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ABSTRACT

Dynamic diagnosis is desirable when medical tests are costly or time-consuming. In
this work, we use reinforcement learning (RL) to find a dynamic policy that selects
lab test panels sequentially based on previous observations, ensuring accurate
testing at a low cost. Clinical diagnostic data are often highly imbalanced; therefore,
we aim to maximize the F1 score instead of the error rate. However, optimizing the
non-concave F1 score is not a classic RL problem, thus invalidating standard RL
methods. To remedy this issue, we develop a reward shaping approach, leveraging
properties of the F1 score and duality of policy optimization, to provably find the
set of all Pareto-optimal policies for budget-constrained F1 score maximization. To
handle the combinatorially complex state space, we propose a Semi-Model-based
Deep Diagnosis Policy Optimization (SM-DDPO) framework that is compatible
with end-to-end training and online learning. SM-DDPO is tested on diverse
clinical tasks: ferritin abnormality detection, sepsis mortality prediction, and acute
kidney injury diagnosis. Experiments with real-world data validate that SM-DDPO
trains efficiently and identify all Pareto-front solutions. Across all tasks, SM-DDPO
is able to achieve state-of-the-art diagnosis accuracy (in some cases higher than
conventional methods) with up to 85% reduction in testing cost. Core codes are
available on GitHub1.

1 INTRODUCTION

In clinical practice, physicians usually order multiple panels of lab tests on patients and their inter-
pretations depend on medical knowledge and clinical experience. Each test panel is associated with
certain financial cost. For lab tests within the same panel, automated instruments will simultaneously
provide all tests, and eliminating a single lab test without eliminating the entire panel may only lead
to a small reduction in laboratory cost (Huck & Lewandrowski, 2014). On the other hand, concurrent
lab tests have been shown to exhibit significant correlation with each other, which can be utilized
to estimate unmeasured test results (Luo et al., 2016). Thus, utilizing the information redundancy
among lab tests can be a promising way of optimizing which test panel to order when balancing
comprehensiveness and cost-effectiveness. The efficacy of the lab test panel optimization can be
evaluated by assessing the predictive power of optimized test panels on supporting diagnosis and
predicting patient outcomes.

We investigate the use of reinforcement learning (RL) for lab test panel optimization. Our goal is
to dynamically prescribe test panels based on available observations, in order to maximize diagno-
sis/prediction accuracy while keeping testing at a low cost. It is quite natural that sequential test panel
selection for prediction/classification can be modeled as a Markov decision process (MDP).
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However, application of reinforcement learning (RL) to this problem is nontrivial for practical
considerations. One practical challenge is that clinical diagnostic data are often highly imbalanced,
in some cases with <5% positive cases (Khushi et al., 2021; Li et al., 2010; Rahman & Davis, 2013).
In supervised learning, this problem is typically addressed by optimizing towards accuracy metrics
suitable for unbalanced data. The most prominent metric used by clinicians is the F1 score, i.e., the
harmonic mean of a prediction model’s recall and precision, which balances type I and type II errors
in a single metric. However, the F1 score is not a simple weighted error rate - this makes designing
the reward function hard for RL. Another challenge is that, for cost-sensitive diagnostics, one hopes to
view this as a multi-objective optimization problem and fully characterize the cost-accuracy tradeoff,
rather than finding an ad-hoc solution on the tradeoff curve. In this work, we aim to provide a
tractable algorithmic framework, which provably identifies the set of all Pareto-front policies and
trains efficiently. Our main contributions are summarized as follows:

•We formulate cost-sensitive diagnostics as a multi-objective policy optimization problem. The goal
is to find all optimal policies on the Pareto front of the cost-accuracy tradeoff.
• To handle severely imbalanced clinical data, we focus on maximizing the F1 score directly. Note

that F1 score is a nonlinear, nonconvex function of true positive and true negative rates. It cannot
be formulated as a simple sum of cumulative rewards, thus invalidating standard RL solutions. We
leverage monotonicity and hidden minimax duality of the optimization problem, showing that the
Pareto set can be achieved via a reward shaping approach.
•We propose a Semi-Model-based Deep Diagnostic Policy Optimization (SM-DDPO) method for

learning the Pareto solution set from clinical data. Its architecture comprises three modules and
can be trained efficiently by combing pretraining, policy update, and model-based RL.
•We apply our approach to real-world clinical datasets. Experiments show that our approach exhibits

good accuracy-cost trade-off on all tasks compared with baselines. Across the experiments, our
method achieves state-of-the-art accuracy with up to 80% reduction in cost. Further, SM-DDPO
is able to compute the set of optimal policies corresponding to the entire Pareto front. We also
demonstrate that SM-DDPO applies not only to the F1 score but also to alternatives such as the
AM score.

2 RELATED WORK

Reinforcement learning (RL) has been applied in multiple clinical care settings to learn optimal
treatment strategies for sepsis Komorowski et al. (2018), to customize antiepilepsy drugs for seizure
control Guez et al. (2008) etc. See survey Yu et al. (2021) for more comprehensive summary.
Guidelines on using RL for optimizing treatments in healthcare has also been proposed around the
topics of variable availability, sample size for policy evaluation, and how to ensure learned policy
works prospectively as intended Gottesman et al. (2019). However, using RL for simultaneously
reducing the healthcare cost and improving patient’s outcomes has been underexplored.

Our problem of cost-sensitive dynamic diagnosis/prediction is closely related to feature selection in
supervised learning. The original static feature selection methods, where there exists a common subset
of features selected for all inputs, were extensively discussed Guyon & Elisseeff (2003); Kohavi &
John (1997); Bi et al. (2003); Weston et al. (2003; 2000). Dynamic feature selection methods He
et al. (2012); Contardo et al. (2016); Karayev et al. (2013), were then proposed to take the difference
between inputs into account. Different subsets of features are selected with respect to different inputs.
By defining certain information value of the features Fahy & Yang (2019); Bilgic & Getoor (2007), or
estimating the gain of acquiring a new feature would yield Chai et al. (2004). Reinforcement learning
based approaches Ji & Carin (2007); Trapeznikov & Saligrama (2013); Janisch et al. (2019); Yin et al.
(2020); Li & Oliva (2021); Nam et al. (2021) are also proposed to dynamically select features for
prediction/classification. We give a more detailed discussion in Appendix A.

3 PARETO-FRONT PROBLEM FORMULATION

3.1 MARKOV DECISION PROCESS (MDP) MODEL

We model the dynamic diagnosis/prediction process for a new patient as an episodic Markov decision
process (MDP)M = (S,A, P,R, γ, ξ). As illustrated in Figure 1, the state of a patient is described
by s = x⊙M , where x ∈ Rd denotes d medical tests of a patient, M ∈ {0, 1}d is a binary mask
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indicating whether the entries of x are observed or missing. Let there be D test panels, whose union
is the set of all d tests. The action set A = {1, 2, · · · , D} ⊔ {P,N} contains two sets of actions –
observation actions and prediction/diagnosis actions. At each stage, one can either pick an action
a ∈ {1, 2, · · · , D} from any one of the available panels, indicating choosing a test panel a to observe,
which will incur a corresponding observation cost c(a); Or one can terminate the episode by directly
picking a prediction action a ∈ {P,N}, indicating diagnosing the patient as positive class (P) or
negative class (N). A penalty will generated if the diagnosis does not match the ground truth y. An
example of this process in sepsis mortality prediction is illustrated in Figure 1. We considers the
initial distribution ξ to be patients with only demographics panel observed and discount factor γ = 1.

Figure 1: MDP model of dynamic diagnosis: illustration of state-action transitions in one episode.

3.2 MULTI-OBJECTIVE POLICY OPTIMIZATION FORMULATION

Let π : S → A be the overall policy, a map from the set of states to the set of actions. We optimize π
towards two objectives:

• Maximizing prediction accuracy. Due to severely imbalanced data, we choose to maximize the
F1 score2, denoted by F1(π), as a function of policy π. F1 score measures the performance of the
diagnosis by considering both type I and type II errors, which is defined as:

F1(π) =
TP(π)

TP(π) + 1
2
(FP(π) + FN(π))

=
2TP(π)

1 + TP(π)− TN(π)

where TP(π),TN(π),FP(π),FN(π) are normalized true positive, true negative, false positive and
false negative that sum up to 1. Remark that TP(π),TN(π),FP(π),FN(π) can all be expressed as
sum of rewards/costs over the MDP’s state trajectories. However, F1(π) is nonlinear with respect to
the MDP’s state-action occupancy measure, thus it cannot be expressed as any cumulative sum of
rewards.
• Lowering cost. Define the testing cost by Cost(π) = Eπ[

∑
t≥0

∑
k∈[D] c(k) · 1{at = k}], where

Eπ denotes expectation under policy π, c(k) is the cost of panel k.
In this work, we hope to solve for cost-sensitive policies for all possible testing budget. In other
words, we aim to find the cost-sensitive Pareto front as follows.

