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Abstract
We provide a comprehensive analysis of simple
transformer models trained on the histogram task,
where the goal is to count the occurrences of each
item in the input sequence from a fixed alphabet.
Despite its apparent simplicity, this task exhibits a
rich phenomenology that allows us to characterize
how different architectural components contribute
towards the emergence of distinct algorithmic so-
lutions. In particular, we showcase the existence
of two qualitatively different mechanisms that im-
plement a solution, relation- and inventory-based
counting. Which solution a model can implement
depends non-trivially on the precise choice of the
attention mechanism, activation function, memo-
rization capacity and the presence of a beginning-
of-sequence token. By introspecting learned mod-
els on the counting task, we find evidence for the
formation of both mechanisms. From a broader
perspective, our analysis offers a framework to
understand how the interaction of different archi-
tectural components of transformer models shapes
diverse algorithmic solutions and approximations.

1. Introduction
Transformers are the key neural network behind many
recent deep learning advances, most notably large language
models (LLMs). Their success is partly due to their
versatility in processing diverse data types, including text,
images, and video, represented as sequences of tokens (Liu
et al., 2021; Girdhar et al., 2019; Brown et al., 2020). While
scale has been a key factor in unleashing the potential of
these models, it is remarkable that their architecture still
largely follows the same simple template of the original
transformer model proposed by Vaswani et al. (2017). At
its core, a single transformer block primarily alternates two
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basic components: the token-mixing attention mechanism
and a standard fully connected multi-layer perceptron. At
a high level, the attention mechanism mixes the tokens,
while the multi-layer perceptron applies a nonlinear
feature transformation identically to each token. Despite
the widespread use of transformers, there is no clear
consensus on the distinct roles of their components, how
they interact, or if they can be substituted with alternative
modules (Tolstikhin et al., 2021; Bozic et al., 2023; Gu and
Dao, 2023). In particular, the specific contribution of each
architectural element to the model’s hypothesis space –the
range of algorithms it can learn and implement– remains
opaque (Weiss et al., 2021; Delétang et al., 2023; Abbe
et al., 2023; Ouellette et al., 2023).

In this work, we investigate this question from a mecha-
nistic interpretability perspective (Cammarata et al., 2020;
Olah et al., 2020; Elhage et al., 2021; Michaud et al., 2024;
Ouellette et al., 2023) by considering the histogram task
as a prototypical problem (Weiss et al., 2021). This task
consists of predicting the number of appearances of each
token in the input sequences processed by the model – count-
ing. Despite its apparent simplicity, this task exhibits a rich
phenomenology, allowing us to study the relative role of dif-
ferent architectural components and their impact on the final
solutions implemented by the model in a controlled setting.
To this end, we focus on models following the architectural
template of primitive transformer blocks, i.e. alternating a
token-mixing attention mechanism and a multi-layer per-
ceptron.

In our analysis, we provide explicit constructions (parame-
ter configurations) for a range of such architectures reach-
ing perfect accuracy in a model-dependent hyperparameter
regime. In a subsequent step, we compare these algorithms
with the performance and mechanistic behavior of models
trained from data. Our findings reveal that this class of
models is capable of implementing strikingly different solu-
tions for the histogram task, with a strong dependence on
the scale of the model’s hyperparameters and the type of
token-mixing mechanism utilized. In particular, we identify
two main algorithmic strategies a model can implement to
succeed in the histogram task, which we term relation- and
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inventory-based counting. Relation-based counting uses
local pair-wise comparisons between tokens in a given se-
quence to obtain the number of occurrences conditioned
on a given position. Inventory-based counting relies on the
knowledge of the complete alphabet and counts the occur-
rences of all possible tokens to then extract the correct count
for a given position. The emergence of either mechanism
during learning depends on the specifics of the architecture
and the inductive bias it possesses in correspondence to the
task. The main contributions of this work are as follows:

• We show that, for some architectures, the implementa-
tion of relation-based counting is very memory and
compute-efficient as it can leverage an attention-like
dot-product mixing mechanism for comparison oper-
ations. It requires only a low-capacity feed-forward
module, as most of the computation is effectively done
by the token-mixing attention module. In line with
the solution identified by Weiss et al. (2021) for a one-
head, one-layer architecture with a BOS token, we
find that relation-based counting is more generally re-
alized through the formation of an appropriate counter
direction within the token embedding space.

• Inventory-based counting, instead, can be imple-
mented based on an input-independent token-mixing
mechanism. This weak inductive bias can be compen-
sated via a feed-forward module with a large enough
hidden layer that can memorize a lookup table to imple-
ment a comparison operation (inventory): the model-
task misalignment can be closed at the cost of increased
memory and compute requirements.

• We study under which conditions both mechanisms
emerge through training. In particular, we verify the
feasibility regimes, identified for each mechanism from
the explicit constructions, within the parameter space
determined by each architecture’s two primary hyper-
parameters: the embedding dimension and the size of
the hidden layer in the feed-forward block.

• When the embedding dimension is comparatively
smaller than the alphabet, we show that non-orthogonal
embeddings can still result in models attaining perfect
accuracy. Remarkably, we show that the softmax oper-
ator enables to effectively disentangle distinct tokens,
hence allowing models with small hidden dimension
to perform optimally.

In Section 2 we discuss the related literature and in Section 3
we provide the necessary background and introduce our
notation. In Section 4 we describe our experimental setup
and in Section 5 we present our theoretical and experimental

results1. Sections 6 and 7 present the limitations, conclusion
and open questions of our work.

2. Related Work
Mechanistic Interpretability and Counting. The emer-
gence of algorithmic capabilities in transformers (Olsson
et al., 2022; Power et al., 2022) has led to numerous inves-
tigations aimed at reverse-engineering trained models into
human-understandable mechanisms (Zhong et al., 2023;
Nanda et al., 2023; Quirke and Barez, 2024). Previous
work has investigated a variety of counting tasks and mech-
anisms (Gould et al., 2023; Chollet et al., 2020; Ouellette
et al., 2023; Cui et al., 2024). We consider the histogram
task which was introduced in the context of the RASP(-
L)-language (Weiss et al., 2021; Abbe et al., 2023). Weiss
et al. (2021) predict that single layer transformers with one
head require an additional BOS token as a scratchpad (Nye
et al., 2021) to be able to solve the task. However, we find
that the task does not necessarily require the BOS token
and we give explicit constructions for several of such one-
layer architectures. Our main focus is the interpretation
of the hyperparameter scaling of several distinct models in
relation to their performance and explicit constructions of
different algorithms, similar to the studies in (Zhong et al.,
2023; Quirke and Barez, 2024). We give precise theoretical
conditions on the model and task that lead to perfect ex-
plicit constructions. While many works in this area focus on
causal interventions (Vig et al., 2020; Meng et al., 2023) to
gain insights into the model’s computational mechanisms or
attributes relevance scores to model’s components (nostalge-
braist, 2020; Elhage et al., 2021), we mainly gain intuition
through the direct introspection of the models components.

Memorization. The role of feed-forward layers as mem-
orization modules has been investigated in the context of
factual recall for language models (Geva et al., 2021; Meng
et al., 2023; Chughtai et al., 2024). Henighan et al. (2023)
study a double decent phenomenon where the purpose of
the feed-forward layer transitions from storing data points to
discovering generalizing features as a function of increasing
training data diversity (Raventos et al., 2023). In the his-
togram task, we observe a similar phenomenon as a function
of the architecture: the feed-forward layer acts either as a
look-up table or a feature detector for a single direction in
embedding space, the counting subspace.

Algorithmic Alignment. While theoretical work has out-
lined the computational capacity of a range of (autoregres-
sive) neural networks (Weiss et al., 2021; Yun et al., 2019;
Delétang et al., 2023; Liu et al., 2023), hallucinations and

1All results and code to reproduce them is available at
https://github.com/SPOC-group/counting-attention.
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failure modes on seemingly trivial tasks in real-world trans-
formers are the rule rather than an exception. Dziri et al.
(2023) postulate that this may be due to a misalignment
between the computational graph of a model and the task
itself. In this work, we show that subtle differences in com-
ponents such as the mixing type and layer width play a
crucial role in terms of algorithmic alignment. Previous
work discovered evidence for the superposition of differ-
ent computational graphs in a single model (Elhage et al.,
2022) – we complement this analysis with a toy model that
is able to disentangle non-orthogonal, hence superimposed,
embedding directions in some parameter regimes.

3. Background and Notation
Architecture. As inputs, we consider sequences of tokens
x = (x1, x2, · · · , xL) ∈ T L. Each token stems from the set
T = {1, · · · , T} of size T . The corresponding sequence of
outputs y = (y1, · · · , yL) has the same length as the input
sequence, where each output token belongs to the output
vocabulary C of size C, i.e. yℓ ∈ {1, ..., C}, with C ≤ L.
In this work, we analyze several 1-layer model architectures
where a token-mixing mechanism is followed by a per-token
feature transformation. This setup includes the case of a
single transformer block where the dot-product attention
mechanism is followed by a point-wise feed-forward net-
work. Formally, we consider a model F : T L → CL defined
for the positions ℓ = 1, · · · , L as

F (x̄)ℓ = argmax
c∈{1,··· ,C}

f(x̄′
ℓ)c ; x̄′

ℓ = x̄ℓ + [A(x̄)x̄]ℓ (1)

with the token mixing matrix A : RL×d → RL×L and
the token-wise feature transformation f : Rd → RC . The
embedding x̄ ∈ RL×d, where x̄ℓ denotes its ℓ-th row, is
obtained by passing the input sequence x into a standard
embedding layer (learnable lookup-table) of dimension d.
We refer to the embedding associated with token t ∈ T as
et ∈ Rd or exℓ

∈ Rd for the embedding of the token xℓ. We
do not include positional embeddings due to the inherent
permutation equivariance of the counting task. The input to
the feature transformation, x̄′

ℓ, is obtained by first combining
the tokens via the mixing matrix A and then adding back
the original tokens, x̄ℓ, through a residual connection. We
will refer to the vector x̄′

ℓ, for each position ℓ = 1, · · · , L,
as the mixed token. The final prediction of the model for
each position is obtained from the maximum value of the
vector of size C output by the feature transformation. In the
following, we consider several implementations of A and
f .

