 8L log(T )

≤ 2−jCP + 8L log(T ) ≤ θj

with probability at least 1− 1
T 2 using Eq. (23). Therefore, the last term in Eq. (22) is bounded by

1
T 2LT ≤ L

T .

Next, we deal with other terms in Eq. (22). Again, by E[ht,j |gt,j ] = 2−j−1gt,j , Eq. (22) implies

2−j−1E

[
T∑

t=1

(ℓt(πt)− ℓt(π))gt,j

]
≤ E


√√√√2−j−1β1

T∑
t=1

gt,j + (β2 + β3θj)max
t≤T

gt,j

+
L

T
.

which implies after rearranging:

E

[
T∑

t=1

(ℓt(πt)− ℓt(π))gt,j

]
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≤ E


√√√√ 1

2−j−1
β1

T∑
t=1

gt,j +

(
β2

2−j−1
+

β3θj
2−j−1

)
max
t≤T

gt,j

+
L

T2−j−1

≤ E


√√√√β1

T∑
t=1

2gt,j
wt

+

(
2β2 + 16β3L log(T )

2−j
+ 4β3C

P
)
max
t≤T

gt,j

+
L

T2−j−1
.

(using that when gt,j = 1, 1
2−j−1 ≤ 2

wt
, and the definition of θj)

Now, summing this inequality over all j ∈ {0, 1, . . . , ⌈log2 T ⌉}, we get

E

[
T∑

t=1

(ℓt(πt)− ℓt(π))I
{
wt ≥

1

T

}]

≤ O

E


√√√√Nβ1

T∑
t=1

1

wt
+ (β2 + β3L log(T ))

1

mint≤T wt
+Nβ3C

P

+ L


≤ O

(
E
[√

β1T log(T )ρT + (β2 + β3L log(T ))ρT

]
+ β3C

P log T + L
)

where N ≤ O(log T ) is the number of ALGj’s that has been executed at least once.

On the other hand,

E

[
T∑

t=1

(ℓt(πt)− ℓt(π))I
{
wt ≤

1

T

}]
≤ LTE [I {ρT ≥ T}] ≤ LE [ρT ] .

Combining the two parts and using the assumption β2 ≥ L finishes the proof.

B.2 Top Layer Reduction: Corral

In this subsection, we use a base algorithm that satisfies Definition 4.2 to construct an algorithm
with

√
T + CP regret under unknown CP. The idea is to run multiple base algorithms, each with a

different hypothesis on CP; on top of them, run another multi-armed bandit algorithm to adaptively
choose among them. The goal is to let the top-level bandit algorithm perform almost as well as the
best base algorithm. This is the Corral idea outlined in Agarwal et al. [2017], Foster et al. [2020],
Luo et al. [2022], and the algorithm is presented in Algorithm 3.

The top-level bandit algorithm is an FTRL with log-barrier regularizer. We first state the standard
regret bound of FTRL under log-barrier regularizer, whose proof can be found in, e.g., Theorem 7 of
Wei and Luo [2018].
Lemma B.2.1. The FTRL algorithm over a convex subset Ω of the (M − 1)-dimensional simplex
∆(M):

wt = argmin
w∈Ω

{〈
w,

t−1∑
τ=1

ℓτ

〉
+

1

η

M∑
i=1

log
1

wi

}
ensures for all u ∈ Ω,

T∑
t=1

⟨w − u, ℓt⟩ ≤
M log T

η
+ η

T∑
t=1

M∑
i=1

w2
t,iℓ

2
t,i

as long as ηwt,i|ℓt,i| ≤ 1
2 for all t, i.

Proof of Theorem 4.4. The Corral algorithm is essential an FTRL with log-barrier regularizer. To
apply Lemma B.2.1, we first verify the condition ηwt,i|ℓt,i| ≤ 1

2 where ℓt,i = ĉt,i − rt,i. By our
choice of η,

ηwt,i|ĉt,i| ≤ ηct,i ≤
1

4
, (because β2 ≥ L by Definition 4.2)
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Algorithm 3 (A Variant of) Corral
Initialize: a log-barrier algorithm with each arm being an instance of any base algorithm satisfying
Definition 4.2. The hypothesis on CP is set to 2i for arm i (i = 1, 2, . . . ,M ≜ ⌈log2 T ⌉).
Initialize: ρ0,i = M, ∀i

for t = 1, 2, . . . , T do
Let

wt = argmin
w∈∆(M),wi≥ 1

T ,∀i

{〈
w,

t−1∑
τ=1

(ĉτ − rτ )

〉
+

1

η

M∑
i=1

log
1

wi

}
where η = 1

4(
√
β1T+β2)

.
For all i, send wt,i to instance i.
Draw it ∼ wt.
Execute the πt output by instance it
Receive the loss ct,it for policy πt (whose expectation is ℓt(πt)) and send it to instance it.
Define for all i:

ĉt,i =
ct,iI[it = i]

wt,i
,

ρt,i = min
τ≤t

1

wτ,i
,

rt,i =
√
β1T

(√
ρt,i −

√
ρt−1,i

)
+ β2 (ρt,i − ρt−1,i) .

ηwt,irt,i = η
√
β1Twt,i(

√
ρt,i −

√
ρt−1,i) + ηβ2wt,i (ρt,i − ρt−1,i) .

The right-hand side of the last equality is non-zero only when ρt,i > ρt−1,i, implying that ρt,i = 1
wt,i

.
Therefore, we further bound it by

ηwt,irt,i

≤ η
√
β1T

1

ρt,i
(
√
ρt,i −

√
ρt−1,i) + ηβ2

1

ρt,i
(ρt,i − ρt−1,i)

= η
√
β1T

(
1
√
ρt,i
−
√
ρt−1,i

ρt,i

)
+ ηβ2

(
1− ρt−1,i

ρt,i

)
≤ η

√
β1T

(
1

√
ρt−1,i

− 1
√
ρt,i

)
+ ηβ2

(
1− ρt−1,i

ρt,i

)
( 1√

a
−

√
b

a ≤
1√
b
− 1√

a
for a, b > 0)

(24)

≤ η
√
β1T + ηβ2 (ρt,i ≥ 1)

=
1

4
(definition of η)

which can be combined to get the desired property ηwt,i|ĉt,i − rt,i| ≤ 1
2 .

Hence, by the regret guarantee of log-barrier FTRL (Lemma B.2.1), we have

E

[
T∑

t=1

(ct,it − ct,i⋆)

]

≤ O

(
M log T

η
+ ηE

[
T∑

t=1

M∑
i=1

w2
t,i(ĉt,i − rt,i)

2

︸ ︷︷ ︸
stability-term

])
+ E

[
T∑

t=1

(
M∑
i=1

wt,irt,i − rt,i⋆

)
︸ ︷︷ ︸

bonus-term

]

where i⋆ is the smallest i such that 2i upper bounds the true corruption amount CP.
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Bounding stability-term:

stability term ≤ 2η

T∑
t=1

M∑
i=1

w2
t,i(ĉ

2
t,i + r2t,i)

where

2η

T∑
t=1

M∑
i=1

w2
t,iĉ

2
t,i = 2η

T∑
t=1

M∑
i=1

c2t,iI{it = i} ≤ O(ηL2T )

and

2η

T∑
t=1

M∑
i=1

w2
t,ir

2
t,i ≤ 4η

T∑
t=1

M∑
i=1

(
√

β1T )
2

(
1

√
ρt−1,i

− 1
√
ρt,i

)2

+ 4ηβ2

T∑
t=1

M∑
i=1

(
1− ρt−1,i

ρt,i

)2

(continue from Eq. (24))

≤ 4ηβ1T ×
T∑

t=1

M∑
i=1

(
1

√
ρt−1,i

− 1
√
ρt,i

)
+ 4ηβ2

T∑
t=1

M∑
i=1

ln
ρt,i

ρt−1,i

( 1√
ρt−1,i

− 1√
ρt,i
≤ 1 and 1− a ≤ − ln a)

≤ 4ηβ1TM
3
2 + 4ηβ2M lnT. (telescoping and using ρ0,i = M and ρT,i ≤ T )

Bounding bonus-term:

bonus-term =

T∑
t=1

M∑
i=1

wt,irt,i −
T∑

t=1

rt,i⋆

≤
√
β1T

T∑
t=1

M∑
i=1

(
1

√
ρt−1,i

− 1
√
ρt,i

)
+ β2

T∑
t=1

M∑
i=1

log
ρt,i

ρt−1,i

−
(√

ρT,i⋆β1T + ρT,i⋆β2 −
√
ρ0,i⋆β1T − ρ0,i⋆β2

)
(continue from Eq. (24) and using 1− a ≤ − ln a)

≤ O
(√

β1TM
3
2 + β2M log T

)
−
(√

ρT,i⋆β1T + ρT,i⋆β2

)
.

Combining the two terms and using η = Θ
(

1√
β1T+β2

)
, M = Θ(log T ), we get

E

[
T∑

t=1

(ℓt(πt)− ct,i⋆)

]
= E

[
T∑

t=1

(ct,it − ct,i⋆)

]

= O
(√

β1T log3 T + β2 log
2 T

)
− E

[√
ρT,i⋆β1T + ρT,i⋆β2

]
(25)

On the other hand, by Definition 4.2 and that CP ∈ [2i
⋆−1, 2i

⋆

], we have

E

[
T∑

t=1

(ct,i⋆ − ℓt(̊π))

]
≤ E

[√
ρT,i⋆β1T + ρT,i⋆β2

]
+ 2β3C

P. (26)

Combining Eq. (25) and Eq. (26), we get

E

[
T∑

t=1

(ℓt(πt)− ℓt(̊π))

]
≤ O

(√
β1T log3 T + β2 log

2 T

)
+ 2β3C

P,

which finishes the proof.
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Algorithm 4 Algorithm with Optimistic Transition Achieving Gap-Dependent Bounds (Known CP)
Input: confidence parameter δ ∈ (0, 1).
Initialize: ∀(s, a), learning rate γ1(s, a) = 256L2|S|; epoch index i = 1 and epoch starting time
ti = 1; ∀(s, a, s′), set counters m1(s, a) = m1(s, a, s

′) = m0(s, a) = m0(s, a, s
′) = 0; empirical

transition P̄1 and confidence width B1 based on Eq. (2); optimistic transition P̃i by Definition C.1.1.
for t = 1, . . . , T do

Let ϕt be defined in Eq. (28) and compute

q̂t = argmin
q∈Ω(P̃i)

〈
q,

t−1∑
τ=ti

(
ℓ̂τ − bτ

)〉
+ ϕt(q). (27)

Compute policy πt from q̂t such that πt(a|s) ∝ q̂t(s, a).
Execute policy πt and obtain trajectory (st,k, at,k) for k = 0, . . . , L− 1.
Construct loss estimator ℓ̂t as defined in Eq. (5).
Compute amortized bonus bt based on Eq. (29).
Compute learning rate γt+1 according to Definition 5.2.
Increment counters: for each k < L, mi(st,k, at,k, st,k+1)

+← 1, mi(st,k, at,k)
+← 1.

if ∃k, mi(st,k, at,k) ≥ max{1, 2mi−1(st,k, at,k)} then ▷ entering a new epoch

Increment epoch index i
+← 1 and set new epoch starting time ti = t+ 1.

Initialize new counters: ∀(s, a, s′), mi(s, a, s
′) = mi−1(s, a, s

′),mi(s, a) = mi−1(s, a).
Update empirical transition P̄i and confidence width Bi based on Eq. (2).
Update optimistic transition P̃i based on Definition C.1.1

C Omitted Details for Section 5

In this section, we consider a variant of the algorithm proposed in Jin et al. [2021], which instead
ensures exploration via optimistic transitions and also switch the regularizer from Tsallis entropy
to log-barrier. We present the pseudocode in Algorithm 4, and show that it automatically adapts to
easier environments with improved gap-dependent regret bounds.
Remark C.1. Throughout the analysis, we denote by QP,π(s, a; r) the state-action value of state-
action pair (s, a) with respect to transition function P (P could be an optimistic transition function),
policy π and loss function r; similarly, we denote by V P,π(s; r) the corresponding state-value
function.

Specifically, the state value function V P,π(s; r) is computed in a backward manner from layer L to
layer 0 as following:

V P,π(s; r) =

{
0, s = sL,∑

a∈A π(a|s) ·
(
r(s, a) +

∑
s′∈Sk(s)+1

P (s′|s, a)V P,π(s′; r)
)
, s ̸= sL.

Similarly, the state-action value function QP,π(s, a; r) is calculated in the same manner:

QP,π(s, a; r) =

{
0, s = sL,

r(s, a) +
∑

s′∈Sk(s)+1
P (s′|s, a)

∑
a′∈A π(a′|s′)QP,π(s′, a′; r), s ̸= sL.

Clearly, V P,π(s0; r), the state value of s0, is equal to

V P,π(s0; r) =
∑
s ̸=sL

∑
a∈A

qP,π(s, a)r(s, a) ≜
〈
qP,π, r

〉
.

This equality can be further extended to the other state u as:

V P,π(u; r) =
∑
s̸=sL

∑
a∈A

qP,π(s, a|u)r(s, a),

where qP,π(s, a|u) denotes the probability of arriving at (s, a) starting at state u under policy π and
transition function P .
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C.1 Description of the Algorithm

The construction of this algorithm follows similar ideas to the work of Jin et al. [2021], while also
including several key differences. One of them is that we rely on the log-barrier regularizer, defined
with a positive learning rate γt(s, a) as

ϕt(q) = −
∑
s,a

γt(s, a) log (q(s, a)) . (28)

The choice of log-barrier is important for adversarial transitions as discussed in Section 3, while the
adaptive choice of learning rate is important for adapting to easy environments. The formal definition
of the learning rate is given in Definition 5.2, and further details and properties of the learning rate
are provided in Section C.7.

As the algorithm runs a new instance of FTRL for each epoch i, we modify the definition of the
amortized bonus bt accordingly,

bt(s) = bt(s, a) =

{
4L

ut(s)
if
∑t

τ=ti(t)
I{⌈log2 uτ (s)⌉ = ⌈log2 ut(s)⌉} ≤ CP

2L ,
0 else.

(29)

The bonus bt(s) in Eq. (29) is defined based on each epoch i, in the sense that∑t
τ=1 I{⌈log2 uτ (s)⌉ = ⌈log2 ut(s)⌉} counts, among all previous rounds τ = ti, . . . , t in epoch i,

the number of times that the value of uτ (s) falls into the same bin as ut(s).

Again, for the ease of analysis, in the analysis we use the equivalent definition of the bonus bt(s)
defined in Eq. (14), except that the counter zjt (s) now will be reset to zero at the beginning of each
epoch i.

Next, we formally define the optimistic transition as follows.

Definition C.1.1 (Optimistic Transition). For epoch i, the optimistic transition P̃i : S×A×S → [0, 1]
is defined as:

P̃i(s
′|s, a) =

{
max

{
0, P̄i(s

′|s, a)−Bi(s, a, s
′)
}
, (s, a, s′) ∈Wk,∑

s′∈Sk+1
min

{
P̄i(s

′|s, a), Bi(s, a, s
′)
}
, (s, a) ∈ Sk ×A and s′ = sL,

where P̄i is the empirical transition defined in Eq. (2).

Note that the optimistic transition P̃i(·|s, a) is a valid distribution as we have∑
s′∈Sk+1

min
{
P̄i(s

′|s, a), Bi(s, a, s
′)
}
= 1−

∑
s′∈Sk+1

max
{
0, P̄i(s

′|s, a)−Bi(s, a, s
′)
}
.

We summarize the properties of the optimistic transition functions in Appendix C.8.

C.2 Self-Bounding Properties of the Regret

In order to achieve best-of-both-worlds guarantees, our goal is to bound RegT (π
⋆) in terms of two

self-bounding quantities for some x > 0 (plus other minor terms):

S1(x) =

√√√√√x · E

 T∑
t=1

∑
s ̸=sL

∑
a ̸=π⋆(s)

qPt,πt(s, a)

,
S2(x) =

∑
s̸=sL

∑
a ̸=π⋆(s)

√√√√x · E

[
T∑

t=1

qPt,πt(s, a)

]
.

(30)

These two quantities enjoy a certain self-bounding property which is critical to achieve the gap-
dependent bound under Condition (9), as they can be related back to the regret against policy π⋆

itself. To see this, we first show the following implication of Condition (9).
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Lemma C.2.1. Under Condition (9), the following holds.

RegT (π
⋆) ≥ E

 T∑
t=1

∑
s ̸=sL

∑
a ̸=π⋆(s)

qPt,πt(s, a)∆(s, a)

− CL − 2LCP − L2CP. (31)

Proof. From the definition of RegT (π
⋆), we first note that:

RegT (π
⋆)

= E

[
T∑

t=1

〈
qPt,πt − qPt,π

⋆

, ℓt

〉]

= E

[
T∑

t=1

〈
qP,πt − qP,π⋆

, ℓt

〉]
+ E

[
T∑

t=1

〈
qPt,πt − qP,πt , ℓt

〉]
+ E

[
T∑

t=1

〈
qP,π⋆

− qPt,π
⋆

, ℓt

〉]

≥ E

[
T∑

t=1

〈
qP,πt − qP,π⋆

, ℓt

〉]
− 2LCP

≥ E

 T∑
t=1

∑
s̸=sL

∑
a̸=π⋆(s)

qP,πt(s, a)∆(s, a)

− CL − 2LCP

where the third step applies Corollary D.3.7 and the last step uses the Condition (9). We continue to
bound the first term above as:

E

 T∑
t=1

∑
s ̸=sL

∑
a ̸=π⋆(s)

qP,πt(s, a)∆(s, a)


≥ E

 T∑
t=1

∑
s̸=sL

∑
a̸=π⋆(s)

qPt,πt(s, a)∆(s, a)


− E

 T∑
t=1

∑
s ̸=sL

∑
a ̸=π⋆(s)

∣∣qPt,πt(s, a)− qP,πt(s, a)
∣∣∆(s, a)


≥ E

 T∑
t=1

∑
s̸=sL

∑
a̸=π⋆(s)

qPt,πt(s, a)∆(s, a)

− L2CP,

where the last step uses ∆(s, a) ∈ (0, L] and Corollary D.3.6.