Definition 3.1 (Cost-F1 Pareto Front of Multi-Objective Policy Optimization). The Pareto front
Π∗ for cost-sensitive dynamic diagnosis/prediction is the set of policies such that

Π∗ = ∪B>0 argmax
π
{F1(π) subject to Cost(π) ≤ B} (1)

Finding Π∗ requires novel solutions beyond standard RL methods. Challenges are two-folded: (1)
Even in the single-objective case, F1(π) is a nonlinear, non-concave function of TP(π),TN(π).
Although both TP(π),TN(π) can be formulated as expected sum of rewards in the MDP, the F1

score is never a simple sum of rewards. Standard RL methods do not apply to maximizing such
a function. (2) We care about finding the set of all Pareto-optimal policies when there are two
conflicting objectives, rather than an ad hoc point on the trade-off curve.

2An alternative to the F1 score is the AM metric that measures the average of true positive rate and true
negative rate for imbalanced data Natarajan et al. (2018); Menon et al. (2013). Our approach directly applies to
such linear metric. Please refer to Appendix F for details.
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4 FINDING COST-F1 PARETO FRONT VIA REWARD SHAPING

The F1 score is a nonlinear and nonconvex function of true positive, true negative, false positive, false
negative rates. It cannot be expressed by sum of rewards. This invalidates all existing RL methods
even in the unconstrained case, creating tremendous challenges.
Despite the non-concavity and nonlinearity of F1, we will leverage the mathematical nature of Markov
decision process and properties of the F1 score to solve problem (1). In this section, we provide an
optimization duality analysis and show how to find solutions to problem (1) via reward shaping and
solving a reshaped cumulative-reward MDP.

Step 1: utilizing monotonicity of F1 score To start with, we note that F1 score is monotonically
increasing in both TP and TN. Assume, for any given cost budget B, the optimal policy π∗(B)
achieves the highest F1 score. Then π∗(B) is also optimal to the following program:

max
π
{TN(π) subject to Cost(π) ≤ B,TP(π) ≥ TP(π∗(B))} ,

indicating the Pareto front of F1 score is a subset of

Π∗ ⊆ ∪B>0,K∈[0,1] argmax
π

{TN(π) subject to Cost(π) ≤ B,TP(π) ≥ K} . (2)

Step 2: reformulation using occupancy measures Fix any specific pair (B,B′). Consider the
equivalent dual linear program form Zhang et al. (2020) of the above policy optimization problem (2).
It is in terms of the cumulative state-action occupancy measure µ : ∆S

A → RS×A
≥0 , defined as:

µπ(s, a) := Eπ
[∑

t≥0 1(st = s, at = a)
]
, ∀s ∈ S, a ∈ A. Then the program (2) is equivalent to:

max
µ

TN(µ) subject to Cost(µ) ≤ B, TP(µ) ≥ K,
∑
a

µ(s, a) =
∑

s′,a′∈[D]

µ(s′, a′)P (s|s′, a′) + ξ(s), ∀s

where ξ(·) denotes initial distribution, and TP, TN and cost are reloaded in terms of occupancy µ as:

TP(µ) =
∑

y=P,a=P

µ(s, a), TN(µ) =
∑

y=N,a=N

µ(s, a), Cost(µ) =
∑

k∈[D]

c(k) ·
∑

s,a=k

µ(s, a).

Step 3: utilizing hidden minimax duality The above program can be equivalently reformulated as
a max-min program:

max
µ

min
λ≥0,ρ≤0

TN(µ) + λ · (TP(µ)−K) + ρ · (Cost(µ)−B)

subject to
∑
a

µ(s, a) =
∑

s′,a′∈[D]

µ(s′, a′)P (s|s′, a′) + ξ(s), ∀s.

Note the max-min objective is linear in terms of λ, ρ and µ. Thus, minimax duality holds, then we
can swap the min and max to obtain the equivalent form:

min
λ≥0,ρ≤0

max
µ

TN(µ) + λ · (TP(µ)−K) + ρ · (Cost(µ)−B)

subject to
∑
a

µ(s, a) =
∑

s′,a′∈[D]

µ(s′, a′)P (s|s′, a′) + ξ(s), ∀s.

For any fixed pair of (λ, ρ), the inner maximization problem of the above can be rewritten equivalently
into an unconstrained policy optimization problem: maxπ TN(π) + λ · TP(π) + ρ · Cost(π). This is
finally a standard cumulative-sum MDP problem, with reshaped reward: reward ρ · c(t) for the action
of choosing test panel t, reward λ for the diagnosis action and get a true positive, reward 1 for getting
a true negative. Putting together three steps, we can show the following theorem. The full proof can
be found in Appendix E.

Theorem 4.1. The Cost-F1 Pareto front defined in (1) is a subset of the collection of all reward-shaped
solutions, given by

Π∗ ⊆ Π := ∪λ≥0,ρ≤0 argmax
π

{TN(π) + λ · TP(π) + ρ · Cost(π)} .

Thus, to learn the full Pareto front, it suffices to solve a collection of unconstrained policy optimization
problems with reshaped cumulative rewards.
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5 METHOD

In this section, we propose a deep reinforcement learning pipeline for Pareto-optimal dynamic
diagnosis policies. We use a modular architecture for efficient encoding of partially-observed patient
information, policy optimization and reward learning.

5.1 ARCHITECTURE

Our Semi-Model-based Deep Diagnostic Policy Optimization (SM-DDPO) framework is illustrated
in Figure 2. The complete dynamic testing policy π comprises three models: (1) a posterior state
encoder for mapping partially-observed patient information to an embedding vector; (2) a state-to-
diagnosis/prediction classifier which can be reviewed as a reward function approximator; (3) a test
panel selector that outputs an action based on the encoded state. This modular architecture makes RL
tractable via a combination of pre-training, policy update and model-based RL.

Figure 2: Dynamic diagnostic policy learning via semi-model-based proximal policy optimization.
The full policy π comprises of three modules: posterior state encoder, classifier, and panel selector.

5.2 POSTERIOR STATE ENCODER

We borrowed the idea of imputation to map the partially observed patient information to a posterior
embedding vector. In this work, we consider a flow-based deep imputer named EMFlow3. Given the
imputer Impθ(·) parameterized by θ, the RL agent observes tests x⊙M and calculates Impθ(x⊙M) ∈
Rd as a posterior state encoder. Unlike conventional imputation Lin & Tsai (2020); Austin et al.
(2021); Osman et al. (2018), our posterior state encoder aims at resolving exponentially many possible
missing patterns. Therefore, we pretrain it on unlabeled augmented data, constructed by repeatedly
and randomly masking entries as additional samples.

5.3 END-TO-END TRAINING VIA SEMI-MODEL-BASED POLICY UPDATE

Training the overall policy using a standard RL algorithm alone (such as Q learning, or policy
gradient) would suffer from the complex state and action spaces. To ease the heavy training, we
design a semi-model-based modular approach to train the panel selector and classifier concurrently
but in different manners:

• The classifier fϕ(·) : Rd → R2, parameterized by ϕ, maps the posterior encoded state Impθ(x⊙M)
to a probability distribution over labels. It is trained by directly minimizing the cross entropy loss ℓc
from collected data4. This differs from typical classification in that the data are collected adaptively
by RL, rather than sampled from a prefixed source.

• The panel selector, a network module parameterized by ψ, takes the following as input

semb
θ,ϕ (s) = semb

θ,ϕ (x⊙M) = (Impθ(x⊙M), fϕ(Impθ(x⊙M)),M), (3)

3The EMFlow imputation method is originally proposed in Ma & Ghosh (2021) that maps the data space to
a Gaussian latent space via normalizing flows. We give a more detailed discussion of this method in Appendix C.

4The forms of the training objective ℓc and ℓrl of classifier and panel selector are given in Appendix D
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and maps it to a probability distribution over actions. We train the panel selector by using the classical
proximal policy updates (PPO) Schulman et al. (2017), which aims at maximizing a clipped surrogate
objective regularized by a square-error loss of the value functions and an entropy bonus. We denote
this loss function as ℓrl and relegate its expanded form to Appendix D.

• The full algorithm updates panel selector and classifier concurrently, given in Algorithm 1 and
visualized in Figure 2. We call it “semi-model-based" because it maintains a running estimate of the
classifier (which is a part of the reward model of the MDP) while making proximal policy update.

Algorithm 1 Semi-Model-Based Deep Diagnosis Policy Optimization (SM-DDPO)

Initialize: Impθ, Classifier fϕ(0,0) , Panel/Prediction Selection Policy πψ(0,0) , number of loops
L,L1, L2, stepsize η;
for i = 0, 1, · · · , L do ▷ End-to-end training outer loop

Construct RL environment using state embedding semb
θ,ϕ(i,0) defined in (3)

for j = 1, 2, · · · , L1 do ▷ Policy update inner loop
Run RL policy in environment for T timesteps and save observations in Q
Update panel selection policy by ψ(i,j) = argmaxψ ℓrl(ψ;ψ

(i,j−1))
end for
Set ψ(i+1,0) = ψ(i,L1)

for j = 1, 2, · · · , L2 do ▷ Classifier update inner loop
Sample minibatch Bj from Q
Update classifier by ϕi,j = ϕi,j−1 − η · ∇ϕ 1

|Bj |
∑
k∈Bj ℓc(ϕ

i−1; (xk,Mk))

end for
Set ϕ(i+1,0) = ϕ(i,L2)

end for
Output: Classifier fϕ(L+1,0) , Policy πψ(L+1,0) .