Token Mixing. We consider two types of mixing mech-
anisms with different activation functions. We refer to the
case where the function A is constant in x̄ as linear mixing

(lin), e.g.

Alin(x̄) = A , (2)
Alin+sftm(x̄) = softmax(A) , (3)

where A ∈ RL×L is a learnable matrix and the softmax
operator is applied row-wise. The number of learnable
parameters is therefore L2.

As an alternative mixing structure, which we refer to as dot-
product mixing (dot), we consider the popular attention
mechanism which constructs the matrix A to be explicitly
dependent on the inputs, i.e.

Adot(x̄) =
1√
d
x̄WQW

T
K x̄T , (4)

Adot+sftm(x̄) = softmax
(

1√
d
x̄WQW

T
K x̄T

)
, (5)

where WQ and WK are learnable d × d matrices, and the
softmax function is applied row-wise. Note that, for the
sake of simplicity, we assume the value matrix to be the
identity. The number of parameters for dot-product mixing
is 2d2.
In line with previous work (Weiss et al., 2021), for architec-
tures employing the dot-product mixing, we also analyze
models utilizing the so-called beginning-of-sequence (BOS)
token. This special token, indicated with the symbol $, is
appended to the original input x resulting in a new sequence
x̃ = ($, x1, x2, · · · , xL) of length L + 1. We will refer to
the architecture that includes the BOS token as bos.

Feature Transformation. The feature transformation is a
single hidden layer perceptron with ReLU activations. The
hidden layer is of dimension p. The function f is applied
identically to every mixed token x̄′

ℓ for ℓ = 1, · · · , L, as:

f(x̄′
ℓ) = ReLU(x̄′

ℓW1 + b1)W2 + b2 (6)

where f(x̄′
ℓ) : Rd → RC and where the weights have

the appropriate dimensions to accommodate a hidden layer
of size p, i.e. W1 ∈ Rd×p, b1 ∈ Rp,W2 ∈ Rp×C and
b1 ∈ RC .

4. Experimental Setup
Task and Dataset. We consider a simple algorithmic task
that is referred to as histogram: given a sequence of to-
kens, the goal is to return a sequence of the same length
where each entry represents the number of times the corre-
sponding input token appears in the entire sequence. For
example, given x = [A,B,D,D,B,B], the output will be
y = [1, 3, 2, 2, 3, 3]. We define the count of a token t in the
sequence x at position ℓ as histx(ℓ). In our experiments,
we consider i.i.d. distributions of sequences of length L
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from an input vocabulary of size T , where L ≤ T . Our
sampling strategy relies on first sampling a set of partitions,
and then assigning a token to each partition (see App. C
for details). Note that this strategy is different from the one
used by Weiss et al. (2021) as it avoids skewing the training
distributions to data samples which largely exhibit the same
counts.

Models and Training. We investigate the performance
on the histogram task of the four different variants of the
token mixing models described in Sec. 3, i.e. lin and
dot, with or without the softmax (+sftm), where the to-
ken embeddings are jointly learned with the model param-
eters. Their relevant hyperparameters are the dimension
of the embedded tokens d, and the hidden layer size p of
the feature transformation. Additionally, we consider the
model bos where every input sequence is prefixed with
the BOS token prior to entering a dot-product mixing layer
(both with or without softmax). Previous studies (Weiss
et al., 2021; Kazemnejad et al., 2023) have demonstrated
that transformer networks consistently attend to BOS tokens,
despite their lack of semantic content, and we explore this
point in our experiments.
All models are trained with Adam with a learning rate of
ν = 10−3 on the cross-entropy loss for 500 epochs with a
batch size of 32. We consider the online learning setting
where for each new epoch we generate a dataset of 10, 000
data samples. We compute the accuracy attained by each
model based on a set of 3, 000 independent data samples,
which covers a large range of all possible input sequences.

5. Learning Regimes in Counting
We analyze the performance of the above-stated models with
varying mixing mechanisms in different learning regimes
characterized by different values of the embedding dimen-
sion d and number of hidden neurons p of the feed-forward
module. Fig. 1 shows the accuracy attained by different
learned models for L = 10 and T = 32.

We observe that the models exhibit both high and low ac-
curacy across various parameter regimes. In App. D, we
provide additional experiments for T = 64, L = 15, con-
firming the same phenomenology. Our objective in the
following is to investigate the underlying reasons for these
variations and how they are influenced by the model archi-
tecture.
We first study the regime where the model dimension d is

at least as big as the number of tokens T . In this case, we
demonstrate how explicit constructions can be theoretically
designed for a variety of models to achieve perfect accuracy.
We begin our analysis by demonstrating that the BOS token
can represent a counter subspace, in line with prior research
(Kazemnejad et al., 2023; Weiss et al., 2021). We then

demonstrate that the BOS token is not always necessary:
other 1-layer architectural choices not employing this spe-
cial token can indeed solve the histogram task. We classify
them into two sub-classes: relation-based and inventory-
based counting.
In relation-based counting, the model uses a dot-product
mixing mechanism and a counting subspace, requiring only
a low-capacity feed-forward hidden layer to project the
mixed tokens onto this subspace – akin to the model with
the BOS token.
Conversely, in inventory-based counting, the model memo-
rizes token embeddings in the first layer parameters of the
multi-layer perceptron, necessitating more hidden neurons
and hence greater capacity.
We demonstrate that linear mixing adopts the latter strategy
due to the absence of a token-dependent mixing mecha-
nism for comparing token embeddings. Interestingly, in
dot+sftm, the use of the softmax operator hinders the
formation of a privileged counting direction (necessary for
relation-based counting), forcing the model to rely on a
greater number of hidden neurons in the feed-forward block
and resorting to inventory-based counting. We show that
these explicit constructions correlate with the accuracies
achieved through supervised training in Fig. 1. In addition,
Fig. 2 illustrates the performance of the considered models
as a function of their parameter count, showcasing the su-
periority of relation-based counting in terms of efficiency.
In particular, the maximum achieved accuracy for a given
parameter count is marked, showing that models imple-
menting relation-based counting (dot, bos, bos+sftm)
require fewer parameters to achieve high/perfect accuracy.
In contrast, models implementing inventory-based count-
ing (dot+sftm, lin, lin+sftm) need to increase their
parameter count, and specifically the number of hidden neu-
rons in the feed-forward module, to attain perfect accuracy.
In the second learning regime, when d < T , the assump-
tion that different tokens can be represented by orthogonal
vectors is no longer valid. However, we find that the consid-
ered models are able to tolerate the noise stemming from
non-orthogonality and still manage to solve the task per-
fectly. The extent to which this is possible depends on the
specific model architecture and the size of the hidden layer
of the feed-forward module. The characterization of how
each model effectively process non-orthogonal embedding
enables us to further extend the feasibility regimes for the
histogram task.

5.1. d ≥ T : Orthogonal token embeddings are separable

Comparisons in orthogonal embedding space. When
the model dimension d is at least as big as the number of
tokens T , tokens can be represented by embeddings that are
mutually orthogonal to one another. Assuming all tokens
t ∈ T have such mutually orthogonal embeddings et ∈ Rd
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Figure 1. Performance on the histogram task for different 1-layer transformer architectures. Mean accuracy for varying embedding dimen-
sion d, hidden layer dimension p, for fixed T = 32 and L = 10 for the different token mixing mechanisms dot, bos and lin. (Top) Mod-
els with softmax; (Bottom) Models without softmax. Average over 5 runs for every d, p ∈ {1, 2, 3, 4, 6, 8, 12, 16, 23, 32, 45, 64, 91, 128}.
Vertical and horizontal lines indicate p = T and d = T respectively. White stars mark the parameter configurations, where a 100%
accuracy configuration was found during training in at least one of the five runs. White dots mark the same for ≥ 99% accuracy
configurations.

Figure 2. Accuracy vs. Parameter count. The data is the same as
generated for Fig. 1, and every data point is a single experiment.

with a norm of 1, the overlap is ⟨es, et⟩ = 0 for distinct
tokens t ̸= s and it is 1 when t = s. In such a scenario,
a linear combination of token embeddings preserves the
information about single tokens. By leveraging knowledge
about the embeddings of the alphabet, a weighted sum of
tokens, denoted as e′ =

∑
t∈T αtet, can be broken down

into the original tokens using projections on the original
token embeddings, where αt = ⟨et, e′⟩/∥et∥22.

