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Abstract
Traditional machine societies rely on data-driven
learning, overlooking interactions and limiting
knowledge acquisition from model interplay. To
address these issues, we revisit the development
of machine societies by drawing inspiration from
the evolutionary processes of human societies.
Motivated by Social Learning (SL), this paper
introduces a practical paradigm of Socialized Co-
evolution (SC). Compared to most existing meth-
ods focused on knowledge distillation and multi-
task learning, our work addresses a more chal-
lenging problem: not only enhancing the capac-
ity to solve new downstream tasks but also im-
proving the performance of existing tasks through
inter-model interactions. Inspired by cognitive
science, we propose Dynamic Information So-
cialized Collaboration (DISC), which achieves
SC through interactions between models special-
ized in different downstream tasks. Specifically,
we introduce the dynamic hierarchical collabo-
ration and dynamic selective collaboration mod-
ules to enable dynamic and effective interactions
among models, allowing them to acquire knowl-
edge from these interactions. Finally, we ex-
plore potential future applications of combining
SL and SC, discuss open questions, and propose
directions for future research, aiming to spark
interest in this emerging and exciting interdisci-
plinary field. Our code will be publicly available
at https://github.com/yxjdarren/SC.
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1. Introduction

Figure 1: Social learning in human society versus socialized
coevolution in machine society.

Similar to human society (Humphrey, 1976; Dunbar, 1998),
each model in machine society evolves through knowledge
acquisition, as illustrated in Figure 1. Traditional learn-
ing paradigms largely depend on data-driven, single-mode
learning. While some paradigms (Caruana, 1997; Hinton,
2015; Zhu et al., 2024) allow knowledge transfer from other
models, they are limited by blind imitation and difficulty in
retaining specialized expertise. In human history, cultural
evolution has been driven by continuous capability enhance-
ment, surpassing existing critical skills for survival (Henrich,
2016; Laland, 2017). This enhancement is achieved through
ongoing interaction with the environment, rather than ex-
tensive trial and data collection. This effective learning
paradigm, known as socialized coevolution (SC), has been
studied in cognitive science (Thompson et al., 2022).

In machine learning, Knowledge Distillation (KD) (Hinton,
2015) is closely related to SC, as it overcomes the limitation
of relying solely on data for knowledge acquisition. How-
ever, KD often blindly mimics the teacher model’s predic-
tions, which may not always represent valuable knowledge.
Unlike humans, KD lacks mutual teaching and learning. An
alternative is Multi-Task Learning (MTL) (Caruana, 1997),
a shared learning paradigm. While MTL improves perfor-
mance by leveraging task correlations, it often sacrifices
task-specific expertise for generalization, making it hard to
maintain performance on individual tasks, particularly when
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tasks are highly heterogeneous. Thus, current paradigms
are limited in achieving effective coevolution.

Existing paradigms struggle to learn new knowledge and im-
prove capabilities through interaction, as humans do. Due
to task and data heterogeneity, models find it difficult to
interact effectively. For instance, KD causes blind imitation,
hindering the learning of complementary task information
and degrading original performance. Similarly, MTL sac-
rifices task-specific expertise for generalization. In intelli-
gent autonomous systems, the challenge is to acquire more
knowledge while maintaining or enhancing original task
expertise. By revisiting existing paradigms, we find that two
problems are still open: (1) dynamic interactive learning
in heterogeneous task scenarios, and (2) expanding general
capabilities without compromising task specialization.

To address these problems, we analyze two paradigms: KD
and MTL. As shown in Figure 2, both KD and MTL fail to
balance the enhancement of original task capabilities and the
expansion of general task capabilities due to blind imitation
and an overemphasis on generalization. Moreover, KD and
MTL rely heavily on large datasets for knowledge transfer,
whereas SC enables dynamic cross-task interaction at low
cost, facilitating coevolution. Therefore, two significant
issues should be explored to realize SC:

1: How to achieve dynamic interactive learning?

2: How to balance specialization and generalization?

In line with cognitive science (Tomasello et al., 1993;
Mesoudi, 2021; Yao et al., 2024), new knowledge should be
learned from experts in different tasks and integrated with
individual needs for coevolution. To achieve this, we adopt
dynamic collaboration, allowing models to selectively inter-
act and acquire valuable knowledge while avoiding blind
imitation. Most cultural evolution, driven by population
genetics (Mesoudi, 2021) and cognitive science (Tomasello,
2016), inspires our approach, which combines population-
genetic-style modeling with directional bias transformation.
By organizing experts into a society, maintaining their inde-
pendence, and enabling interactions, we expand capabilities
while enhancing original performance, achieving SC.

To validate this premise, we design an SC-based frame-
work. We first establish that sociability is fundamental to
SC, enabling models with complementary strengths to learn
mutually. Based on this, the framework is designed around
organizational structures, interaction modes, and commu-
nication mechanisms. SC is implemented using hierarchi-
cal organizational structures, progressive interaction modes,
and strong-guided communication mechanisms. Specifi-
cally, we create a society of independent classification and
detection models, enabling selective collaboration for logits-
based mutual learning and hierarchical feature interaction.

These contributions are detailed as follows:

• We introduce a practical learning paradigm, Socialized
Coevolution (SC), in which models achieve coevolu-
tion through mutual interaction.

• We discuss SC using an information-theoretic frame-
work, where sociability enables models with comple-
mentary strengths to mutually and dynamically learn.

• We propose a novel insight into SC methodology,
where organizational structures, interaction modes,
and communication mechanisms ensure a trade-off
between specialization and generalization.

(a) Knowledge distillation paradigm

(b) Multi-task learning paradigm

(c) Socialized coevolution paradigm

Figure 2: Comparison of different learning paradigms.

2. Related Work
2.1. Knowledge Distillation

Knowledge Distillation (KD), as a paradigm for knowledge
transfer, focuses on enabling student models to efficiently
inherit and apply the knowledge and capabilities of teacher
models. Based on the type of information emphasized dur-
ing the distillation process and the levels at which distillation
occurs, existing KD approaches (Gou et al., 2021) can be
classified into three categories: (1) Response-based distil-
lation emphasizes the outputs or logits of the teacher model,
aiming to align the logits of the student model as closely
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as possible with those of the teacher model to enhance per-
formance (Jin et al., 2023); (Sun et al., 2024); (Wei et al.,
2024). (2) Feature-based distillation focuses on knowl-
edge transfer within the intermediate layers of the model,
using the feature representations from the teacher model’s
intermediate layers to guide the corresponding layers of the
student model (Hao et al., 2024); (Lu et al., 2024b); (Huang
et al., 2024). (3) Relation-based distillation targets the rel-
ative relationships between different samples in the feature
space. By capturing the teacher model’s rich representations
of these relationships, the student model learns to capture
the inherent structure of the data (Zhang et al., 2024); (Yang
et al., 2022); (Xiao & Yamasaki, 2024).

Existing KD methods primarily rely on the knowledge ob-
tained by the teacher model, often overlooking the reliability
of the knowledge for each individual sample, as illustrated
in Figure 2a. The key challenge in KD lies in how to effec-
tively transfer knowledge by considering both the teacher’s
capabilities and the student’s needs. To address this, SC em-
ploys dynamic interactive learning to avoid blind reliance,
providing insights across different samples.

2.2. Multi-Task Learning

Multi-Task Learning (MTL) is a paradigm in machine
learning that aims to learn multiple related tasks simulta-
neously, enabling the knowledge from one task to benefit
others. This approach seeks to enhance the generalization
performance of all tasks involved. Existing methods (Van-
denhende et al., 2022) can be broadly categorized into two
main groups: (1) Encoder-focused architectures share
information within the encoder, using either hard- or soft-
parameter sharing, before decoding each task with an inde-
pendent, task-specific head (Agiza et al., 2024); (Xu et al.,
2024); (Yang et al., 2024b). (2) Decoder-focused archi-
tectures first employ a multi-task network to make initial
task predictions, and then use features from these initial
predictions to further share or exchange information during
the decoding stage (Bhattacharjee et al., 2022); (Chen et al.,
2024); (Lu et al., 2024a). In addition to the aforementioned
approaches, other methods exist outside these categories.
For instance, multilinear relationship networks (Long et al.,
2017) leverage tensor priors to capture task interactions,
while soft layer ordering (Meyerson & Miikkulainen, 2017)
enables flexible sharing of network layers across tasks.