Such a hybrid RL technique of model learning and policy updates has been used for solving complex
games, where a notable example is Deepmind’s Muzero Schrittwieser et al. (2020). Further, we
remark that Algorithm 1 does end-to-end training. Thus, it is compatible with on-the-fly learning.
The algorithm can start with as little as zero knowledge about the prediction task, and it can keep
improving on new incoming patients by querying test panels and finetuning the state encoder.

6 EXPERIMENTS

We test the method on three clinical tasks using real-world datasets. See Table 1 for a summary.
We split each dataset into 3 parts: training set, validation set, and test set. Training data is further
split into two disjoint sets, one for pretraining the state encoder and the other one for end-to-end
RL training. Validation set is used for tuning hyperparameters 5. During RL training6, we sample
a random patient and a random subset of test results as initial observations at the beginning of an
episode, for sufficient exploration. We evaluate the trained RL policy on patients from the test sets,
initialized at a state with zero observed test result, and report F1 score and AUROC.

Table 1: Summary statistics of ferritin, AKI and sepsis datasets

Dataset # of tests # test panels # patients % positive class #training #validation #held-out testing

Ferritin 39 6 43,472 8.9% 32,602 6,522 4,248
AKI 19 4 23,950 16.5% 17,964 3,600 2,386
Sepsis 28 4 5,783 14.5% 4,335 869 579

6.1 CLINICAL TASKS

We briefly describe three clinical tasks for our experiments. We refer to Appendix B for more details.

Ferritin abnormality detection Blood ferritin level can indicate abnormal iron storage, which is
commonly used to diagnose iron deficiency anemia Short & Domagalski (2013) or hemochromatosis

5Detailed data splitting, hyperparameter choices and searching ranges are presented in Appendix B.
6Our codes used the implementation of PPO algorithm in package Raffin et al. (2021).
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(iron overload) Crownover & Covey (2013). Machine learning models can predict abnormal ferritin
levels using concurrent laboratory measurements routinely collected in primary care Luo et al. (2016);
Kurstjens et al. (2022). These predictive models achieve promising results, e.g. around 0.90 AUC
using complete blood count and C-reactive protein Kurstjens et al. (2022), and around 0.91 AUC
using common lab tests Luo et al. (2016). However, both studies required the full observation of all
selected predictors without taking the financial costs into consideration.

We applied our proposed models to a ferritin dataset from a tertiary care hospital (approved by
Institutional Review Board), following the steps described in Luo et al. (2016). Our dataset includes
43,472 patients, of whom 8.9% had ferritin levels below the reference range that should be considered
abnormal. We expected to predict abnormal ferritin results using concurrent lab testing results and
demographic information. These lab tests were ordered through and can be dynamically selected from
6 lab test panels, including basic metabolic panel (BMP, n=9, [estimated national average] cost=$36),
comprehensive metabolic panel (CMP, n=16, cost=$48), basic blood count (BBC, n=10, cost=$26),
complete blood count (CBC, n=20, cost=$44), transferrin saturation (TSAT, n=2, cost=$40) and
Vitamin B-12 test (n=1, cost=$66).

Acute Kidney Injury Prediction Acute kidney injury (AKI) is commonly encountered in adults in
the intensive care unit (ICU), and patients with AKI are at risk for adverse clinical outcomes such as
prolonged ICU stays and hospitalization, need for renal replacement therapy, and increased mortality
Kellum & Lameire (2013). AKI usually occurs over the course of a few hours to days and the
efficacy of intervention greatly relies on the early identification of deterioration Kellum & Lameire
(2013). Prior risk prediction models for AKI based on EHR data yielded modest performance, e.g.,
around 0.75 AUC using a limited set of biomarkers Perazella (2015) or a specific group of patients
Sanchez-Pinto & Khemani (2016), or around 0.8 AUC using comprehensive lab panels of general
adult ICU populations such as from the MIMIC datasetZimmerman et al. (2019); Sun et al. (2019).

In this experiment, we followed steps in Zimmerman et al. (2019) to extract 23,950 ICU visits of
19,811 patients from the MIMIC-III dataset Johnson et al. (2016), among which 16.5% patients
develop AKI during their ICU stay. We aimed at predicting the AKI onset within 72 hours of ICU
admission using a total of 31 features including demographics, physiologic measurements, and lab
testing results extracted within 24 hours of ICU admission. The lab tests were categorized into
4 panels, i.e. CBC (n=3, cost=$44), CMP (n=8, cost=$48), the arterial blood gas panel (ABG,
n=2, cost=$473) and the activated partial thromboplastin time panel (APTT, n=6, cost=$26). The
demographic information and physiologic measurements were collected before test panel selection,
thus they are considered visible.

Sepsis Mortality Prediction for ICU Patients Sepsis is a life-threatening organ dysfunction, and
is a leading cause of death and cost overruns in ICU patients Angus & Van der Poll (2013) Early
identification of risk of mortality in septic patients is important to evaluate the patients’ status and
improve their clinical outcomes Moreno et al. (2008). Most of the previous sepsis mortality prediction
models use all available test results as predictors, without balancing the cost of ordering all the
associated test panels Lee et al. (2020); Ding & Luo (2021); Shin et al. (2021); Moreno et al. (2008).

We followed steps in Shin et al. (2021) to collect 5,783 septic patients from the MIMIC-III dataset
Johnson et al. (2016) according to the Sepsis-3 criteria Singer et al. (2016). The in-hospital mortality
rate of this cohort is 14.5%. We focused on predicting in-hospital mortality for these sepsis patients
using demographics information, medical histories, mechanical ventilation status, the first present lab
testing results and physiologic measurements within 24 hours of ICU admission, and the Sequential
Organ Failure Assessment (SOFA) score. Similarly to the setup in the AKI experiment, the lab tests
were also categorized into 4 panels of CBC (n=5), CMBP (n=15), ABG (n=6) and APTT (n=2). The
components of SOFA score may be based on the lab testing results in CBC, CMP or ABG panels
Singer et al. (2016). Demographic features are considered visible.

6.2 PERFORMANCE RESULTS

Our method is tested with comparison to a number of baselines that use either full/partial test results
or statically/dynamically selected tests for prediction. They include logistic regression, random forest
Ho (1995), XGBoost Chen & Guestrin (2016), LightGBM Ke et al. (2017), a 3-layer multi-layer
perceptron, as well as RL-based approach Janisch et al. (2019). Experiments results, such as F1 score,
AUROC and testing costs are reported in Table 2. We emphasize that these baselines are incapable to
handle the task of finding the Pareto front. Thus, we only test them under no budget constraints.
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Table 2: Model performance, measured by F1 score, area under ROC (AUC), and testing cost, for three
real-world clinical datasets. The tested models include logistic regression (LR), random forests (RF),
gradient boosted regression trees (XGBoost Chen & Guestrin (2016) and LightGBM Ke et al. (2017)
), 3-layer multi-layer perceptron, Q-learning for classification with costly features (CWCF)Janisch
et al. (2019), Random Selection (RS), Fixed Selection (FS). All models were fine-tuned to maximize
the F1 score. The model yielded the highest F1 score is in bold. The model required the least testing
cost is underlined. More detailed results of this table with more dynamic baselines and standard
deviations reported in Appendix B.

Models Ferritin AKI Sepsis Test Selection

Metrics F1 AUC Cost F1 AUC Cost F1 AUC Cost Strategy

LR 0.539 0.935 $290 0.452 0.797 $591 0.506 0.825 $591 Full
RF 0.605 0.938 $290 0.439 0.764 $591 0.456 0.801 $591 Full
XGBoost 0.617 0.938 $290 0.404 0.785 $591 0.431 0.828 $591 Full
LightGBM 0.627 0.941 $290 0.474 0.790 $591 0.500 0.844 $591 Full
3-layer DNN 0.616 0.938 $290 0.494 0.802 $591 0.517 0.845 $591 Full
LR (2 panels) 0.401 0.859 $92 0.473 0.797 $92 0.488 0.811 $92 Fixed
RF (2 panels) 0.504 0.887 $92 0.425 0.768 $92 0.478 0.828 $92 Fixed
XGBoost (2 panels) 0.519 0.895 $92 0.410 0.781 $92 0.459 0.877 $92 Fixed
LightGBM (2 panels) 0.571 0.901 $92 0.491 0.792 $92 0.502 0.864 $92 Fixed
FS 0.585 0.927 $74 0.434 0.787 $98 0.500 0.837 $90 Fixed
RS 0.437 0.845 $145 0.424 0.748 $295 0.473 0.789 $295 Random
CWCF 0.554 0.718 $256 0.283 0.510 $326 0.112 0.503 $301 Dynamic
SM-DDPOpretrained 0.607 0.925 $80 0.519 0.789 $90 0.567 0.836 $85 Dynamic
SM-DDPOend2end 0.624 0.928 $62 0.495 0.795 $97 0.562 0.845 $90 Dynamic

• Comparisons with baseline models using full observation of data. The results are presented
in Table 2. Across all three clinical tasks, our proposed model can achieve comparable or even
state-of-the-art performance, while significantly reducing the financial cost. On sepsis dataset,
SM-DDPOend2end yielded better results (F1=0.562, AUROC=0.845) than the strongest baseline mod-
els, LightGBM (F1=0.517, AUROC=0.845), when saving up to 84% in test cost. On ferritin dataset,
LightGBM (F1=0.627, AUROC=0.948) performed slightly better than our model (F1=0.624, AU-
ROC=0.928), however, by using 5x testing cost. On AKI dataset, SM-DDPOend2end (F1=0.495,
AUROC=0.795) achieved comparable results to the optimal full observation model, 3-layer MLP
(F1=0.494, AUROC=0.802), while saving the testing cost from $591 to $90.