In the following, we show that this property can be used

to theoretically construct the weights of a model for each
mixing mechanism to solve the histogram task for all pos-
sible sequences when d ≥ T and that this is reflected in
the models learned from data. Remarkably, the different
mixing mechanisms require a different number of hidden
neurons p. We show that this depends on the interplay of
the mixing layer and the feature transform: for some mixing
mechanisms, the latter needs to implement inventory-based
counting (requiring p ≥ T ), and for others, relation-based
counting (where p ≥ 1 is sufficient).

Relation-based counting: The BOS direction acts as a
counter in a low-dimensional subspace. When an extra
beginning-of-sequence token tBOS is available in bos, it
can be used as a to extract information about a token’s count
histx(ℓ) in the attention layer of the network through its
attention score. In the literature, the beginning (or end) of
sequence tokens have been linked to model-internal compu-
tations, such as counting. In (Weiss et al., 2021), it is shown
that the RASP language can solve the histogram task with
one layer and one attention head. We confirm empirically
that bos and bos+sftm reach (close to) 100% accuracy
whenever d > T , and we verify that a relation-based count-
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ing algorithm can be theoretically implemented in these two
architectures by construction.

When we set the tBOS embedding to eBOS =
∑

t∈T et,
this embedding has an overlap of 1 with every other token
embedding, assuming that all other token embeddings et are
normalized to have norm 1. Assuming that tBOS is at the
first position of the sequence of now length L+1, a clean dot-
product operation in the attention mechanism (with Q,K =
d

1
4 Id) will lead to an attention matrix with entries:

aℓm =


T if ℓ = m = 1

1 if ℓ > 1,m = 1

1 if ℓ,m > 1, and xℓ = xm

0 if ℓ,m > 1, and xℓ ̸= xm

.

Without softmax, projecting the mixed token onto the
tBOS, means that ⟨x̄′

ℓ, eBOS⟩ = T + histx(ℓ) + 1, i.e.
the embedding eBOS can be taken as the single relevant
direction that reveals the count of xℓ. Therefore, a single
hidden neuron p = 1 suffices and the output layer can
transfer the count into a categorical representation. The
same principle applies to bos+sftm, although ⟨x̄′

ℓ, eBOS⟩
scales non-linearly in the token count due to the softmax
normalization (App. A.2).

Investigating learned models we find instances achieving
100% accuracy that, although not exactly corresponding to
the algorithm we prescribed theoretically, exhibit a close
correspondence up to symmetries. In Fig. 3, we show for an
example of bos+sftm, that tBOS indeed plays a special
role in the learned model: in the attention matrix it can
already be observed that its activation could be interpreted
as a proxy for the number of occurrences of xℓ, as it has
different values for tokens that occur a different amount of
times. We emphasize here that the comparison operation
naturally provided by the dot-product, allows the model to
extract the count of the same tokens, for each token in the
sequence. For all other elements of the input sequence, the
activations of the attention matrix are comparatively low
when the compared tokens are the same and high when they
are different. We also show in Fig. 3 how the presence
of the tBOS determines the final prediction of the feature
transformation f .

Relation-based counting can be implemented without
a BOS token. Surprisingly, the dot model (without the
softmax) reaches a comparatively good empirical perfor-
mance as bos in the regime d ≥ T , even though it does
not have a dedicated counter token available. It turns out
that this model can implement a similar mechanism us-
ing a counting subspace but without explicitly resorting
to any extra token. As we show in App. A, one can add
a single common direction ecnt to all previuosly orthogo-
nal token embeddings. Using a clean dot-product mixing,

this leads to aℓm = a̸= when xℓ is different from xm, and
aℓm = a= when tokens are the same. Then, the num-
ber of counts can be easily extracted from the dot-product
⟨ecnt, x̄

′
ℓ⟩ of the counting token with the mixed token x̄′

ℓ,
i.e. ⟨ecnt, x̄

′
ℓ⟩ ∝ 1 + histx(ℓ)a= + (L− histx(ℓ))a̸=. We

can, therefore, obtain a perfect accuracy implementation in
the regime where d ≥ T with only a single hidden neuron,
explaining the observed empirical performance without a
BOS token.

Dot-product attention with softmax cannot implement
relation-based counting. Since the dot-product mecha-
nism is well-suited for relation-based counting, one might
expect that the dot+sftm model also implements this
mechanism. However, and maybe surprisingly so, we em-
pirically observe a marked difference between dot and
dot+sftm in Fig. 1. dot only starts performing close
to 100% accuracy when both the model dimension d and
the number of hidden neurons p are larger than the number
of tokens T . To understand why this is the case, we show
the attention matrix of dot+sftm in Fig. 4. Notably, it is
based on the semantics, as (Adot+sftm)ℓm is higher when
xℓ = xm than otherwise.
However, the normalization effect of the softmax activation

prevents the development of a meaningful counter subspace
that is needed in the relation-based algorithm. As a result
of normalization, the attention scores are

∑
m aℓm = 1, so

any direction present in all tokens (and by the symmetry of
the task, it would need to be present in all tokens) would
be uninformative after the token mixing – its weight would
be 1 regardless of the input sequence and would therefore
not carry information about the count. Before, the model
bos+sftm circumvented this problem by adding the extra
token with a special functionality that does not need to be
counted. Because this is not possible for dot+sftm, the
architecture fails to perform well for p = 1 – it now needs
to measure more than one direction in the feed-forward
module. In the following, we show that good performance
can still be achieved as this is an instance of an inventory-
based counting algorithm, where the complete alphabet is
memorized in the feed-forward layer. We detail this in the
following paragraphs, for the example of lin, but show an
implementation for dot+sftm in App. A.3.

Inventory-based counting: Memorization in the feature
transform. For lin we can prescribe weights theoreti-
cally that achieve 100% accuracy when d ≥ T and p ≥ T ,
which roughly corresponds to the regime where all trained
models perform almost perfectly (Fig. 1). For lin+sftm
and dot+sftm the same ideas explain their good perfor-
mance and are elaborated in App. A.3.
Again, for the given model parameterizations, several so-
lutions exist due to symmetries, and in the following we
describe one of them for clarity. In the linear mixing layer,
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Figure 3. Relation-based counting with bos+sftm (T = 32, L = 10, p = 2, d = 45). This model achieves 99.9% accuracy. It was
selected as the best model from all our experiments with p = 2. (Left) The tokens overlap (cosine similarity) with the same tokens
(red), different tokens (grey) and the BOS (light blue) all concentrate on different values. (Middle) This is reflected in the attention
matrix after the application of the row-wise softmax. The tBOS (‘$’) in the first column aℓ,0 becomes a proxy for the count of xℓ.
(Right) To demonstrate that the feedforward network is only sensitive to this direction, we show its count predictions for a mix of tokens
αeBOS + (1− α)eD + eB , where the contribution α of the BOS token is varied and D,B are two specific elements of the alphabet T .
The same experiment is repeated for different elements of the alphabet in App. D.6. We mark the aℓ,0 obtained from the left as vertical
lines, the prediction is correct for all counts independent of the precise token.
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Figure 4. Inventory-based counting with dot+sftm (T = 32, L = 10, p = 32, d = 32). This model achieves 99.47% accuracy. (Left)
The attention matrix for a given sequence differentiates between similar and different tokens. However in this case, any counting direction
that could emerge in token space is evidently not usable, as p ≥ T is required (see Fig. 1). (Right) This is reflected in the output from
the feature transformation f , shown here for a linear combination of three different tokens from the alphabet, B,C,D. The prediction
strongly depends on the coefficient αt associated with the token t present in the residual connection and only weakly on the others. The
non-linear scaling of the decision boundaries is due to the softmax activation function.

we set the mixing weights for different positions ℓ,m in the
sequence as aℓm = a and for the same position αℓℓ = 2a,
with a = 1/(L+ 1). Hence, the mixed token x̄′

ℓ (after the
residual connection) can be written as

x̄′
ℓ =

L∑
m=1

aℓmexm
+ exℓ

.

The correct count of xℓ can therefore be extracted, via:

histx(ℓ) =
1

a

∑
t∈T

ReLU (⟨x̄′
ℓ, et⟩ − (1 + a))

By design, only the hidden neuron activated according to
the overlap with token et = xℓ – the token associated with
the residual connection – has a non-zero activation. This
equation can exactly be implemented by the first layer of

the feature transformation in equation 6 with p ≥ T hidden
neurons. The output layer can then be designed to activate
the correct output vector corresponding to the count histx(ℓ)
(refer to the visualization in App. A.4). Since we selected
a ∈ [0, 1] and

∑L
m=1 aℓm = 1 the same procedure can

be implemented by a matrix which is passed through the
softmax operator for lin+sftm. This means that the feed-
forward module is correlated with the complete alphabet,
acting as a look-up table, or inventory.

In Fig. 5, we inspect the attention matrix Alin and the feature
transformation f which is learned by Adam for lin+sftm
for parameters in the regime where p ∼ T ∼ d. The
mixing has an off-diagonal of ∼ 0.11 and a diagonal of ∼
0.08. Feeding the feature transformation f with a weighted
combination of 3 tokens, B,C,D, we observe that the final
prediction of the network depends mainly on the coefficient
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Figure 5. Inventory-based counting with lin+sftm (T = 64, L = 10, p = 128, d = 128). The model achieves 99.97% accuracy. (Left)
Attention matrix learned by Adam, which is constant in the input sequence x. The different score on the diagonal assigns a different
weight to the token at the current position ℓ than to all other tokens. (Right) Predictions on an artificial mix of learned embeddings for the
three tokens B,C and D. The prediction depends on the token in the residual connection, but is largely independent of the presence
of other tokens in the mixing. This indicates that f projects the mixed token onto the alphabet T and is able to extract tokens due to
orthogonality.