Existing MTL research primarily focuses on the sharing of
general knowledge across different tasks, often neglecting
the preservation of task-specific expertise, as illustrated in
Figure 2b. The key challenge in MTL lies in the trade-off
between task specialization and generalization. To address
this, SC leverages social structures to categorize the model
into main and auxiliary decision roles, offering insights into
this dilemma.

3. Sociability in Coevolution
In this section, we address the issues outlined in Section 1 by
providing precise definitions of the problem setup, followed
by a concise theoretical analysis. The full proofs of the
theorems are provided in the supplementary.

Problem setups: Let M = {M1,M2, . . . ,MN} denote
a set of N models. Let X represent the input space, and
Y denote the label space. The data associated with the n-
th model is represented as DMn

= {xi, yi}
KMn
i=1 , where

KMn
denotes the total number of samples for Mn. Each

sample xi ∈ RD corresponds to a label yi ∈ YMn . To
illustrate this setup more clearly, consider two models, M1

and M2, as examples. The expert task sets for these two
models, M1 and M2, are distinct, i.e., T1 and T2 represent
the sets of tasks at which each model excels. Specifically,
the performance of the models on these tasks is described
as MT1

1 > MT1
2 and MT2

1 < MT2
2 , indicating that M1

outperforms M2 on task T1, while M2 excels on task T2.
After coevolution, the society S = {M1,M2}, formed by
the two models, can acquire superior expertise compared
to each individual model, i.e., ST1 > MT1

1 and ST2 >
MT2

2 . This collaboration enables broader task coverage and
enhances performance on original tasks.

Definition 3.1. (Specialization and Generalization) The
society S learns more tasks while improving performance
on original tasks, i.e., TS = T1 ∪ T2, with ST1 >MT1

1 and
ST2 >MT2

2 .

To clearly elucidate the significance of coevolution, we
define sociability information and subsequently conduct an
analysis based on this premise:

Definition 3.2. (Sociability Information) Given the input
variables XM1

, XM2
, and the target Y , the sociability in-

formation provided by the models is defined as:

ΦM1
= I(XM1

;Y |XM2
), (1)

ΦM2
= I(XM2

;Y |XM1
). (2)

The metrics ΦM1 and ΦM2 quantify the sociability informa-
tion of XM1

and XM2
in SC. Higher values reflect greater

sociability and coevolution potential, representing collab-
oration effectiveness and information exchange between
XM1

and XM2
. The following relation can be derived

from information theory:

I(XM1 , XM2 ;Y ) = ΦM1 +ΦM2 + I(XM1 ;XM2 ;Y ). (3)

Bayes error rate: The Bayes error rate (Fukunaga & Hum-
mels, 1987) represents the minimum error, with Pmul

ec and
P sin
ec denoting the errors for multi-model and single-model

scenarios, respectively, for XM1
and XM2

.

Pmul
ec = ExM1

,xM2
∼PXM1

,XM2
[1−max

y∈Y
P (Y = y|xM1

, xM2
)], (4)
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P sin
ec = ExM1

∼PXM1
[1−max

y∈Y
P (Y = y|xM1

)]. (5)

Theorem 3.3. (Key Factor in Coevolution) Building on
prior work (Cover, 1999; Feder & Merhav, 1994; Li et al.,
2023a), we focus on Pmul

ec and P sin
ec , as follows:

H(Y |XM1
,XM2

)−log 2

log |Y | ≤ Pmul
ec ≤ 1− exp(−H(Y | XM1

, XM2
)), (6)

H(Y |XM1
)−log 2

log |Y | ≤ P sin
ec ≤ 1− exp(−H(Y | XM1)). (7)

Since
ΦM2 = H(Y |XM1)−H(Y |XM1 , XM2). (8)

We can derive

H(Y |XM1
)− ΦM2

− log 2

log |Y |
≤ Pmul

ec ≤ 1− exp(−H(Y | XM1) + ΦM2). (9)

Remark 3.4. The difference betweenPmul
ec andP sin

ec reflects
the effect of SC, with ΦM2

being the key factor.

Theorem 3.5. (Sociability Information in Data) Building on
prior work (Zuo et al., 2024), given the optimal parameter
w∗ for the data D and the normalizing constant p(D), we
have:

p(D) =
∫
p(D | w)p(w) dw <

∫
p (D | w∗) p(w) dw = p (D | w∗) . (10)

Since
DS = DM1

∪ DΦM2
. (11)

We can derive

log p(w∗ | DS) > log p(w∗ | DM1
). (12)

Remark 3.6. Training on sociability data DΦM2
enhances

w∗, proving the effect of SC in optimization.

Theorem 3.7. (Sociability Information in Model) Building
on prior work (Zuo et al., 2024), given the optimal parame-
ter w∗ consists of the backbone parameter w∗

f and the head
parameter w∗

h, we have:

log p
(
w∗ | DΦM2

)
= log p

(
w∗

f | DΦM2

)
+ log p

(
w∗

h | f
(
DΦM2

))
. (13)

Since

log p
(
w∗

h | f
(
DΦM2

))
< log p

(
w∗

h | f(DM1)
ΦM2

)
. (14)

We can derive

log p
(
w∗ | DΦM2

)
< log p

(
w∗

f | DΦM2

)
+ log p

(
w∗

h | f(DM1)
ΦM2

)
. (15)

Remark 3.8. Training on sociability features f(DM1)
ΦM2

enhances w∗, proving the effect of SC in optimization.

4. Methodology
In this section, to address the two issues highlighted in Sec-
tion 1, we introduce dynamic interactive learning as a means
to balance specialization and generalization. This approach
is realized in two ways. First, we facilitate dynamic interac-
tions between teacher and student models, allowing them to
adjust based on their respective strengths and needs. Second,
we organize the models into a society where, depending on
the task, some models take on the role of decision-makers
while others assist in the main process. The concepts of
mutual growth through teaching and leveraging individual
strengths are considered forms of SC.

We first analyze the driving factors of SC, introduce its
core framework, and then detail the dynamic interactive
learning mechanism along with our approach to balancing
specialization and generalization.

4.1. Key Factors of SC

In the face of the challenge to balance specialization and
generalization within SC, a natural question arises: what are
the key factors influencing SC?

(a) Comparison of different weights on CIFAR100

(b) Comparison of different weights on VOC07+12

Figure 3: Comparison of different weights on datasets.
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To address the aforementioned question, we consider two
downstream tasks: classification and detection. Specifi-
cally, features provide patch-wise information, while logits
offer image-wise information. Consequently, we conduct
exploratory experiments on the interaction between features
and logits under varying weights. From Figure 3, it can
be inferred that neither extremely low nor high weights are
suitable for effective interaction. When the weight is too
low, the knowledge interaction provides limited assistance,
failing to improve the performance. Conversely, when the
weight is too high, the knowledge becomes overly com-
plex for the model to learn effectively. Notably, the model
exhibits superior performance under a variety of weight
combinations. Based on this observation, we hypothesize
that a dynamic weighting mechanism for interaction may
effectively balance specialization and generalization.