We are now ready to show the following important self-bounding properties (recall ∆MIN =
mins ̸=sL,a ̸=π⋆(s) ∆(s, a)).
Lemma C.2.2 (Self-Bounding Quantities). Under Condition (31), we have for any z > 0:

S1(x) ≤ z
(
RegT (π

⋆) + CL + 2LCP + L2CP)+ 1

z

(
x

4∆MIN

)
,

S2(x) ≤ z
(
RegT (π

⋆) + CL + 2LCP + L2CP)+ 1

z

∑
s̸=sL

∑
a ̸=π⋆(s)

x

4∆(s, a)

 .

Besides, it always holds that S1(x) ≤
√
x · LT and S2(x) ≤

√
x · L|S||A|T .

Proof. For any z > 0, we have

S1 (x) =

√√√√√ x

2z∆MIN
· E

2z∆MIN

T∑
t=1

∑
s̸=sL

∑
a ̸=π⋆(s)

qPt,πt(s, a)


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≤ E

z∆MIN

T∑
t=1

∑
s̸=sL

∑
a̸=π⋆(s)

qPt,πt(s, a)

+
x

4z∆MIN

≤ z
(
RegT (π

⋆) + CL + 2LCP + L2CP)+ x

4z∆MIN
,

where the second step follows from the AM-GM inequality: 2
√
xy ≤ x+ y for any x, y ≥ 0, and

the last step follows from Condition (31).

By similar arguments, we have S2(x) bounded for any z > 0 as:

∑
s̸=sL

∑
a̸=π⋆(s)

√√√√ x

2z∆(s, a)
· E

[
2z∆(s, a)

T∑
t=1

qPt,πt(s, a)

]

≤
∑
s̸=sL

∑
a̸=π⋆(s)

x

4z∆(s, a)
+ zE

∑
s̸=sL

∑
a̸=π⋆(s)

T∑
t=1

qPt,πt(s, a)∆(s, a)


= z

(
RegT (π

⋆) + CL + 2LCP + L2CP)+ ∑
s̸=sL

∑
a ̸=π⋆(s)

x

4z∆(s, a)
.

Finally, by direct calculation, we can show that

S1(x) =

√√√√√x · E

 T∑
t=1

∑
s̸=sL

∑
a̸=π⋆(s)

qPt,πt(s, a)

 ≤ √x · LT ,
according to the fact that

∑
s̸=sL

∑
a∈A qPt,πt(s, a) ≤ L. On the other hand, S2(x) is bounded as

S2(x) ≤

√√√√√x · |S||A|E

∑
s̸=sL

∑
a̸=π⋆(s)

T∑
t=1

qPt,πt(s, a)

 ≤√x · L|S||A|T ,

with the help of the Cauchy-Schwarz inequality in the first step.

Finally, we show that Algorithm 4 achieves the following adaptive regret bound, which directly leads
to the best-of-both-worlds guarantee in Theorem 5.1.
Lemma C.2.3. Algorithm 4 with δ = 1/T 2 and learning rate defined in Definition 5.2 ensures that,
for any mapping π⋆ : S → A, the regret RegT (π

⋆) is bounded byO
((
CP + 1

)
L2|S|4|A|2 log2 (ι)

)
plus

O
(
S1
(
L3|S|2|A| log2 (ι)

)
+ S2

(
L2|S||A| log2 (ι)

))
.

The proof of this result is detailed in Section C.3. We emphasize that this bound holds for any
mapping π⋆, and is not limited to that policy in Eq. (9). This is important for proving the robustness
result when losses are arbitrary, as shown in the following proof of Theorem 5.1.

Proof of Theorem 5.1. When losses are arbitrary, we simply select π⋆ = π̊ where π̊ is one of the
optimal deterministic policies in hindsight and obtain the following bound of RegT (̊π):

O
((
CP + 1

)
L2|S|4|A|2 log2 (ι) + S1

(
L3|S|2|A| log2 (ι)

)
+ S2

(
L2|S||A| log2 (ι)

))
= O

((
CP + 1

)
L2|S|4|A|2 log2 (ι) +

√
L4|S|2|A|T log2 (ι) +

√
L3|S|2|A|2T log2 (ι)

)
,

where the first step follows from Lemma C.2.3 and the second step follows from Lemma C.2.2.

Next, suppose that Condition (9) holds. We set π⋆ as defined in the condition and use Lemma C.2.3
to write the regret against π⋆ as:

RegT (π
⋆) ≤ µ

(
S1
(
L3|S|2|A| log2 (ι)

)
+ S2

(
L2|S||A| log2 (ι)

))
+ ξ

(
CP + 1

)
,
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where µ > 0 is an absolute constant and ξ = O
(
L2|S|4|A|2 log2(ι)

)
.

For any z > 0, according to Lemma C.2.2 (where we set the z there as z/2µ), we have:

RegT (π
⋆) ≤ z

(
RegT (π

⋆) + CL + 2LCP + L2CP)
+

µ2

z

L3|S|2|A| log2 (ι)
∆MIN

+
∑
s̸=sL

∑
a̸=π⋆(s)

L2|S||A| log2 (ι)
∆(s, a)

+ ξ
(
CP + 1

)
.

Let x = 1−z
z and U = L3|S|2|A| log2(ι)

∆MIN
+
∑

s ̸=sL

∑
a̸=π⋆(s)

L2|S||A| log2(ι)
∆(s,a) . Rearranging the above

inequality leads to

RegT (π
⋆) ≤

z
(
CL + 2LCP + L2CP

)
1− z

+
µ2U

z (1− z)
+

ξ
(
CP + 1

)
1− z

=

(
CL + 2LCP + L2CP

)
x

+

(
x+ 2 +

1

x

)
µ2U +

(
1 +

1

x

)
ξ
(
CP + 1

)
=

1

x

(
CL + 2LCP + L2CP + µ2U + ξ

(
CP + 1

))
+ x · µ2U + 2µ2U + ξ

(
CP + 1

)
.

Picking the optimal x to minimize the upper bound of RegT (π
⋆) yields

RegT (π
⋆) = 2

√
(CL + 2LCP + L2CP + µ2U + ξ (CP + 1))µ2U + 2µ2U + ξ

(
CP + 1

)
≤ 2
√
(CL + 2LCP + L2CP + ξ (CP + 1))µ2U + 4µ2U + ξ

(
CP + 1

)
= O

(√(
CL + L2|S|4|A|2 log2 (ι)CP

)
U + U + L2|S|4|A| log2 (ι)

(
CP + 1

))
≤ O

(√
UCL + U + L2|S|4|A|2 log2 (ι)

(
CP + 1

))
,

where the second step uses
√
x+ y ≤

√
x+
√
y for any x, y ∈ R≥0 and the last step uses 2

√
xy ≤

x+ y for any x, y ≥ 0.

C.3 Regret Decomposition of RegT (π
⋆) and Proof of Lemma C.2.3

In the following sections, we will first decompose RegT (π
⋆) for any mapping π⋆ : S → A into

several parts, and then bound each part separately from Section C.4 to Section C.7, in order to prove
Lemma C.2.3.

For any mapping π⋆ : S → A, we start from the following decomposition of RegT (π
⋆) as

E

[
T∑

t=1

〈
qPt,πt , ℓt

〉
−
〈
qP̂t,πt , ℓ̂t − bt

〉]
︸ ︷︷ ︸

ERROR1

+E

[
T∑

t=1

〈
qP̂t,πt , ℓ̂t − bt

〉
−
〈
qP̂t,π

⋆

, ℓ̂t − bt

〉]
︸ ︷︷ ︸

ESTREG

+ E

[
T∑

t=1

〈
qP̂t,π

⋆

, ℓ̂t − bt

〉
−
〈
qPt,π

⋆

, ℓt

〉]
︸ ︷︷ ︸

ERROR2

,

(32)

where P̂t = P̃i(t) denotes the optimistic transition for episode t for simplicity (which is consistent
with earlier definition such that q̂t = qP̂t,πt). Here, ESTREG is the estimated regret controlled by
FTRL, while ERROR1 and ERROR2 are estimation errors incurred on the selected policies {πt}Tt=1,
and that on the comparator policy π⋆ respectively.
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In order to achieve the gap-dependent bound under Condition (9), we consider these two estimation
error terms ERROR1 and ERROR2 together as:

E

[
T∑

t=1

〈
qPt,πt , ℓt

〉
−
〈
qP̂t,πt , ℓ̂t − bt

〉
+
〈
qP̂t,π

⋆

, ℓ̂t − bt

〉
−
〈
qPt,π

⋆

, ℓt

〉]

= E

[
T∑

t=1

〈
qPt,πt , ℓt

〉
−
〈
qP̂t,πt ,Et

[
ℓ̂t

]
− bt

〉
+
〈
qP̂t,π

⋆

,Et

[
ℓ̂t

]
− bt

〉
−
〈
qPt,π

⋆

, ℓt

〉]
,

(33)

where Et [·] denotes the conditional expectation given the history prior to episode t.

To better analyze the conditional expectation of the loss estimators, we define αt, βt : S ×A→ R as:

αt(s, a) ≜
qP,πt(s, a)ℓt(s, a)

ut(s, a)
, βt(s, a) ≜

(
qPt,πt(s, a)− qP,πt(s, a)

)
ℓt(s, a)

ut(s, a)
,

which ensures that Et

[
ℓ̂t(s, a)

]
= αt(s, a) + βt(s, a) for any state-action pair (s, a).

With the help of αt, βt, we have〈
qP̂t,πt ,Et

[
ℓ̂t

]
− bt

〉
=
〈
qP̂t,πt , αt

〉
+
〈
qP̂t,πt , βt − bt

〉
,〈

qP̂t,π
⋆

,Et

[
ℓ̂t

]
− bt

〉
=
〈
qP̂t,π

⋆

, αt

〉
+
〈
qP̂t,π

⋆

, βt − bt

〉
,

which helps us further rewrite Eq. (33) as

E

[
T∑

t=1

〈
qPt,πt − qP,πt , ℓt

〉
+

T∑
t=1

〈
qP,π⋆

− qPt,π
⋆

, ℓt

〉]

+ E

[
T∑

t=1

〈
qP,πt , ℓt

〉
−
〈
qP̂t,πt , αt

〉
+
〈
qP̂t,π

⋆

, αt

〉
−
〈
qP,π⋆

, ℓt

〉]

+ E

[
T∑

t=1

〈
qP̂t,πt , bt − βt

〉
+

T∑
t=1

〈
qP̂t,π

⋆

, βt − bt

〉]
.

(34)

Based on this decomposition of ERROR1 + ERROR2, we then bound each parts respectively in the
following lemmas.
Lemma C.3.1. For any δ ∈ (0, 1) and any policy sequence {πt}Tt=1, Algorithm 4 ensures that

E

[
T∑

t=1

〈
qPt,πt − qP,πt , ℓt

〉
+

T∑
t=1

〈
qP,π⋆

− qPt,π
⋆

, ℓt

〉]
= O

(
CPL

)
.

Lemma C.3.2. For any δ ∈ (0, 1) and any mapping π⋆ : S → A, Algorithm 4 ensures that

E

[
T∑

t=1

〈
qP̂t,πt , bt − βt

〉
+
〈
qP̂t,π

⋆

, βt − bt

〉]
= O

(
CPL|S|2|A| log2 (T )

)
.

Lemma C.3.3. For any δ ∈ (0, 1) and any mapping π⋆ : S → A, Algorithm 4 ensures that

E

[
T∑

t=1

〈
qP,πt , ℓt

〉
−
〈
qP̂t,πt , αt

〉
+
〈
qP̂t,π

⋆

, αt

〉
−
〈
qP,π⋆

, ℓt

〉]
= O

(
S1
(
L3|S|2|A| log2 (ι)

)
+
(
CP + 1

)
L2|S|4|A| log2 (ι) + δL|S|2|A|T 2

)
.

Lemma C.3.4. With the learning rates {γt}Tt=1 defined in Definition 5.2, Algorithm 4 ensures that
for any δ ∈ (0, 1) and any mapping π⋆ that,

ESTREG(π⋆)

= E

[
T∑

t=1

〈
qP̂t,πt , ℓ̂t − bt

〉
−
〈
qP̂t,π

⋆

, ℓ̂t − bt

〉]
= O

(
S2
(
L2|S||A| log2 (ι)

)
+
(
CP + 1

)
L|S|2|A|2 log2(ι) + δTL2|S|2|A| log(ι)

)
.
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Proof of Lemma C.2.3. According to the previous discussion, we have the regret against any mapping
π⋆ : S → A decomposed as:

RegT (π
⋆) = E

[
T∑

t=1

〈
qPt,πt − qP,πt , ℓt

〉
+

T∑
t=1

〈
qP,π⋆

− qPt,π
⋆

, ℓt

〉]

+ E

[
T∑

t=1

〈
qP̂t,πt , bt − βt

〉
+

T∑
t=1

〈
qP̂t,π

⋆

, βt − bt

〉]

+ E

[
T∑

t=1

〈
qP,πt , ℓt

〉
−
〈
qP̂t,πt , αt

〉
+
〈
qP̂t,π

⋆

, αt

〉
−
〈
qP,π⋆

, ℓt

〉]

+ E

[
T∑

t=1

〈
qP̂t,πt , ℓ̂t − bt

〉
−
〈
qP̂t,π

⋆

, ℓ̂t − bt

〉]
,

where the first term is mainly caused by the difference between {Pt}Tt=1 and P , which is unavoidable
and can be bounded by O

(
CPL

)
as shown in Lemma C.3.1; the second term is the extra cost of

using the amortized losses bt to handle the biases of loss estimators, which is controlled by Õ(CP)
as shown in Lemma C.3.2; the third term measures the estimation error related to the optimistic
transitions {P̂t}Tt=1, which can be bounded by some self-bounding quantities in Lemma C.3.2; the
final term is the estimated regret calculated with respect to the optimistic transitions {P̂t}Tt=1, which
is controlled by FTRL as shown in Lemma C.3.4. Putting all these bounds together finishes the
proof.

C.4 Proof of Lemma C.3.1

The result is immediate by directly applying Corollary D.3.7.

C.5 Proof of Lemma C.3.2

For this proof, we bound E
[∑T

t=1

〈
qP̂t,πt , bt − βt

〉]
and E

[∑T
t=1

〈
qP̂t,π

⋆

, βt − bt

〉]
separately.

Bounding E
[∑T

t=1

〈
qP̂t,πt , bt − βt

〉]
. We have

T∑
t=1

〈
qP̂t,πt , bt − βt

〉
=

T∑
t=1

∑
s,a

qP̂t,πt(s, a)

(
bt(s)−

(
qPt,πt(s, a)− qP,πt(s, a)

)
ℓt(s, a)

ut(s, a)

)

≤
T∑

t=1

∑
s,a

qP̂t,πt(s, a)

(
bt(s) +

∣∣qPt,πt(s, a)− qP,πt(s, a)
∣∣

ut(s, a)

)

≤
T∑

t=1

∑
s,a

qP̂t,πt(s, a)bt(s) +

T∑
t=1

∑
s,a

∣∣qPt,πt(s, a)− qP,πt(s, a)
∣∣

≤
T∑

t=1

∑
s,a

qP̂t,πt(s, a)bt(s) + LCP,

where the second step bounds ℓt(s, a) ≤ 1; the third step follows the fact that qP̂t,πt(s, a) ≤ ut(s, a)
for all (s, a). Let Ei be a set of episodes that belong to epoch i and let N be the total number of
epochs through T episodes. Then, we turn to bound

T∑
t=1

∑
s,a

qP̂t,πt(s, a)bt(s) =

N∑
i=1

∑
t∈Ei

∑
s,a

qP̂t,πt(s, a)bt(s) ≤ O
(
L|S|2|A| log2 (T )CP) ,
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where the last step repeats the same argument of Lemma 3.1 for every epoch and the number of
epochs is at most O(|S||A| log T ) according to [Jin et al., 2021, Lemma D.3.12].

Bounding E
[∑T

t=1

〈
qP̂t,π

⋆

, βt − bt

〉]
. For this term, we show that for any given epoch i,∑

t∈Ei

〈
qP̂t,π

⋆

, βt − bt

〉
≤ 0 which yields

∑T
t=1

〈
qP̂t,π

⋆

, βt − bt

〉
≤ 0. To this end, we first

consider a fixed epoch i and upper-bound〈
qP̂t,π

⋆

, βt

〉
=
∑
s,a

qP̂t,π
⋆

(s, a)

((
qPt,πt(s)− qP,πt(s)

)
ℓt(s, a)

ut(s)

)
≤
∑
s,a

qP̂t,π
⋆

(s, a)

(
CP

t

ut(s)

)
,

where the second step uses Corollary D.3.6 to bound
(
qPt,πt(s)− qP,πt(s)

)
≤ CP

t .

For any epoch i and episode t ∈ Ei, we have P̂t = P̃i(t), which gives that

T∑
t=1

〈
qP̂t,π

⋆

, βt − bt

〉
=

N∑
i=1

∑
t∈Ei

〈
qP̃i,π

⋆

, βt − bt

〉

≤
N∑
i=1

∑
s,a

qP̃i,π
⋆

(s, a)
∑
t∈Ei

(
CP

t

ut(s)
− bt(s)

)
≤ 0,

where the last step applies Lemma 3.1 for every epoch i. Thus, E
[∑T

t=1

〈
qP̂t,π

⋆

, βt − bt

〉]
≤ 0

holds.

C.6 Proof of Lemma C.3.3

We introduce the following lemma to evaluate the estimated performance via the true occupancy
measure, which helps us analyze the the estimation error.

Lemma C.6.1. For any transition function pair (P, P̂ ) (P and P̂ can be optimistic transition), policy

π, and loss function ℓ, it holds that
〈
qP,π, ℓ

〉
=
〈
qP̂ ,π,ZP,P̂ ,π

ℓ

〉
, where ZP,P̂ ,π

ℓ is defined as

ZP,P̂ ,π
ℓ (s, a) = QP,π(s, a; ℓ)−

∑
s′∈Sk(s)+1

P̂ (s′|s, a)V P,π(s′; ℓ)

= ℓ(s, a) +
∑

s′∈Sk(s)+1

(
P (s′|s, a)− P̂ (s′|s, a)

)
V P,π(s′; ℓ)

for all state-action pairs (s, a).