• Comparisons with other test selection strategies. Our proposed SM-DDPOend2end, using RL-
inspired dynamic selection strategy, consistently yielded better performance and required less testing
cost across all three datasets, when compared to the models using fixed or random selection strategy.
For fixed test selection strategy, we first tested the classification methods using the two most relevant
panels: CBC and CMP. These baselines with reduced testing cost still behaved much worse than
our approach in both F1 score and AUROC. We also tested another fixed selection (FS) baseline,
where we chose to always observe 2 most selected test panels reported in our approach for all
patients, while keeping other modules the same. Our approach outperformed FS on both F1 score
and AUROC while having a similar testing cost. The random selection (RS) baseline selected test
panels uniformly at random and had a worse performance. Q-learning for classification with costly
features (CWCF) Janisch et al. (2019) performed poorly on all three clinical datasets. We believe
this is because the model uses the same network for selecting tests and learning rewards. For such
imbalanced datasets, this may make the training unstable and difficult to optimize.

• Efficiency and accuracy of end-to-end training. The classifier and panel selector of
SM-DDPOend2end are both trained from the scratch, using Algorithm 1. As in Table 2, this
end-to-end training scheme gives comparable accuracy with policies that rely on a heavily pretrained
classifier (SM-DDPOpretrain). If a brand-new diagnostic/predictive task is given, our algorithm can
be trained without prior data/knowledge about the new disease. It can adaptively prescribe lab tests
to learn the disease model and test selection policy in an online fashion. End-to-end training is also
more data-efficient and runtime efficient.

• Interpretability. Our algorithm is able to select test panels that are clinically relevant. For ferritin
prediction, our algorithm identifies TSAT as a most important panel, which is indeed useful for
detecting iron deficiency. For AKI prediction, our algorithm recommends serum creatinine level test
as an important predictor for 95% of subjects, i.e., current and past serum creatinine is indicative of
future AKI, expanding its utility as a biomarker de Geus et al. (2012).
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6.3 TRAINING CURVES

We present the training curves on AKI dataset in Figure 3. We refer more results to Appendix B.

• SM-DDPO learns the disease model. In end-to-end training, the diagnostic classifier is trained
from the scratch. It maps any partially-observed patient state to a diagnosis/prediction. We evaluate
this classifier on static data distributions, in order to eliminate the effect of dynamic test selection
and focus on classification quality. Figure 3 shows that the classifier learns to make the high-quality
prediction with improved quality during RL, via training only on data selected by the RL algorithm.

Figure 3: Classifier improvement during RL training on AKI Dataset. Accuracy of the learned
classifier is evaluated on static patient distributions, with 1) random missing pattern, where we
uniformly at random augment the test data; 2) missing pattern of the optimal policy’s state distribution.
During the end-to-end RL training, the classifier gradually improves and has higher accuracy with
the second missing pattern.

Figure 4: Cost-F1 Pareto Front for maximizing F1-score on Ferritin, AKI and Sepsis Datasets

6.4 COST-F1 PARETO FRONT

Figure 4 illustrates the Pareto fronts learned on all three datasets. We trained for optimal policies
on 190 MDP instances specified by different value pairs of (λ, ρ) in Theorem 4.1, and present the
corresponding performance on F1 score (red) and AUROC (blue) evaluated on the test sets. We
identify the Pareto front as the upper envelope of these solutions, which are the yellow curves
in Figure 4. These results present the full tradeoff between testing cost and diagnostic/predictive
accuracy. As a corollary, given any cost budget B, one is able to obtain the best testing strategy with
the optimal F1 performance directly from Figure 4. We present a zoom-in version in Appendix B.

7 SUMMARY

In this work, we develop a Semi-Model-based Deep Diagnosis Policy Optimization (SM-DDPO)
method to find optimal cost-sensitive dynamic policies and achieve state-of-art performances on
real-world clinical datasets with up to 85% reduction in testing cost.
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APPENDIX

We organized the appendices as follows. We first provide a complete literature review in appendix A.
In appendix B, we provided the descriptive statistics of all three clinical datasets, followed by
the experimental results and detailed training settings. In appendix C, we described the EMFlow
imputation algorithm. In appendix D, we gave more details of the proposed end-to-end training
approach. In appendix E, we proved the Theorem 4.1. In appendix F, we discuss the alternative
AM metric for evaluating the diagnostic performance as an example to show the capability of our
framework to handle classic linear metrics.

A RELATED WORK

Reinforcement learning (RL) has been applied in multiple clinical care settings to learn optimal
treatment strategies for sepsis Komorowski et al. (2018), to customize antiepilepsy drugs for seizure
control Guez et al. (2008) etc. See survey Yu et al. (2021) for more comprehensive summary.
Guidelines on using RL for optimizing treatments in healthcare has also been proposed around the
topics of variable availability, sample size for policy evaluation, and how to ensure learned policy
works prospectively as intended Gottesman et al. (2019). However, using RL for simultaneously
reducing the healthcare cost and improving patient’s outcomes has been underexplored.

Our problem of cost-sensitive dynamic diagnosis/prediction is closely related to feature selection
in supervised learning. The original static feature selection methods, where there exists a common
subset of features selected for all inputs, were extensively discussed Guyon & Elisseeff (2003),
including filter models (e.g., variable ranking), wrapper approaches Kohavi & John (1997), as well as
integration of the feature selection in the learning process by using ℓ1-norm and ℓ0-norm Bi et al.
(2003); Weston et al. (2003; 2000). Dynamic feature selection methods He et al. (2012), also named
as adaptive feature acquisition Contardo et al. (2016) or feature selection with budget Karayev et al.
(2013), were then proposed to take the difference between inputs into account. Different subsets of
features are selected with respect to different inputs. By defining certain information value of the
features Fahy & Yang (2019); Bilgic & Getoor (2007), or estimating the gain of acquiring a new
feature would yield Chai et al. (2004), these methods are able to select appropriate features in an
adaptive way to balance the costs of the selected features and the learning quality.

Recently, reinforcement learning based approaches Ji & Carin (2007); Trapeznikov & Saligrama
(2013); Janisch et al. (2019); Yin et al. (2020); Li & Oliva (2021); Nam et al. (2021) are also proposed
to dynamically select features for prediction/classification. All these related works are directly given,
or pre-define a sum of rewards as objectives. While our task of deriving the cost-F1 Pareto front,
or maximizing F1 score under cost budget constraints, is much harder and cannot be expressed
using pre-defined reward functions. Work Nam et al. (2021); Ji & Carin (2007); Yin et al. (2020)
models the feature selection process as a partially observed Markov Decision Process (POMDP). Ji &
Carin (2007) points out that POMDP solutions are hard to train and cannot handle continuous-valued
observations. A similar approach is proposed by Janisch et al. (2019) using a deep Q learning method.
In our approach, we use a modular network and a combination of various training schemes for more
efficient RL. Trapeznikov & Saligrama (2013) ranks features in a prefixed order and only requires the
agent to decide if it will add a next feature or stop. The prefixed ranked order makes the problem
easier to solve, but it is suboptimal compared to fully dynamic policies.

In this work, we deal with datasets with highly imbalancement, i.e., there are much fewer ill patients
compared to healthy patients. To handle such data imbalancement, we use the metric of F1 score,
which is a well-established and acknowledged evaluation metric in the medical domain Perazella
(2015); Sanchez-Pinto & Khemani (2016), to evaluate the diagnostic performance. Alternative
metrics includes linear AM metrics Natarajan et al. (2018); Menon et al. (2013) for imbalanced
datasets can also handled by our frameworks, which we discussed in Appendix F.

B EXPERIMENTS

B.1 DESCRIPTION OF DATASETS

We summarize a detailed description of all lab tests in three datasets in Table 3, 4 and 5

14



Published as a conference paper at ICLR 2023

Table 3: Summary descriptive statistics of the Ferritin dataset. (N = 43472. Binary variables are
reported with positive numbers and percentages. Continuous variables are reported with means and
interquartile ranges.