Theorem 4.1. (Generalization Bound of Collaboration)
Building on prior work (Zhang et al., 2023), we focus on the
dynamic weighting mechanism. Let Dtrain = {xi, yi}Ni=1

be a training dataset of N samples, and ˆerr(fm) be the
empirical error of the m-th model fm on Dtrain. For any
hypothesis f ∈ H (i.e., H : X → {−1, 1}), with probability
at least 1− δ, the generalization error is bounded by:

GError(f) ≤
M∑

m=1

E(wm) ˆerr(fm)︸ ︷︷ ︸
Term-L (empirical loss)

+

M∑
m=1

E(wm)Rm(fm)︸ ︷︷ ︸
Term-C (complexity)

+

M∑
m=1

Cov(wm, ℓm)︸ ︷︷ ︸
Term-Cov (covariance)

+M

√
ln(1/δ)

2N
,

(16)

where E(wm) is the expected collaboration weights,
Rm(fm) is the Rademacher complexity of model fm, and
Cov(wm, ℓm) is the covariance between the collaborative
weight and the loss. In static collaboration, the weights
wm

static remain constant, so Cov(wm
static, ℓ

m) = 0. By con-
trast, in dynamic collaboration, the weightwm

dynamic increases
as the loss ℓm decreases, yielding Cov(wm

dynamic, ℓ
m) ≤ 0.

This negative covariance lowers Term-Cov, thereby tighten-
ing the upper bound of generalization error of collaboration,
i.e., O(GError(fdynamic)) ≤ O(GError(fstatic)).
Remark 4.2. Dynamic collaboration yields a tighter gener-
alization error bound compared to static collaboration.

4.2. Socialized Coevolution Framework

We take a closer look at SC to identify the key factors
forming its framework. Inspired by (Zuo et al., 2024; Li
et al., 2023a), we perform an information-theoretic analysis
of SC in the previous section and explore the impact of
sociability information. Based on this, we focus on three

aspects: organizational structures, interaction modes, and
communication mechanisms, aiming to design a unified
SC framework U(·) and implement dynamic interactive
learning to balance specialization and generalization.

U(M1,M2) = ψ(φ(M1,M2), β), (17)

where M1 and M2 are two models, φ(·) represents the or-
ganizational structures, β denotes the communication mech-
anisms, and ψ(·) represents the interaction modes.

4.3. Dynamic Information Socialized Collaboration

Driven by the above analysis and (Li et al., 2023b; Shao
et al., 2021; Cao et al., 2024), our goal is to address SC
from three aspects: hierarchical organizational structures,
progressive interaction modes, and strong-guided communi-
cation mechanisms. We introduce a new approach based on
SC, called Dynamic Information Socialized Collaboration
(DISC), as shown in Figure 4. For clarity, we provide a
detailed explanation of the three aspects included in DISC.

Hierarchical organizational structures: In DISC, we de-
sign the Dynamic Hierarchical Collaboration (DHC) module
to effectively leverage hierarchical auxiliary information,
aiding the main model in learning. Specifically, for different
tasks, we treat the specialized model as the main entity and
the other models as auxiliary information. For instance,
in classification tasks, the model specialized in classifica-
tion focuses on global-wise information, while the model
specialized in detection emphasizes patch-wise information.
The key to achieving SC lies in fully utilizing the patch-wise
knowledge embedded in the detection model. The hierar-
chical organizational structure facilitates the progressive
abstraction and capture of both low-level and high-level im-
age features, enabling effective handling of complex visual
tasks. Therefore, we define patch-wise information in the
form of a hierarchical structure, as follows:

inputlmain = outputl−1
main +DHC (l − 1) , (18)

where inputlmain denotes the input of the l-th layer of the
main model, outputl−1

main denotes the output of the (l − 1)-
th layer of the main model, and DHC (l − 1) denotes the
hierarchical output of the auxiliary model. Next, we will pro-
vide a detailed explanation of DHC (l − 1) in progressive
interaction modes.

Progressive interaction modes: In DISC, DHC mitigates
excessive reliance on auxiliary information by employing
progressive interaction, effectively utilizing hierarchical aux-
iliary data to support the main model’s learning process.
Initially, the model depends heavily on data, but as opti-
mization advances, the information provided by the data
becomes limited. At this stage, gradually incorporating aux-
iliary information from other dimensions becomes essential
for further learning. Overuse of auxiliary information early

5



Socialized Coevolution: Advancing a Better World through Cross-Task Collaboration

Figure 4: An overview of our proposed Dynamic Information Socialized Collaboration (DISC). We design the Dynamic Hi-
erarchical Collaboration (DHC) and Dynamic Selective Collaboration (DSC) modules, integrating organizational structures,
interaction modes, and communication mechanisms as the core elements of SC.

in the process can impede the model’s ability to learn from
data. Thus, the key to SC lies in the gradual integration
of auxiliary information, enabling the model to overcome
the limitations of data-driven learning. This progressive
interaction mode is defined through DHC as follows:

DHC (l − 1) =
∣∣∣sin(min(En,Et)

Eloops
π
)∣∣∣∑l−1

i=1 output
i
aux, (19)

where En represents the current training epoch, Et denotes
the threshold epoch, Eloops indicates the total number of
training epochs, and outputiaux denotes the output of the
i-th layer of the auxiliary model.

Strong-guided communication mechanisms: In DISC,
we designed the Dynamic Selective Collaboration (DSC)
module to leverage strong-guided communication mecha-
nisms to enhance the learning process of the main model.
Specifically, the weights assigned to the main and auxiliary
models vary dynamically depending on the sample, mean-
ing the weight of the main model is not necessarily greater
than that of the auxiliary model. Fixing the weights as con-
stants prevents the models from adapting flexibly to their
performance. The key to achieving SC is to assign appropri-
ate weights dynamically to each model. A model’s weight
should negatively correlate with its own loss and positively
correlate with the losses of other models. Strong-guided
communication mechanisms dynamically assign weights

based on how well each model handles different samples,
enabling effective learning for every sample. This dynamic
weighting is defined through strong-guided communication
mechanisms as follows:

DSC (m) = (pm +
log

∏|M|
j ̸=m pj

log
∏|M|

i=1 pi

) · outputlogitsm , (20)

where pm is the prediction of m-th model.

The DHC and DSC modules, featuring hierarchical orga-
nizational structures, progressive interaction modes, and
strong-guided communication mechanisms, are integrated
into the overall loss function as follows:

Loverall =Lcls

(
y, fDSC(fDHC(x))

)
+ Lreg

(
y, fDSC(fDHC(x))

)
,

(21)

where x is the input, y is the label, Lcls represents the clas-
sification loss, Lreg represents the regression loss, fDHC(·)
denotes the collaboration with DHC, and fDSC(·) denotes
the collaboration with DSC. Lcls is employed for classi-
fication tasks, while both Lcls and Lreg are utilized for
detection tasks. For a clearer understanding of training
and inference, we have described the detailed algorithms in
Algorithms 1 and 2.
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Algorithm 1 Training for DISC.
Input: Datasets DMn , model Mn, main task Tmain;
Output: Embedding with DHC fDHC

Mn
(·), embedding with

DSC fDSC
Mn

(·), downstream task head f head
Mn

(·);
1: if Tmain = classification then
2: while not converged do
3: Fix detection model Mdet;
4: Get a mini-batch of training data from DMcls

;
5: Calculate the overall loss Loverall using Eq. (21);
6: Update the classification model, i.e., fDHC

Mcls
(·),

fDSC
Mcls

(·), and f head
Mcls

(·);
7: end while
8: end if
9: if Tmain = detection then

10: while not converged do
11: Fix classification model Mcls;
12: Get a mini-batch of training data from DMdet

;
13: Calculate the overall loss Loverall using Eq. (21);
14: Update the detection model, i.e., fDHC

Mdet
(·),

fDSC
Mdet

(·), and f head
Mdet

(·);
15: end while
16: end if

Algorithm 2 Inference for DISC.
Given components: Backbone f bMn

(·), downstream task
head f head

Mn
(·);

Input: Test sample x;
Output: Final prediction y∗;

1: Calculate image feature f bMcls
(x) and f bMdet

(x);
2: Calculate weights of the feature WDHC

cls and WDHC
det ;

3: Calculate weights of the logits WDSC
cls and WDSC

det ;
4: Return final prediction y∗.

5. Experiments
In this section, we compare DISC with state-of-the-art meth-
ods on the CIFAR100 and VOC07+12 datasets. We discuss
task-driven knowledge transfer methods, and the ablation
studies demonstrate the effectiveness of the DHC and DSC
modules. Our model is implemented in PyTorch (Paszke
et al., 2019) and deployed on an NVIDIA RTX 3090 GPU.