Proof. By direct calculation, we have:

V P,π(s; ℓ) =
∑
a

π(a|s)QP,π(s, a; ℓ)

=
∑
a

π(a|s)

QP,π(s, a; ℓ)−
∑

s′∈Sk(s)+1

P̂ (s′|s, a)V P,π(s; ℓ)


+
∑
a

π(a|s)
∑

s′∈Sk(s)+1

P̂ (s′|s, a)V P,π(s′; ℓ)

=
∑

s′∈Sk(s)+1

qP̂ ,π(s′|s)V P,π(s′; ℓ)

+
∑
a

π(a|s)

QP,π(s, a; ℓ)−
∑

s′∈Sk(s)+1

P̂ (s′|s, a)V P,π(s; ℓ)


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=

L−1∑
k=k(s)

∑
s′∈Sk

∑
a∈A

qP̂ ,π(s′, a|s)

QP,π(s′, a; ℓ)−
∑

s′′∈Sk(s′)+1

P̂ (s′′|s′, a)V P,π(s′′; ℓ)


=

L−1∑
k=k(s)

∑
s′∈Sk

∑
a∈A

qP̂ ,π(s′, a|s)ZP,P̂ ,π
ℓ (s′, a)

where the second to last step follows from recursively repeating the first three steps. The proof is
completed by noticing

〈
qP,π, ℓ

〉
= V P,π(s0, ℓ).

According to Lemma C.6.1, we rewrite
〈
qP̂t,πt , αt

〉
and

〈
qP̂t,π

⋆

, αt

〉
with qP,πt and qP,π⋆

for any
policy π⋆ as〈

qP̂t,πt , αt

〉
=
〈
qP,πt ,Z P̂t,P,πt

αt

〉
,
〈
qP̂t,π

⋆

, αt

〉
=
〈
qP,π⋆

,Z P̂t,P,π⋆

αt

〉
.

Therefore, we can further decompose as

E
[〈
qP,πt , ℓt

〉
−
〈
qP̂t,πt , αt

〉
+
〈
qP̂t,π

⋆

, αt

〉
−
〈
qP,π⋆

, ℓt

〉]
=E

[
T∑

t=1

〈
qP,πt , ℓt −Z P̂t,P,πt

αt

〉
−
〈
qP,π⋆

, ℓt −Z P̂t,P,π⋆

αt

〉]

=E

[
T∑

t=1

〈
qP,πt − qP,π⋆

, ℓt −Z P̂t,P,π⋆

αt

〉
+
〈
qP,πt ,Z P̂t,P,π⋆

αt
−Z P̂t,P,πt

αt

〉]

=E

[
T∑

t=1

∑
s ̸=sL

∑
a∈A

(
qP,πt(s, a)− qP,π⋆

(s, a)
)
(ℓt(s, a)− αt(s, a))︸ ︷︷ ︸

TERM 1(π⋆)

]

+E

[
T∑

t=1

∑
s̸=sL

∑
a∈A

(
qP,πt(s, a)− qP,π⋆

(s, a)
) ∑
s′∈Sk(s)+1

(
P (s′|s, a)− P̂t(s

′|s, a)
)
V P̂t,π

⋆

(s′;αt)︸ ︷︷ ︸
TERM 2(π⋆)

]

+E

[
T∑

t=1

〈
qP,πt ,Z P̂t,P,π⋆

αt
−Z P̂t,P,πt

αt

〉
︸ ︷︷ ︸

TERM 3(π⋆)

]
.

We will bound these terms with some self-bounding quantities in Lemma C.6.2, Lemma C.6.3 and
Lemma C.6.4 respectively. In these proofs, we will follow the idea of Lemma D.1.1 to first bound
these terms conditioning on the events EEST and ECON defined in Proposition D.5.2 and Eq. (4), while
ensuring that these terms are always bounded by O

(
|S|2|A|T 2

)
in the worst case.

C.6.1 Bounding Term 1

Lemma C.6.2. For any δ ∈ (0, 1) and any mapping π⋆ : S → A, Algorithm 4 ensures that
E [TERM 1(π⋆)] is bounded by

O
(
S1
(
L2|S|2|A| log2 (ι)

)
+ δ|S|2|A|T 2 +

(
CP + 1

)
L2|S|4|A| log2 (ι)

)
.

Proof. Clearly, we have αt(s, a) ≤ |S|T for every state-action pair (s, a), due to the fact that
ut(s) ≥ 1/|S|T (Lemma D.2.8). Therefore, we have TERM 1(π⋆) ≤ |S|2|A|T 2 holds always. In the
remaining, our main goal is to bound TERM 1(π⋆) conditioning on ECON ∧ EEST.

For any state-action pair (s, a) ∈ S ×A and episode t, we have

ℓt(s, a)− αt(s, a) =

(
ut(s, a)− qP,πt(s, a)

)
ℓt(s, a)

ut(s, a)
=

(
ut(s)− qP,πt(s)

)
ℓt(s, a)

ut(s)
≥ 0,

35



conditioning on the event ECON.

Therefore, under event ECON ∧ EEST, TERM 1(π⋆) is bounded by
T∑

t=1

∑
s̸=sL

∑
a∈A

(
qP,πt(s, a)− qP,π⋆

(s, a)
)
(ℓt(s, a)− αt(s, a))

≤
T∑

t=1

∑
s̸=sL

∑
a∈A

[
qP,πt(s, a)− qP,π⋆

(s, a)
]
+

(
ut(s)− qP,πt(s)

)
ℓt(s, a)

ut(s)

≤
T∑

t=1

∑
s̸=sL

∑
a∈A

[
qP,πt(s, a)− qP,π⋆

(s, a)
]
+

ut(s)
·
∣∣ut(s)− qP,πt(s)

∣∣
= O


√√√√L|S|2|A| log2 (ι)

T∑
t=1

∑
s ̸=sL

qP,πt(s) ·

(∑
a

[qP,πt(s, a)− qP,π⋆(s, a)]+
ut(s)

)2


+O
((
CP + log (ι)

)
L2|S|4|A| log (ι)

)
≤ O

√√√√L|S|2|A| log2 (ι)
T∑

t=1

∑
s ̸=sL

∑
a∈A

[qP,πt(s, a)− qP,π⋆(s, a)]+


+O

((
CP + log (ι)

)
L2|S|4|A| log (ι)

)
≤ O

√√√√L2|S|2|A| log2 (ι)
T∑

t=1

∑
s̸=sL

∑
a̸=π⋆(s)

qP,πt(s, a) +
(
CP + log (ι)

)
L2|S|4|A| log (ι)


≤ O

√√√√L2|S|2|A| log2 (ι)
T∑

t=1

∑
s̸=sL

∑
a̸=π⋆(s)

qPt,πt(s, a) +
(
CP + 1

)
L2|S|4|A| log2 (ι)

 ,

where the first step follows from the non-negativity of ℓt(s, a) − αt(s, a); the third step
applies Lemma D.5.4 with G = 1 as

∑
a

[
qP,πt(s, a)− qP,π⋆

(s, a)
]
+
≤ qP,πt(s) ≤

ut(s); the fifth step follows from the fact that
∑

s ̸=sL

∑
a∈A

[
qP,πt(s, a)− qP,π⋆

(s, a)
]
+
≤

2L
∑

s̸=sL

∑
a ̸=π⋆(s) q

P,πt(s, a) according to Corollary D.3.5; the last step applies Corollary D.3.6.

Applying Lemma D.1.1 with event ECON ∧ EEST yields that

E [TERM 1(π⋆)] = O

E

√√√√L2|S|2|A| log2 (ι)
T∑

t=1

∑
s̸=sL

∑
a̸=π⋆(s)

qPt,πt(s, a)


+O

((
CP + log (ι)

)
L2|S|4|A| log (ι) + δ|S|2|A|T 2

)
= O

(
S1
(
L2|S|2|A| log2 (ι)

)
+ δ|S|2|A|T 2 +

(
CP + log (ι)

)
L2|S|4|A| log (ι)

)
.

C.6.2 Bounding Term 2

Lemma C.6.3. For any δ ∈ (0, 1) and any mapping π⋆ : S → A, Algorithm 4 ensures that

E [TERM 2(π⋆)] = O
(
S1
(
L|S|2|A| log2 (ι)

)
+ δL|S|2|A|T + L|S|2|A|

(
CP + log (ι)

)
log (T )

)
.

Proof. Suppose that ECON ∧ EEST occurs. We have

P (s′|s, a) ≥ P̂t(s
′|s, a) = P̃i(t)(s

′|s, a),∀(s, a, s′) ∈Wk, k = 0, . . . , L− 1.

Therefore, we can show that

0 ≤
∑

s′∈Sk(s)+1

(
P (s′|s, a)− P̂t(s

′|s, a)
)
V P̂t,π

⋆

(s′;αt)
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= O

(
L

(√
|S| log (ι)
m̂i(t)(s, a)

+
|S|
(
CP + log (ι)

)
m̂i(t)(s, a)

))
,

where the last step follows from the definition of optimistic transition and the fact that αt(s, a) ≤ 1.

By direct calculation, we have TERM 2(π⋆) bounded by

O

L
∑
s ̸=sL

∑
a∈A

T∑
t=1

[
qP,πt(s, a)− qP,π⋆

(s, a)
]
+

(√
|S| log (ι)
m̂i(t)(s, a)

+
|S|
(
CP + log (ι)

)
m̂i(t)(s, a)

)
≤ O

L
∑
s̸=sL

∑
a∈A

T∑
t=1

[
qP,πt(s, a)− qP,π⋆

(s, a)
]
+

√
|S| log (ι)
m̂i(t)(s, a)


+O

L|S|
∑
s̸=sL

∑
a∈A

T∑
t=1

qP,πt(s, a)

((
CP + log (ι)

)
m̂i(t)(s, a)

)
= O

L
∑
s̸=sL

∑
a∈A

T∑
t=1

[
qP,πt(s, a)− qP,π⋆

(s, a)
]
+

√
|S| log (ι)
m̂i(t)(s, a)

+ L|S|2|A|
(
CP + log (ι)

)
log (T )

 ,

where the last step follows from Lemma D.5.3.

Moreover, we have∑
s̸=sL

∑
a∈A

T∑
t=1

[
qP,πt(s, a)− qP,π⋆

(s, a)
]
+

√
|S| log (ι)
m̂i(t)(s, a)

≤
∑
s̸=sL

∑
a∈A

T∑
t=1

√
[qP,πt(s, a)− qP,π⋆(s, a)]+ ·

√
qP,πt(s, a)|S| log (ι)

m̂i(t)(s, a)

≤

√√√√∑
s̸=sL

∑
a∈A

T∑
t=1

[qP,πt(s, a)− qP,π⋆(s, a)]+ ·

√√√√∑
s̸=sL

∑
a∈A

T∑
t=1

qP,πt(s, a)|S| log (ι)
m̂i(t)(s, a)

= O

√√√√|S|2|A| log2 (ι) ∑
s̸=sL

∑
a∈A

T∑
t=1

[qP,πt(s, a)− qP,π⋆(s, a)]+


≤ O

√√√√L|S|2|A| log2 (ι)
T∑

t=1

∑
s̸=sL

∑
a ̸=π⋆(s)

qP,πt(s, a)


≤ O

√√√√L|S|2|A| log2 (ι)
T∑

t=1

∑
s̸=sL

∑
a ̸=π⋆(s)

qPt,πt(s, a) +

√
L2|S|2|A| log2 CP

 ,

where the second step uses the Cauchy-Schwarz inequality; the third step applies Lemma D.5.3;
the fifth step follows from Corollary D.3.5; the last step uses Corollary D.3.6 and the fact that√
x+ y ≤

√
x+
√
y for any x, y ≥ 0.

Finally, applying Lemma D.1.1 finishes the proof.

C.6.3 Bounding Term 3

Lemma C.6.4. For any δ ∈ (0, 1) and the policy π⋆, Algorithm 4 ensures that

E [TERM 3(π⋆)] = O
(
S1
(
L3|S|2|A| log2 (ι)

)
+ δL|S|2|A|T +

(
CP + log (ι)

)
L2|S|4|A| log (ι)

)
.

Proof. Suppose that ECON ∧ EEST occurs. We first have:〈
qP,πt ,Z P̂t,P,π⋆

αt
−Z P̂t,P,πt

αt

〉
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=
∑
s̸=sL

∑
a∈A

qP,πt(s, a)
∑

s′∈Sk(s)+1

(
P̂t(s

′|s, a)− P (s′|s, a)
)(

V P̂t,π
⋆

(s′;αt)− V P̂t,πt(s′;αt)
)

≤ 2
∑
s̸=sL

∑
a∈A

∑
s′∈Sk(s)+1

qP,πt(s, a)Bi(t)(s, a, s
′)
∣∣∣V P̂t,π

⋆

(s′;αt)− V P̂t,πt(s′;αt)
∣∣∣

≤ O

L−1∑
k=0

∑
(s,a,s′)∈Wk

qP,πt(s, a)

√
P (s′|s, a) log (ι)

m̂i(t)(s, a)
·
∣∣∣V P̂t,π

⋆

(s′;αt)− V P̂t,πt(s′;αt)
∣∣∣


+O

L|S|
∑
s̸=sL

∑
a∈A

qP,πt(s, a)

(
CP + log (ι)

m̂i(t)(s, a)

) ,

where the last step follows from Lemma D.2.7 and the fact that V P̂t,π(s′;αt) ≤ L for any π.

By applying Lemma D.5.3, we have the second term bounded by
O
((
CP + log (ι)

)
L2|S|4|A| log (ι)

)
. On the other hand, for the first term, we can bound∣∣∣V P̂t,π

⋆

(s′;αt)− V P̂t,πt(s′;αt)
∣∣∣ as∣∣∣V P̂t,π

⋆

(s′;αt)− V P̂t,πt(s′;αt)
∣∣∣

≤
∑
u̸=sL

∑
v∈A

qP̂t,πt(u|s′) |πt(v|u)− π⋆(v|u)|QP̂t,π
⋆

(u, v;αt)

≤ L
∑
u∈S

∑
v∈A

qP̂t,πt(u|s′) |πt(v|u)− π⋆(v|u)|

≤ O

L

L−1∑
k=k(s′)

∑
u∈Sk

∑
v ̸=π⋆(u)

qP̂t,πt(u, v|s′)


≤ O

L

L−1∑
k=k(s′)

∑
u∈Sk

∑
v ̸=π⋆(u)

qP,πt(u, v|s′)


where the first step follows from Lemma D.3.2; the second step follows from the fact that
QP̂t,π

⋆

(u, v;αt) ∈ [0, L]; the third step uses the same reasoning as the proof of Corollary D.3.5; and
the last step uses Corollary C.8.2.

Finally, we consider the following term

T∑
t=1

L−1∑
h=0

∑
(s,a,s′)∈Wh

qP,πt(s, a)

√
P (s′|s, a) log (ι)

m̂i(t)(s, a)

L−1∑
k=h+1

∑
u∈Sk

∑
v ̸=π⋆(u)

qP,πt(u, v|s′)

=

T∑
t=1

L−1∑
h=0

∑
(s,a,s′)∈Wh

L−1∑
k=h+1

∑
u∈Sk

∑
v ̸=π⋆(u)

√
qP,πt(s, a)qP,πt(u, v|s′) log (ι)

m̂i(t)(s, a)

·
√
qP,πt(s, a)P (s′|s, a)qP,πt(u, v|s′)

≤
L−1∑
h=0

√√√√ T∑
t=1

∑
(s,a,s′)∈Wh

L−1∑
k=h+1

∑
u∈Sk

∑
v ̸=π⋆(u)

qP,πt(s, a)qP,πt(u, v|s′) log (ι)
m̂i(t)(s, a)

·

√√√√ T∑
t=1

∑
(s,a,s′)∈Wh

L−1∑
k=h+1

∑
u∈Sk

∑
v ̸=π⋆(u)

qP,πt(s, a)P (s′|s, a)qP,πt(u, v|s′)

≤
L−1∑
h=0

√√√√|Sh+1|L
T∑

t=1

∑
s∈Sh

∑
a∈A

qP,πt(s, a) log (ι)

m̂i(t)(s, a)
·

√√√√ T∑
t=1

∑
u∈S

∑
v ̸=π⋆(u)

qP,πt(u, v)
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≤

(
L−1∑
h=0

√
L|Sh+1||Sh||A| log2 (ι)

)
·

√√√√ T∑
t=1

∑
u∈S

∑
v ̸=π⋆(u)

qP,πt(u, v)

= O

√√√√L|S|2|A| log2 (ι)
T∑

t=1

∑
s̸=sL

∑
a̸=π⋆(a)

qP,πt(s, a)


= O

√√√√L|S|2|A| log2 (ι)
T∑

t=1

∑
s̸=sL

∑
a̸=π⋆(a)

qPt,πt(s, a) +

√
CP · L2|S|2|A| log2 (ι)

 ,

where the second step applies Cauchy-Schwarz inequality; the third step follows from the fact
that

∑
s∈Sk

∑
a∈A

∑
s′∈Sk(s)+1

qP,πt(s, a)P (s′|s, a)qP,πt(u, v|s′) = qP,πt(u, v); the fourth step
follows from Lemma D.5.3 conditioning on the event EEST; the fifth step uses the fact that

√
x+ y ≤√

x+
√
y for x, y ≥ 0; the last step follows from Corollary D.3.6.

C.7 Proof of Lemma C.3.4

In this section we bound ESTREG using a learning rate that depends on t and (s, a), which is crucial
to obtain a self-bounding quantity. Another key observation is that the estimated transition function
is constant within each epoch, so we first bound ESTREG within one epoch before summing them.

Recall that Ei is a set of episodes that belong to epoch i and N is the total number of epochs through
T episodes. By using the fact that P̂t = P̃i for episode t belonging to epoch i, we make the following
decomposition ESTREG(π⋆)

ESTREG(π⋆) = E

[
N∑
i=1

∑
t∈Ei

〈
qP̃i,πt − qP̂t,π

⋆

, ℓ̂t − bt

〉]

≤ E

[
N∑
i=1

Eti

[∑
t∈Ei

〈
qP̃i,πt − qP̂t,π

⋆

, ℓ̂t − bt

〉]]
= E

[
N∑
i=1

ESTREGi(π
⋆)

]
.

This learning rate is defined in Definition 5.2 and restated below.
Definition C.7.1. For any t, if it is the starting episode of an epoch, we set γt(s, a) = 256L2|S|;
otherwise, we set

γt+1(s, a) = γt(s, a) +
Dνt(s, a)

2γt(s, a)
,

where D = 1
log(ι) and

νt(s, a) = qP̃i(t),πt(s, a)2
(
QP̃i(t),πt(s, a; ℓ̂t)− V P̃i(t),πt(s; ℓ̂t)

)2
. (35)

Importantly, both QP̃i(t),πt(s, a; ℓ̂t) and V P̃i(t),πt(s; ℓ̂t) can be computed, which ensures that the
learning rate is properly defined.