αt corresponding to the token embedding fed through the
residual connection. Notably this behavior is close to Fig. 4
(Right) and suggests that the feature transformation must
have encoded the information of the token embedding in its
weights, hence requiring at least p = T hidden neurons.

Superposed or selective implementations. Some of the
models capabilities overlap, for example the models that
can implement relation-based counting for p = 1 can also
implement inventory-based counting for p ≥ T . In Fig. 1,
we observe that the model dot (which is able to implement
relation-based counting) witnesses a very slight decrease
in maximal learned performance from 100% accuracy to
99% when the number of hidden neurons is increased to
p = T and inventory-based counting can in principle be
implemented.

To investigate this point, in Fig 6 we show the singular
value decomposition of W1, for models where both p ≥ T
and d ≥ T , for T = 32 with at least 99% accuracy. For
models that can only implement inventory-based counting,
the ordered singular values visibly dip after the 32nd largest
singular value. As inventory-based counting requires the
feed-forward hidden layer to have at least T = 32 neurons
to detect the complete alphabet, this observation supports
that the learned model is aligned with our explicit construc-
tion. Conversely, for models capable of implementing both
inventory-based and relation-based counting, this decline
is less marked. However, some model instances, such as
in bos+sftm, exhibit a singular value distribution that
deviates from the typical pattern for this model and closely
resembles the distribution seen in inventory-based-only
models. This suggests that these exceptional models may
have adopted a different mechanism, potentially integrating
elements of both algorithmic strategies. Nevertheless,
this does not give a clear understanding of whether the

memory-intensive solution is preferred when the memory
is available. We intend to explore this issue further in the
future, considering approaches like those in (Henighan
et al., 2023), which examine the phenomenon of feature
versus data learning from a double descent perspective.

5.2. d < T : Entangled Embeddings

Non-orthogonality and the discrete nature of counting.
The scenario where d < T fundamentally differs from
the one explored in Section 5.1 because the embeddings
for different tokens can no longer be orthogonal. This re-
sults in some token pairs having a non-zero overlap due to
their linear dependence, causing the mixing of tokens to
entangle count information across different directions in the
embedding space. This phenomenon is illustrated in Fig. 15
(Appendix, bottom row) where it is shown empirically that
the overlaps between different tokens indeed become con-
tinuously more spread out in dot (hence resulting in more
noise) as we decrease the dimension d, which is accompa-
nied by more errors in the prediction in Fig. 15 (Appendix,
top row).

This key difference prevents us to apply the same rationale
used to derive the explicit constructions described in the
previous section.
Nevertheless, the discrete nature of the histogram task, i.e.
the fact that every token can only be mapped to L differ-
ent counts, makes the prediction inherently more robust to
the effect of noise stemming from entanglement. Consider
for example the token xl appearing kxl

times in the input
sequence. Assuming p = 1 without loss of generality, for
a model capable of solving the histogram task for d = T ,
we would like the scalar associated with the hidden node
of the feed-forward module, to be easily transformed into
a L dimensional vector of logits whose maximum entry
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Figure 6. Singular values of W1. We show the results for all models from Fig. 1 with T = 32, where p, d ≥ T and the accuracy is at least
99%. Some qualitative differences are visible for bos and dot.

corresponds to the true count. The latter transformation,
implemented by the last layer of the feed-forward module
and the argmax operator, will then act as a mapping out-
putting the final counts as a function of the value of the
hidden node. It turns out that, in light of the discrete nature
of the task, such a function will be associated with a deci-
sion boundary characterized by some margins separating
the different classes (counts). This concept is illustrated in
Fig. 7 (Appendix) for the dot+sftm model. This means
that, as long as the value of the hidden node falls within
the margin determined by the decision boundaries and these
boundaries do not overlap, the model can still solve the task
with perfect accuracy. The variability of the hidden node’s
value within the margin is a result of the perturbation effect
caused by the non-orthogonality of the embeddings.
Building on this intuition, in Appendix B, we derive explicit
constraints on the embedding dimension d < T , such that
the histogram task can still be solved with 100% accuracy.
Our analysis is based on two key points: first, the mutual
coherence of a set of T unit-norm d dimensional vectors has
a lower bound known as the Welch bound, which depends
on d and T ; second, the softmax operator, when rescaled
by an inverse temperature parameter, naturally concentrates
around the largest values in its argument. Detailed deriva-
tions are provided in Appendix B. Below, we summarize
the main concepts and results of our analysis.

Mutual Coherence and Welch bounds. The mutual co-
herence M of a set of T unit norm vectors {v1, . . . , vT } ⊂
Rd is defined as

M = max
i̸=j

|⟨vi, vj⟩| . (7)

In words, this quantity measures the maximal similarity
between pairs of vectors within a specified subset of Rd.

This value is lower bounded for a given matrix by the Welch
bound (Welch, 1974)

M ≥

√
T − d

d(T − 1)
= W(T, d) , (8)

and equality can only be attained if T < d2 (Strohmer and
Heath, 2003). By using this bound and the above-stated
observation that decision boundaries associated with indi-
vidual counts should not overlap to attain perfect accuracy,
we are able identify less stringent feasibility regimes for
some of the considered models. Notably, such regimes
vary depending on the type of mixing mechanism and are
summarized below:

(lin, lin+sftm; p = T ):
⌈

T (2L−3)2

T−1+(2L−3)2

⌉
≤ d,

(dot, bos; p = 1):
⌈

T (2L−3)2

T−1+(2L−3)2

⌉
+ 1 ≤ d,

(dot, bos; p = T ):
⌈

T (2L−3)
T−1+(2L−3)

⌉
≤ d.

By evaluating the obtained bounds for the values of T and L
in Fig. 1, we observe that the feasibility regimes exhibited by
learned models are very close to our theoretical predictions.

The softmax operator increases the separation between
distinct tokens. Recall the softmax function is defined as

sftm(κz)i =
eκzi∑n
j=1 e

κzj
for i = 1, 2, . . . , n , (9)

where κ > 0 is the so-called inverse temperature parameter
(whose default value is 1). When z of length L contains
only different two values, one with k and the other with

9
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L− k occurrences, then as κ → ∞ the mass concentrates
only on the larger value of the two, and sets the other to
zero. We use this intuition to create token embeddings that
fulfill for all t, s = 1, . . . , T and s ̸= t

⟨et, et⟩ = 1 , (10)
⟨et, es⟩ < 1 + ϵ , (11)

where ϵ > 0. The idea is that the softmax with a high
enough inverse temperature sets the term for distinct tokens,
⟨et, es⟩, close enough to zero, essentially eliminating the
noise. Note that equation 10 is a weaker condition on the
set of token embeddings than for example the bound of the
mutual coherence in terms of the sequence length L bos
with p = 1 in Section B.2.2. It allows us to obtain perfect
accuracy with smaller d. In particular:

(bos+sftm; p = 1): d ≥ ⌈log2(T + 1)⌉+ 2.

(dot+sftm; p = T ): d ≥ ⌈log2(T + 1)⌉+ 2.

Again the newly identified feasibility regimes are in good
agreement with our empirical results in Fig. 1. In Ap-
pendix B.3.1 we show that this bound can be even further
improved, but at the cost of increasingly precise computa-
tions as T and L grow, and seems therefore unrealistic.

6. Limitations
Similar to other works in mechanistic interpretability
(Zhong et al., 2023), we focus on 1-layer transformers as
a simplified model for modern transformers. Our models
are not autoregressive and do not account for the impact
of causal masks or positional encodings. While more com-
plex models could lead to more intricate interdependencies
between the components, potentially limiting the applicabil-
ity of our findings to such architectures, it seems plausible
that similar vector arithmetic could emerge in subspaces of
large transformers (Gould et al., 2023; Engels et al., 2024).
Given its specificity, it is unclear if and how similar memory-
architecture phenomena would emerge for different simple
tasks (e.g. sorting or lookup).

7. Conclusion
We study how different components of simple transformer
models contribute to the emergence of different solutions
to the histogram task. Our analysis shows that the hyper-
parameter space with perfect accuracy for these models
is influenced by the choice of the mixing mechanism and
its inter-dependency with the feed-forward transformation.
We identify two distinct algorithmic approaches that 1-layer
transformers can utilize to solve the histogram task: relation-
based counting and inventory-based counting. The relation-
based method employs a dot product mixing mechanism

combined with a low-capacity feed-forward transformation
and relies on the presence of an appropriate counter direc-
tion within the token embedding space. In contrast, the
inventory-based method involves memorizing the token em-
beddings within the feed-forward module’s weights, thus
requiring more parameters. By characterizing the feasible
regimes of these mechanisms in the phase space defined
by the embedding dimension d and the hidden dimension p
of the feed-forward module, we confirm that learned mod-
els converge to solutions resembling these mechanisms. In
certain regimes, both strategies can potentially be imple-
mented, and our experiments indicate that some learned
models exhibit features of superimposed algorithmic mech-
anisms. In the regime where the embedding dimension d
is smaller than the vocabulary size T , tokens cannot form
an orthogonal basis and solve the task directly via a lin-
ear projection. Despite this, we find that the considered
models exhibit different levels of robustness to the noise
stemming from non-orthogonality. Our analysis precisely
characterizes how different models cope with this aspect
and identifies less stringent feasibility regimes in terms of
the embedding dimension. Furthermore, we find that the
softmax activation can be particularly effective in maximiz-
ing the distance between distinct tokens, hence reducing the
impact of non-orthogonality. This is particularly relevant to
real world models, where the alphabet size is usually much
larger than the model dimension.