5.1. Implementation Details

Datasets: We evaluate the proposed method on CI-
FAR100 (Krizhevsky et al., 2009) and VOC07+12 (Ever-
ingham et al., 2010; 2015) datasets using a data-efficient
setting. Specifically, we employ 10% of the training set and
the complete test set, with CIFAR100 used for evaluating
classification and VOC07+12 for assessing detection.

Compared methods: To enable comparison with KD and
MTL in the SC setting, we adopt the hard-sharing mecha-

nism from MTL, based on KD methods such as LSKD (Sun
et al., 2024), CrossKD (Wang et al., 2024), and PPAL (Yang
et al., 2024a). In this approach, the hidden layers trained
under the guidance of the teacher model are shared across
all tasks, while separate output layers for specific tasks
are retained. Additionally, we compare several classic
methods, including SwAV (Caron et al., 2020), DeepClus-
terV2 (Caron et al., 2018), MoCo v2 (Chen et al., 2020),
and CLIP (Radford et al., 2021).

5.2. Specialization and Generalization are All You Need

We analyze the Fine-Tune (FT), KD, and MTL knowledge
transfer methods based on expert models for classification
and detection, as shown in Table 1. Then, we compare DISC
with state-of-the-art methods, as shown in Table 2.

Method Before evolution (%) ↑ After evolution (%) ↑
CLS DET AVG CLS DET AVG

Expert(CLS)+FT 70.68 0.00 35.34 0.68 65.00 32.84
Expert(CLS)+KD 70.68 0.00 35.34 0.61 66.35 33.48
Expert(CLS)+MTL 70.68 0.00 35.34 70.68 59.92 65.30
Expert(DET)+FT 0.47 83.89 42.18 64.08 0.00 32.04
Expert(DET)+KD 0.47 83.89 42.18 66.82 0.00 33.41
Expert(DET)+MTL 0.47 83.89 42.18 43.05 83.89 63.47
DISC 70.68 0.00 35.34 72.28(+1.60) 84.92(+1.03) 78.60(+13.30)

Table 1: Comparison of performance across different tasks
before and after evolution on CIFAR100 and VOC07+12
datasets. The 1st/2nd best results are indicated in red/blue.

Method CLS (%) ↑ DET (%) ↑ AVG (%) ↑
SwAV (Caron et al., 2020) 65.90 69.20 67.55
DeepClusterV2 (Caron et al., 2018) 66.10 70.00 68.05
MoCo v2 (Chen et al., 2020) 66.00 70.20 68.10
CLIP (Radford et al., 2021) 58.70 68.60 63.65
LSKD(CLS)+MTL (Sun et al., 2024) 71.05 63.37 67.21
LSKD(DET)+MTL (Sun et al., 2024) 50.13 83.91 67.02
CrossKD(CLS)+MTL (Wang et al., 2024) 71.13 63.85 67.49
CrossKD(DET)+MTL (Wang et al., 2024) 52.96 84.01 68.49
PPAL(CLS)+MTL (Yang et al., 2024a) 70.95 62.31 66.63
PPAL(DET)+MTL (Yang et al., 2024a) 50.68 83.95 67.32
DISC 72.28(+1.15) 84.92(+0.91) 78.60(+10.11)

Table 2: Comparison of performance across different tasks
on CIFAR100 and VOC07+12 datasets. The 1st/2nd best
results are indicated in red/blue.

FT and KD lose task generalization: As shown in Table 1,
both FT and KD obtain new downstream task capabilities at
the cost of sacrificing performance on existing tasks. This
raises the question of whether acquiring new task abilities
alone constitutes evolution. Our goal is for the model to
retain or even improve performance on old tasks while learn-
ing new ones. Additionally, even focusing on new tasks, FT
and KD underperform compared to DISC, as they fail to
utilize cross-task knowledge. Both FT and KD can cause
models to blindly follow the evolutionary process, degrading
original task capabilities and losing generalization.
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MTL overlooks specialization for new tasks: As shown
in Table 1, we observe that MTL preserves performance on
existing tasks by freezing the model for those tasks. While
MTL trains new task-specific parameters for learning new
downstream tasks, the model cannot fully optimize for the
new tasks due to the need to maintain performance on exist-
ing ones. MTL achieves basic evolution but still falls short
of our goal. MTL struggles to fully learn the capabilities for
new downstream tasks while failing to enhance performance
on existing tasks. In the evolutionary process, MTL priori-
tizes maintaining generalization for existing tasks, overlook-
ing specialization for new tasks.

DISC balances specialization and generalization: Based
on the SC paradigm, DISC trains task-specific parameters
while dynamically leveraging auxiliary information from
other models for collaborative learning. DISC’s hierarchical
organizational structures utilize both task-specific data and
guidance from other tasks, acquiring intra-task and cross-
task knowledge. Its progressive interaction modes enable
curriculum-like learning, while strong-guided communica-
tion mechanisms allow dynamic weighting of learning and
inference. DISC not only enhances new task capabilities
but also improves existing task performance through model
interactions, as shown in Tables 1 and 2.

Analysis of specialization and generalization: Special-
ization and generalization are critical in SC. Specialization
means the model can effectively learn new tasks or improve
performance on existing ones, while generalization refers
to the model’s ability to perform well across multiple tasks.
As shown in Table 2, classical models struggle to maintain
their original performance in data-efficient settings and on
ResNet50, indicating an over-reliance on large datasets and
model parameters. Although the combination of KD and
MTL comes close to achieving the SC objective, there is still
a noticeable gap compared to the DISC model we propose.

5.3. Ablation Study

To further verify the significance of each module, i.e., DHC
and DSC, in DISC based on SC, we conduct the ablation
study as shown in Table 3. The results reveal that the model
with DHC and DSC attains the best performance.

Method DHC DSC CLS (%) ↑ DET (%) ↑ AVG (%) ↑

DISC

70.74 83.28 77.01
✓ 71.26 84.25 77.76

✓ 71.15 84.04 77.60
✓ ✓ 72.28(+1.54) 84.92(+1.64) 78.60(+1.59)

Table 3: Ablation study on CIFAR100 and VOC07+12. In
the table, “✓” denotes DISC with the module.

Without DHC and DSC: We observe that DHC and DSC
are essential to DISC, as they effectively utilize the socia-

bility information of cross-task models. In contrast, direct
interaction between different downstream task models fol-
lows a static interaction mechanism that aggregates features
from the same layer with uniform weights, which restricts
improvements in both specialization and generalization.

Using only DHC: We observe significant performance im-
provement. This indicates that hierarchical cross-task fea-
tures interacting dynamically and progressively are highly
effective in enhancing representational capability. DHC
provides insight into cross-task knowledge transfer.

Using only DSC: We observe that the model’s performance
improves, but not as significantly as with DHC. While DHC
focuses on enhancing representational capability, DSC fo-
cuses on improving decision-making capability. This sug-
gests that both representational and decision-making capa-
bilities are crucial for model performance. DSC provides
insight into dynamic decision-making.

Combining DHC and DSC: We find that the model
achieves the expected results, not only adding new down-
stream task capabilities but also improving the performance
of existing tasks through model interactions. This shows
that representational ability forms the foundation for achiev-
ing good performance, while decision-making ability helps
push the performance beyond its limits.

5.4. Further Analysis

The DISC, designed with SC, incorporates task-specific
characteristics through the DHC and DSC modules. Classi-
fication focuses on image-wise logits interaction, while de-
tection emphasizes patch-wise feature interaction. Despite
their different focuses, the complementary information from
both tasks enhances representational and decision-making
capabilities, as illustrated in Figure 5.

Adversarial competition: As shown in the red dashed box
in Figure 5a, DHC and DSC do not consistently improve
performance across all classes and may even experience
performance degradation due to adversarial competition.
DHC focuses on low-level intra-class information, while
DSC emphasizes high-level inter-class information. Relying
on only one of these modules is affected by large intra-
class variation and high inter-class similarity, leading to
adversarial competition.