C.7.1 Properties of the Learning Rate

In this section, we prove key properties of νt(s, a) and of γt(s, a). We first present some results in
Lemma C.7.2 that are useful to bound νt(s, a), and then use these results to bound γt(s, a).
Lemma C.7.2. For any state-action pair (s, a) and any episode t, it holds that

qP̂t,πt(s, a)QP̂t,πt(s, a; ℓ̂t) ≤ L, and qP̂t,πt(s)V P̂t,πt(s; ℓ̂t) ≤ L, ∀(s, a) ∈ S ×A,

which ensures qP̂t,πt(s, a)
(
QP̂t,πt(s, a; ℓ̂t)− V P̂t,πt(s; ℓ̂t)

)
∈ [−L,L]. Suppose that the high-

probability event ECON holds. Then, it further holds for all state-action pair (s, a) that

qP̂t,πt(s, a)2 · Et

[(
QP̂t,πt(s, a; ℓ̂t)− V P̂t,πt(s; ℓ̂t)

)2]
≤ O

(
L2qP̂t,πt(s, a) (1− πt(a|s)) + L|S|CP

t

)
,

where P̂t here is the optimistic transition P̃i(t) defined in Definition C.1.1.
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Proof. We first verify qP̂t,πt(s, a)QP̂t,πt(s, a; ℓ̂t) ≤ L:

qP̂t,πt(s, a)QP̂t,πt(s, a; ℓ̂t)

= qP̂t,πt(s, a)
∑

h=k(s)

∑
u∈S

∑
v∈A

qP̂t,πt(u, v|s, a)ℓ̂t(u, v)

= qP̂t,πt(s, a)
∑

h=k(s)

∑
u∈S

∑
v∈A

qP̂t,πt(u, v|s, a) · It(u, v)ℓt(u, v)
ut(u, v)

≤
∑

h=k(s)

∑
u∈Sh

∑
v∈A

It(u, v) ·
qP̂t,πt(s, a)qP̂t,πt(u, v|s, a)

ut(u, v)

≤
∑

h=k(s)

∑
u∈Sh

∑
v∈A

It(u, v) ≤ L,

where the second step follows from the definition of loss estimator, the fourth step follows
from qP̂t,πt(s, a)qP̂t,πt(u, v|s, a) ≤ qP̂t,πt(u, v) ≤ ut(u, v), and the last step uses the fact that∑

u∈Sh

∑
v∈A It(u, v) = 1. Following the same idea, we can show that qP̂t,πt(s)V P̂t,πt(s; ℓ̂t) ≤ L

as well.

Next, we have Et

[(
QP̂t,πt(s, a; ℓ̂t)− V P̂t,πt(s; ℓ̂t)

)2]
bounded as

Et

[(
QP̂t,πt(s, a; ℓ̂t)− V P̂t,πt(s; ℓ̂t)

)2]

= Et


QP̂t,πt(s, a; ℓ̂t)− πt(a|s)QP̂t,πt(s, a; ℓ̂t)−

∑
a′ ̸=a

πt(a
′|s)QP̂t,πt(s, a′; ℓ̂t)

2


≤ 2 · Et

[(
QP̂t,πt(s, a; ℓ̂t)− πt(a|s)QP̂t,πt(s, a; ℓ̂t)

)2]

+ 2 · Et


∑

a′ ̸=a

πt(a
′|s)QP̂t,πt(s, a′; ℓ̂t)

2


= 2 (1− πt(a|s))2 Et

[(
QP̂t,πt(s, a; ℓ̂t)

)2]
+ 2Et


∑

a′ ̸=a

πt(a
′|s)QP̂t,πt(s, a′; ℓ̂t)

2
 , (36)

where the second step follows from the fact that (x+ y)
2 ≤ 2

(
x2 + y2

)
for any x, y ∈ R.

By direct calculation, we have

Et

[(
QP̂t,πt(s, a; ℓ̂t)

)2]

= Et


 L−1∑

k=k(s)

∑
x∈Sk

∑
y∈A

qP̂t,πt(x, y|s, a)ℓ̂t(x, y)

2


≤ L · Et

 L−1∑
k=k(s)

∑
x∈Sk

∑
y∈A

qP̂t,πt(x, y|s, a)ℓ̂t(x, y)

2


= L · Et

 L−1∑
k=k(s)

∑
x∈Sk

∑
y∈A

qP̂t,πt(x, y|s, a)2ℓ̂t(x, y)2

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≤ L ·
L−1∑

k=k(s)

∑
x∈Sk

∑
y∈A

qP̂t,πt(x, y|s, a)2 ·
(
qPt,πt(x, y)

ut(x, y)2

)

=
L

qP̂t,πt(s, a)
·

L−1∑
k=k(s)

∑
x∈Sk

∑
y∈A

qP̂t,πt(x, y|s, a)

(
qP̂t,πt(x, y|s, a)qP̂t,πt(s, a)

ut(s, a)

)
·
(
qPt,πt(x, y)

ut(s, a)

)

≤ L

qP̂t,πt(s, a)
·

L−1∑
k=k(s)

∑
x∈Sk

∑
y∈A

qP̂t,πt(x, y|s, a)
(
qPt,πt(x, y)

ut(s, a)

)

≤ L

qP̂t,πt(s, a)
·

L−1∑
k=k(s)

∑
x∈Sk

∑
y∈A

qP̂t,πt(x, y|s, a)
(
qP,πt(x, y)

ut(x, y)
+

CP
t

ut(x, y)

)
, (37)

where the second step uses Cauchy-Schwarz inequality; the third step uses the fact that ℓ̂t(s, a) ·
ℓ̂t(s

′, a′) = 0 for any (s, a) ̸= (s′, a′); the fourth step takes the conditional expectation of ℓ̂t(x, y)2;
the sixth step follows from the fact that qP̂t,πt(x, y|s, a)qP̂t,πt(s, a) ≤ qP̂t,πt(x, y) ≤ ut(x, y)
according to the definition of upper occupancy bound; the last step follows from Corollary D.3.6.

Similarly, for the second term in Eq. (36), we have

Et


∑

b ̸=a

πt(b|s)QP̂t,πt(s, b; ℓ̂t)

2


≤ L · Et

 L−1∑
k=k(s)

∑
x∈Sk

∑
y∈A

∑
b ̸=a

πt(b|s)qP̂t,πt(x, y|s, b)

 ℓ̂t(x, y)

2


= L · Et

 L−1∑
k=k(s)

∑
x∈Sk

∑
y∈A

∑
b̸=a

πt(b|s)qP̂t,πt(x, y|s, b)

2

ℓ̂t(x, y)
2


≤ L ·

L−1∑
k=k(s)

∑
x∈Sk

∑
y∈A

∑
b ̸=a

πt(b|s)qP̂t,πt(x, y|s, b)

2(
qPt,πt(x, y)

ut(x, y)2

)

≤ L

qP̂t,πt(s)

L−1∑
k=k(s)

∑
x∈Sk

∑
y∈A

∑
b ̸=a

πt(b|s)qP̂t,πt(x, y|s, b)

(qPt,πt(x, y)

ut(x, y)

)

≤ L

qP̂t,πt(s)

∑
b̸=a

πt(b|s)

 L−1∑
k=k(s)

∑
x∈Sk

∑
y∈A

qP̂t,πt(x, y|s, b)
(
qP,πt(x, y)

ut(x, y)
+

CP
t

ut(x, y)

) , (38)

where the first three steps are following the same idea of previous analysis; the fourth step uses
the fact that

∑
b̸=a q

P̂t,πt(s)πt(b|s)qP̂t,πt(x, y|s, b) ≤ qP̂t,πt(x, y); the last step follows from Corol-
lary D.3.6 as well.

Conditioning on the event ECON, we have the term in Eq. (37) further bounded as

L

qP̂t,πt(s, a)
·

L−1∑
k=k(s)

∑
x∈Sk

∑
y∈A

qP̂t,πt(x, y|s, a)
(
qP,πt(x, y)

ut(x, y)
+

CP
t

ut(x, y)

)

≤ L

qP̂t,πt(s, a)
·

L−1∑
k=k(s)

∑
x∈Sk

∑
y∈A

qP̂t,πt(x, y|s, a)
(
1 +

CP
t

ut(x, y)

)

=
L

qP̂t,πt(s, a)
·

L−1∑
k=k(s)

∑
x∈Sk

∑
y∈A

qP̂t,πt(x, y|s, a)
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+
L

qP̂t,πt(s, a)
·

L−1∑
k=k(s)

∑
x∈Sk

∑
y∈A

qP̂t,πt(x, y|s, a)
(

CP
t

ut(x, y)

)

≤ L2

qP̂t,πt(s, a)
+

LCP
t

qP̂t,πt(s, a)
·

L−1∑
k=k(s)

∑
x∈Sk

∑
y∈A

(
qP̂t,πt(x, y|s, a)

ut(x, y)

)
, (39)

where the second step follows from the fact that qP,πt(x, y) ≤ ut(x, y) as P ∈ Pi(t) according to
the event ECON; the last step follows from the fact that

∑
x∈Sk

∑
y∈A qP̂t,πt(x, y|s, a) ≤ 1.

Following the same argument, for the term in Eq. (38), we have

L

qP̂t,πt(s)

∑
b̸=a

πt(b|s)

 L−1∑
k=k(s)

∑
x∈Sk

∑
y∈A

qP̂t,πt(x, y|s, b)
(
qP,πt(x, y)

ut(x, y)
+

CP
t

ut(x, y)

)
≤ L

qP̂t,πt(s)

∑
b ̸=a

πt(b|s)

L+

L−1∑
k=k(s)

∑
x∈Sk

∑
y∈A

(
qP̂t,πt(x, y|s, b)CP

t

ut(x, y)

)
≤ L2 (1− πt(a|s))

qP̂t,πt(s)
+

LCP
t

qP̂t,πt(s)

∑
b ̸=a

πt(b|s)
L−1∑

k=k(s)

∑
x∈Sk

∑
y∈A

(
qP̂t,πt(x, y|s, b)

ut(x, y)

)
. (40)

Plugging Eq. (39) and Eq. (40) into Eq. (36), we have

qP̂t,πt(s, a)2 · Et

[(
QP̂t,πt(s, a; ℓ̂t)− V P̂t,πt(s; ℓ̂t)

)2]

≤ 2qP̂t,πt(s, a)2 (1− πt(a|s))2
 L2

qP̂t,πt(s, a)
+

LCP
t

qP̂t,πt(s, a)
·

L−1∑
k=k(s)

∑
x∈Sk

∑
y∈A

(
qP̂t,πt(x, y|s, a)

ut(x, y)

)
+ 2qP̂t,πt(s, a)2

L2 (1− πt(a|s))
qP̂t,πt(s)

+
LCP

t

qP̂t,πt(s)

∑
b ̸=a

πt(b|s)
L−1∑

k=k(s)

∑
x∈Sk

∑
y∈A

(
qP̂t,πt(x, y|s, b)

ut(x, y)

)
≤ O

(
L2qP̂t,πt(s, a) (1− πt(a|s))

)
+O

LCP
t · qP̂t,πt(s, a)

L−1∑
k=k(s)

∑
x∈Sk

∑
y∈A

(
qP̂t,πt(x, y|s, a)

ut(x, y)

)
+O

LCP
t · qP̂t,πt(s)

∑
b ̸=a

πt(b|s)
L−1∑

k=k(s)

∑
x∈Sk

∑
y∈A

(
qP̂t,πt(x, y|s, b)

ut(x, y)

)
≤ O

(
L2qP̂t,πt(s, a) (1− πt(a|s))

)
+O

LCP
t ·

L−1∑
k=k(s)

∑
x∈Sk

∑
y∈A

(
qP̂t,πt(x, y|s, a)qP̂t,πt(s, a)

ut(x, y)

)
+O

LCP
t ·

L−1∑
k=k(s)

∑
x∈Sk

∑
y∈A

(∑
b̸=a q

P̂t,πt(s)πt(b|s)qP̂t,πt(x, y|s, b)
ut(x, y)

)
≤ O

(
L2qP̂t,πt(s, a) (1− πt(a|s)) + L|S|CP

t

)
,

where the third step follows from the facts that qP̂t,πt(x, y|s, a)qP̂t,πt(s, a) ≤ qP̂t,πt(x, y) ≤ ut(x, y)

for any (s, a), (x, y) ∈ S ×A, and
∑

b ̸=a q
P̂t,πt(s)πt(b|s)qP̂t,πt(x, y|s, b) ≤ qP̂t,πt(x, y) similarly.

42



The first part of Lemma C.7.2 ensures that νt(s, a) ∈ [0, L2], which can be used to bound the growth
of the learning rate.

Proposition C.7.3. The learning rate γt defined in Definition 5.2 satisfies for any state-action pair
(s, a):

γt(s, a) ≤

√√√√D

t−1∑
j=ti(t)

νj(s, a) + γti(t)(s, a)

where i(t) is the epoch to which episode t belongs and ti is the first episode of epoch i.

Proof. We prove this statement by induction on t. The equation trivially holds for t = ti(t) which
is the first round of epoch i(t). For the induction step, we first note that Dνt(s, a) ∈ [0, L2]. We
introduce some notations to simplify the proof: we use c to denote Dνt(s, a), x to denote γt(s, a),
and the induction hypothesis is x ≤

√
S + γ where S = D

∑t−1
j=ti(t)

νj(s, a) and γ = γti(t)(s, a).
Proving the induction step is the same as proving:

x+
c

2x
≤
√
S + c+ γ. (41)

First, we can verify that f(x) = x+ c
2x is an increasing function of x for x ≥

√
c/2. As c ∈ [0, L2]

and x ≥ γ ≥ L, we can use the induction hypothesis x ≤
√
S + γ to upper bound x in the left-hand

side of Eq. (41), and we get:

x+
c

2x
=

x2 + c/2

x

≤ S + 2γ
√
S + γ2 + c/2√
S + γ

=
S + γ

√
S + c/2√

S + γ
+

γ
√
S + γ2

√
S + γ

=

√
S + γ√
S + γ

(√
S +

c

2
√
S + 2γ

)
+

γ
√
S + γ2

√
S + γ

=

(√
S +

c

2
√
S + 2γ

)
+ γ

≤
(√

S +
c

2
√
S + c

)
+ γ

≤
√
S + c+ γ,

where the second to last step follows from c ≤ L2 and γ ≥ L, which ensures that 2
√
S + 2

√
γ ≥

2
√
S + γ2 ≥ 2

√
S + c. The last step follows from the concavity of the square-root function which

ensures that
√
S ≤

√
S + c− c

2
√
S+c

.

Then, we can use the second part of Lemma C.7.2 to continue the bound of Proposition C.7.3 and
derive a bound that only depends on the suboptimal actions.

Proposition C.7.4. If νt is defined as in Definition 5.2, we have for any deterministic policy π : S →
A and any state s ̸= sL:

Eti

∑
a∈A

√√√√ti+1−1∑
t=ti

νt(s, a)

 ≤ O
 ∑

a ̸=π(s)

√√√√Eti

[
L2

ti+1−1∑
t=ti

qPt,πt(s, a)

]
+O

δL2|S||A| (ti+1 − ti) +

√√√√L|S||A|2
ti+1−1∑
t=ti

CP
t

 .
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Proof. For each epoch i and state-action pair (s, a), we have:

Eti


√√√√ti+1−1∑

t=ti

νt(s, a)

 ≤
√√√√Eti

[
ti+1−1∑
t=ti

νt(s, a)

]

= O


√√√√Eti

[
ti+1−1∑
t=ti

L2 qP̂t,πt(s, a)(1− πt(a|s)) + L|S|CP
t

] ,

(42)

where the first step follows from Jensen’s inequality, and the second step uses Lemma C.7.2.

Note that, for a = π(s), we have:

qP̂t,πt(s, π(s))(1− πt(π(s)|s)) ≤ qP̂t,πt(s)
∑

b̸=π(s)

πt(b|s) ≤
∑

b ̸=π(s)

qP̂t,πt(s, b).

Therefore, we have

Eti

∑
a∈A

√√√√ti+1−1∑
t=ti

νt(s, a)


= O

∑
a∈A

√√√√Eti

[
ti+1−1∑
t=ti

L2 qP̂t,πt(s, a)(1− πt(a|s)) + L|S|CP
t

]
= O

∑
a∈A

√√√√Eti

[
L2

ti+1−1∑
t=ti

qP̂t,πt(s, a)(1− πt(a|s))

]
+

√√√√L|S|
ti+1−1∑
t=ti

CP
t


= O

 ∑
a ̸=π(s)

√√√√Eti

[
L2

ti+1−1∑
t=ti

qP̂t,πt(s, a)

]
+

√√√√L|S||A|2
ti+1−1∑
t=ti

CP
t


≤ O

δL2|S||A| (ti+1 − 1− ti) +
∑

a̸=π(s)

√√√√Eti

[
L2

ti+1−1∑
t=ti

qP,πt(s, a)

]
+

√√√√L|S||A|2
ti+1−1∑
t=ti

CP
t


≤ O

δL2|S||A| (ti+1 − 1− ti) +
∑

a̸=π(s)

√√√√Eti

[
L2

ti+1−1∑
t=ti

qPt,πt(s, a)

]
+

√√√√L|S||A|2
ti+1−1∑
t=ti

CP
t

 ,

where the first step follows from Eq. (42); the second step uses the fact that
√
x+ y ≤

√
x+
√
y for

x, y ≥ 0; the fourth step follows from Lemma D.1.1 with the event ECON and Corollary C.8.2; the last
step applies Corollary D.3.6.

C.7.2 Bounding ESTREGi(π
⋆) for Varying Learning Rate

We now focus on bounding ESTREGi(π
⋆) for an individual epoch i.

Notations for FTRL Analysis. For any fixed epoch i and any integer t ∈ [ti, ti+1 − 1], we introduce
the following notations.