Future Work. Implications for complex architectures and
broader tasks. To understand the capabilities of transform-
ers it would be interesting to see efforts to characterize them
grounded in vector arithmetic, to a similar degree of gener-
ality as RASP (Weiss et al., 2021) to allow for entangled (or
superposed) algorithms and representations (Elhage et al.,
2022; Gurnee et al., 2023).

Understanding the link between failure modes, architecture
and tasks. At this moment, examples for hallucinations
and failures of LLM’s are as numerous as their success
stories. While we provide only a limited example through
the analysis of the feasible regime, we find mechanistic
investigations at or close to the “failing” regime a relevant
and challenging research direction.

Generalizing to arbitrary functions. It is unclear how to
solve the histogram task for arbitrary objects, i.e. T = ∞,
as done in-context learning in (Reddy, 2024). Preliminary
explorations indicate that none of the models considered
here learn to reach perfect accuracy, and that at least
two layers are required. It is interesting to understand
under which conditions more general functions can be
implemented or learned.
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Appendices

A. Explicit Constructions for Orthogonal Embeddings d = T

A.1. Overview

In the supplementary code2, we provide the explicit construction for different models on the histogram task in pytorch.
In the parameter regime where there is always an orthonormal basis of size T in Rd, these explicit constructions give the
correct prediction for all input token sequences. For all the models we describe below, we define the sum of the hidden layer
neurons as:

γℓ =

p∑
i=1

ReLU(zℓ,i) =

p∑
i=1

ReLU(W1x̄
′
ℓ + b1)i (12)

In many cases, a simple linear regression can map the scalar γℓ to the correct count of tokens xℓ, and we describe how to
achieve this mapping to the classification problem in Section A.4.
In the following, we characterize which parameters W1, b1 in equation 12 allow for a correct mapping in each mechanism.
Importantly, the architecture exhibits numerous symmetries due to the feed-forward ReLU network (Petzka et al., 2020).
To demonstrate feasibility, we select one specific implementation. In the main text we observe that there is no one-to-one
correspondence between our explicit constructions and the learned weights, even though both functions achieve the same
perfect accuracy. Throughout, unless otherwise specified, we assume that E ∈ Rd×T is an orthonormal basis of Rd, which
we will use to create different forms of token embeddings.

A.2. Relation-based counting

A.2.1. (DOT ; p = 1)

For T ≤ d; p = 1, there are parameters for which the dot model solves the counting task for a sequence of length L at
100% accuracy. We choose the embeddings of the tokens as

et = ẽt + ẽcnt ∀t = 1, . . . T (13)

where the set E = {ẽt}Tt=1 is an orthonormal basis of an arbitrary but fixed T -dimensional subspace of Rd, and ẽcnt =∑T
t=1 ẽt. We set the key and query matrix to the scaled identity WK = WQ = d1/4Id. The first layer weights W1, b1 ∈ Rd

can be fixed as

W1 = ẽcnt/(T + 1) ; b1 = −(1 + L(T + 2)) , (14)

and the second layer weights W2, b2 ∈ RL follow the recursion

(W2)1 = −1 +
1

L+ 1
, (b2)1 = 0 ; (15)

(W2)ℓ = −1 +
ℓ

L+ 1
, (b2)ℓ = ((W2)ℓ−1 − (W2)ℓ) (ℓ− 0.5) + bℓ−1 , ∀ℓ = 2, . . . , L. (16)

Given these parameters, it holds that for tokens 1 ≤ t, s ≤ T their dot-product is

⟨et, es⟩ =

{
2 + T if t ̸= s ,

3 + T if t = s .
(17)

Because of our choice of the query and key matrices, it directly follows that for tokens xℓ, xm from a given sequence x,
their attention score is

aℓm =

{
2 + T if xℓ ̸= xm ,

3 + T if xℓ = xm .
(18)

2https://github.com/SPOC-group/counting-attention
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Hence, the mixed token after applying the residual connection is

x̄′
ℓ = x̄ℓ +

∑
m:xℓ=xm

(T + 3)x̄m +
∑

m:xℓ ̸=xm

(T + 2)x̄m (19)

so that computing

x̄′
ℓW1 =

〈
x̄′
ℓ,

ẽcnt

1 + T

〉
(20)

=

〈
x̄ℓ,

ẽcnt

1 + T

〉
+

∑
m:xℓ=xm

(T + 3)

〈
x̄m,

ẽcnt

1 + T

〉
+

∑
m:xℓ ̸=xm

(T + 2)

〈
x̄m,

ẽcnt

1 + T

〉
(21)

= 1 + histx(ℓ)(T + 3) + (L− histx(ℓ))(T + 2) (22)
= histx(ℓ) + 1 + L(T + 2). (23)

Then the single hidden unit has the value γℓ = ReLU(x̄′
ℓW1+b1) = histx(ℓ). It is easy to show (analogous to Fig. 7) that the

output logits c = γℓW2 + b2 with c ∈ RL, correctly identify the count for integer values x ∈ [1, . . . , L]. This is because we
constructed our recursion such that at a given input x = ℓ we have that (W2)ℓ(ℓ−0.5)+(b2)ℓ = (W2)ℓ−1(ℓ−0.5)+(b2)ℓ−1

and (W2)ℓ > (W2)ℓ−1, so it holds that

argmax
i=1...L

ci(y) =


1 y = 1

2 y = 2

. . .

L y = L ,

(24)

which gives the correct classification output for all possible counts. Note, however, that this implementation is only one
possible implementation, and many symmetries can lead to different but also 100% correct algorithms.

A.2.2. (BOS+SFTM ; p = 1)

For the model with the beginning-of-sequence token, every sequence x if prefixed with tBOS before it is fed into the
embedding and then the mixing layer. We directly use the matrix E for embeddings, and set eBOS =

∑T
t=1 Et, where

et = Et and the latter is a column of E. Analogous to the background token, p = 1 is enough and we set

W1 = eBOS; b1 = −1. (25)

For a given token xℓ we have that in the dot-product mechanism ⟨eBOS, exℓ
⟩ = 1, ⟨exℓ

, exm
⟩ = 1 if xm = xℓ and 0

otherwise. Due to the softmax, the mixing coefficient is a = e/((kxℓ
+ 1)e + (L − kxℓ

)) (where e is Euler’s number)
for comparing xℓ to tBOS and to all the tokens where xℓ = xm, and b = 1/((kxℓ

+ 1)e + (L − kxℓ
)) otherwise, where,

kxℓ
= histx(ℓ). Hence, the mixed token is:

x̄′
ℓ = aeBOS + akxℓ

x̄ℓ +
∑

xm ̸=xℓ

bx̄m + x̄ℓ. (26)

Applying W1 and b1, we obtain:

γℓ = aT + akxℓ
+ b(L− kxℓ

)

= aT + akxℓ
+ 1− a(kxℓ

+ 1)

= a(T − 1) + 1

(27)

since (kxℓ
+ 1)a + (L − kxℓ

)b = 1 by normalization via the softmax function. The value of γℓ can be readout into the
correct classification as shown Fig. 7.

A.2.3. (BOS ; p = 1)

By equivalence of the models, this model can either ignore tBOS by setting it to zero, and implement the same mechanism
as dot slightly modifying the final mapping to histx(ℓ) or it can implement the mechanism of bos, but adapt the mapping
so that it works without the softmax.
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A.3. Inventory-based counting

A.3.1. (LIN ; p = T ).

As embeddings we directly use E, s.t. et = Et where the latter is a column of E. We set

Alin =


a a · · · a
a a
...

. . .
a a

 ; W1 = E; b1 = −1, (28)

where a = 1/L. We start by writing zℓ,t for t ∈ {1, ..., p = T}, the t-th activation of the first hidden layer of the feed-forward
module

zℓ,t =

L∑
m=1

aℓm⟨exm
, et⟩+ ⟨exℓ

, et⟩ − 1 . (29)

If et = exℓ
, we have

zℓ,t = kxℓ
a+ 1− 1 = akxℓ

, (30)

where, kxℓ
= histx(ℓ), applying the ReLU to this scalar keeps its value unchanged. If et ̸= exℓ

, we have

zℓ,t = aket + 0− 1 = aket − 1 ≤ 0 . (31)

The right hand side of the above equation is negative given our choice of a, hence applying the ReLU returns 0. This means
that, for each token in the input sequence, the contributions of orthogonal tokens cancel, leaving us with a single hidden
hidden neuron activated. Hence the count can be read off from γℓ. Since only one neuron is activated at a time, the readout
from the same procedure as in bos+sftm can be applied to all hidden neurons zℓ,t simultaneously, instead of only one.

A.3.2. (LIN+SFTM : p = T )

Same as lin, except

Alin+sftm =


a a · · · a
a a
...

. . .
a a

 = softmax



α α · · · α
α α
...