Dynamic coevolution: As illustrated in Figure 5b, the syn-
ergistic integration of DHC and DSC significantly improves
class-wise performance, culminating in enhanced overall
model efficacy. This underscores the critical role of both
low-level and high-level information in augmenting the
model’s perceptual capabilities. Mastering the effective
collaboration of this complementary information is funda-
mental to realizing SC, with DISC offering valuable insights
into this complex interplay.
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(a) Comparison of various modules on VOC07+12 dataset

(b) Comparison of DISC and vanilla on VOC07+12 dataset

Figure 5: The performance differences for each class.

5.5. Discussion

SC is a cross-task collaborative paradigm that facilitates
knowledge interaction, allowing models to co-evolve while
improving both specialization and generalization. Along-
side advancing learning paradigms, SC is applicable to
defect detection, autonomous driving, and emergency res-
cue. Table 4 presents a comparative analysis of learning
paradigms in addressing diverse challenges.

Paradigm Specialization Generalization Dynamism Hierarchy
KD ✓ × × ×

MTL × ✓ × ×
SC ✓ ✓ ✓ ✓

Table 4: Comparison of different learning paradigms.

i) Specialization: The model needs to preserve or improve
the performance of original tasks while learning new tasks.

ii) Generalization: As new tasks arise, the model needs to
adapt without compromising existing performance.

iii) Dynamism: Model interaction should be weighted by
each model’s proficiency with each sample.

iv) Hierarchy: Model interaction should be diverse and
comprehensive to maximize knowledge utilization.

Existing KD and MTL paradigms face challenges in balanc-
ing specialization and generalization in dynamic environ-
ments. SC overcomes this by enabling knowledge sharing
and coevolution via DHC and DSC modules across different
downstream tasks.

6. Conclusion
In this paper, we introduce a practical SC paradigm with
a rigorous mathematical foundation and an information-
theoretic explanation. Additionally, we carefully design
DISC based on SC to not only incorporate new downstream
task capabilities but also enhance the performance of exist-
ing tasks through model interactions. Essentially, we view
specialization and generalization as two sides of the same
coin, not independent issues. The dynamic interaction be-
tween features and logits provides new insights into SC,
highlighting the importance of tailored approaches to maxi-
mize strengths. In future work, we plan to further explore
the potential of combining multiple modalities and tasks.
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M. Muit: An end-to-end multitask learning transformer.
In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 12021–12031, 2022.

Cao, B., Xia, Y., Ding, Y., Zhang, C., and Hu, Q. Predictive
dynamic fusion. In International Conference on Machine
Learning, volume 235, pp. 5608–5628. PMLR, 2024.

Caron, M., Bojanowski, P., Joulin, A., and Douze, M. Deep
clustering for unsupervised learning of visual features. In
European Conference on Computer Vision, pp. 132–149,
2018.

Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P.,
and Joulin, A. Unsupervised learning of visual features
by contrasting cluster assignments. Advances in Neural
Information Processing Systems, 33:9912–9924, 2020.

Caruana, R. Multitask learning. Machine learning, 28:
41–75, 1997.

Chen, X., Fan, H., Girshick, R., and He, K. Improved
baselines with momentum contrastive learning. arXiv
preprint arXiv:2003.04297, 2020.

Chen, Z., Wu, J., Wang, W., Su, W., Chen, G., Xing, S.,
Zhong, M., Zhang, Q., Zhu, X., Lu, L., Li, B., Luo,
P., Lu, T., Qiao, Y., and Dai, J. Intern vl: Scaling up
vision foundation models and aligning for generic visual-
linguistic tasks. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 24185–24198, 2024.

Cover, T. M. Elements of information theory. John Wiley &
Sons, 1999.

Dunbar, R. I. The social brain hypothesis. Evolutionary
Anthropology: Issues, News, and Reviews: Issues, News,
and Reviews, 6(5):178–190, 1998.

Everingham, M., Gool, L., Williams, C. K., Winn, J., and
Zisserman, A. The pascal visual object classes (voc)
challenge. International Journal of Computer Vision, 88
(2):303–338, 2010.

Everingham, M., Eslami, S. M., Gool, L., Williams, C. K.,
Winn, J., and Zisserman, A. The pascal visual object
classes challenge: A retrospective. International Journal
of Computer Vision, 111(1):98–136, 2015.

Feder, M. and Merhav, N. Relations between entropy and
error probability. IEEE Transactions on Information The-
ory, 40(1):259–266, 1994.

Fukunaga, K. and Hummels, D. M. Bayes error estimation
using parzen and k-nn procedures. IEEE Transactions on
Pattern Analysis and Machine Intelligence, (5):634–643,
1987.

Gou, J., Yu, B., Maybank, S. J., and Tao, D. Knowledge
distillation: A survey. International Journal of Computer
Vision, 129(6):1789–1819, 2021.

Hao, Z., Guo, J., Han, K., Tang, Y., Hu, H., Wang, Y., and
Xu, C. One-for-all: Bridge the gap between heteroge-
neous architectures in knowledge distillation. Advances
in Neural Information Processing Systems, 36, 2024.

Henrich, J. The secret of our success: How culture is driving
human evolution, domesticating our species, and making
us smarter. Princeton University Press, 2016.

Hinton, G. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

Huang, T., Zhang, Y., Zheng, M., You, S., Wang, F., Qian,
C., and Xu, C. Knowledge diffusion for distillation. Ad-
vances in Neural Information Processing Systems, 36:
65299–65316, 2024.

Humphrey, N. K. The social function of intellect. pp. 303–
317, 1976.

Jin, Y., Wang, J., and Lin, D. Multi-level logit distillation. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 24276–24285, 2023.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. University of Toronto, 2009.

Laland, K. N. Darwin’s unfinished symphony: how culture
made the human mind. Princeton University Press, 2017.

Li, S., Du, C., Zhao, Y., Huang, Y., and Zhao, H. What
makes for robust multi-modal models in the face of miss-
ing modalities? arXiv preprint arXiv:2310.06383, 2023a.

Li, Z., Li, X., Yang, L., Zhao, B., Song, R., Luo, L., Li,
J., and Yang, J. Curriculum temperature for knowledge
distillation. In AAAI Conference on Artificial Intelligence,
volume 37, pp. 1504–1512, 2023b.

Long, M., Cao, Z., Wang, J., and Yu, P. S. Learning multiple
tasks with multilinear relationship networks. In Advances
in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

10



Socialized Coevolution: Advancing a Better World through Cross-Task Collaboration

Lu, Y., Huang, S., Yang, Y., Sirejiding, S., Ding, Y., and Lu,
H. Fedhca2: Towards hetero-client federated multi-task
learning. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 5599–5609, 2024a.

Lu, Z., Chen, J., Lian, D., Zhang, Z., Ge, Y., and Chen, E.
Knowledge distillation for high dimensional search index.
Advances in Neural Information Processing Systems, 36:
33403–33419, 2024b.

Mesoudi, A. Cultural selection and biased transforma-
tion: two dynamics of cultural evolution. Philosophical
Transactions of the Royal Society B, 376(1828):20200053,
2021.

Meyerson, E. and Miikkulainen, R. Beyond shared hierar-
chies: Deep multitask learning through soft layer order-
ing. arXiv preprint arXiv:1503.02531, 2017.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information
Processing Systems, volume 32, pp. 8026–8037, 2019.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International Conference on
Machine Learning, pp. 8748–8763. PMLR, 2021.

Shao, J., Chen, S., Li, Y., Wang, K., Yin, Z., He, Y., Teng,
J., Sun, Q., Gao, M., Liu, J., et al. Intern: A new learn-
ing paradigm towards general vision. arXiv preprint
arXiv:2111.08687, 2021.

Sun, S., Ren, W., Li, J., Wang, R., and Cao, X. Logit
standardization in knowledge distillation. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 15731–15740, 2024.

Thompson, B., Van Opheusden, B., Sumers, T., and Grif-
fiths, T. Complex cognitive algorithms preserved by selec-
tive social learning in experimental populations. Science,
376(6588):95–98, 2022.