Ft(q) =

〈
q,

t−1∑
τ=ti

(
ℓ̂τ − bτ

)〉
+ ϕt(q) , Gt(q) =

〈
q,

t∑
τ=ti

(
ℓ̂τ − bτ

)〉
+ ϕt(q),

qt = argmin
q∈Ω(P̃i)

Ft(q) , q̃t = argmin
q∈Ω(P̃i)

Gt(q).
(43)

With these notations, we have qt = q̂t = qP̂t,πt = qP̃i,πt . Also, according to the loss shifting
technique (specifically Corollary D.4.2), qt and q̃t can be equivalently written as

qt = argmin
q∈Ω(P̃i)

〈
q,

t−1∑
τ=ti

(gτ − bτ )

〉
+ ϕt(q), q̃t = argmin

q∈Ω(P̃i)

〈
q,

t∑
τ=ti

(gτ − bτ )

〉
+ ϕt(q), (44)
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where gt : S ×A→ R is defined as

gt(s, a) = QP̂t,πt(s, a; ℓ̂t)− V P̂t,πt(s; ℓ̂t),∀(s, a) ∈ S ×A. (45)

Finally, We also define u = qP̃i,π
⋆

and

v =

(
1− 1

T 2

)
u+

1

T 2|A||S|
∑
s,a

qmax
s,a , (46)

where qmax
s,a is the occupancy measure associated with a policy that maximizes the probability of

visiting (s, a) given the optimistic transition P̃i. Then, we have v ∈ Ω(P̃i) because u, qmax
s,a ∈ Ω(P̃i)

for all (s, a), and Ω(P̃i) is convex [Jin and Luo, 2020, Lemma 10].

Therefore, ESTREGi(π
⋆) can be rewritten as:

ESTREGi(π
⋆) = Eti

[
ti+1−1∑
t=ti

〈
qt − u, ℓ̂t − bt

〉]

= Eti

[
ti+1−1∑
t=ti

〈
qt − v, ℓ̂t − bt

〉]
︸ ︷︷ ︸

=:(I)

+Eti

[
ti+1−1∑
t=ti

〈
v − u, ℓ̂t − bt

〉]
︸ ︷︷ ︸

=:(II)

, (47)

where term (I) is equivalent to

Eti

[
ti+1−1∑
t=ti

⟨qt − v, gt − bt⟩

]
, (48)

because
〈
qt − v, gt − ℓ̂t

〉
= 0 according to Lemma D.4.1.

We then present the following lemma to provide a bound for ESTREGi(π
⋆).

Lemma C.7.5. For gt define in Eq. (45), v defined in Eq. (46), and any non-decreasing learning rate
such that γ1(s, a) ≥ 256L2|S| for all (s, a), Algorithm 4 ensures that ESTREGi(π

⋆) is bounded by

O

L+ L|S|CP

T
+ Eti

∑
s̸=sL

∑
a∈A

γti+1−1(s, a) log (ι)


+ O

(
min

{
Eti

[
ti+1−1∑
t=ti

∥∥∥ℓ̂t − bt

∥∥∥2
∇−2ϕt(qt)

]
,Eti

[
ti+1−1∑
t=ti

∥gt − bt∥2∇−2ϕt(qt)

]})
,

(49)

Proof. We start from the decomposition in Eq. (47).

Bounding (I). By adding and subtracting Ft(qt)−Gt(q̃t), we decompose (I) into a stability term
and a penalty term:

Eti

[
ti+1−1∑
t=ti

(〈
qt, ℓ̂t − bt

〉
+ Ft(qt)−Gt(q̃t)

)]
︸ ︷︷ ︸

Stability term

+Eti

[
ti+1−1∑
t=ti

(
Gt(q̃t)− Ft(qt)−

〈
v, ℓ̂t − bt

〉)]
︸ ︷︷ ︸

Penalty term

.

As γ1(s, a) ≥ 256L2|S|, Lemma C.7.6 ensures 1
2qt(s, a) ≤ q̃t(s, a) ≤ 2qt(s, a) for all (s, a), which

allows us to apply [Jin and Luo, 2020, Lemma 13] to bound the stability term by

Stability term = O

(
Eti

[
ti+1−1∑
t=ti

∥∥∥ℓ̂t − bt

∥∥∥2
∇−2ϕt(qt)

])
. (50)
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The penalty term without expectation is bounded as:
ti+1−1∑
t=ti

(
Gt(q̃t)− Ft(qt)−

〈
v, ℓ̂t − bt

〉)

= −Fti(qti) +

ti+1−1∑
t=ti+1

(Gt−1(q̃t−1)− Ft(qt)) +Gti+1−1(q̃ti+1−1)−

〈
v,

ti+1−1∑
t=ti

(
ℓ̂t − bt

)〉

≤ −Fti(qti) +

ti+1−1∑
t=ti+1

(Gt−1(qt)− Ft(qt)) +Gti+1−1(v)−

〈
v,

ti+1−1∑
t=ti

(
ℓ̂t − bt

)〉

= −ϕti(qti) +

ti+1−1∑
t=ti+1

(ϕt−1(qt)− ϕt(qt)) + ϕti+1−1(v)

= −ϕti(qti) +

ti+1−1∑
t=ti+1

∑
s̸=sL

∑
a∈A

(γt−1(s, a)− γt(s, a)) log

(
1

qt(s, a)

)
+ ϕti+1−1(v)

= −ϕti(qti) + ϕti(v) +

ti+1−1∑
t=ti+1

∑
s̸=sL

∑
a∈A

(γt(s, a)− γt−1(s, a)) log

(
qt(s, a)

v(s, a)

)

=
∑
s ̸=sL

∑
a∈A

γti(s, a) log

(
qti(s, a)

v(s, a)

)
+

ti+1−1∑
t=ti+1

∑
s̸=sL

∑
a∈A

(γt(s, a)− γt−1(s, a)) log

(
qt(s, a)

v(s, a)

)

≤
∑
s ̸=sL

∑
a∈A

γti(s, a) log

(
ι2qti(s, a)

qmax
s,a (s, a)

)
+

ti+1−1∑
t=ti+1

∑
s̸=sL

∑
a∈A

(γt(s, a)− γt−1(s, a)) log

(
ι2qt(s, a)

qmax
s,a (s, a)

)

≤ 2
∑
s̸=sL

∑
a∈A

γti(s, a) log (ι) + 2

ti+1−1∑
t=ti+1

∑
s ̸=sL

∑
a∈A

(γt(s, a)− γt−1(s, a)) log (ι)

= 2
∑
s̸=sL

∑
a∈A

γti+1−1(s, a) log (ι) , (51)

where the second step uses the optimality of q̃t−1 and q̃ti+1−1 so that Gt−1(q̃t−1) ≤ Gt−1(qt) and
Gti+1−1(q̃ti+1−1) ≤ Gti+1−1(v); the third step follows the definitions in Eq. (43); the seventh step
lower-bounds v(s, a) by 1

ι2 q
max
s,a (s, a) for each (s, a); the eighth step uses the definition of qmax

s,a .

Now, by taking the equivalent perspective in Eq. (44) and Eq. (48) and repeating the exact same
argument, the same bound holds with ℓ̂t repalced by gt. Thus, we have shown

(I) = O

Eti

∑
s̸=sL

∑
a∈A

γti+1−1(s, a) log (ι)


+O

(
min

{
Eti

[
ti+1−1∑
t=ti

∥∥∥ℓ̂t − bt

∥∥∥2
∇−2ϕt(qt)

]
,Eti

[
ti+1−1∑
t=ti

∥gt − bt∥2∇−2ϕt(qt)

]})
.

(52)

Bounding (II). By direct calculation, we have

(II) = Eti

[
ti+1−1∑
t=ti

〈
v − u, ℓ̂t − bt

〉]

=
1

T 2
Eti

[
ti+1−1∑
t=ti

〈
1

|A||S|
∑
s,a

qmax
s,a − u, ℓ̂t − bt

〉]

≤ 1

T 2
Eti

∥∥∥∥∥ 1

|A||S|
∑
s,a

qmax
s,a − u

∥∥∥∥∥
1

∥∥∥∥∥
ti+1−1∑
t=ti

(ℓt − bt)

∥∥∥∥∥
∞

 ,
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where the first step uses the definition of v in Eq. (46) and the third step applies the Hölder’s inequality.

Then, we further show:

(II) ≤ 1

T 2
Eti

∥∥∥∥∥ 1

|A||S|
∑
s,a

qmax
s,a − u

∥∥∥∥∥
1

∥∥∥∥∥
ti+1−1∑
t=ti

(ℓt − bt)

∥∥∥∥∥
∞


≤ 1

T 2
Eti

[(
1

|A||S|
∑
s,a

∥∥qmax
s,a

∥∥
1
+ ∥u∥1

)∥∥∥∥∥
ti+1−1∑
t=ti

(ℓt − bt)

∥∥∥∥∥
∞

]

≤ 1

T 2
Eti

[
2L

(∥∥∥∥∥
ti+1−1∑
t=ti

ℓt

∥∥∥∥∥
∞

+

∥∥∥∥∥
ti+1−1∑
t=ti

bt

∥∥∥∥∥
∞

)]

≤ Eti

[
2L (ti+1 − ti) + 4LCP|S|T

T 2

]
≤ 2L+ 4LCP|S|

T
, (53)

where the second step repeatedly applies the triangle inequality, and those terms are bounded by 2L in
the next step; the fourth step bounds ℓt(s, a) ≤ 1 for all (s, a) and bounds

∑ti+1−1
t=ti

bt(s) ≤ 2CP|S|T
by using the fact ut(s) ≥ 1

|S|T for all t, s (see Lemma D.2.8); the fifth step bounds ti+1 − ti by T .

Finally, we combine the bounds in Eq. (52) and Eq. (53) to complete the proof.

Lemma C.7.6 (Multiplicative Stability). For q̃t and qt defined in Eq. (44), if the learning rate fulfills
γt(s, a) ≥ γ1(s, a) = 256L2|S| for all t and (s, a), then, 1

2qt(s, a) ≤ q̃t(s, a) ≤ 2qt(s, a) holds for
all (s, a).

Proof. We first show that∥∥∥ℓ̂t − bt

∥∥∥2
∇−2ϕt(qt)

=
∑
s,a

(
It(s, a)ℓt(s, a)

ut(s, a)
− bt(s)

)2
qt(s, a)

2

γt(s, a)

≤
∑
s,a

(
It(s, a)ℓt(s, a)2

ut(s, a)2
+ bt(s)

2

)
qt(s, a)

2

γt(s, a)

≤
∑
s,a

(
It(s, a)
ut(s, a)2

+
16L2

ut(s)2

)
qt(s, a)

2

γt(s, a)

≤
∑
s,a

It(s, a)
256L2|S|

+
∑
s,a

16L2 · qt(s, a)2

256L2|S| · ut(s)2

≤ 1

256L|S|
+
∑
s ̸=sL

1

16|S|
≤ 1

8
, (54)

where the second step uses (x − y)2 ≤ x2 + y2 for any x, y ≥ 0; the third step bounds
ℓt(s, a)

2 ≤ 1 and bt(s)
2 ≤ 16L2

ut(s)2
according to the definition of Eq. (7); the fourth step holds

as γt(s, a) ≥ γ1(s, a) = 256L2|S| and qt(s, a) ≤ ut(s, a) for all (s, a); the fifth steps uses the fact
that

∑
a qt(s, a)

2 ≤ (
∑

a qt(s, a))
2 ≤ ut(s)

2.

Once Eq. (54) holds, one only needs to repeat the same argument of [Jin and Luo, 2020, Lemma 12]
to obtain the claimed multiplicative stability.

Lemma C.7.7. Under the conditions of Lemma C.7.5, event ECON, and the learning γt(s, a) defined
in Definition 5.2, the following holds for any deterministic policy π⋆ : S → A:

Eti

∑
s̸=sL

∑
a∈A

γti+1−1(s, a) log (ι) +

ti+1−1∑
t=ti

∥gt − bt∥2∇−2ϕt(qt)


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= O

Eti

L√log (ι)
∑
s̸=sL

∑
a̸=π⋆(s)

√√√√E

[
ti+1−1∑
t=ti

qPt,πt(s, a)

]+ CP log(|S|T )


+O

Eti

δL2|S|2|A| log (ι) (ti+1 − ti) +

√√√√L|S|3|A|2 log (ι)
ti+1−1∑
t=ti

CP
t

 .

Proof. We start by bounding the second part for each t:

∥gt − bt∥2∇−2ϕt(qt)
=
∑
s,a

1

γt(s, a)
qt(s, a)

2 (gt(s, a)− bt(s))
2

≤ 2
∑
s,a

νt(s, a)

γt(s, a)
+ 2

∑
s,a

1

γt(s, a)
qt(s, a)

2bt(s)
2,

where the second step uses the definition of νt and (x− y)2 ≤ 2(x2 + y2) for any x, y ∈ R.

We first focus on bounding
∑ti+1−1

t=ti

∑
s,a

1
γt(s,a)

qt(s, a)
2bt(s)

2:

ti+1−1∑
t=ti

∑
s,a

1

γt(s, a)
qt(s, a)

2bt(s)
2

≤ 1

256L2|S|

ti+1−1∑
t=ti

∑
s,a

qt(s, a)
2bt(s)

2

≤ 4L

256L2|S|

ti+1−1∑
t=ti

∑
s ̸=sL

qt(s)bt(s)

= O
(
CP log(|S|T )

)
, (55)

where the first step uses the fact that γt(s, a) ≥ 256L2|S|, the second step bounds bt(s)2 ≤ 4Lbt(s)
and

∑
a qt(s, a)

2 ≤ qt(s), and the last step applies Lemma 3.1.

Then, we bound the remaining term:

Eti

[∑
s,a

γti+1−1(s, a) log (ι) + 2

ti+1−1∑
t=ti

∑
s,a

νt(s, a)

γt(s, a)

]
. (56)

Using Definition 5.2, we can bound Eq. (56) as:

Eti

[∑
s,a

γti+1−1(s, a) log (ι) + 2

ti+1−1∑
t=ti

∑
s,a

νt(s, a)

γt(s, a)

]

= Eti

[∑
s,a

(
γti+1−1(s, a) log (ι) +

4

D
(γti+1−1(s, a)− γti(s, a)

)]

≤ Eti

[∑
s,a

(
log (ι) +

4

D

)
γti+1−1(s, a)

]

= Eti

[∑
s,a

5 log (ι) γti+1−1(s, a)

]

≤ Eti

∑
s,a

5 log (ι)

√√√√ 1

log (ι)

ti+1−2∑
j=ti

νj(s, a) + 256L2|S|


≤ O

√log (ι)Eti


√√√√∑

s,a

ti+1−1∑
j=ti

νj(s, a)

+ L2|S|2|A|


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≤ O

Eti

∑
s̸=sL

∑
a ̸=π(s)

√√√√L2 log (ι)

ti+1−1∑
t=ti

qPt,πt(s, a)


+O

Eti

δL2|S|2|A| log (ι) (ti+1 − ti) +

√√√√L|S|3|A|2 log (ι)
ti+1−1∑
t=ti

CP
t

 , (57)

where the first step applies the definition of γt(s, a) which gives: νt(s,a)
γt(s,a)

= 2
D (γt+1(s, a)− γt(s, a));

the second step simplifies the telescopic sum and uses γti(s, a) ≥ 0; the third step uses D = 1
log(ι) ;

the fourth step uses Proposition C.7.3; the sixth step applies Proposition C.7.4.

C.7.3 Bounding ESTREG

Using the equality ESTREG(π⋆) = E
[∑N

i=1 ESTREGi(π
⋆)
]

where N is the number of epochs, we
are now ready to complete the proof of Lemma C.3.4.
Lemma C.7.8. Over the course of T episodes, Algorithm 4 runs at most O (|S||A| log(T )) epochs.

Proof. By definition, the algorithm resets each time a counter of the number of visits to a specific
state-action pair doubles. Each state-action pair is visited at most once for each of the T rounds, so it
can trigger a new epoch at most log T times. Summing on all state-action pairs finishes the proof.

Proof of Lemma C.3.4. Using Lemma C.7.5 and Lemma C.7.7, we have
ESTREG(π⋆)

= E

[
N∑
i=1

ESTREGi(π
⋆)

]

= O

E

 N∑
i=1

L+ LCP|S|
T

+ δL2|S|2|A| log (ι) (ti+1 − ti) +

√√√√L|S|3|A|2 log (ι)
ti+1−1∑
t=ti

CP
t


+O

E

 N∑
i=1

CP log(|S|T ) + L
√
log (ι)

∑
s̸=sL

∑
a̸=π⋆(s)

Eti


√√√√ti+1−1∑

t=ti

qPt,πt(s, a)


= O

((
L+ LCP|S|

T

)
|S||A| log(T ) + δL2|S|2|A| log (ι)T + |A||S|2 log(ι)

√
L|A|CP

)

+ O

CP|S||A| log(ι)2 +
√
L2 log (ι)

∑
s̸=sL

∑
a ̸=π⋆(s)

E

 N∑
i=1

√√√√ti+1−1∑
t=ti

qPt,πt(s, a)


= O

((
L+ LCP|S|

T

)
|S||A| log(T ) + δL2|S|2|A| log (ι)T + |A||S|2 log(ι)

(
|A|+ LCP))

+ O

CP|S||A| log(ι)2 +
√
L2 log (ι)

∑
s̸=sL

∑
a ̸=π⋆(s)

E

 N∑
i=1

√√√√ti+1−1∑
t=ti

qPt,πt(s, a)


= O

((
L|S||A| log(T )

T

)
+ δL2|S|2|A| log(ι)T + CPL|S|2|A| log(ι) + |A|2|S|2 log(ι)

)

+O

CP|S||A| log(ι)2 +
√
L2|S||A| log2 (ι)

∑
s̸=sL

∑
a̸=π⋆(s)

E


√√√√ T∑

t=1

qPt,πt(s, a)

 ,

where the first step follows from the definition of ESTREG (π⋆); the third step uses the fact that
N = O (|S||A| log (T )) and the Cauchy-Schwarz inequality; the fourth step uses

√
xy ≤ x+ y for

any x, y ≥ 0 with x = LCP and y = |A|; the last step follows from Cauchy-Schwarz inequality
again.
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C.8 Properties of Optimistic Transition

We summarize the properties guaranteed by the optimistic transition defined in Definition C.1.1.
Lemma C.8.1. For any epoch i, any transition P ′ ∈ Pi, any policy π, and any initial state u ∈ S, it
holds that

qP̃i,π(s, a|u) ≤ qP
′,π(s, a|u), ∀(s, a) ∈ S ×A.

Proof. We prove this result via a forward induction from layer k(u) to layer L− 1.

Base Case: for the initial state u, qP̃i,π(u, a|u) = qP
′,π(u, a|u) = π(a|u) for any action a ∈ A. For

the other state s ∈ Sk(u), we have qP̃i,π(s, a|u) = qP
′,π(s, a|u) = 0.