. . .
α α


 , (32)

where a = 1/L which implicitly defines a choice of α.

A.3.3. (DOT+SFTM : p = d = T )

As before, we set the key and query matrix to the scaled identity WK = WQ = d1/4Id. In this model, we directly use the
orthonormal basis E for the token embeddings. The pre-softmax mixing weights will be 1 for equal and 0 for different tokens
due to the unit-norm token embeddings. For kxℓ

= histx(ℓ), then, after applying the softmax, we have alm = e
(L−kxℓ

)+ekxℓ

if xm = xℓ and alm = 1
(L−kxℓ

)+ekxℓ
otherwise. Hence, for et ̸= exℓ

⟨x̄′
ℓ, et⟩ =

ket
(L− kxℓ

) + ekxℓ

< 1, (33)

while for et = exℓ

⟨x̄′
ℓ, exℓ

⟩ = kxℓ
e

(kxℓ
e+ (L− kxℓ

))
+ 1, (34)

where the extra summand comes from the residual connection. Hence, by setting

W1 = E; b1 = −1, (35)

and applying the ReLU activation, equation 33 will be 0, while equation 34 will implicitly give us the counts as:

kxℓ
= (Lγℓ)/(−eγℓ + γℓ + e) (36)
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Figure 7. Demonstration of a hidden neuron output γℓ which is mapped to L = 10 different neurons ci using a single output layer,
according to the decision boundaries shown by the dotted lines. After applying the argmax function to the 10 output neurons, the highest
value gives the discrete output. The solid lines mark the values a single hidden neuron would achieve for different counts in the explicit
construction of the dot+sftm model.

While the final layer cannot immediately implement non-linear functions in γℓ, it can take advantage of the fact that γℓ can
take only L different values. Since eventually we need to map the L values of γℓ to the counts [1, · · · , L] the linear output
layer is sufficient to implement this non-linear discrete map (see Fig. 7 which shows exactly this example where solid lines
are γℓ lying in intervals bounded by dashed lines).

A.4. Mapping a scalar to a categorical one-hot encoding

It is straightforward to map a single scalar γℓ to a series of neurons which activate one after another. This is needed as
the second part of the feed-forward parameters to transform the count measured by the sum of the hidden neurons γℓ to
the discrete categorical representation of the output vector. Every output vector can be viewed as a linear function of the
hidden neuron’s value. Since we only map functions, where a given output neuron needs to be maximized in a single fixed
and uninterrupted interval [a, b] ∈ R, the mapping can work as a superposition of linear functions with increasing slope.
A visual sample is given in Fig. 7 for dot+sftm. In Fig. 8 we show the outputs for the lin+sftm model with the best
accuracy for T = 32 for every p, d ran in Fig. 1. While it is possible to learn the count from one hidden neuron only using
inventory-based counting for each neuron, for some examples the count information seems to be spread out over several
hidden neurons: The output logits are non-linear in the count and can hence not rely on a single hidden neuron only.

B. Explicit Constructions for Linearly Dependent Embeddings d < T

B.1. Overview

In this section, we discuss the scenario when d < T , i.e. when the embeddings are necessarily linearly dependent. In that
case, we can no longer assume that there exist embeddings with ⟨et, es⟩ = 0 for all t ̸= s. Nonetheless, also in this regime
for some models it is possible to provide explicit constructions of the weights that have 100% accuracy. This relies on
the fact that the prediction problem is inherently discrete, i.e. it chooses exactly one among L classes. When we examine
γℓ ∈ R from equation 12 which is mapped to the discrete class through the readout layer (see for example Fig. 7), we notice
that the class boundary (the gray dashed class borders) can be placed variably in the margin between the values that γℓ
assumes for different counts kxℓ

(solid lines). In the following explicit constructions, our goal is to design embeddings with
d < T in such a way that we maximize the aforementioned margin: there will be pairs of token embeddings in the alphabet
that have non-zero similarity ⟨et, es⟩, and in equation 12 this will create non-zero terms that will alter the value of γℓ. This
means that for every possible sequence with k occurrences of token xℓ, the hidden activation γℓ will assume values in a
certain range [γlower

ℓ (k), γupper
ℓ (k)]. If these ranges overlap for different k, the count cannot be identified. However, we

construct embeddings such that every for every k = 1, . . . , L− 1 it holds that

γupper
ℓ (k) < γlower

ℓ (k + 1) , (37)

so we can still use a construction as in Fig. 7 to correctly compute the final count. In the remainder of this section, we
introduce explicit constructions with d < T for a given L, both for the cases where we have relation-based counting
and inventory-based counting (the same argument as above transfers to zℓ,t from equation 29). Notably, for the explicit
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Figure 8. The output neurons ci(xℓ) visualized for examples of a learned version of lin+sftm for several model dimensions d and hidden
layer sizes p. Note that differently from Fig. 7, in this case the x-axis shows the number of occurrences histx(ℓ = 0) = 1, . . . , L− 1 of
the token t in an input sequence x = [t, · · · , t, v, · · · , v] that contains otherwise only a token v ̸= t (and not the activation of a hidden
neuron). We show the activations ci of the final layer output neurons activations (logits) in terms of the number of occurrences of a given
token in the input. The colors represent the different output predictions and are as in the explicit construction from Fig. 7. We show
several activations for different tokens t ∈ T , where T = 32, and we highlight one of the example tokens t with a wider line. While
similar to the explicit construction from Fig. 7, the models with 100% accuracy are not necessarily linear in the count.

constructions we propose, the function of the lowest achievable d(p, T, L) differs across different mixing types. To
summarize:

• For models with A constant in the inputs or models without softmax activation, our explicit construction relies on an
embedding matrix with a small mutual coherence. The mutual coherence is a concept from compressed sensing and
coding theory that ensures that the maximal similarity between pairs of vectors is small (Donoho and Elad, 2003). We
can upper bound the mutual coherence that the margins of the construction can tolerate to still achieve perfect accuracy
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in terms of a given L. At the same time, the mutual coherence of a set of vectors is naturally lower bounded in terms of
the number of vectors T and their respective dimension d, known as the Welch bound (Welch, 1974). When this bound
can be attained and T, L are given, this leads to the following bounds on d for the different models

(lin, lin+sftm; p = T ):
⌈

T (2L−3)2

T−1+(2L−3)2

⌉
≤ d,

(dot, bos; p = 1):
⌈

T (2L−3)2

T−1+(2L−3)2

⌉
+ 1 ≤ d,

(dot, bos; p = T ):
⌈

T (2L−3)
T−1+(2L−3)

⌉
≤ d.

• For bos+sftm we rely on the fact that the softmax function accentuates the largest value and thereby can drive
attention scores for equal tokens aii higher relative to attention scores of non-equal tokens aij . This distinguishes it
from the previous case, and allows us to describe an explicit construction with perfect accuracy for

(bos+sftm; p = 1): d ≥ ⌈log2(T + 1)⌉+ 2.
(dot+sftm; p = T ): d ≥ ⌈log2(T + 1)⌉+ 2.

Notably there is no explicit dependence on L. However, the smaller the dimension d the more accurate computations
and softmax numerical stability are required. With infinitely precise computations we show it is even possible to
achieve perfect accuracy with d = 2.

B.2. Explicit construction for bounded mutual coherence

We define the mutual coherence M of a set of T unit norm vectors {v1, . . . , vT } ⊂ Rd as

M = max
i̸=j

|⟨vi, vj⟩| . (38)

This value is lower bounded for a given matrix by the Welch bound (Welch, 1974)

M ≥

√
T − d

d(T − 1)
= W(T, d) , (39)

and equality can only be attained if T < d2 (Strohmer and Heath, 2003). There is a large body of work in coding theory and
compressed sensing concerning the existence and construction of a set of vectors that attains M at or close to W(T, d).
Explicit constructions exist but are not known for every combination of T and d. A list with existing constructions for the
real space for small T, d can be found in (Fickus and Mixon, 2016), but otherwise gradient-based optimization has been
used to find good candidate matrices (Jiang et al., 2017; Jyothi and Babu, 2022).
For a given T , L and p, we can derive an upper bound on the mutual information of the embeddings in terms of L, which is
required to obtain perfect accuracy. The form of this upper bound depends on the precise mixing strategy and the choice of
p. Through the Welch lower bound on M we can in turn obtain a lower bound on d in terms of L and T . Note that the
Welch bound cannot be attained for T < d2 and in this case the bound on d is strict.