Tomasello, M. Cultural learning redux. Child Development,
87(3):643–653, 2016.

Tomasello, M., Kruger, A. C., and Ratner, H. H. Cultural
learning. Behavioral and Brain Sciences, 16(3):495–511,
1993.

Vandenhende, S., Georgoulis, S., Van Gansbeke, W., Proes-
mans, M., Dai, D., and Van Gool, L. Multi-task learning
for dense prediction tasks: A survey. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 44
(7):3614–3633, 2022.

Wang, J., Chen, Y., Zheng, Z., Li, X., Cheng, M.-M., and
Hou, Q. Crosskd: Cross-head knowledge distillation for
object detection. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16520–16530, 2024.

Wei, S., Luo, C., and Luo, Y. Scaled decoupled distilla-
tion. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15975–15983, 2024.

Xiao, L. and Yamasaki, T. Boosting fine-grained fash-
ion retrieval with relational knowledge distillation. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8229–8234, 2024.

Xu, Y., Li, X., Yuan, H., Yang, Y., and Zhang, L. Multi-task
learning with multi-query transformer for dense predic-
tion. IEEE Transactions on Circuits and Systems for
Video Technology, 34(2):1228–1240, 2024.

Yang, C., Zhou, H., An, Z., Jiang, X., Xu, Y., and Zhang, Q.
Cross-image relational knowledge distillation for seman-
tic segmentation. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 12319–12328, 2022.

Yang, C., Huang, L., and Crowley, E. J. Plug and play active
learning for object detection. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 17784–
17793, 2024a.

Yang, Y., Jiang, P.-T., Hou, Q., Zhang, H., Chen, J., and Li,
B. Multi-task dense prediction via mixture of low-rank
experts. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 27927–27937, 2024b.

Yao, X., Wang, Y., Zhu, P., Lin, W., Li, J., Li, W., and Hu,
Q. Socialized learning: Making each other better through
multi-agent collaboration. In International Conference
on Machine Learning, pp. 56927–56945, 2024.

Zhang, Q., Wu, H., Zhang, C., Hu, Q., Fu, H., Zhou, J. T.,
and Peng, X. Provable dynamic fusion for low-quality
multimodal data. In International Conference on Machine
Learning, pp. 41753–41769. PMLR, 2023.

Zhang, Y., Huang, T., Liu, J., Jiang, T., Cheng, K., and
Zhang, S. Freekd: Knowledge distillation via semantic
frequency prompt. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 15931–15940,
2024.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba,
A. Learning deep features for discriminative localiza-
tion. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2921–2929, 2016.

Zhu, Z., Hong, X., Ma, Z., Zhuang, W., Ma, Y., Dai, Y.,
and Wang, Y. Reshaping the online data buffering and
organizing mechanism for continual test-time adaptation.

11



Socialized Coevolution: Advancing a Better World through Cross-Task Collaboration

In European Conference on Computer Vision, pp. 415–
433. Springer, 2024.

Zuo, Y., Yao, H., Zhuang, L., and Xu, C. Hierarchical
augmentation and distillation for class incremental audio-
visual video recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 46(11):7348–7362,
2024.

12



Socialized Coevolution: Advancing a Better World through Cross-Task Collaboration

A. Supplementary Material
The supplementary material contains comprehensive details
on the implementations and experimental results referenced
in the main paper, along with supplementary theoretical
analysis and in-depth discussions. It is organized as follows:

• In Section B, we offer a thorough overview of the
methods compared in the main paper, accompanied by
a detailed description of the datasets utilized.

• In Section C, we present the full set of experimen-
tal results, accompanied by an in-depth analysis that
thoroughly evaluates the model’s performance.

• In Section D, we provide a comprehensive theoreti-
cal analysis of sociability information, exploring its
implications within the context of the study.

• In Section E, we explore SC’s insights across real-
world applications and learning paradigms, aiming to
spark interest in this dynamic interdisciplinary field.

B. Implementation Details
In this section, we offer a detailed description of the meth-
ods compared in the main paper, as well as the datasets used.
For classification as the primary task, the model is trained
for 1500 epochs using SGD with a batch size of 64. The
threshold is set to 300, with a learning rate of 0.01, momen-
tum of 0.9, and weight decay of 0.001. For detection as
the primary task, the model is trained for 600 epochs using
SGD with a batch size of 32. The threshold is also set to
300, with a learning rate of 0.03, momentum of 0.9, and
weight decay of 0.001. All reported results represent the
mean values obtained from 3 independent trials.

B.1. Compared Methods

In this subsection, we provide an overview of the methods
compared in the main paper, outlining their key characteris-
tics. The methods considered are as follows:

• SwAV (Caron et al., 2020): state-of-the-art unsuper-
vised learning method, which improves representation
by using online clustering with swapped prediction.

• DeepClusterV2 (Caron et al., 2018): state-of-the-
art unsupervised learning method, which jointly trains
convolutional networks and uses k-means clustering
for end-to-end optimization.

• MoCov2 (Chen et al., 2020): state-of-the-art con-
trastive learning method, which improves image rep-
resentation by incorporating a projection head and
stronger data augmentation.

• CLIP (Radford et al., 2021): state-of-the-art con-
trastive learning method, which pre-trains on a large
dataset of pairs and enables zero-shot transfer across
various tasks without task-specific training.

• LSKD (Sun et al., 2024): state-of-the-art knowledge
distillation method, which standardizes logits using
Z-score before softmax.

• CrossKD (Wang et al., 2024): state-of-the-art knowl-
edge distillation method, which aligns student and
teacher outputs through cross-head mimicking.

• PPAL (Yang et al., 2024a): state-of-the-art active
learning method, which combines uncertainty-based
and diversity-based sampling.

B.2. Datasets

The VOC07+12 training dataset contains 47,221 objects,
while the testing dataset includes 14,976 objects. The CI-
FAR100 training dataset consists of 50,000 images, with
10,000 images in the testing set. In the data-efficient setting,
we utilize 10% of the training data: for VOC07+12 (10%),
the training set contains 4,696 objects, and the testing set re-
mains at 14,976 objects. For CIFAR100 (10%), the training
set includes 5,000 images, with the testing set consisting of
10,000 images. We list the details of the datasets in Table 5.

C. Full Experimental Results
In this section, we present additional experimental results,
including analyses of parameters and visualizations.

C.1. Analysis of Parameters

Dynamic progressive interaction: Inspired by curriculum
learning (Bengio et al., 2009), we apply sine and cosine
in Dynamic Information Socialized Collaboration (DISC)
to achieve dynamic progressive interaction. DISC incorpo-
rates two key hyper-parameters: training loops Eloops and
threshold Et, both of which influence the dynamic progres-
sive interaction of the model. As shown in Figure 6, the
sine function achieves superior performance on CIFAR100
when Eloops = 1500 and Et = 300, while Eloops = 600 and
Et = 300 yield better results on VOC07+12.