Variables N / mean % / IQR Variables N / mean % / IQR
Demographics Complete Blood Count Panel ($44)

Age 50.41 (37.00, 63.00) †Abs. Nucleated RBC Count (K/µL) 0.21 (0.00, 0.00)
Race/Ethnicity Abs. Basophils (K/µL) 0.05 (0.00, 0.10)

Asian 26887 5.18% Abs. Bosinophils (K/µL) 0.16 (0.10, 0.20)
Black 6354 14.61% Abs. Lymphocytes (K/µL) 2.05 (1.45, 2.30)
Hispanic 4272 9.83% Absolute Monocytes (K/µL) 0.53 (0.40, 0.60)
White 3708 61.85% Absolute Neutrophils (K/µL) 4.13 (2.90, 4.96)
Other 2251 8.53% Percent Eosinophils (%) 2.46 (1.00, 3.00)

Comprehensive Metabolic Panel ($48) Percent Lymphocytes (%) 29.49 (23.67, 35.00)
Alanine Transaminase (UL) 20.14 (12.00, 21.50) Percent Monocytes (%) 8 (6.00, 9.00)
Albumin (g/dL) 4.3 (4.10, 4.50) Percent Neutrophils (%) 60.23 (53.50, 67.00)
Alkaline Phosphatase (U/L) 67.03 (48.00, 77.00) Percent Basophils (%) 0.68 (0.00, 1.00
‡Anion Gap (mEq/L) 9.79 (8.00, 12.00) †White Blood Cell Count (K/µL) 6.92 (5.30, 7.90)
Aspartate Transaminase (U/L) 22.06 (16.00, 23.00) †Red Blood Cell Count (M/µL) 4.34 (4.07, 4.67)
‡Bicarbonate (mmol/L) 27.09 (26.00, 29.00) †Platelets (K/µL) 274.78 (224.00, 315.50)
‡Blood Urea Nitrogen (mg/dL) 15.24 (11.00, 17.00) †Mean cell volume (fL) 28.91 (27.70, 30.70)
‡Calcium (mg/dL) 9.49 (9.20, 9.75) †Mean cell hemoglobin (pg/RBC) 32.07 (31.38, 32.95)
‡Chloride (mmol/L) 103.71 (102.00, 105.00) Mean cell hemoglobin concentration (g/dL)† 90.03 (87.00, 94.00)
‡Creatinine (mmol/L) 0.87 (0.69, 0.89) †RBC distribution width (%) 13.89 (12.50, 14.60)
‡Sodium (mmol/L) 139.27 (138.00, 141.00) †Hematocrit (%) 38.87 (36.60, 41.80)
Total Bilirubin (mg/dL) 0.55 (0.40, 0.60) †Hemoglobin (g/dL) 12.48 (11.60, 13.60)
Total Protein (g/dL) 7.22 (6.90, 7.50) Transferrin Saturation Test ($40)
‡Potassium (mmol/L) 4.11 (3.90, 4.30) Iron (µg/dL) 82.33 (54.00, 104.00)
‡Glucose (mg/L) 99.88 (86.00, 102.00) Total Iron-binding Capacity (µg/dL) 366.81 (321.00, 409.00)
Globulin (g/dL) 3.19 (2.70, 3.60) Outcome

Vitamin B-12 Test ($66) Abnormal Ferritin Level 4649 10.69%
Cobalamin (pg/mL) 547.8 (302.00, 668.00)

†: These variables can also be ordered through basic blood count panel ($26).
‡: These variables can also be ordered through basic metabolic panel ($36).

Table 4: Summary descriptive statistics of the AKI dataset. (N = 23950. Binary variables are
reported with positive numbers and percentages. Continuous variables are reported with means and
interquartile ranges.)

Variables N/Mean %/ IQR Variables N/Mean %/ IQR
Demographics Comprehensive Metabolic Panel ($48)

Gender Glucose Level Maximum (mg/dL) 173.36 (128.00, 196.00)
Female 9755 40.73% Bicarbonate Level Minimum (mg/dL) 23.87 (21.00, 26.00)
Male 14195 59.27% Creatinine Level Minimum (mg/dL) 0.74 (0.60, 0.90)

Age (yr) 60.89 (50.66, 73.50) Creatinine Level Maximum (mg/dL) 0.8 (0.60, 1.00)
Race/Ethnicity Blood Urea Nitrogen Level Maximum (mg/dL) 16.87 (11.00, 20.00)

Black 1688 6.96% Calcium Level Minimum (mg/dL) 8.08 (7.62, 8.54)
Hispanic 845 3.53% Estimated Glomerular Filtration Rate (eGFR) 110.2 (80.94, 124.30)
White 17261 72.07% Potassium Level Maximum (mg/dL) 4.39 (3.90, 4.70)
Other 4176 17.44% Activated Partial Thromboplastin Time Test Panel ($26)

Vital Signs or Bedside Measurements Partial Thromboplastin Time Maximum (s) 32.55 (26.60, 34.60)
Heart Rate Maximum (bpm) 105.4 (91.00, 117.00) Partial Thromboplastin Time Minimum (s) 40.22 (27.80, 41.92)
Heart Rate Mean (bpm) 86.97 (76.58, 96.76) International Normalized Ratio Minimum 1.34 (1.10, 1.40)
Systolic BP Minimum (mmHg) 92.51 (82.00, 102.00) International Normalized Ratio Maximum 1.48 (1.20, 1.52)
Systolic BP Mean (mmHg) 118.87 (107.34, 128.45) Prothrombin Time Minimum (s) 14.66 (13.10, 15.08)
Diastolic BP Minimum (mmHg) 45.31 (39.00, 52.00) Prothrombin Time Maximum (s) 15.63 (13.40, 16.18)
Diastolic BP Mean (mmHg) 61.98 (54.88, 67.87) Complete Blood Count Panel ($44)
Mechanical Ventilation 12273 51.24% Hemoglobin Level Minimum (g/dL) 10.33 (8.90, 11.70)
Average Urine Output (ml) 2202.68 (1315.00, 2792.00) Platelet Count K/µL 210.24 (134.00, 261.00)
Temperature Maximum (celsius) 37.6 (37.06, 38.06) White Blood Cell Count Maximum (mg/dL) 12.78 (8.50, 15.50)

Arterial Blood Gas Test ($473) Outcome
SpO2 Minimum (%) 92.23 (91.00, 95.00) Acute Kidney Injury 3945 16.47%
SpO2 Maximum (%) 97.41 (96.36, 98.78)

B.2 SUPPLEMENT EXPERIMENT RESULTS

In this section, we show a more detailed results of Table 2 presented in the main text.

B.3 DETAILED TRAINING SETTINGS

Computing Resource The experiments are conducted in part through the computational resources
and staff contributions provided for the Quest high performance computing facility at Northwestern
University which is jointly supported by the Office of the Provost, the Office for Research, and
Northwestern University Information Technology. Quest provides computing access of over 11,800
CPU cores. In our experiment, we deploy each model training job to one CPU, so that multiple
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Table 5: Summary descriptive statistics of the Sepsis dataset. (N = 5396. Binary variables are
reported with positive numbers and percentages. Continuous variables are reported with means and
interquartile ranges.)

Variables N/Mean %/ IQR Variables N/Mean %/ IQR
Demographics Vital Signs, Bedside Measurements, or Medical Histories

Gender Heart Rate (bpm) 90.99 (77.00, 104.00)
Female 3014 55.86% Respiration Rate (insp/min) 19.37 (15.00, 23.00)
Male 2382 44.14% Systolic BP (mmHg) 124.46 (107.00, 141.00)

Age (yr) 65.5 (53.90, 79.93) Diastolic BP (mmHg) 66.75 (55.00, 77.00)
Race/Ethnicity Glasgow Comma Scale 4.91 (5.00, 6.00)

Asian 167 3.09% Mechanical Ventilation 2781 48.11%
Black 473 8.77% Urine Output (ml) 214.91 (70.00, 300.00)
Hispanic 182 3.37% Tidal Volume 496.98 (450.00, 550.00)
White 3923 72.70% Temperature (celsius) 36.64 (36.10, 37.22)
Other 654 12.12% History of Metastatic Cancer 342 5.92%

Marital Status History of Diabetes 1629 28.18%
Divorced 328 6.08% BMI 28.54 (23.53, 31.75)
Married 2379 44.09% Comprehensive Metabolic Panel ($48)
Single 1536 28.47% Glucose Level (mg/dL) 4.91 (4.65, 5.11)
Widowed 795 14.73% Bicarbonate Level (mEq/L) 22.95 (20.00, 26.00)
Unknown 358 6.63% Serum Creatinine (mg/dL) 1.54 (0.80, 1.60)

Admission Type Aspartate aminotransferase (IU/L) 4.01 (3.18, 4.49)
Elective 310 5.74% Bilirubin (mg/dL) 1.57 (0.40, 1.30)
Emergency 5026 93.14% Chloride (mEq/L) 105.29 (101.00, 109.00)
Urgent 60 1.11% Carbon Dioxide (mEq/L) 24.61 (21.00, 28.00)