B.2.1. (LIN , LIN+SFTM ; p = T )

We analyze the inventory-based construction for lin in equation 28. Given that p = T , and L is given, let us assume
that there exists set of T unit norm vectors {e1, . . . , eT } ⊂ Rd with mutual coherence M. We use these vectors as our
embeddings. With the same parameters as in equation 28, this model still attains perfect accuracy. The value zℓ,t for t = xℓ,
with W1 = [e1, . . . , eT ] and b1 = −1 is

zℓ,t = akxℓ
+ a

∑
m:xm ̸=t

⟨exm , et⟩ , (40)

and using that fact that the mutual coherence bounds the absolute value of the inner product

akxℓ
− aM(L− kxℓ

) ≤ zℓ,t ≤ akxℓ
+ aM(L− kxℓ

) . (41)

Similarly, for t ̸= xℓ and a = 1/L it still holds that

zℓ,t = akt + a(L− kt)M− 1 ≤ aL− 1 ≤ 0 , (42)
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so the ReLU sets all hidden neurons zℓ,t to zero when t ̸= xℓ. Then, defining

γlower
ℓ (k) = ak − aM(L− k) , (43)

γupper
ℓ (k) = ak + aM(L− k) , (44)

we have that indeed for a sequence where xℓ occurs k = 1, . . . , L times it holds that

γlower
ℓ (k) ≤ γℓ(k) ≤ γupper

ℓ (k). (45)

From equation 37 we have the condition that for all k = 1, . . . , L it holds that

γupper
ℓ (k) < γlower

ℓ (k + 1) , (46)
k + (L− k)M < (k + 1) + (L− k − 1)(−M) , (47)

M <
1

2(L− k)− 1
, (48)

and since we assume that there exist at least two different tokens in the sequence, minimizing the bound over k leaves for
k = 1

M <
1

2L− 3
. (49)

which is valid provided that L ≥ 2. Combining this with the Welch bound equation 39 yields the condition

d ≥
⌈

T (2L− 3)2

T − 1 + (2L− 3)2

⌉
(50)

for the given explicit construction to obtain a perfect accuracy. For lin and lin+sftm the construction and condition is
the same.

B.2.2. (DOT , BOS ; p = 1)

For the relation-based explicit construction for dot (which holds equivalently for bos when setting the BOS token to zero)
with p = 1, given T and L we assume that we have a set of T unit norm vectors with {v1, . . . , vT } ⊂ Rd−1 with mutual
coherence M. We set the entries of the T embedding vectors et ∈ Rd to be

et =

vt
α

 . (51)

The shared counting subspace is defined on the last coordinate of the vectors via ecnt = [0, 0, . . . , 1/α]. Then

⟨et, et⟩ = 1 + α2 (52)

|⟨et, es⟩| ≤ M+ α2 (53)

The mixed token with the residual connection at position ℓ for a given input sequence is

x̄′
ℓ =

L∑
m=1

⟨exm
, exℓ

, ⟩exm
+ exℓ

(54)

and the single hidden neuron γℓ for a bias term b1 = 0 and W1 = ecnt

γℓ = ⟨ecnt, x̄′
ℓ⟩ =

L∑
m=1

⟨exm
, exℓ

, ⟩⟨exm
, ecnt⟩+ ⟨exℓ

, ecnt⟩ (55)

= kxℓ
(1 + α2) +

∑
m:xm ̸=xℓ

⟨exm , exℓ
, ⟩+ 1 (56)
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So that we can achieve for a given count k the γlower
ℓ (k) ≤ γℓ(k) ≤ γupper

ℓ (k) with

γlower
ℓ (k) = k(1 + α2)− (L− k)(M+ α2) + 1 , (57)

γupper
ℓ (k) = k(1 + α2) + (L− k)(M+ α2) + 1 . (58)

Finally, the condition from equation 37 yields

M <
1

2(L− k)− 1
− 2(L− k)− 2

2(L− k)− 1
α2 (59)

under the condition that 0 < α <
√

1
2(L−k)−2 . Again, assuming there exist at least two different tokens in the sequence, the

r.h.s. of the above expression is minimized for k = 1 as

M <
1

2L− 3
− 2L− 4

2L− 3
α2 (60)

which is always positive assuming L ≥ 2. Again, combining this with the Welch bound equation 39 lead to

d− 1 ≥

⌈
T ( 2L−3

1−(2L−2)α2 )
2

T − 1 + ( 2L−3
1−(2L−2)α2 )2

⌉
, (61)

and when we choose α > 0 close to zero, as for lin before

d ≥
⌈

T (2L− 3)2

T − 1 + (2L− 3)2

⌉
+ 1. (62)

B.2.3. (DOT , BOS ; p = T )

We can decrease the required dimension d < T even further than previously, when we have p = T and implement
inventory-based counting in the dot model (and equivalently in the bos model). In that case, the lower bound on d becomes
more loose, because we combine the ideas we saw in lin and p = T for inventory-based counting and the effects on the
margin in dot and p = 1.
In our construction, for a given T and L, we assume that there is a set of T unit norm vectors {e1, . . . , eT } ⊂ Rd with
mutual coherence M upon which we build our embeddings. Note that the only difference to the previous relation-based case
p = 1 is that this time there is no extra counting direction. Importantly, we set K = d1/4Id as before, but Q = 1

Ld
1/4Id.

This gives an extra factor in the attention scores. Further, we set b1 = −1 and the columns of W1 ∈ Rd×T to the embeddings
et, as we did for lin. This results in a mixed token x̄′

ℓ according to equation 54. The hidden neuron is

zℓ,t =
1

L

L∑
m=1

⟨exm , exℓ
⟩⟨et, exm⟩+ ⟨et, exℓ

⟩ − 1 (63)

then with t = xℓ we have

zℓ,t =
1

L

kxℓ
+

∑
m:xm ̸=t

⟨exm
, et⟩2

 . (64)

Note that the square in equation 63 is what differs from the zℓ,t in equation 40. This is because the term ⟨exm
, et⟩ is once

introduced through the dot-product attention and once through the dot-product via W1. Conversely, with t ̸= xℓ it becomes

zℓ,t =
1

L

kt⟨et, exℓ
⟩+

∑
m:xm ̸=t

⟨exm
, exℓ

⟩⟨exm
, et⟩

+ ⟨et, exℓ
⟩ − 1 (65)

≤ 1

L
(ktM+ (L− kt)M) + ⟨et, exℓ

⟩ − 1 (66)

≤ 2M− 1 (67)
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if we set M < 0.5, which we need anyways for L ≥ 2 by the stronger upper bound on M that we develop in the following
we finally have for t ̸= xℓ

zℓ,t < 0 . (68)

Again, negative zℓ,t are set to zero via the ReLU, and the final outcome γℓ = zℓ,t=xℓ
depends only on a single hidden neuron

equation 63. This eventually leads to

γlower
ℓ (k) =

1

L
(k −M2(L− k)) , (69)

γupper
ℓ (k) =

1

L
(k +M2(L− k)) , (70)

and using the same concept as before, while minimizing over k and applying the Welch bound, to the upper bound

M <

√
1

2L− 3
. (71)

The final bound is more loose as we only require

d ≥
⌈

T (2L− 3)

T − 1 + (2L− 3)

⌉
. (72)

B.3. Explicit Construction with binary representations and softmax

In our final construction we examine the key difference between the models bos+sftm and bos – the softmax activation.
Before, we needed to construct embeddings with a low mutual coherence, because the term ⟨et, es⟩ introduced an error
on the mixed token, when t and s were not equal. Now, with the softmax activation applied to the mixing coefficients, the
model can use the non-linearity of this transform to its advantage. Recall the softmax function is

sftm(z)i =
ezi∑n
j=1 e

zj
for i = 1, 2, . . . , n , (73)

and when we compute sftm(κz)i we say it is a softmax with a inverse temperature κ > 0. When z of length L contains
only two different values, one with k and the other with L− k occurrences, then as κ → ∞ the mass concentrates only on
the larger value of the two, and sets the other to zero. We use this intuition to create token embeddings that fulfill for all
t, s = 1, . . . , T and s ̸= t

⟨et, et⟩ = 1 , (74)
⟨et, es⟩ < 1 + ϵ , (75)

where ϵ > 0. The idea is that the softmax with a high enough inverse temperature sets the term for different tokens, ⟨et, es⟩,
close enough to zero, essentially eliminating the noise. Note that equation 74 is a weaker condition on the set of token
embeddings than for example the bound of the mutual coherence in terms of the sequence length L bos with p = 1 in
Section B.2.2. It allows us to obtain perfect accuracy with smaller d. In the following we describe the construction of the
matrix explicitly.

B.3.1. (BOS+SFTM , p = 1)

In our explicit construction we introduce the inverse temperature by scaling the query matrix. We set K = d1/4Id as before,
but Q = κd1/4Id. The embeddings vectors correspond to the binary representation of the token index t = 1, . . . , T in
d′ = ⌈log2(T + 1)⌉ dimensions

et =


bin(t)⟨bin(t),bin(t)⟩−1

α
0

 ; eBOS =


bin(0)⟨bin(0),bin(0)⟩−1

1/α
1

 . (76)
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where bin(t) = [v1, . . . , vd′ ] ∈ {0, 1}d′
with t =

∑d′

i=1 vi2
i−1. We select α > 0. Then we have that

⟨et, et⟩ = 1 + α2 , (77)

α2 ≤ ⟨et, es⟩ ≤
√

1− 1

d′
+ α2 ≤ 1 + α2 − ϵ , (78)

⟨et, eBOS⟩ = 1 , (79)

where
√

d′−1
d′ = ⟨e2d′−1, e2d′−2⟩, which has the largest overlap among all possible non-equal pairs of tokens, and the lower

bound comes from all coordinates being positive. Using a readout on the direction only present in the eBOS token, namely,
W1 = [ecnt] = [0, . . . , 0, 1] ∈ Rd and b1 = 0, we construct

γℓ = ⟨ecnt, x̄′
ℓ⟩ = sftm(EET

ℓ )0⟨eBOS , ecnt⟩+
L∑

m=1

sftm(EET
ℓ )m+1⟨exm

, ecnt⟩+ ⟨exℓ
, ecnt⟩ (80)

= sftm(EET
ℓ )0 (81)