Induction step: Suppose qP̃i,π(s, a|u) ≤ qP
′,π(s, a|u) holds for all the state-action pair (s, a) with

k(s) < h. Then, for any (s, a) ∈ Sh ×A, we have

qP̃i,π(s, a|u) = π(a|s) ·
∑

s′∈Sh−1

∑
a′∈A

qP̃i,π(s′, a′|u)P̃i(s|s′, a′)

≤ π(a|s) ·
∑

s′∈Sh−1

∑
a′∈A

qP
′,π(s′, a′|u)P ′(s|s′, a′)

= qP
′,π(s, a|u),

where the second step follows from the induction hypothesis and the definition of optimistic transition
in Definition C.1.1.

Corollary C.8.2. Conditioning on the event ECON, it holds for any epoch i and any policy π that

qP̃i,π(s, a) ≤ qP,π(s, a), ∀(s, a) ∈ S ×A.

Lemma C.8.3. (Optimism of Optimistic Transition) Suppose the high-probability event ECON holds.
Then for any policy π, any (s, a) ∈ S × A, and any valid loss function ℓ : S × A→ R≥0, it holds
that

QP̃i,π (s, a; ℓ) ≤ QP,π (s, a; ℓ) , and V P̃i,π (s; ℓ) ≤ V P,π (s; ℓ) ,∀(s, a) ∈ S ×A.

Proof. According to Corollary C.8.2, we have for all epoch i that

qP̃i,π(s, a|u) ≤ qP,π(s, a|u), ∀u ∈ S ∀(s, a) ∈ S ×A. (58)

Therefore, we have

V P̃i,π (s; ℓ) =
∑
u∈S

∑
v∈A

qP̃i,π(u, v|s)ℓ(u, v)

≤
∑
u∈S

∑
v∈A

qP,π(u, v|s)ℓ(u, v)

= V P,π (s; ℓ) ,

where the second step follows from Eq. (58). The statement for the Q-function can be proven in the
same way.

Next, we argue that our optimistic transition provides a tighter performance estimation compared
to the approach of Jin et al. [2021]. Specifically, Jin et al. [2021] proposes to subtract the following
exploration bonuses BONUSi : S ×A→ R from the loss functions

BONUSi(s, a) = L ·min

1,
∑

s′∈Sk(s)+1

Bi(s, a, s
′)

 ,

where Bi(s, a, s
′) is the confidence bound defined in Eq. (4). This makes sure

QP̄i,π (s, a; ℓ− BONUSi) is no larger than the true Q-function QP,π(s, a; ℓ) as well, but is a looser
lower bound as shown below.
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Lemma C.8.4. (Tighter Performance Estimation) For any policy π, any (s, a) ∈ S × A, and any
bounded loss function ℓ : S ×A→ [0, 1], it holds that

QP̄i,π (s, a; ℓ− BONUSi) ≤ QP̃i,π (s, a; ℓ) ,∀(s, a) ∈ S ×A.

Proof. We prove this result via a backward induction from layer L to layer 0.

Base Case: for the terminal state sL, we have QP̄i,π (s, a; ℓ− BONUSi) = QP̃i,π (s, a; ℓ) = 0.

Induction step: suppose the induction hypothesis holds for all the state-action pairs (s, a) ∈ S ×A
with k(s) > h. For any state-action pair (s, a) ∈ Sh ×A, we first have

QP̄i,π (s, a; ℓ− BONUSi) = ℓ(s, a)− BONUSi(s, a) +
∑

u∈Sh+1

P̄i(u|s, a)V P̄i,π (u; ℓ− BONUSi)

≤ ℓ(s, a)− BONUSi(s, a) +
∑

u∈Sh+1

P̄i(u|s, a)V P̃i,π (u; ℓ) .

Clearly, when
∑

u∈Sk(s)+1
Bi(s, a, u) ≥ 1, we have QP̄i,π (s, a; ℓ− BONUSi) ≤ 0 by the definition

of BONUSi, which directly implies that QP̄i,π (s, a; ℓ− BONUSi) ≤ QP̃i,π (s, a; ℓ). So we continue
the bound under the condition

∑
u∈Sk(s)+1

Bi(s, a, u) < 1:

QP̄i,π (s, a; ℓ− BONUSi) ≤ ℓ(s, a)− BONUSi(s, a) +
∑

u∈Sh+1

P̄i(u|s, a)V P̃i,π (u; ℓ)

≤ ℓ(s, a) +
∑

u∈Sh+1

(
P̄i(u|s, a)−Bi(s, a, u)

)
V P̃i,π (u; ℓ)

≤ ℓ(s, a) +
∑

u∈Sh+1

P̃i(u|s, a)V P̃i,π (u; ℓ)

= QP̃i,π (s, a; ℓ) ,

where the second step follows from the fact that V P̃i,π (u; ℓ) ≤ L; the third step follows from the
definition of optimistic transition P̃i.

Combining these two cases proves that QP̄i,π (s, a; ℓ− BONUSi) ≤ QP̃i,π (s, a; ℓ) for any (s, a) ∈
Sh ×A, finishing the induction.
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D Supplementary Lemmas

D.1 Expectation

Lemma D.1.1. ([Jin et al., 2021, Lemma D.3.6]) Suppose that a random variable X satisfies the
following conditions:

• X < R where R is a constant.

• X < Y conditioning on event A, where Y ≥ 0 is a random variable.

Then, it holds that E [X] ≤ E [Y ] + Pr [Ac] ·R where Ac is the complementary event of A.

D.2 Confidence Bound with Known Corruption

In this subsection, we show that the empirical transition is centered around the transition P . Let
[T ] := {1, · · · , T}. Recall that Ei := {t ∈ [T ] : episode t belongs to epoch i}, ι = |S||A|T

δ , and we
define the following quantities:

Ti(s, a) =
{
t ∈ ∪i−1

j=1Ej : ∃k such that (st,k, at,k) = (s, a)
}
∀(s, a) ∈ Sk ×A,∀i ≥ 2,∀k < L;

CP
t (s, a, s

′) = |P (s′|s, a)− Pt(s
′|s, a)|, ∀(s, a, s′) ∈Wk,∀i ∈ [T ],∀k < L;

CP
i (s, a, s

′) =
∑

t∈Ti(s,a)

CP
t (s, a, s

′), ∀(s, a, s′) ∈Wk,∀i ∈ [T ],∀k < L.

Note that based on definition of Ti(s, a), we have mi(s, a) = |Ti(s, a)|. Then, we present the
following lemma which shows the concentration bound between P (s′|s, a) and P̄i(s

′|s, a).
Lemma D.2.1. (Detailed restatement of Lemma 2.2) Event ECON occurs with probability at least
1− δ where,

ECON :=
{
∀(s, a, s′) ∈Wk,∀i ∈ [T ],∀k < L :

∣∣P (s′|s, a)− P̄i(s
′|s, a)

∣∣ ≤ Bi(s, a, s
′)
}
, (59)

and Bi(s, a, s
′) is defined in Eq. (4) as:

Bi(s, a, s
′) = min

{
1, 16

√
P̄i(s′|s, a) log (ι)

mi(s, a)
+ 64

(
CP + log (ι)

)
mi(s, a)

}
. (60)

Proving this lemma requires several auxiliary results stated below. For any episode t ∈ [T ] and any
layer k < L, we use sIMG

t,k to denote an imaginary random state sampled from P (·|st,k, at,k). For any
(s, a, s′) ∈Wk, let

P̄ IMG
i (s′|s, a) = 1

mi(s, a)

∑
t∈Ti(s,a)

I{sIMG
t,k(s)+1 = s′}.

We now proceed with a couple lemmas.

Lemma D.2.2 (Lemma 2, [Jin et al., 2020]). Event E1 occurs with probability at least 1 − 3δ/4
where

E1 :=
{
∀(s, a, s′) ∈Wk,∀i, k :

∣∣P (s′|s, a)− P̄ IMG
i (s′|s, a)

∣∣ ≤ ω̄i(s, a, s
′)
}
,

and ω̄i(s, a, s
′) for any (s, a, s′) ∈Wk and 0 ≤ k ≤ L− 1 is defined as

ω̄i(s, a, s
′) = min

{
1, 2

√
P̄i(s′|s, a) log ι

mi(s, a)
+

14 log ι

3mi(s, a)

}
. (61)

We note that as long as |A|T ≥ 16/3, event E1 can occur with probability at least 1− 3δ/4 (unlike
1− 4δ in Lemma 2 of Jin et al. [2020] ).
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Lemma D.2.3. Event E2 occurs with probability at least 1− δ/4 where

E2 :=
{
∀(s, a, s′) ∈Wk,∀i, k :

∣∣P̄ IMG
i (s′|s, a)− P̄i(s

′|s, a)
∣∣ ≤ ωi(s, a, s

′)
}
,

and ωi(s, a, s
′) for any (s, a, s′) ∈Wk and 0 ≤ k ≤ L− 1 is defined as

ωi(s, a, s
′) = min

{
1,

4CP
i (s, a, s

′)

mi(s, a)
+

√
24P (s′|s, a) log ι

mi(s, a)
+

6 log ι

mi(s, a)

}
. (62)

Proof. For any fixed (s, a, s′), if mi(s, a) = 0, the claimed bound in E2 holds trivially, so we
consider the case mi(s, a) ̸= 0 below. By definition we have:

P̄ IMG
i (s′|s, a)− P̄i(s

′|s, a) = 1

mi(s, a)

∑
t∈Ti(s,a)

(
I{sIMG

t,k(s)+1 = s′} − I{st,k(s)+1 = s′}
)
.

Then, we construct the martingale difference sequence {Xt(s, a, s
′)}∞t=1 w.r.t. filtration {Ft,k(s)}∞t=1

(see [Lykouris et al., 2019, Definition 4.9] for the formal definition of these filtrations) where

Xt(s, a, s
′) = I{sIMG

t,k(s)+1 = s′} − I{st,k(s)+1 = s′} − (P (s′|s, a)− Pt (s
′|s, a)) .

With the definition of Xt(s, a, s
′), one can show∑

t∈Ti(s,a)

E
[
Xt(s, a, s

′)2|Ft,k(s)

]
≤

∑
t∈Ti(s,a)

E
[(

I{sIMG
t,k(s)+1 = s′} − I{st,k(s)+1 = s′} − (P (s′|s, a)− Pt (s

′|s, a))
)2
| Ft,k(s)

]

≤
∑

t∈Ti(s,a)

E
[
2
(
I{sIMG

t,k(s)+1 = s′} − I{st,k(s)+1 = s′}
)2

+ 2 (P (s′|s, a)− Pt (s
′|s, a))2 | Ft,k(s)

]
≤

∑
t∈Ti(s,a)

E
[
2I{sIMG

t,k(s)+1 = s′}+ 2I{st,k(s)+1 = s′}+ 2CP
t (s, a, s

′) | Ft,k(s)

]
= 2

∑
t∈Ti(s,a)

(
P (s′|s, a) + Pt(s

′|s, a) + CP
t (s, a, s

′)
)
, (63)

where the second step uses (x− y)2 ≤ 2(x2 + y2) for any x, y ∈ R; the third step uses (x− y)2 ≤
x2 + y2 for x, y ∈ R≥0 and the fact that CP

t (s, a, s
′) ∈ [0, 1], thereby CP

t (s, a, s
′)2 ≤ CP

t (s, a, s
′);

the last step holds based on the definitions of Ti(s, a), sIMG
t,k(s)+1, and st,k(s)+1 as well as the fact that

CP
t (s, a, s

′) is Ft,k(s)-measurable.

By using the result in Eq. (63), we bound the average second moment σ2 as

σ2 =

∑
t∈Ti(s,a)

E
[
X2

t |Ft,k(s)

]
mi(s, a)

≤
2
∑

t∈Ti(s,a)

(
P (s′|s, a) + Pt(s

′|s, a) + CP
t (s, a, s

′)
)

mi(s, a)
. (64)

By applying Lemma D.2.4 with b = 2 and the upper bound of σ2 shown in Eq. (64), as well as using
the fact that mi(s, a) = |Ti(s, a)|, for any (s, a, s′), we have the following with probability at least
1− δ/(4T |S|2|A|),

|P̄ IMG
i (s′|s, a)− P̄i(s

′|s, a)|

≤

∣∣∣∣∣P (s′|s, a)−
∑

t∈Ti(s,a)
Pt(s

′|s, a)
mi(s, a)

∣∣∣∣∣+ 4 log
(

8mi(s,a)T |S|2|A|
δ

)
3mi(s, a)

+

√√√√4 log
(

16mi(s,a)2T |S|2|A|
δ

)∑
t∈Ti(s,a)

(
P (s′|s, a) + Pt(s′|s, a) + CP

t (s, a, s
′)
)

m2
i (s, a)
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≤

∣∣∣∣∣P (s′|s, a)−
∑

t∈Ti(s,a)
Pt(s

′|s, a)
mi(s, a)

∣∣∣∣∣+ 8 log ι

3mi(s, a)

+

√
12 log ι

∑
t∈Ti(s,a)

(
P (s′|s, a) + Pt(s′|s, a) + CP

t (s, a, s
′)
)

m2
i (s, a)

≤

∣∣∣∣∣
∑

t∈Ti(s,a)
P (s′|s, a)

mi(s, a)
−
∑

t∈Ti(s,a)
Pt(s

′|s, a)
mi(s, a)

∣∣∣∣∣+ 8 log ι

3mi(s, a)

+

√
12 log ι

∑
t∈Ti(s,a)

(
P (s′|s, a) + P (s′|s, a) + CP

t (s, a, s
′) + CP

t (s, a, s
′)
)

m2
i (s, a)

≤ CP
i (s, a, s

′)

mi(s, a)
+

√
24P (s′|s, a) log ι

mi(s, a)
+

8 log ι

3mi(s, a)
+

√
24CP

i (s, a, s
′) log ι

mi(s, a)

≤ CP
i (s, a, s

′)

mi(s, a)
+

√
24P (s′|s, a) log ι

mi(s, a)
+

8 log ι

3mi(s, a)
+

√
6
(
CP

i (s, a, s
′) + log ι

)
mi(s, a)

≤ ωi(s, a, s
′),

where the first inequality applies Lemma D.2.4; the second inequality bounds all logarithmic terms
by log ι with an appropriate constant factor (using mi(s, a) ≤ T and |A| ≥ 2); the third step
follows the fact that Pt(s

′|s, a) ≤ P (s′|s, a) + CP
t (s, a, s

′); the fourth step uses the definition
CP

i (s, a, s
′) =

∑
t∈Ti(s,a)

CP
t (s, a, s

′); the fifth step applies the inequality
√
4xy ≤ x+y, ∀x, y ≥ 0

for x = CP
i (s, a, s

′) and y = log ι. Applying a union bound over all (s, a, s′) and epochs i ≤ T , we
complete the proof.

Lemma D.2.4 (Anytime Version of Azuma-Bernstein). Let {Xi}∞i=1 be b-bounded martingale
difference sequence with respect to Fi. Let σ2 = 1

N

∑N
i=1 E[X2

i |Fi−1]. Then, with probability at
least 1− δ, for any N ∈ N+, it holds that:∣∣∣∣∣ 1N

N∑
i=1

Xi

∣∣∣∣∣ ≤
√

2σ2 log (4N2/δ)

N
+

2b log(2N/δ)

3N
.

Proof. This follows the same argument as Lemma G.2 in [Lykouris et al., 2019].

Lemma D.2.5. Event E occurs with probability at least 1− δ, where

E :=
{
∀(s, a, s′) ∈Wk,∀i, k :

∣∣P (s′|s, a)− P̄i(s
′|s, a)

∣∣ ≤ ωi(s, a, s
′) + ω̄i(s, a, s

′)
}
.

Proof. Conditioning on events E1 and E2, we have∣∣P (s′|s, a)− P̄i(s
′|s, a)

∣∣ ≤ ∣∣P (s′|s, a)− P̄ IMG
i (s′|s, a)

∣∣+ ∣∣P̄ IMG
i (s′|s, a)− P̄i(s

′|s, a)
∣∣

≤ ω̄i(s, a, s
′) + ωi(s, a, s

′). (65)

Using a union bound for E1 and E2, we complete the proof.

Armed with above results, we are now ready to prove Lemma D.2.1.

Proof of Lemma D.2.1. Conditioning on event E , for any fixed (s, a, s′) with mi(s, a) ̸= 0 (otherwise
the desired bound holds trivially), we have

ωi(s, a, s
′)

≤

√
24P (s′|s, a) log ι

mi(s, a)
+

6 log ι

mi(s, a)
+

4CP
i (s, a, s

′)

mi(s, a)

≤

√√√√24
(
P̄i(s′|s, a) + ω̄i(s, a, s′) +

4CP
i (s,a,s

′)

mi(s,a)
+ ωi(s, a, s′)

)
log ι

mi(s, a)
+

6 log ι

mi(s, a)
+

4CP
i (s, a, s

′)

mi(s, a)
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≤

√
24P̄i(s′|s, a) log ι

mi(s, a)
+

√
24ω̄i(s, a, s′) log ι

mi(s, a)

+

√√√√96
CP

i (s,a,s
′)

mi(s,a)
log ι

mi(s, a)
+

√
24ωi(s, a, s′) log ι

mi(s, a)
+

6 log ι

mi(s, a)
+

4CP
i (s, a, s

′)

mi(s, a)

≤

√
24P̄i(s′|s, a) log ι

mi(s, a)
+ ω̄i(s, a, s

′) +

√
96CP

i (s, a, s
′) log ι

mi(s, a)
+

ωi(s, a, s
′)

2
+

24 log ι+ 4CP
i (s, a, s

′)

mi(s, a)

≤

√
24P̄i(s′|s, a) log ι

mi(s, a)
+ ω̄i(s, a, s

′) +
28CP

i (s, a, s
′)

mi(s, a)
+

ωi(s, a, s
′)

2
+

25 log ι

mi(s, a)
,

where the second step holds under E ; the third step uses
√∑n

i=1 xi ≤
∑n

i=1

√
xi for all xi ∈ R≥0;

the fourth step and the fifth step use 2
√
xy ≤ x+ y for x, y ≥ 0. Rearranging the above, we obtain

ωi(s, a, s
′) ≤

√
96P̄i(s′|s, a) log ι

mi(s, a)
+ 2ω̄i(s, a, s

′) +
56CP

i (s, a, s
′)

mi(s, a)
+

50 log ι

mi(s, a)
(66)

Thus, conditioning on event E , one can show for all (s, a, s′) ∈Wk and k < L− 1∣∣P (s′|s, a)− P̄i(s
′|s, a)

∣∣ ≤ ωi(s, a, s
′) + ω̄i(s, a, s

′)

≤

√
96P̄i(s′|s, a) log ι

mi(s, a)
+ 3ω̄i(s, a, s

′) +
56CP

i (s, a, s
′)

mi(s, a)
+

50 log ι

mi(s, a)

≤ 16

√
P̄i(s′|s, a) log ι

mi(s, a)
+

56CP
i (s, a, s

′)

mi(s, a)
+

64 log ι

mi(s, a)

≤ 16

√
P̄i(s′|s, a) log ι

mi(s, a)
+ 64

CP
i (s, a, s

′) + log ι

mi(s, a)
, (67)

where the second step uses Eq. (66), the third step applies the definition of ω̄i(s, a, s
′). Finally, using

the fact CP
i (s, a, s

′) ≤ CP, we complete the proof.