Insurance Type Lactate (mmol/L) 2.16 (1.10, 2.60)
Government 157 2.91% Magnesium (mg/dL) 1.92 (1.70, 2.10)
Medicaid 532 9.86% Blood Urea Nitrogen Level (mg/dL) 28.85 (14.00, 35.00)
Medicare 3123 57.88% Blood albumin (g/dL) 3.01 (2.60, 3.40)
Private 1538 28.50% Blood sodium (mEq/L) 138.3 (135.00, 141.00)
Self-pay 46 0.85% Potassium Level (mEq/L) 4.18 (3.70, 4.60)

Arterial Blood Gas Test ($473) Complete Blood Count Panel ($44)
Base excess (mEq/L) -1.51 (-4.00, 1.00) Hemoglobin Level (g/dL) 10.83 (9.40, 12.20)
PH (unit) 7.36 (7.31, 7.43) Hematocrit (%) 32.37 (28.30, 36.30)
Fraction of Inspired Oxygen (%) 72.01 (50.00, 100.00) Platelet Count (K/µL) 5.21 (4.93, 5.59)
Mean Arterial Pressure (mmHg) 82.08 (69.00, 93.00) Red Blood Cell Count (K/µL) 3.58 (3.10, 4.05)
Blood Oxygen Saturation (%) 96.73 (95.00, 100.00 White Blood Cell Count (K/µL) 12.69 (7.50, 15.30)

Composite Score Activated Partial Thromboplastin Time Test Panel ($26)
Sequential Organ Failure Assessment 4.63 (2.00, 6.00) Partial Thromboplastin Time (s) 36.75 (26.50, 37.30)

Outcome International Normalized Ratio 1.5 (1.10, 1.50)
In-hospital Mortality 3945 16.47%

configurations can be tested simultaneously. Each training job requires a wall-time less than 2 hours
of a single CPU core.

Hyper-Parameters Settings The hyper-parameter of our model is divided onto four parts: parame-
ter for training imputer, classifier, PPO policy, as well as the end-to-end training parameters. We list
all the hyper-parameters we tuned in Table 7, including both the tuning range and final selection. The
unmentioned parameters in training EMFlow imputer are set to the same as in its original work Ma &
Ghosh (2021). The unmentioned parameters in PPO are set to default values in Python package Raffin
et al. (2021).

Data Splitting Scheme We split each dataset into 3 parts: training set (75%), validation set (15%),
and test set (10%). Training data is further splitted into two disjoint sets, one for pretraining the state
encoder (25%) and the other one for end-to-end RL training (50%). The validation set is splitted in
the same way, one for tuning hyper-parameters for training the state encoder (5%) and the other one
for tuning hyper-parameters for end-to-end RL training (10%). Here, all percentages are calculated
w.r.t. the whole dataset size.

Policy Improvement During RL Training In Figure 5, we showed the performance of the RL
policies evaluated on train, validation and test sets. We note that the three curves closely match one
another, confirming the generalizability of the learned dynamic classification policy.

Zoom-in Version of the cost-F1 Pareto Front Here we present the cost-F1 Pareto front, comparing
only to baselines with similar testing cost (Figure 6 is a subset of Figure 4). The yellow curve, which
is the envelope of the 190 solutions, is the final Pareto front we obtained on the test set. Comparing to
baselines with similar cost, our approach gives a better performance on F1 score under the same cost
budget. As already shown in Figure 4, even comparing to fully observable approaches which have
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Table 6: Complete version of Table 2. Model performance, measured by F1 score, area under ROC
(AUC), and testing cost, for three real-world clinical datasets. The tested models include logistic
regression (LR), random forests (RF), gradient boosted regression trees (XGBoost Chen & Guestrin
(2016) and LightGBM Ke et al. (2017) ), 3-layer multi-layer perceptron, Q-learning for classification
with costly features (CWCF)Janisch et al. (2019), Random Selection (RS), Fixed Selection (FS).
Among them, classical methods including LR, RF, XGBoost, Lightbgm are tested under both fully
observable case and fixed observable case where 2 most relavant panels (CMB and CBCP panel)
are chosen. All models were fine-tuned to maximize the F1 score. The model yielded the highest F1
score is bold. The model required the least testing cost is underlined.

Dataset Models Test Selection Strategy F1 AUC Cost
Ferritin LR Full 0.541 ± 0.010 0.934 ± 0.008 $290

RF Full 0.597 ± 0.024 0.931 ± 0.006 $290
XGBoost Full 0.610 ± 0.027 0.940 ± 0.004 $290
Lightbgm Full 0.625 ± 0.011 0.941 ± 0.006 $290
3-layer DNN Full 0.615 ± 0.018 0.937 ± 0.005 $290
LR (2 panels) Fixed 0.401 ± 0.016 0.859 ± 0.013 $92
RF (2 panels) Fixed 0.504 ± 0.023 0.887 ± 0.012 $92
XGBoost (2 panels) Fixed 0.519 ± 0.015 0.895 ± 0.007 $92
Lightbgm (2 panels) Fixed 0.571 ± 0.010 0.901 ± 0.006 $92
FS Fixed 0.588 ± 0.017 0.922 ± 0.007 $74
RS Random 0.427 ± 0.023 0.837 ± 0.012 $144.78 ± 0.52
CWCF Dynamic 0.531 ± 0.021 0.702 ± 0.018 $261.02 ± 1.20
SM-DDPOpretrained Dynamic 0.587 ± 0.021 0.922 ± 0.008 $80.72 ± 0.63
SM-DDPOend2end Dynamic 0.613 ± 0.018 0.926 ± 0.006 $62.51 ± 0.46

AKI LR Full 0.453 ± 0.028 0.791 ± 0.018 $591
RF Full 0.438 ± 0.032 0.771 ± 0.016 $591
XGBoost Full 0.414 ± 0.023 0.789 ± 0.017 $591
Lightbgm Full 0.474 ± 0.017 0.791 ± 0.012 $591
3-layer DNN Full 0.492 ± 0.024 0.797 ± 0.010 $591
LR (2 panels) Fixed 0.473 ± 0.006 0.797 ± 0.005 $92
RF (2 panels) Fixed 0.425 ± 0.016 0.768 ± 0.004 $92
XGBoost (2 panels) Fixed 0.410 ± 0.022 0.781 ± 0.009 $92
Lightbgm (2 panels) Fixed 0.491 ± 0.011 0.792 ± 0.006 $92
FS Fixed 0.432 ± 0.028 0.789 ± 0.015 $98
RS Random 0.411 ± 0.029 0.744 ± 0.019 $294.88 ± 1.32
CWCF Dynamic 0.278 ± 0.053 0.510 ± 0.009 $340.39 ± 19.01
SM-DDPOpretrained Dynamic 0.514 ± 0.030 0.788 ± 0.022 $90.12 ± 0.68
SM-DDPOend2end Dynamic 0.489 ± 0.026 0.796 ± 0.019 $97.31 ± 0.58

Sepsis LR Full 0.507 ± 0.035 0.814 ± 0.030 $591
RF Full 0.442 ± 0.051 0.820 ± 0.016 $591
XGBoost Full 0.451 ± 0.051 0.842 ± 0.025 $591
Lightbgm Full 0.501 ± 0.046 0.850 ± 0.018 $591
3-layer DNN Full 0.515 ± 0.031 0.842 ± 0.014 $591
LR (2 panels) Fixed 0.488 ± 0.021 0.811 ± 0.015 $92
RF (2 panels) Fixed 0.478 ± 0.053 0.828 ± 0.018 $92
XGBoost (2 panels) Fixed 0.459 ± 0.032 0.877 ± 0.036 $92
Lightbgm (2 panels) Fixed 0.502 ± 0.031 0.864 ± 0.010 $92
FS Fixed 0.489 ± 0.039 0.830 ± 0.020 $90
RS Random 0.475 ± 0.062 0.779 ± 0.030 $295.01 ± 2.41
CWCF Dynamic 0.118 ± 0.011 0.503 ± 0.001 $401.83 ± 120.76
SM-DDPOpretrained Dynamic 0.545 ± 0.034 0.834 ± 0.022 $86.21 ± 1.44
SM-DDPOend2end Dynamic 0.532 ± 0.036 0.841 ± 0.023 $90.55 ± 1.20

much higher testing cost, our approach exhibits comparing performance on F1 score and AUROC
with a much lower testing cost.