C.2. Analysis of Visualizations

Competition and coevolution: In the main paper, we ana-
lyze Figure 5 to demonstrate that using Dynamic Hierarchi-
cal Collaboration (DHC) or Dynamic Selective Collabora-
tion (DSC) alone cannot fully realize coevolution for certain
categories, due to high intra-class variance and inter-class
similarity. Only their combined application effectively over-
comes these challenges. To further investigate, we perform
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Datasets Training dataset Testing dataset Detailed classes

VOC07+12 47,221 14,976
aeroplane, bicycle, bird, boat, bus, car, cat, chair, cow, dining table, dog, horse,
motorbike, person, potted plant, sheep, sofa, train, TV monitor

VOC07+12(10%) 4,696 14,976
aeroplane, bicycle, bird, boat, bus, car, cat, chair, cow, dining table, dog, horse,
motorbike, person, potted plant, sheep, sofa, train, TV monitor

CIFAR100 50,000 10,000

apple, aquarium fish, baby, bear, beaver, bed, bee, beetle, bicycle, bottle, bowl,
boy, bridge, bus, butterfly, camel, can, castle, caterpillar, cattle, chair,
chimpanzee, clock, cloud, cockroach, couch, crab, crocodile, cup, dinosaur,
dolphin, elephant, flatfish, forest, fox, girl, hamster, house, kangaroo, keyboard,
lamp, lawn mower, leopard, lion, lizard, lobster, man, maple tree, motorcycle,
mountain, mouse, mushroom, oak tree, orange, orchid, otter, palm tree, pear,
pickup truck, pine tree, plain, plate, poppy, porcupine, possum, rabbit, raccoon,
ray, road, rocket,rose, sea, seal, shark, shrew, skunk, skyscraper, snail, snake,
spider, squirrel, streetcar, sunflower, sweet pepper, table, tank, telephone,
television, tiger, tractor, train, trout, tulip, turtle, wardrobe, whale, willow tree,
wolf, woman, worm

CIFAR100(10%) 5,000 10,000

apple, aquarium fish, baby, bear, beaver, bed, bee, beetle, bicycle, bottle, bowl,
boy, bridge, bus, butterfly, camel, can, castle, caterpillar, cattle, chair,
chimpanzee, clock, cloud, cockroach, couch, crab, crocodile, cup, dinosaur,
dolphin, elephant, flatfish, forest, fox, girl, hamster, house, kangaroo, keyboard,
lamp, lawn mower, leopard, lion, lizard, lobster, man, maple tree, motorcycle,
mountain, mouse, mushroom, oak tree, orange, orchid, otter, palm tree, pear,
pickup truck, pine tree, plain, plate, poppy, porcupine, possum, rabbit, raccoon,
ray, road, rocket,rose, sea, seal, shark, shrew, skunk, skyscraper, snail, snake,
spider, squirrel, streetcar, sunflower, sweet pepper, table, tank, telephone,
television, tiger, tractor, train, trout, tulip, turtle, wardrobe, whale, willow tree,
wolf, woman, worm

Table 5: Detailed datasets.

(a) Sine on CIFAR100 (b) Cosine on CIFAR100

(c) Sine on VOC07+12 (d) Cosine on VOC07+12

Figure 6: Comparison of different weights.

Class Activation Maps (CAMs) analysis (Zhou et al., 2016),
as shown in Figure 7. DHC emphasizes low-level intra-class
features, which can cause confusion for categories with sim-

ilar textures, while DSC focuses on high-level inter-class
features, which may confuse categories with high inter-class
similarity. To address these issues, we integrate DHC and
DSC into the DISC model, eliminating adversarial competi-
tion and promoting coevolution.

D. Theoretical Analysis
Below, we provide the omitted proofs from Sections 3 and
4 (refer to the main paper).

D.1. Proof of Theorem 3.3

Proof. We leverage previous results (Cover, 1999; Feder &
Merhav, 1994; Li et al., 2023a):

− log
(
1− Pmul

ec

)
≤ H(Y | XM1

, XM2
), (22)

H(Y | XM1
, XM2

) ≤ log 2 + Pmul
ec log |Y |. (23)

Combine the two inequalities and put Pmul
ec in the middle:

H(Y |XM1
,XM2

)−log 2

log |Y | ≤ Pmul
ec ≤ 1− exp(−H(Y | XM1 , XM2)), (24)

which is the first result in the theorem. Then we apply the
results to P sin

ec :
H(Y |XM1

)−log 2

log |Y | ≤ P sin
ec ≤ 1− exp(−H(Y | XM1)). (25)
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(a) Aeroplane-w/ None (b) Aeroplane-w/ DHC (c) Aeroplane-w/ DSC (d) Aeroplane-w/ (DHC+DSC)

(e) Car-w/ None (f) Car-w/ DHC (g) Car-w/ DSC (h) Car-w/ (DHC+DSC)

(i) Potted plant-w/ None (j) Potted plant-w/ DHC (k) Potted plant-w/ DSC (l) Potted plant-w/ (DHC+DSC)

(m) Sheep-w/ None (n) Sheep-w/ DHC (o) Sheep-w/ DSC (p) Sheep-w/ (DHC+DSC)

Figure 7: The visualization with different modules.

Since

ΦXM2
= I(XM2 ;Y | XM1)

= I(Y ;XM1
, XM2

)− I(Y ;XM1
)

= [H(Y )−H(Y | XM1
, XM2

)]− [H(Y )−H(Y | XM1
)]

= H(Y |XM1
)−H(Y |XM1

, XM2
).

(26)
We can derive

H(Y |XM1
)− ΦXM2

− log 2

log |Y |
≤ Pmul

ec ≤ 1− exp(−H(Y | XM1) + ΦXM2
). (27)

D.2. Proof of Theorem 3.5

Proof. We leverage previous results (Zuo et al., 2024; Li
et al., 2023a) and assume that w∗ is the optimal parameter
for the given dataset DM1

. Hence, we have:

log p (w∗ | DM1)

= log p (DM1 | w∗) + log p (w∗)− log p(DM1).
(28)

For p(DM1), we have

p(DM1
) =

∫
p(DM1

| w)p(w) dw. (29)
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Since∫
p(DM1

| w)p(w) dw <
∫
p (DM1

| w∗) p(w) dw. (30)

We can derive

p(DM1
) < p (DM1

| w∗) . (31)

After integrating DM1 and DΦM2
, the combined dataset is

DS = DM1 ∪ DΦM2
, yielding

log p(w∗ | DS)

= log p(DS | w∗) + log p(w∗)− log p(DS)

= log p(DM1 ,DΦM2
| w∗) + log p(w∗)

− log p(DM1
,DΦM2

)

= log p(DM1
| w∗) + log p(DΦM2

| w∗) + log p(w∗)

− log p(DM1
)− log p(DΦM2

)

= log p(DM1 | w∗) + log p(w∗)− log p(DM1)

+ log p(DΦM2
| w∗)− log p(DΦM2

).
(32)

Assuming the supplementary augmented dataset DΦM2

closely resembles the data distribution of DM1 , we have

p
(
DΦM2

| w∗) > p
(
DΦM2

)
. (33)

We can derive

log p(w∗ | DS)

> log p(DM1
| w∗) + log p(w∗)− log p(DM1

)

= log p(w∗ | DM1
).

(34)

D.3. Proof of Theorem 3.7

Proof. We decompose the DISC into two components: the
backbone with parameters w∗

f and the head with parameters
w∗

h. Using the supplementary augmented dataset DΦM2
, we

obtain

log p
(
w∗ | DΦM2

)
= log p

(
w∗

f , w
∗
h | DΦM2

)
= log p

(
w∗

f | DΦM2

)
+ log p

(
w∗

h | DΦM2

)
= log p

(
w∗

f | DΦM2

)
+ log p

(
w∗

h | f
(
DΦM2

))
= log p

(
w∗

f | DΦM2

)
+ log p

(
f
(
DΦM2

)
| w∗

h

)
+ log p (w∗

h)− log p
(
f
(
DΦM2

))
.

(35)

Since DΦM2
is the supplementary augmentation of the

dataset DM1 , it has a similar distribution with DM1 , we

have

log p
(
w∗

h | f
(
DΦM2

))
= log p

(
f
(
DΦM2

)
| w∗

h

)
+ log p (w∗

h)− log p
(
f
(
DΦM2

))
< log p

(
f (DM1)

ΦM2 | w∗
h

)
+ log p (w∗

h)

− log p
(
f (DM1)

ΦM2

)
= log p

(
w∗

h | f(DM1)
ΦM2

)
.