Then, we present an immediate corollary of Lemma D.2.1.
Corollary D.2.6. Consider any epoch i and any transition P ′ ∈ Pi. The following holds (recall m̂i

defined at the beginning of the appendix),

∥P ′(·|s, a)− P̄i(·|s, a)∥1 ≤ 2 ·min

{
1,

32CP

m̂i(s, a)
+ 8

√
|Sk(s)+1| log ι

m̂i(s, a)
+

32|Sk(s)+1| log ι
m̂i(s, a)

}
.

Proof. As P ′ ∈ Pi, we start from Eq. (67):

∥P ′(·|s, a)− P̄i(·|s, a)∥1 ≤
∑

s′∈k(s)+1

(
64CP

i (s, a, s
′)

mi(s, a)
+ 16

√
P̄i(s′|s, a) log ι

mi(s, a)
+

64 log ι

mi(s, a)

)

≤ 64CP

mi(s, a)
+ 16

√
|Sk(s)+1| log ι

mi(s, a)
+

64|Sk(s)+1| log ι
mi(s, a)

, (68)

where the last step uses the Cauchy-Schwarz inequality and the fact that
∑

s′∈k(s)+1 C
P
i (s, a, s

′) ≤
CP. Since ∥P (·|s, a)− P̄i(·|s, a)∥1 ≤ 2, we combine this trivial bound and the bound of ∥P (·|s, a)−
P̄i(·|s, a)∥1 in Eq. (68) to arrive at

∥P ′(·|s, a)− P̄i(·|s, a)∥1 ≤ 2 ·min

{
1,

32CP

mi(s, a)
+ 8

√
|Sk(s)+1| log ι

mi(s, a)
+

32|Sk(s)+1| log ι
mi(s, a)

}
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= 2 ·min

{
1,

32CP

m̂i(s, a)
+ 8

√
|Sk(s)+1| log ι

m̂i(s, a)
+

32|Sk(s)+1| log ι
m̂i(s, a)

}
,

finishing the proof.

We conclude this subsection with two other useful lemmas.
Lemma D.2.7. Conditioning on event ECON, it holds for all tuple (s, a, s′) and epoch i that∣∣P (s′|s, a)− P̄i(s

′|s, a)
∣∣ ≤ O(min

{
1,

√
P (s′|s, a) log(ι)

m̂i(s, a)
+

CP + log (ι)

m̂i(s, a)

})
.

Proof. Fix the epoch i and tuple (s, a, s′). According to the definitions of ECON in Eq. (59) and m̂,
we have∣∣P (s′|s, a)− P̄i(s

′|s, a)
∣∣ ≤ min

{
1, 16

√
P̄i(s′|s, a) log(ι)

m̂i(s, a)
+ 64 · C

P + log (ι)

m̂i(s, a)

}
.

Therefore, by direct calculation, we have∣∣P (s′|s, a)− P̄i(s
′|s, a)

∣∣
≤ 16

√(∣∣P (s′|s, a)− P̄i(s′|s, a)
∣∣+ P (s′|s, a)

)
log (ι)

m̂i(s, a)
+ 64 · C

P + log (ι)

m̂i(s, a)

≤ 8

√P (s′|s, a) log (ι)
m̂i(s, a)

+

√∣∣P (s′|s, a)− P̄i(s′|s, a)
∣∣ log (ι)

m̂i(s, a)

+ 64 · C
P + log (ι)

m̂i(s, a)

= 8

√
P (s′|s, a) log (ι)

m̂i(s, a)
+ 64 · C

P + log (ι)

m̂i(s, a)
+

√∣∣P (s′|s, a)− P̄i(s′|s, a)
∣∣ · 64 log (ι)

m̂i(s, a)

≤ 8

√
P (s′|s, a) log (ι)

m̂i(s, a)
+ 96 · C

P + log (ι)

m̂i(s, a)
+

1

2

∣∣P (s′|s, a)− P̄i(s
′|s, a)

∣∣ ,
where the second step and last step follow from the fact that

√
xy ≤ 1

2 (x + y) for any x, y ≥ 0.
Finally, rearranging the above inequality finishes the proof.

Lemma D.2.8. (Lower Bound of Upper Occupancy Measure) For any episode t and state s ̸= sL, it
always holds that ut(s) ≥ 1/|S|T .

Proof. Fix the episode t and state s. We prove the lemma by constructing a specific transition
P̂ ∈ Pi(t), such that qP̂ ,π(s) ≥ 1/|S|T for any policy π, which suffices due to the definition of ut(s).

Specifically, P̂ is defined as, for any tuple (s, a, s′) ∈Wk and k = 0, . . . , L− 1:

P̂ (s′|s, a) = P̄i(t)(s
′|s, a) ·

(
1− 1

T

)
+

1

|Sk+1|T
.

By direct calculation, one can verify that P̂ is a valid transition function. Then, we show that
P̂ ∈ Pi(t) by verifying the condition for any transition tuple (s, a, s′) ∈Wk and k = 0, . . . , L− 1:∣∣∣P̂ (s′|s, a)− P̄i(t)(s

′|s, a)
∣∣∣ = 1

T
·
∣∣∣∣P̄i(t)(s

′|s, a)− 1

|Sk+1|

∣∣∣∣ ≤ 1

T
≤ Bi(t)(s, a, s

′),

where the last step follows from the definition of confidence intervals in Eq. (4).

Finally, we show that qP̂ ,π(s) ≥ 1/|S|T as:

qP̂ ,π(s) =
∑

u∈Sk(s)−1

∑
v∈A

qP̂ ,π(u, v)P̂ (s|u, v) ≥
∑

u∈Sk(s)−1

∑
v∈A

qP̂ ,π(u, v) · 1

T |S|
=

1

T |S|
,

which concludes the proof.
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D.3 Difference Lemma

Lemma D.3.1 (Theorem 5.2.1 of [Kakade, 2003]). (Performance Difference Lemma) For any policies
π1, π2 and any loss function ℓ : S ×A→ R,

V P,π1(s0; ℓ)− V P,π2(s0; ℓ)

=
∑
s̸=sL

∑
a∈A

qP,π2(s, a)
(
V P,π1(s; ℓ)−QP,π1(s, a; ℓ)

)
=
∑
s̸=sL

∑
a∈A

qP,π2(s) (π1(a|s)− π2(a|s))QP,π1(s, a; ℓ).

In fact, the same also holds for our optimistic transition where the layer structure is violated. For
completeness, we include a proof below.

Lemma D.3.2. For any policies π1, π2, any loss function ℓ : S×A→ R, and any transition P̃ where∑
s′∈Sk(s)+1 P̃ (s′|s, a) ≤ 1 for all state-action pairs (s, a) (the remaining probability is assigned to

sL), we have

V P̃ ,π1(s0; ℓ)− V P̃ ,π2(s0; ℓ) =
∑
s̸=sL

∑
a∈A

qP̃ ,π2(s, a)
(
V P̃ ,π1(s; ℓ)−QP̃ ,π1(s, a; ℓ)

)
.

Proof. By direct calculation, we have for any state s ̸= sL:

V P̃ ,π1(s0; ℓ)− V P̃ ,π2(s0; ℓ) =

(∑
a∈A

π2(a|s0)

)
V P̃ ,π1(s0; ℓ)−

∑
a∈A

π2(a|s0)QP̃ ,π1(s0, a; ℓ)

+
∑
a∈A

π2(a|s0)
(
QP̃ ,π1(s0, a; ℓ)−QP̃ ,π2(s0, a; ℓ)

)
=
∑
a∈A

qP̃ ,π2(s0, a)
(
V P̃ ,π1(s0; ℓ)−QP̃ ,π1(s0, a; ℓ)

)
+
∑
a∈A

∑
s′∈S1

π2(a|s0)P̃ (s′|s0, a)
(
V P̃ ,π1(s′; ℓ)− V P̃ ,π2(s′; ℓ)

)
=
∑
a∈A

qP̃ ,π2(s0, a)
(
V P̃ ,π1(s0; ℓ)−QP̃ ,π1(s0, a; ℓ)

)
+
∑
a∈A

∑
s′∈S1

qP̃ ,π2(s′)
(
V P̃ ,π1(s′; ℓ)− V P̃ ,π2(s′; ℓ)

)
=
∑
s̸=sL

∑
a∈A

qP̃ ,π2(s, a)
(
V P̃ ,π1(s; ℓ)−QP̃ ,π1(s, a; ℓ)

)
,

where the last step follows from recursively repeating the first three steps.

Lemma D.3.3. (Occupancy Measure Difference, [Jin et al., 2021, Lemma D.3.1]) For any transition
functions P1, P2 and any policy π,

qP1,π(s)− qP2,π(s) =

k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP1,π(u, v) (P1(w|u, v)− P2(w|u, v)) qP2,π(s|w)

=

k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP2,π(u, v) (P1(w|u, v)− P2(w|u, v)) qP1,π(s|w),

where qP
′,π(s|w) is the probability of visiting s starting w under policy π and transition P ′.

Lemma D.3.4. ([Dann et al., 2023, Lemma 17]) For any policies π1, π2 and transition function P ,∑
s̸=sL

∑
a∈A

∣∣qP,π1(s, a)− qP,π2(s, a)
∣∣ ≤ L

∑
s̸=sL

∑
a∈A

qP,π1(s) |π1(a|s)− π2(a|s)| .
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Corollary D.3.5. For any policies π1, mapping π2 : S → A (that is, a deterministic policy), and
transition function P , we have∑

s̸=sL

∑
a∈A

∣∣qP,π1(s, a)− qP,π2(s, a)
∣∣ ≤ 2L

∑
s̸=sL

∑
a̸=π2(s)

qP,π1(s, a).

Proof. According to Lemma D.3.4, we have∑
s̸=sL

∑
a∈A

∣∣qP,π1(s, a)− qP,π2(s, a)
∣∣ ≤ L

∑
s ̸=sL

∑
a∈A

qP,π1(s) |π1(a|s)− π2(a|s)| .

Note that, for every state s, it holds that∑
a∈A

|π1(a|s)− π2(a|s)| =
∑

a̸=π2(s)

π1(a|s) + |π1(π2(s)|s)− 1| = 2
∑

a ̸=π2(s)

π1(a|s),

where the first step follows from the fact that π2(a|s) = 1 when a = π2(s), and π2(b|s) = 0 for any
other action b ̸= π2(s).

Therefore, we have

L
∑
s̸=sL

∑
a∈A

qP,π1(s) |π1(a|s)− π2(a|s)| ≤ 2L
∑
s̸=sL

∑
a̸=π2(s)

qP,π1(s, a),

which concludes the proof.

According to Lemma D.3.3, we can estimate the occupancy measure difference caused by the
corrupted transition function Pt at episode t.
Corollary D.3.6. For any episode t and any policy π, we have∣∣qP,π(s)− qPt,π(s)

∣∣ ≤ CP
t , ∀s ̸= sL, and

∑
s̸=sL

∣∣qP,π(s)− qPt,π(s)
∣∣ ≤ LCP

t .

Proof. By direct calculation, we have for any episode t and any s ̸= sL∣∣qP,π(s)− qPt,π(s)
∣∣ ≤ k(s)−1∑

k=0

∑
(u,v,w)∈Wk

qP,π(u, v) |P (w|u, v)− Pt(w|u, v)| qPt,π(s|w)

≤
k(s)−1∑
k=0

∑
u∈Sk

∑
v∈A

qP,π(u, v) ∥P (·|u, v)− Pt(·|u, v)∥1

≤ CP
t ,

where the first step follows from Lemma D.3.3, the second step bounds qPt,π(s|w) ≤ 1, and the last
two steps follows from the definition of CP

t .

Moreover, taking the summation over all states s ̸= sL, we have∑
s̸=sL

∣∣qP,π(s)− qPt,π(s)
∣∣

≤
∑
s̸=sL

k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP,π(u, v) |P (w|u, v)− Pt(w|u, v)| qPt,π(s|w)

=

L−1∑
k=0

∑
(u,v,w)∈Wk

qP,π(u, v) |P (w|u, v)− Pt(w|u, v)|
L−1∑

h=k+1

∑
s∈Sh

qPt,π(s|w)

≤ L

k(s)−1∑
k=0

∑
u∈Sk

∑
v∈A

qP,π(u, v) ∥P (·|u, v)− Pt(·|u, v)∥1

≤ LCP
t ,

where the third step follows from the fact that
∑

s∈Sh
qPt,π(s|w) = 1 for any h ≥ k(w).
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Corollary D.3.7. For any policy sequence {πt}Tt=1 and loss functions {ℓt}Tt=1 such that ℓt ∈
S ×A→ [0, 1] for any t ∈ {1, · · · , T}, it holds that

T∑
t=1

∣∣〈qP,πt − qPt,πt , ℓt
〉∣∣ ≤ LCP.

Proof. By direct calculation, we have
T∑

t=1

∣∣〈qP,πt − qPt,πt , ℓt
〉∣∣ ≤ T∑

t=1

∥∥qP,πt − qPt,πt
∥∥
1

=

T∑
t=1

∑
s̸=sL

∑
a∈A

∣∣qP,πt(s, a)− qPt,πt(s, a)
∣∣

=

T∑
t=1

∑
s̸=sL

∑
a∈A

∣∣qP,πt(s)− qPt,πt(s)
∣∣πt(a|s)

=

T∑
t=1

∑
s̸=sL

∣∣qP,πt(s)− qPt,πt(s)
∣∣

≤
T∑

t=1

LCP
t = LCP,

where the first step applies the Hölder’s inequality; the third step follows form the fact that
qP

′,πt(s, a) = qP
′,πt(s)πt(a|s) for any state-action pair (s, a) and any transition function P ′;

the fifth step applies Corollary D.3.6; the last step follows from the definition of CP.

Following the same idea in the proof of [Dann et al., 2023, Lemma 16], we also consider a tighter
bound of the difference between occupancy measures in the following lemma.
Lemma D.3.8. Suppose the event ECON holds. For any state s ̸= sL, episode t and transition function
P ′
t ∈ Pi(t), we have

∣∣∣qP ′
t ,πt(s)− qP,πt(s)

∣∣∣ ≤O
k(s)−1∑

k=0

∑
(u,v,w)∈Wk

qP,πt(u, v)

√
P (w|u, v) log (ι)

m̂i(t)(u, v)
qP,πt(s|w)


+O

|S|2 ∑
s̸=sL

∑
a∈A

qP,πt(s, a)

(
CP + log (ι)

m̂i(t)(s, a)

) .

(69)

Proof. According to Lemma D.3.3, we have∣∣∣qP ′
t ,πt(s)− qP,πt(s)

∣∣∣
≤

k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v) |P (w|u, v)− P ′
t (w|u, v)| qP

′
t ,πt(s|w)

≤
k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v) |P (w|u, v)− P ′
t (w|u, v)| qP,πt(s|w)

+

k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v) |P (w|u, v)− P ′
t (w|u, v)|

k(s)−1∑
h=k+1

∑
(x,y,z)∈Wk

qP,πt(x, y|w) |P (z|x, y)− P ′
t (z|x, y)|

≤ O

k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v)

√
P (w|u, v) log (ι)

m̂i(t)(u, v)
qP,πt(s|w)


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+O

k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v)

(
CP + log (ι)

m̂i(t)(u, v)

)
qP,πt(s|w)


︸ ︷︷ ︸

TERM (A)

+

k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v) |P (w|u, v)− P ′
t (w|u, v)|

k(s)−1∑
h=k+1

∑
(x,y,z)∈Wh

qP,πt(x, y|w) |P (z|x, y)− P ′
t (z|x, y)|︸ ︷︷ ︸

TERM (B)

,

where the second step first subtracts and adds qP
′
t ,πt(s|w) and then applies Lemma D.3.3 again for

|qP ′
t ,πt(s|w)− qP,πt(s|w)|, and the third step follows from Lemma D.2.7 .

Clearly, we can bound term (a) as:

k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v)

(
CP + log (ι)

m̂i(t)(u, v)

)
qP,πt(s|w) ≤ |S|

∑
s̸=sL

∑
a∈A

qP,πt(s, a)

(
CP + log (ι)

m̂i(t)(s, a)

)
.