Lastly, we emphasize that our approach gives the whole Pareto front, which represents a complete
and rigorous characterization of the accuracy-cost trade-off in our medical diagnostics tasks. While
all the baselines we compared to, only gives single points on this trade-off characterization.
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Table 7: Hyper-parameter Table

Hyper-parameters Ferritin AKI Sepsis Selection Range
Imputer

Batch size 256 256 256 {64, 128, 256}
Learning rate 1e-3 1e-4 1e-4 {1e-3, 1e-4}
Regularization α 1e3 1e6 1e6 {1, 1e3, 1e6}
# Iterations 500 500 500 {100, 300, 500}

Classifier
Hidden size (3-layer) 64 256 256 {64, 128, 256}
Batch size 256 256 256 {64, 128, 256}
Learning rate 5e-4 1e-4 1e-4 {1e-3, 5e-4, 1e-4, 5e-5, 1e-5}
Class weight 3 5 5 {1,3,5,8,10,12}

PPO
Learning rate 1e-4 1e-4 1e-4 {1e-3, 1e-4}
Hidden size (2-layer) 128 256 128 {128, 256}
Batch size 128 128 256 {64, 128, 256}
# Timesteps per update 1024 2048 2048 {1024, 2048}

End-to-end
# Outer loop 100 100 4 {10,100}
# Epochs Classifier trained per loop 6 8 6 {2,4,6,8}
# Timesteps PPO trained per loop 5k 50k 50k {5k, 50k}

Figure 5: RL training curves on AKI Dataset. We evaluate the policy and classifier learned during
the end-to-end training phase on both train, validation and test set. The matching curve confirms
generalizability of the learned policies.

Figure 6: Cost-F1 Pareto Front for maximizing F1-score on Ferritin, AKI and Sepsis Datasets
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C EMFLOW

In this section, we describe the EMFlow imputation algorithm, originally proposed in Ma & Ghosh
(2021), used in constructing the posterior state encoder. The key idea of EMFlow is to first map the
data onto the latent space via a normalizing flow model, such that it enjoys a Gaussian distribution in
the latent space. Then it apply an online version of the expectation maximization algorithm in the
latent space. The high-level picture of EMFlow is illustrated in Fig. 7. In each training iteration, we

Figure 7: Illustration of EMFlow Ma & Ghosh (2021).

first fix the estimate base distribution N (µ̂, Σ̂) in the latent space and update the normalizing flow
(NF) via optimizing the negative log-likelihood of a batch B of the current imputation result:

L1(θ) = −
1

|B|
∑
i∈B

log pX(x̂i; θ, µ̂, Σ̂) (4)

where NF is parametrized by θ and pX denotes the likelihood of the current imputation estimate xi
given the base distribution. Then with the current estimate of the normalizing flow, we do an online
version of expectation maximization (EM) in the latent space to update the estimate for the base
distribution. The expectation step is given as:

ẑmi = E[ẑmi |ẑoi ; µ̂, Σ̂], i ∈ B (5)

And the maximization step follows an iterative update scheme to deal with the memory overhead of
the classical EM:

µ̂(t) = ρtµ̂batch + (1− ρt)µ̂(t−1) (6)

Σ̂(t) = ρtΣ̂batch + (1− ρt)Σ̂(t−1) (7)

where µ̂batch and Σ̂batch are estimated using the conditional mean and variance given a batch of data:

µ̂batch = gµ(µ̂
(t), Σ̂(t); {zi,Mi}i∈B) (8)

Σ̂batch = gΣ(µ̂
(t), Σ̂(t); {zi,Mi}i∈B) (9)

Lastly, we re-optimize NF via a combination of log-likelihood of current imputation and a regulariza-
tion term indicating the distance of the imputation result to the ground truth.

L2(θ) = −
1

|B|
∑
i∈B

[log pX(x̃i; θ, µ̂, Σ̂)− α∥x̃i − xi∥22] (10)

In this work, we used the above "supervised" version of EMFlow, as we already know the ground
truth data when training this imputer. Finally, the imputation procedure is in similar manner as
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Algorithm 2 Training Phase of EMFlow ("supervised" version)

Input: Current imputation X̂ = (x̂1, x̂2, · · · , x̂n)⊤, missing masks M = (M1,M2, · · · ,Mn)
⊤,

initial estimates of the base distribution (µ̂(0), Σ̂(0)), online EM step size sequence: ρ1, ρ2, · · · ,
for t = 1, 2, · · · , Tepoch do

Get a mini-batch X̂B = {x̂i}i∈B
# update the flow model
Compute L1 in Eq. (4)
Update θ via gradient descent
# update the base distribution
zi = f−1

θ (x̂i), i ∈ B
Impute in the latent space with (µ̂(t−1), Σ̂(t−1)) to get {zi}i∈B via Eq. (5)
Obtain updated (µ̂(t), Σ̂(t)) via Eq. (6)
# update the flow model again
x̃i = fθ(ẑi), i ∈ B
Compute L2 via Eq. (10)
Update θ via gradient descent

end for

Algorithm 3 Re-imputation Phase of EMFlow

Input: Current imputation X̂ = (x̂1, x̂2, · · · , x̂n)⊤, missing masks M = (M1,M2, · · · ,Mn)
⊤,

initial estimates of the base distribution (µ̂, Σ̂) from the previous training phase
for t = 1, 2, · · · , n do

zi = f−1
θ (x̂i), i ∈ B

Impute in the latent space with (µ̂(t−1), Σ̂(t−1)) to get {zi}i∈B via Eq. (5)
x̃i = fθ(ẑi), i ∈ B
x̂i = x̂i ⊙ (1−Mi) + x̃i ⊙Mi

end for
Output: {x̂i}ni=1
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the training phase without updating the parameters. Both the training and imputation scheme are
illustrated in Algorithm 2 and 3 respectively.

To illustrate the imputation quality of the above EMFlow algorithm, we present a simple results in
Table 8 of the root mean square error (RMSE) compared to classical imputation algorithms on UCI
datasets as a reference. We do point out unlike conventional usage of imputation, we use EMFlow
mainly as a posterior state encoder, instead of a imputer with excellent imputation quality.

Table 8: Comparison of Imputers on Public Datasets in RMSE. Each dataset has 20% MCAR. Apart
from the time-consuming MissForest Imputer, the EMFlow outperforms other imputers in most
datasets.

Imputer Letter Spam News Air Credit
Mean 0.1535 0.0573 0.2265 0.1877 0.1592
MICE 0.1148 0.0664 0.1500 0.1014 0.1862
MissForest 0.0608 0.0476 0.1365 0.0869 0.1430
Matrix Completion 0.1290 0.0528 0.1653 0.1261 0.1632
GAIN 0.1198 0.0513 0.1441 0.1318 0.1858
EMFlow 0.1111 0.0776 0.1395 0.1022 0.1410

D END-TO-END TRAINING

In this section, we give more details of the proposed end-to-end training approach discussed in 5. We
give out specific form for the objective of training both the classifier module and the panel/prediction
selector module.

Training objective ℓc for the classifier module The classifier fϕ(·) : Rd → RC , parameterized
by ϕ, maps the posterior encoded state Impθ(x⊙M) to a probability distribution over labels. It is
trained by directly minimizing the cross entropy loss ℓc defined as:

ℓc(ϕ;x,M) = −
2∑
i=1

wi log
exp fϕ(Impθ(x⊙M))i∑2
i=1 exp fϕ(Impθ(x⊙M))i

.

from the collected dataset Q in training the RL policy. This differs from typical classification in that
the data are collected adaptively by RL rather than sampled from a prefixed source. Here wi’s are the
class weights which treated as a tuning parameter. In this work, we used a 3-layer DNN as the model
for the classifier.

Training objective ℓrl for the panel/prediction selector module The panel selector, a network
module parameterized by ψ, takes the following as input

semb
θ,ϕ (s) = semb

θ,ϕ (x⊙M) = (Impθ(x⊙M), fϕ(Impθ(x⊙M)),M), (11)

and maps it to a probability distribution over actions. We train the panel selector by using the
classical proximal policy updates (PPO) Schulman et al. (2017), which aims at maximizing a clipped
surrogate objective regularized by a square-error loss of the value functions and an entropy bonus.
We denote this loss function as ℓrl , which is defined as the following regularized clipped surrogate
loss Schulman et al. (2017):

ℓrl(ψ;ψ
old) := ℓCLIP (ψ;ψ

old)− c1ℓV F (ψ) + c2Ent[πψ],

where ℓCLIP (ψ;ψold) = Êt
[
min(

πψ(at|ŝt)
π
ψold

(at|ŝt) Ât, clip( πψ(at|ŝt)
π
ψold

(at|ŝt) , 1− ϵ, 1 + ϵ)Ât)
]

denotes the

clipped surrogate loss with Ât being the estimated advantages, regularized by the square error loss of
the value function ℓV F (ψ) = Êt[(Vψ(ŝt)− V targt )2] and an entropy term Ent[πψ] over states. Here
Êt is empirical average over collected dataset Q, and ŝt = semb

θ,ϕ (st) denotes the state embedding
we derived. Note the policy and value network share the parameter ψ. We also show a high-level
algorithm 4 here. For more details, please refer to the original paper Schulman et al. (2017). We use
the Python package stable-baseline3 Raffin et al. (2021) for implementing PPO.
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Algorithm 4 Proximal Policy Optization (PPO)

for iteration = 0, 1, · · · do
for actor = 1, 2, · · · , Nactor do

Run policy πψold in environment for T timesteps and save all observations in Q
▷ Q is also used to train the classifier module

Compute advantage estimate Â1, · · · , ÂT
end for
Optimizae surrogate ℓrl wrt ψ, with K epochs and minibatch size M ≤ NactorT
ψold ← ψ

end for

E PROOFS OF THEOREM 4.1

For the ease of reading, we present the Theorem 4.1 in Appendix again.