= sftm([⟨eℓ, eBOS⟩, ⟨eℓ, e1⟩, . . . , ⟨eℓ, eL⟩])0 (82)

The goal of applying the softmax function is to diminish the contributions of error equation 78, while having the final
dimension of the eBOS token be representative of the count of xℓ. The maximum error is induced when the upper bound
equation 78 is attained for all tokens in the sequence x that are not equal to xℓ. The minimum error is obtained when these
different tokens attain the lower bound. Without loss of generality on the ordering, this implies that for a given length L and
a softmax activation function with an inverse temperature κ, we have that

γlower
ℓ (k) =

eκ1

eκ1 + keκ(1+α2) + (L− k)eκ(1+α2−ϵ)
, (83)

γupper
ℓ (k) =

eκ1

eκ1 + keκ(1+α2) + (L− k)eκα2 . (84)

We explicitly need ϵ strictly greater than zero, since otherwise there is no information about the count in γℓ since it is
independent of the count k. Notice, that this time it holds that γℓ that correspond to higher values correspond to smaller
counts, since a larger count corresponds to a larger denominator, i.e. a smaller γℓ. Due to this inverse relationship, for this
model, we want that for all counts k = 1, . . . , L− 1 that it holds that

γupper
ℓ (k + 1) < γlower

ℓ (k) . (85)

This can be achieved by setting the inverse temperature κ accordingly.
In the following we show that there exists a κ which fulfills equation 85 for all d′ ≥ 2 and L > 2. Observe that
γupper
ℓ (2) < γlower

ℓ (1) implies the bounds for all other k. We define the distance or margin as

dist(κ) = γlower
ℓ (1)− γupper

ℓ (2) . (86)

Since at κ = 0 both γupper
ℓ (2) = γlower

ℓ (1) = 1/(L + 1), the distance is zero. However then it becomes impossible
to distinguish k = 1 and k = 2, as they receive the same weight. We therefore need the additional condition that
γupper
ℓ (2) ̸= γlower

ℓ (1). At κ = 0, we observe that this function has a negative derivative, as

∂

∂κ
dist(κ)|κ=0 = sftm(κzlower)0

(
(zlower)0 −

L+1∑
i=0

(zlower)jsftm(κzlower)i

)
(87)

− sftm(κzupper)0

(
(zupper)0 −

L+1∑
i=0

(zupper)jsftm(κzupper)i

)
(88)

= −
(

1

L+ 1

)2 ([
(1 + α2) + (L− 1)(1 + α2 − ϵ)

]
−
[
2(1 + α2) + (L− 2)α2

])
(89)

= −
(

1

L+ 1

)2

[(L− 2)− (L− 1)ϵ] (90)

< 0 (91)
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where the last bound is met when 0 < ϵ < 0.5 which is fulfilled already for d′ = 2 and when L > 2. As the distance
function is continuous, there exists a κ close to zero for which the dist(κ) < 0. Simultaneously, as κ → ∞, we have that
due to the concentration of the softmax probabilities on the largest entry, which here is 1 + α2, it holds that as κ → ∞ we
have dist(κ) → 0. At the same time, the function approaches infinity from the positive regime. For large enough κ we have
γupper
ℓ (2) < γupper

ℓ (1).
When we select the smallest possible κ > 0, we avoid computing large exponentials. To find the non-trivial root of dist(κ)
numerically, we consider a simplification of equation 86. We define u = eκ. Then it holds that we can solve

dist(κ) = 0 = (L− 1)u(1−ϵ) − u− (L− 2) (92)

numerically for κ > 0. This shows that we can find an explicit construction with 100% accuracy with p = 1 and d′ > 2 for
the bos+sftm when we have

d = ⌈log2(T + 1)⌉+ 2 . (93)

For example, for the case of L = 10 and T = 32 this allows for a dimension d = 7 with α = 0.01 (and for T = 31 with the
same settings d = 6 suffices).
Remark (d = 2). In principle, it is enough to have some ϵ > 0 that ensures that overlaps between different token embeddings
are strictly less than one. In principle, we can find an arbitrary number of tokens T that satisfy this condition for just d′ = 2.
Take for example the following construction. For t = 1, . . . , T tokens with T odd we can design the set of embeddings

vt =

 √ t
T√

T−t
T

 . (94)

Each ⟨et, et⟩ = 1 and for t ̸= s the overlap ⟨et, es⟩ ≤ ⟨e(T+1)/2, e(T−1)/2⟩ =
√
T 2 − 1/T .

This implies that ϵ → 0 as T → ∞ at a rate 1/T . Since smaller ϵ imply larger values of the temperature to solve
equation 92, this might become problematic when this exceeds the accuracy of computations. Previously, for the binary
representation construction from equation 76, we had that ϵ shrinks at a rate ∼ 1/ log2(T ). For the intermediate regime
between logT (T ) + 1 and log2(T ) dimensions, one can generalize this principle to arbitrary bases, e.g. log3(T ) > 2,
resulting in a smaller dimension but also less favorable (smaller) ϵ – this construction thus comes with a clear trade-off.

B.3.2. (DOT+SFTM ; p = T )

For this model, the explicit construction is analogous to the previous one. Instead of using p = 1 we use p = T . The
selection of the embeddings is analogous, but instead of a counting direction we read off all the weight directions. Not
having a counting direction also saves the additional two dimensions over bos+sftm with p = 1. In the feedforward
pass with W1 the explicit construction considers again zℓ,t for every token t ∈ T . The selection of the temperature is also
analogous, with the exception that one has L terms in the softmax instead of L+ 1.

C. Data Generation
Every sample x = (x1, · · · , xL) is generated recursively as follows, starting from size K = L and alphabet T ′ = T :

1. Sample an integer k uniformly from [1, · · · ,K].

2. Sample a token t uniformly from T ′.

3. Set xi = t for all i = k, · · · ,K.

4. Set T ′ = T ′ \ {t} and K = k.

5. If K ̸= 0, repeat from 1.

6. Set x = shuffle(x).

In contrast to sampling the elements of each sequence uniformly at random from the alphabet, this simple strategy enables
us to better control the distribution of counts in the training dataset.
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D. Additional Experiments
D.1. Best Accuracy

In Fig. 9, we show the best reached accuracy during training over the five sample runs. This gives insights into the feasibility
of implementing a counting solution for a given combination of parameters T, d, p of a model.

Figure 9. Experiments from Fig. 1 (T = 32), we show only the best accuracy during training reached from the 5 randomly initialized runs
per model/hyperparameter configuration.

D.2. Variability

In Fig. 10 we explore the influence of initialization on the performance via the variability of the final accuracy for several
runs. Especially in the p, d < T regime where bos+sftm is able to reach an accuracy relatively close to 100%, the
variability of the accuracies resulting from different initializations is quite large.

Figure 10. Experiments from Fig. 1 with T = 32, standard deviation of the accuracy reached after training from the 5 randomly initialized
runs per model/hyperparameter configuration.
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D.3. Model with Random but Fixed Embeddings

In Fig. 11, we repeat the experiments of Fig. 1, but for embeddings that are frozen throughout training (also 5 runs). In the
regime d < T where there is no mutual orthogonality possible, the random embeddings result in worse performance than
the learned ones. Especially for bos+sftm, learning the embeddings increases the performance strongly in some regimes.
This indicated that the models indeed learn adapted embeddings here.

Figure 11. The difference between learned and random embeddings for T = 32. Orange indicates that the random embeddings perform
better on average. Purple indicates that the learned embeddings perform better on average. Experimental settings as in Fig. 1.

D.4. Model with alternative T = 64

We repeat the experiments presented in Fig. 1 for T = 64 in Fig. 12, leading to the same phenomenology, in line with our
hypothesis that indeed the number of tokens T determines the relevant transition point.

Figure 12. Phase diagrams for varying p and d for fixed T = 64 and L = 10 for lin, dot and bos. (Top) Models without softmax;
(Bottom) Models with softmax. With five runs for every d, p ∈ {2, 4, 8, 16, 32, 64, 128}.
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D.5. Model with alternative L = 15

We repeat the experiments presented in Fig. 1 for L = 15 in Fig. 13, leading to the same phenomenology, in line with
our hypothesis that indeed the number of tokens T determines the relevant transition point, and not the sequence length L.
However, the accuracy is comparatively worse when no high-accuracy solution is reached.

Figure 13. Experiments as in Fig. 1, but with sequence length fixed to L = 15.

D.6. BOS mixing token

In Fig. 3 in the main, we describe how the tBOS is the main predictor for the count. Here, we provide more evidence by
showing how the count predictions for mixed tokens x̄′ output by the feature transform f are invariant to the type of other
token present in the mixed token. The results for four different tokens are shown in Fig. 14.

D.7. Overlaps

In Fig. 15 we show how the overlaps behave as a function of the dimension d when p is fixed.
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Figure 14. For the same model as in Fig. 3, we vary the inputs to the feature transformation f to show it is independent on the precise
input sequence, but only depends on the prevalence of tBOS. We vary the inputs between the learned tokens [B,C,D,E].
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Figure 15. Introspecting the Regime with Entangled Embeddings with dot (T = 64, L = 10, p = 128). We show examples of dot for
T = 64, L = 10, p = 128 for varying the model dimension d. (Top row) The top row shows the confusion matrix of ground truth and
predicted counts. (Middle row) Below is the overlap distribution between same and different token embeddings.
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