On the other hand, for term (b), we decompose it into three terms in Eq. (70), Eq. (71), and Eq. (72):

k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v) |P (w|u, v)− P ′
t (w|u, v)|

k(s)−1∑
h=k+1

∑
(x,y,z)∈Wk

qP,πt(x, y|w) |P (z|x, y)− P ′
t (z|x, y)|

≤ O

k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v)

√
P (w|u, v) log (ι)

m̂i(t)(u, v)

k(s)−1∑
h=k+1

∑
(x,y,z)∈Wh

qP,πt(x, y|w)

√
P (z|x, y) log (ι)

m̂i(t)(x, y)


(70)

+O

k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v)

√
P (w|u, v) log (ι)

m̂i(t)(u, v)

k(s)−1∑
h=k+1

∑
(x,y,z)∈Wh

qP,πt(x, y|w)
(
CP + log (ι)

m̂i(t)(x, y)

)
(71)

+O

k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v)

(
CP + log (ι)

m̂i(t)(u, v)

) k(s)−1∑
h=k+1

∑
(x,y,z)∈Wk

qP,πt(x, y|w)

 . (72)

According to the AM-GM inequality, we have the term in Eq. (70) bounded as

k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v)

√
P (w|u, v) log (ι)

m̂i(t)(u, v)

k(s)−1∑
h=k+1

∑
(x,y,z)∈Wh

qP,πt(x, y|w)

√
P (z|x, y) log (ι)

m̂i(t)(x, y)

=

k(s)−1∑
k=0

∑
(u,v,w)∈Wk

k(s)−1∑
h=k+1

∑
(x,y,z)∈Wh

qP,πt(u, v)

√
P (w|u, v) log (ι)

m̂i(t)(u, v)
qP,πt(x, y|w)

√
P (z|x, y) log (ι)

m̂i(t)(x, y)

≤
k(s)−1∑
k=0

∑
(u,v,w)∈Wk

k(s)−1∑
h=k+1

∑
(x,y,z)∈Wh

qP,πt(u, v)qP,πt(x, y|w)P (z|x, y) log (ι)
m̂i(t)(u, v)

+

k(s)−1∑
k=0

∑
(u,v,w)∈Wk

k(s)−1∑
h=k+1

∑
(x,y,z)∈Wh

qP,πt(u, v)P (w|u, v)qP,πt(x, y|w) log (ι)
m̂i(t)(x, y)

=

k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v) log (ι)

m̂i(t)(u, v)

k(s)−1∑
h=k+1

∑
(x,y,z)∈Wh

qP,πt(x, y|w)P (z|x, y)


+

k(s)−1∑
h=0

∑
(x,y,z)∈Wh

log (ι)

m̂i(t)(x, y)

h−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v)P (w|u, v)qP,πt(x, y|w)


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≤ L

k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v) log (ι)

m̂i(t)(u, v)
+ L

k(s)−1∑
h=0

∑
(x,y,z)∈Wh

qP,πt(x, y) log (ι)

m̂i(t)(x, y)

≤ O

(
L|S|

L−1∑
k=0

∑
s∈Sk

∑
a∈A

qP,πt(s, a) log (ι)

m̂i(t)(s, a)

)
,

where the first step follows from re-arranging the summation; the second step applies the fact
that
√
xy ≤ x + y for any x, y ≥ 0; the third step rearranges the summation order, and the

fourth step follows form the facts that
∑

x∈Sh

∑
y∈A qP,πt(x, y|w)P (z|x, y) = qP,πt(z|w) and∑

(u,v,w)∈Wk
qP,πt(u, v)P (w|u, v)qP,πt(x, y|w) = qP,πt(x, y) for any k and (x, y, z).

Similarly, we have the term in Eq. (71) bounded as
k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v)

√
P (w|u, v) log (ι)

m̂i(t)(u, v)

k(s)−1∑
h=k+1

∑
(x,y,z)∈Wh

qP,πt(x, y|w)
(
CP + log (ι)

m̂i(t)(x, y)

)

≤
k(s)−1∑
k=0

∑
(u,v,w)∈Wk

k(s)−1∑
h=k+1

∑
(x,y,z)∈Wh

qP,πt(u, v)qP,πt(x, y|w) log (ι)
m̂i(t)(u, v)

+

k(s)−1∑
k=0

∑
(u,v,w)∈Wk

k(s)−1∑
h=k+1

∑
(x,y,z)∈Wh

qP,πt(u, v)P (w|u, v)qP,πt(x, y|w)
(
CP + log (ι)

m̂i(t)(x, y)

)

≤
k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v) log (ι)

m̂i(t)(u, v)

k(s)−1∑
h=k+1

∑
(x,y,z)∈Wh

qP,πt(x, y|w)


+

L−1∑
h=0

∑
(x,y,z)∈Wh

k(s)−1∑
k=0

 ∑
(u,v,w)∈Wk

qP,πt(u, v)P (w|u, v)qP,πt(x, y|w)

 CP + log (ι)

m̂i(t)(x, y)

≤ |S|
k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v) log (ι)

m̂i(t)(u, v)
+

L−1∑
h=0

∑
(x,y,z)∈Wh

k(s)−1∑
k=0

qP,πt(x, y)

(
CP + log (ι)

m̂i(t)(x, y)

)

≤ |S|2
∑
s ̸=sL

∑
a∈A

qP,πt(s, a) log (ι)

m̂i(t)(s, a)
+ L|S|

∑
s̸=sL

∑
a∈A

qP,πt(s, a)

(
CP + log (ι)

m̂i(t)(s, a)

)
,

where the first step follows from the fact that m̂i(t)(s, a) ≥ C + log (ι) according to its
definition; the third step follows from the facts that

∑
x∈Sh

∑
y∈A qP,πt(x, y|w) ≤ 1 and∑

(u,v,w)∈Wk
qP,πt(u, v)P (w|u, v)qP,πt(x, y|w) = qP,πt(x, y).

For the term in Eq. (72), we have
k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v)
CP + log (ι)

m̂i(t)(u, v)

k(s)−1∑
h=k+1

∑
(x,y,z)∈Wk

qP,πt(x, y|w)

=

k(s)−1∑
k=0

∑
u∈Sk

∑
v∈A

∑
w∈Sk+1

qP,πt(u, v)
CP + log (ι)

m̂i(t)(u, v)

k(s)−1∑
h=k+1

∑
z∈Sk+1

1


≤ |S|2

∑
u̸=sL

∑
v∈A

qP,πt(s, a)

(
CP + log (ι)

m̂i(t)(u, v)

)
,

according to the fact that
∑

x∈Sh

∑
y∈A qP,πt(x, y|w) ≤ 1.

Putting all the bounds for the terms in Eq. (70), Eq. (71), and Eq. (72) together yields the bound of
TERM (B) that
k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v) |P (w|u, v)− P ′
t (w|u, v)|

k(s)−1∑
h=k+1

∑
(x,y,z)∈Wh

qP,πt(x, y|w) |P (z|x, y)− P ′
t (z|x, y)|
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= O

|S|2 ∑
u̸=sL

∑
v∈A

qP,πt(u, v)

(
CP + log (ι)

m̂i(t)(u, v)

) .

Combining this bound with that of TERM (A) finishes the proof.

D.4 Loss Shifting Technique with Optimistic Transition

Lemma D.4.1. Fix an optimistic transition function P̃ (defined in Section 5). For any policy π and
any loss function ℓ : S × A → R, we define function g : S × A → R similar to that of Jin et al.
[2021] as:

gP̃ ,π(s, a; ℓ) ≜
(
QP̃ ,π(s, a; ℓ)− V P̃ ,π(s; ℓ)− ℓ(s, a)

)
,

where the state-action and state value function QP̃ ,π and V P̃ ,π are defined with respect to the
optimistic transition P̃ and π as following:

QP̃ ,π(s, a; ℓ) = ℓ(s, a) +
∑

s′∈Sk(s)+1

P̃ (s′|s, a)V P̃ ,π(s′; ℓ),

V P̃ ,π(s; ℓ) =

{
0, s = sL,∑

a∈A π(a|s)QP̃ ,π(s, a; ℓ), s ̸= sL.

Then, it holds for any policy π′ that,〈
qP̃ ,π′

, gP̃ ,π
〉
=
∑
s̸=sL

∑
a∈A

qP̃ ,π′
(s, a) · gP̃ ,π(s, a; ℓ) = −V P̃ ,π(s0; ℓ),

where V P̃ ,π(s0; ℓ) is only related to P̃ , π and ℓ, and is independent with π′.

Proof. By the extended performance difference lemma of the optimistic transition in Lemma D.3.1,
we have the following equality holds for any policy π′:

V P̃ ,π′
(s0; ℓ)− V P̃ ,π(s0; ℓ) =

∑
s̸=sL

∑
a∈A

qP̃ ,π′
(s, a)

(
QP̃ ,π(s, a; ℓ)− V P̃ ,π(s; ℓ)

)
.

On the other hand, we also have

V P̃ ,π′
(s0; ℓ) =

∑
s̸=sL

∑
a∈A

qP̃ ,π′
(s, a)ℓ(s, a).

Therefore, subtracting V P̃ ,π′
(s0; ℓ) yields that

−V P̃ ,π(s0; ℓ) =
∑
s̸=sL

∑
a∈A

qP̃ ,π′
(s, a)

(
QP̃ ,π(s, a; ℓ)− V P̃ ,π(s; ℓ)− ℓ(s, a)

)
.

The proof is finished after using the definition of gP̃ ,π .

Therefore, we have the following result for the FTRL framework which is similar to [Jin et al., 2021,
Corollary A.1.2.].

Corollary D.4.2. The FTRL update in Algorithm 4 can be equivalently written as:

q̂t =argmin
q∈Ω(P̃i)

〈
q,

t−1∑
τ=ti

(ℓ̂τ − bτ )

〉
+ ϕt(q) = argmin

x∈Ω(P̃i)

〈
q,

t−1∑
τ=ti

(gτ − bτ )

〉
+ ϕt(q),

where gτ (s, a) = QP̃i,πτ (s, a; ℓ̂τ )− V P̃i,πτ (s; ℓ̂τ ) for any state-action pair (s, a).
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D.5 Estimation Error

Lemma D.5.1. ([Jin et al., 2020, Lemma 10]) With probability at least 1 − δ, we have for all
k = 0, . . . , L− 1,

T∑
t=1

∑
(s,a)∈Sk×A

qPt,πt(s, a)

max
{
mi(t)(s, a), 1

} = O
(
|Sk||A| log (T ) + log

(
L

δ

))
,

and
T∑

t=1

∑
(s,a)∈Sk×A

qPt,πt(s, a)√
max

{
mi(t)(s, a), 1

} = O
(√
|Sk||A|T + |Sk||A| log (T ) + log

(
L

δ

))
.

Proof. Simply replacing the stationary transition P with the sequence of transitions {Pt}Tt=1 in the
proof of [Jin et al., 2020, Lemma 10] suffices.

Proposition D.5.2. Let EEST be the event such that we have for all k = 0, . . . , L− 1 simultaneously

T∑
t=1

∑
(s,a)∈Sk×A

qPt,πt(s, a)

max
{
mi(t)(s, a), 1

} = O (|Sk||A| log (T ) + log (ι)) ,

and
T∑

t=1

∑
(s,a)∈Sk×A

qPt,πt(s, a)√
max

{
mi(t)(s, a), 1

} = O
(√
|Sk||A|T + |Sk||A| log (T ) + log (ι)

)
.

We have Pr[EEST] ≥ 1− δ.

Proof. The proof directly follows from the definition of ι, which ensures that ι ≥ L/δ.

Based on the event EEST, we introduce the following lemma which is critical in analyzing the
estimation error.
Lemma D.5.3. Suppose the event EEST defined in Proposition D.5.2 holds. Then, we have for all
k = 0, . . . , L− 1,

T∑
t=1

∑
(s,a)∈Sk×A

qP,πt(s, a)

m̂i(t)(s, a)
= O (|Sk||A| log (T ) + log (ι)) ,

and,
T∑

t=1

∑
(s,a)∈Sk×A

qP,πt(s, a)

(
CP + log (ι)

m̂i(t)(s, a)

)
= O

((
CP + log (ι)

)
|Sk||A| log (ι)

)
,

Proof. According to Corollary D.3.6, we have

T∑
t=1

∑
(s,a)∈Sk×A

qP,πt(s, a)

m̂i(t)(s, a)

≤
T∑

t=1

∑
(s,a)∈Sk×A

qPt,πt(s, a)

m̂i(t)(s, a)
+

T∑
t=1

∑
(s,a)∈Sk×A

∣∣qP,πt(s, a)− qPt,πt(s, a)
∣∣

m̂i(t)(s, a)

≤
T∑

t=1

∑
(s,a)∈Sk×A

qPt,πt(s, a)

max
{
1,mi(t)(s, a)

} +

T∑
t=1

∑
(s,a)∈Sk×A

CP
t

CP + log(ι)

≤ O (|Sk||A| log (T ) + log (ι)) ,
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where the second step follows from the definitions of CP and m̂i(t)(s, a), and the last step applies
Lemma D.5.1.

Similarly, we have

T∑
t=1

∑
(s,a)∈Sk×A

qP,πt(s, a)

(
CP + log (ι)

m̂i(t)(s, a)

)

≤
T∑

t=1

∑
(s,a)∈Sk×A

(∣∣qPt,πt(s, a)− qP,πt(s, a)
∣∣+ qPt,πt(s, a)

)(CP + log (ι)

m̂i(t)(s, a)

)

≤
T∑

t=1

∑
(s,a)∈Sk×A

(
CP

t + qPt,πt(s, a)

(
CP + log (ι)

m̂i(t)(s, a)

))

≤ |Sk| |A|
T∑

t=1

CP
t +

(
CP + log (ι)

) T∑
t=1

∑
(s,a)∈Sk×A

qPt,πt(s, a)

m̂i(t)(s, a)

= O
(
|Sk| |A|CP +

(
CP + log (ι)

)
(|Sk||A| log (T ) + log (ι))

)
= O

((
CP + log (ι)

)
|Sk||A| log (ι)

)
,

where the first step adds and subtracts qPt,πt ; the second step follows from Corollary D.3.6; the
fourth step uses Proposition D.5.2 due to the fact that m̂i(s, a) ≥ max {mi(s, a), 1}.

Lemma D.5.4. (Extension of [Dann et al., 2023, Lemma 16] for adversarial transition) Suppose the
high-probability events EEST (defined in Proposition D.5.2) and ECON (defined in Lemma D.2.1) hold
together. Let P s

t be a transition function in Pi(t) which depends on s, and let gt(s) ∈ [0, G] for some
G > 0. Then,

T∑
t=1

∑
s̸=sL

∣∣∣qP s
t ,πt(s)− qP,πt(s)

∣∣∣ gt(s) = O
√√√√L|S|2|A| log2 (ι)

T∑
t=1

∑
s̸=sL

qP,πt(s)gt(s)2


+O

(
G
(
CP + log (ι)

)
L2|S|4|A| log (ι)

)
.

Proof. By Lemma D.3.8, under the event ECON, we have

T∑
t=1

∑
s̸=sL

∣∣∣qP s
t ,πt(s)− qP,πt(s)

∣∣∣ gt(s)
≤ O

 T∑
t=1

∑
s̸=sL

gt(s)

k(s)−1∑
k=0

∑
(u,v,w)∈Wk

qP,πt(u, v)

√
P (w|u, v) log (ι)

m̂i(t)(u, v)
qP,πt(s|w)


+O

G|S|3
T∑

t=1

∑
s̸=sL

∑
a∈A

qP,πt(s, a)

(
CP + log (ι)

m̂i(t)(s, a)

) .

(73)

By Lemma D.5.3, the last two terms can be bounded under the event EEST as

O

G|S|3
T∑

t=1

∑
s̸=sL

∑
a∈A

qP,πt(s, a)

(
CP + log (ι)

m̂i(t)(s, a)

)
≤ O

(
G|S|3

L−1∑
k=0

(
CP + log (ι)

)
|Sk||A| log (ι)

)
= O

(
G
(
CP + log (ι)

)
L|S|4|A| log (ι)

)
.

64



For the first term in Eq. (73), we first rewrite it as

T∑
t=1

∑
s̸=sL

k(s)−1∑
h=0

∑
(u,v,w)∈Wh

qP,πt(u, v)

√
P (w|u, v) log (ι)

m̂i(t)(u, v)
qP,πt(s|w)gt(s)

≤
L−1∑
h=0

T∑
t=1

∑
s̸=sL

∑
(u,v,w)∈Wh

qP,πt(u, v)

√
P (w|u, v) log (ι)

m̂i(t)(u, v)
qP,πt(s|w)gt(s).

For any θ > 0 and layer h, conditioning on the event EEST, we have

T∑
t=1

∑
s ̸=sL

∑
(u,v,w)∈Wh

qP,πt(u, v)

√
P (w|u, v) log (ι)

m̂i(t)(u, v)
qP,πt(s|w)gt(s)

=

T∑
t=1

∑
s ̸=sL

∑
(u,v,w)∈Wh

√
qP,πt(u, v)qP,πt(s|w) log (ι)

m̂i(t)(u, v)
· qP,πt(u, v)P (w|u, v)qP,πt(s|w)gt(s)2

≤
T∑

t=1

∑
s ̸=sL

∑
(u,v,w)∈Wh

(
θ · q

P,πt(u, v)qP,πt(s|w) log (ι)
m̂i(t)(u, v)

+
1

θ
· qP,πt(u, v)P (w|u, v)qP,πt(s|w)gt(s)2

)

= θ ·
T∑

t=1

∑
u∈Sh

∑
v∈A

qP,πt(u, v) log (ι)

m̂i(t)(u, v)
·

 ∑
w∈Sh+1

∑
s ̸=sL

qP,πt(s|w)


+

1

θ
·

T∑
t=1

∑
s̸=sL

 ∑
(u,v,w)∈Wh

qP,πt(u, v)P (w|u, v)qP,πt(s|w)

 gt(s)
2

≤ θ · L|Sh+1| log (ι)
T∑

t=1

∑
u∈Sh

∑
v∈A

qP,πt(u, v)

m̂i(t)(u, v)
+

1

θ
·

T∑
t=1

∑
s̸=sL

qP,πt(s)gt(s)
2

≤ O

θ · L|Sh+1| log (ι) (|Sh||A| log (T ) + log (ι)) +
1

θ
·

T∑
t=1

∑
s̸=sL

qP,πt(s)gt(s)
2


= O

θL · |Sh||Sh+1||A| log2 (ι) +
1

θ
·

T∑
t=1

∑
s̸=sL

qP,πt(s)gt(s)
2

 ,

where the second step uses the fact that
√
xy ≤ x+ y for all x, y ≥ 0, the fourth step follows from

Lemma D.5.3.

Then, for any layer h = 0, . . . L− 1, picking the optimal θ gives

T∑
t=1

∑
s̸=sL

∑
(u,v,w)∈Wh

qP,πt(u, v)

√
P (w|u, v) log (ι)

m̂i(t)(u, v)
qP,πt(s|w)gt(s)

= O

√√√√L|Sh||Sh+1||A| log2 (ι)
T∑

t=1

∑
s ̸=sL

qP,πt(s)gt(s)2


≤ O

(|Sh|+ |Sh+1|)

√√√√L|A| log2 (ι)
T∑

t=1

∑
s̸=sL

qP,πt(s)gt(s)2

 .

Finally, taking the summation over all the layers yields

L−1∑
h=0

T∑
t=1

∑
s̸=sL

∑
(u,v,w)∈Wh

qP,πt(u, v)

√
P (w|u, v) log (ι)

m̂i(t)(u, v)
qP,πt(s|w)gt(s)
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≤ O

√√√√L|S|2|A| log2 (ι)
T∑

t=1

∑
s̸=sL

qP,πt(s)gt(s)2

 ,

which finishes the proof.
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