Theorem E.1 (Copy of Theorem 4.1). The Cost-F1 Pareto front defined in (1) is a subset of the
collection of all reward-shaped solutions, given by

Π∗ ⊆ Π := ∪λ≥0,ρ≤0 argmax
π

{TN(π) + λ · TP(π) + ρ · Cost(π)} .

As a natural corollary, we have the following result:

Corollary E.1. The Cost-F1 Pareto front defined in (1) is a subset of the solutions of the MDP model
for dynamic diagnosis process defined in Section 3 with reward functions:

R((s, a) =


ρ · c(a), if a ∈ [D] (choosing task panels)
λ · 1{y = P}, if a = P (true positive diagnosis)
1{y = N}, if a = N (true negative diagnosis)

,

for all pairs of (λ, ρ). Here y denotes the ground-truth label of the patient.

Before presenting the proofs for Theorem 4.1, we reintroduce some key notations. First, we define
the length of the MDP episode as τ = min{t ≥ 0|at ∈ {P,N}} as a random variable depending on
the policy π. Then we can rigorously define the normalized true positive, true negative, false positive
and false negative as

TP(π) := g(P,P), TN(π) := g(N,N), FP(π) := g(P,N), FN(π) := g(N,P).

Here g(i, j) := Eπ[1{aτ = i} · 1{y = j}] denotes the probability of the policy diagnosing class
i ∈ {P,N} while the ground truth label is of class j ∈ {P,N}. And the testing cost is defined as:

Cost(π) = Eπ
τ−1∑
t=0

∑
k∈[D]

c(k) · 1{at = k}

 ,
where c(k) is the cost of panel k.

The cumulative state-action occupancy measure µ : ∆S
A → RS×A

≥0 , is defined as

µπ(s, a) := Eπ
[

τ∑
t=0

1(st = s, at = a)

]
, ∀s ∈ S, a ∈ A,

which denotes the expected time spent in state-action pair (s, a) during an episode. There is a one-one
correspondence between the policy and the occupancy measure given by

π(a|s) = µ(s, a)∑
a∈A µ(s, a)

.

Proof of Theorem 4.1. We follow the proof framework stated in the main text.
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Step 1: utilizing monotonicity of F1 score To start with, we note that F1 score is monotonically
increasing in both true positive and true negative. Assume for any given cost budget B, the optimal
policy π∗(B) achieves the highest F1 score. Then π∗(B) is also the optimal to the following program:

max
π
{TN(π) subject to Cost(π) ≤ B,TP(π) ≥ TP(π∗(B))} ,

indicating the Pareto front of F1 score is a subset of

Π∗ ⊆ ∪B>0,B′∈[0,1] argmax
π

{TN(π) subject to Cost(π) ≤ B,TP(π) ≥ B′} . (12)

Step 2: reformulation using occupancy measures Fix any specific pair (B,B′). Consider the
equivalent dual linear program form Zhang et al. (2020) of the above policy optimization problem in
terms of occupancy measure. Then the program (12) is equivalent to:

max
µ

TN(µ)

subject to Cost(µ) ≤ B,
TP(µ) ≥ B′,∑
a

µ(s, a) =
∑

s′,a′∈[D]

µ(s′, a′)P (s|s′, a′) + ξ(s),∀s,

where ξ(·) denotes initial distribution, and TP, TN and cost are reloaded in terms of occupancy µ as:

TP(µ) =
∑

s.y=P,a=P

µ(s, a), TN(µ) =
∑

s.y=N,a=N

µ(s, a), Cost(µ) =
∑
k∈[D]

c(k) ·
∑
s,a=k

µ(s, a).

Step 3: utilizing hidden minimax duality The above program can be equivalently reformulated as
a max-min program:

max
µ

min
λ≥0,ρ≤0

TN(µ) + λ · (TP(µ)−B′) + ρ · (Cost(µ)−B)

subject to
∑
a

µ(s, a) =
∑

s′,a′∈[D]

µ(s′, a′)P (s|s′, a′) + ξ(s),∀s.

Note the max-min objective is linear in terms of λ, ρ and µ. Thus minimax duality holds, then we
can swap the min and max to obtain the equivalent form:

min
λ≥0,ρ≤0

max
µ

TN(µ) + λ · (TP(µ)−B′) + ρ · (Cost(µ)−B)

subject to
∑
a

µ(s, a) =
∑

s′,a′∈[D]

µ(s′, a′)P (s|s′, a′) + ξ(s),∀s.

For any fixed pair of (λ, ρ), the inner maximization problem of the above can be rewritten back in
terms of policy π, as the following equivalent unconstrained policy optimization problem:

max
π

TN(π) + λ · TP(π) + ρ · Cost(π).

This is finally a standard cumulative-sum MDP problem, with reshaped reward: reward ρ · c(t) for
the action of choosing test panel t, reward λ for the action to diagnose and get a true positive, reward
1 for getting a true negative, as stated in Corollary E.1:

R((s, a) =


ρ · c(a), if a ∈ [D] (choosing task panels)
λ · 1{y = P}, if a = P (true positive diagnosis)
1{y = N}, if a = N (true negative diagnosis)

.
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F EXTENSION TO AM METRIC

In this section, we show that our framework directly handles classic linear metrics defined as a linear
combination of (normalized) true positives and true negatives. We use the AM metric Natarajan et al.
(2018); Menon et al. (2013), a linear metric for imbalanced tasks via considering the average of true
positive rate and true negative rate, as an example.

We can formally define the cost-AM Pareto front as follows:

Π∗
AM = ∪B>0 argmax

π
{AM(π) subject to Cost(π) ≤ B}

where AM(π) = 1
2 (TPR(π) + TNR(π)). Here we define the true positive rate and true negative rate

respectively as:

TPR(π) :=
TP(π)

TP(π) + FN(π)
, TNR(π) :=

TN(π)

TN(π) + FP(π)
,

where TP(π),TN(π),FP(π),FN(π) are normalized true positive, true negative, false positive and
false negative rates that sum up to 1. Let λ > 0 be the known ratio between the number of healthy
patients and ill patients. Then we have TP(π)+FN(π) = 1

1+λ and TN(π)+FP(π) = λ
1+λ , indicating

AM(π) =
1 + λ

2λ
(λTP(π) + TN(π))

Thus, we show the linearity of AM metric, indicating given any fixed budget, the problem already
reduced back to a standard MDP. It is a simpler problem and we can directly solve them using our
training framework. Rigorously, we have the following result parallel to our Theorem 1:

Π∗
AM = ∪ρ≤0 argmax

π
{TN(π) + λ · TP(π) + ρ · Cost(π)} .

Empirically, we show the following Table 9 of our results on AM metric, comparing to the same
baselines discussed in our work. The testing costs are similar to the Table 2 in the paper. It is shown
that our approach achieves the best AM score while having lower testing costs.

Table 9: Model performance measured by balanced accuracy for three real-world clinical dataset.
The model yielded the highest balanced accuracy is in bold.

Models AKI Ferritin Sepsis
Metrics AM Cost AM Cost AM Cost

LR 0.714 $591 0.842 $290 0.752 $591
RF 0.668 $591 0.817 $290 0.722 $591
XGBoost 0.644 $591 0.763 $290 0.644 $591
LightGBM 0.690 $591 0.832 $290 0.751 $591
LR (2 panels) 0.714 $92 0.783 $92 0.746 $92
RF (2 panels) 0.660 $92 0.778 $92 0.707 $92
XGBoost (2 panels) 0.639 $92 0.683 $92 0.642 $92
LightGBM (2 panels) 0.688 $92 0.786 $92 0.737 $92
SM-DDPO 0.741 $92 0.845 $95 0.754 $48

G PRECISION AND RECALL

We also show the detailed statistics of two sets of optimal solutions that optimizes F1 score and AM
metric respectively. It can be shown by comparing Table 10 and 11 that F1 score balances the recall
and precision while AM metric balances the true positive and negative rates.

24



Published as a conference paper at ICLR 2023

Table 10: Detailed statistics of our results optimizing F1 score.

Dataset Recall Precision F1 true positive rate true negative rate AM
Ferritin 0.664 0.587 0.624 0.664 0.954 0.809

AKI 0.537 0.459 0.495 0.537 0.875 0.706
Sepsis 0.573 0.551 0.562 0.573 0.921 0.747

Table 11: Detailed statistics of our results optimizing AM metric.

Dataset Recall Precision F1 true positive rate true negative rate AM
Ferritin 0.798 0.420 0.550 0.798 0.892 0.845

AKI 0.704 0.385 0.498 0.704 0.778 0.741
Sepsis 0.613 0.497 0.549 0.613 0.895 0.754
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