(36)
We can derive

log p
(
w∗ | DΦM2

)
= log p

(
w∗

f | DΦM2

)
+ log p

(
w∗

h | f
(
DΦM2

))
< log p

(
w∗

f | DΦM2

)
+ log p

(
w∗

h | f(DM1
)ΦM2

)
.
(37)

D.4. Proof of Theorem 4.1

Proof. Let Dtrain = {xi, yi}Ni=1 be a training dataset of
N samples, and ˆerr(fm) be the empirical error of the m-
th model fm on Dtrain. For any hypothesis f ∈ H (i.e.,
H : X → {−1, 1}), with probability at least 1 − δ, the
generalization error is bounded by:

GError(f) ≤
M∑

m=1

E(wm) ˆerr(fm)︸ ︷︷ ︸
Term-L (empirical loss)

+

M∑
m=1

E(wm)Rm(fm)︸ ︷︷ ︸
Term-C (complexity)

+

M∑
m=1

Cov(wm, ℓm)︸ ︷︷ ︸
Term-Cov (covariance)

+M

√
ln(1/δ)

2N
,

(38)

where E(wm) is the expected collaboration weights,
Rm(fm) is the Rademacher complexity of model fm, and
Cov(wm, ℓm) is the covariance between the weight and the
loss.

In static collaboration, the weights wm
static are constant,

hence
Cov(wm

static, ℓ
m) = 0. (39)

In dynamic collaboration, the collaboration weight wm
dynamic

increases as the model loss ℓm decreases. Thus,

Cov(wm
dynamic, ℓ

m) ≤ 0, (40)

which effectively reduces the Term-Cov and thereby lowers
the generalization bound.
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Based on the principle of convexity, it can be concluded
that:∑

E(wm
dynamic) ˆerr(fm) ≤

∑
wm

static ˆerr(fm). (41)

∑
E(wm

dynamic)Rm(fm) ≤
∑

wm
static Rm(fm). (42)

Since the confidence term M
√

ln(1/δ)
2N is independent of

the collaboration strategy, it remains the same. Therefore,
suppose the hypothesis space is H : X → {−1, 1}. Then
for any fdynamic, fstatic ∈ H, and for 1 > δ > 0, it holds that

O(GError(fdynamic)) ≤ O(GError(fstatic)). (43)

E. Future Applications and Future Research
In this section, we provide an in-depth exploration of SC’s
insights across diverse real-world applications and learning
paradigms, highlighting its potential to bridge disciplinary
boundaries. By shedding light on its foundational principles
and practical implications, we aim to spark broader interest
in this rapidly evolving and interdisciplinary domain.

E.1. Future Applications of SC

This section delves into the future applications of SC in
emerging fields. We have studied various potential appli-
cation scenarios, analyzed their unique requirements, chal-
lenges, and opportunities, explored the different uses of SC
across different domains, and provided practical guidance
on how to implement it.

Defect detection: Defect detection and segmentation tasks
for industrial products typically involve processing high-
dimensional, noisy image data. Moreover, the manifes-
tations of faults are diverse, involving different materials,
structures, and processes, and may appear as small cracks,
corrosion, wear, etc. This requires models to handle com-
plex and heterogeneous data in a diversified manner, which
poses a significant challenge for the application of SC. Fu-
ture research should focus on ensuring that the coevolution
between different models effectively enhances their individ-
ual performance without causing a decline in performance.
Additionally, the interaction between detection and segmen-
tation models requires precise design, enabling them to
mutually promote each other’s learning, rather than simply
optimizing their own objectives independently.

Autonomous driving: In autonomous driving, road envi-
ronment segmentation and object detection tasks need to
handle complex and dynamic scenarios, including varying

weather conditions, visibility, and road situations. Ensuring
that SC between different models can effectively enhance
each other’s performance in such dynamically changing en-
vironments is a significant challenge. By applying SC to
autonomous driving, the detection model can assist the seg-
mentation model in accurately identifying different traffic
signs, pedestrians, vehicles, and other objects, while the
segmentation model can provide more precise background
information and spatial distribution for object detection. Fu-
ture research should focus on designing adaptive feedback
mechanisms that allow models to mutually promote each
other during joint training and flexibly adjust according to
the demands of different scenarios and tasks.

Emergency rescue: In emergency rescue scenarios, Aug-
mented Reality (AR) technology can play a crucial role.
In complex rescue environments, AR can help rescue per-
sonnel quickly find the best route by real-time planning
and displaying safe paths and obstacle avoidance informa-
tion. For lost item classification, AR can overlay real-time
classification data and item features onto the real-world
scene, assisting rescue personnel in quickly identifying and
categorizing items. The application of SC in AR for emer-
gency rescue scenarios presents the following challenges.
Emergency rescue scenes are typically highly dynamic and
uncertain, requiring models to not only have high accuracy
in detection and classification but also to possess strong ro-
bustness. Additionally, real-time detection and classification
tasks have different requirements: object detection focuses
on quickly and accurately locating and identifying key tar-
gets at the rescue site, while item classification focuses on
the rapid classification and archiving of items. In this con-
text, research should focus on designing SC mechanisms
that enable the two models to mutually enhance each other,
creating a synergistic effect.

E.2. Future Research and Expansion of SC

In addition to the future applications of SC mentioned above,
in future research, SC can also be integrated with various ex-
isting learning paradigms to be further extended, achieving
better performance across a range of tasks.

Federated Learning (FL): FL is a form of distributed learn-
ing that allows models on different devices to be trained
locally and only share updates with a central server. This
approach ensures data privacy, making it particularly suit-
able for collaborative learning in multi-device environments.
Future research should focus on ensuring collaborative learn-
ing between models, optimizing communication efficiency,
and accelerating the evolution process in multi-device envi-
ronments, while adhering to data privacy protection require-
ments.

In the context of FL, models on different devices can au-
tonomously evolve locally and share the results of their
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local updates through a socialization mechanism to enhance
collaborative effects. For example, in industrial defect de-
tection tasks, due to the involvement of proprietary research
and development secrets in industrial products, full open-
source sharing is not feasible. However, companies can
contribute their defect detection models, which can then be
shared via the socialization mechanism on a central server,
driving advancements in industrial defect detection and seg-
mentation. The integration of SC with FL enables models
distributed across different locations to collaborate in evolu-
tion, safeguarding data privacy while enhancing the overall
intelligence level of the system.

Continual Learning (CL): CL aims to enable models to
gradually expand their knowledge while continuously re-
ceiving new tasks and data, without forgetting previously
learned information. This learning paradigm is particularly
suitable for intelligent systems that operate over long peri-
ods. Future research should focus on combining continual
learning with SC, ensuring that models can share data and
knowledge while avoiding catastrophic forgetting.

In the framework of CL, models can autonomously evolve
when faced with constantly changing environments, and
share local updates through a socialization mechanism to
enhance collaborative effects and reduce forgetting. For ex-
ample, in autonomous driving tasks, as road environments
and traffic conditions continuously change, new objects or
scenarios may emerge, such as suddenly appearing wild
animals, different forms of accident vehicles, or even un-
seen obstacles. Although these new targets or situations
might represent entirely new categories, through CL, the
autonomous driving system can gradually adapt and expand
its knowledge base, while SC helps prevent catastrophic
forgetting, ensuring that the model does not lose the ability
to handle previous tasks while adapting to new ones. The in-
tegration of SC and CL enables autonomous driving models
in different environments to evolve collaboratively, not only
enhancing model adaptability but also ensuring the system
as a whole maintains stronger robustness and performance
over the long term.

Online Learning (OL): OL is a process in which models
continuously learn from streaming data, typically updating
as data arrives gradually, thus avoiding the computational
burden associated with batch training. SC can leverage the
real-time feedback mechanism of OL, allowing different
models to update collaboratively based on the latest data,
rather than waiting for batch data accumulation.

In a constantly changing environment, the coevolution be-
tween models can accelerate their learning process and en-
sure that collaborative optimization does not cause perfor-
mance fluctuations due to the dynamic changes in the data
stream. For example, in emergency rescue scenarios, due
to the complexity of on-site conditions, the collected data

often contains missing values, noise, and biases, leading
to potential shifts in sample distribution. This presents a
major challenge for OL. However, within the SC framework,
different models can collaborate with each other, where the
detection model can help the segmentation model identify
missing or partially damaged objects, and the segmentation
model can provide more precise contextual information to
improve the detection model’s adaptation to the environ-
ment. In this way, SC can enhance the model’s adaptability,
ensuring that it maintains high performance and robustness
even when faced with distribution shifts and drift in the data.
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