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Abstract

As safety violations can lead to severe consequences in real-world applications, the1

increasing deployment of Reinforcement Learning (RL) in safety-critical domains2

such as robotics has propelled the study of safe exploration for reinforcement3

learning (safe RL). In this work, we propose a risk preventive training method for4

safe RL, which learns a binary classifier based on contrastive sampling to predict5

the probability of a state-action pair leading to unsafe states. Based on the predicted6

risk probabilities, risk preventive trajectory exploration and optimality criterion7

modification can be simultaneously conducted to induce safe RL policies. We8

conduct experiments in robotic simulation environments. The results show the9

proposed approach outperforms existing model-free safe RL approaches, and yields10

comparable performance with the state-of-the-art model-based method.11

1 Introduction12

Reinforcement Learning (RL) offers a great set of technical tools for many real-world decision13

making systems, such as robotics, that require an agent to automatically learn behavior policies14

through interactions with the environments [1]. Conversely, the applications of RL in real-world15

domains also pose important new challenges for RL research. In particular, many real-world robotic16

environments and tasks, such as human-related robotic environments [2], helicopter manipulation17

[3, 4], autonomous vehicle [5], and aerial delivery [6], have very low tolerance for violations of safety18

constraints, as such violation can cause severe consequences. This raises a substantial demand for19

safe reinforcement learning techniques.20

Safe reinforcement learning investigates RL methodologies with critical safety considerations, and21

has received increased attention from the RL research community. In safe RL, in addition to the22

reward function [7], an RL agent often deploys a cost function to maximize the discounted cumulative23

reward while satisfying the cost constraint [8–10]. A comprehensive survey of safe RL categorizes the24

safe RL techniques into two classes: modification of the optimality criterion and modification of the25

exploration process [11]. For modification of the optimality criterion, previous works mostly focus26

on the modification of the reward. Many works [12–17] pursue such modifications by shaping the27

reward function with penalizations induced from different forms of cost constraints. For modification28

of the exploration process, safe RL approaches focus on training RL agents on modified trajectory29

data. For example, some works deploy backup policies to recover from safety violations to safer30

trajectory data that satisfy the safety constraint [18–20].31

In this paper, we propose a novel risk preventive training (RPT) method to tackle the safe RL32

problem. The key idea is to learn a contrastively estimated classification model to predict the risk—33

the probability of a state-action pair leading to unsafe states, which can then be deployed to modify34

both the exploration process and the optimality criterion. In terms of exploration process modification,35

we collect trajectory data in a risk preventive manner based on the predicted probability of risk. A36
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trajectory is terminated if the next state falls into an unsafe region that has above-threshold risk values.37

Regarding optimality criterion modification, we reshape the reward function by penalizing it with the38

predicted risk for each state-action pair. Benefiting from the generalizability of risk prediction, the39

proposed approach can avoid safety constraint violations much early in the training phase and induce40

safe RL policies, while previous works focus on backup policy and violate more safety constraints41

by interacting with the environment in the unsafe regions. Moreover, we further deploy a simple42

unsafe-state augmentation strategy for the proposed method to increase the sample efficiency of the43

encountered unsafe states and reduce the safety violations of the RL agent in the experiments. We44

conduct experiments using four robotic simulation environments on MuJoCo [21]. Our model-free45

approach produces comparable performance with a state-of-the-art model-based safe RL method46

SMBPO [16] and greatly outperforms other model-free safe RL methods. The main contributions of47

the proposed work can be summarized as follows:48

• This is the first work that introduces a contrastive sampling based classifier to perform risk49

prediction and conduct safe RL exploration.50

• With its proficient risk prediction capabilities, the proposed approach possesses the essential51

capacity to simultaneously modify the exploration process through risk preventive trajectory52

collection and adjust the optimality criterion through reward reshaping.53

• As a model-free safe RL method, the proposed approach achieves comparable performance54

to the state-of-the-art model-based safe RL method and outperforms the model-free methods55

in multiple benchmark robotic simulation environments.56

2 Related Works57

Many methods have been developed for safe RL. Garcıa and Fernández [11] provided a survey58

categorizing safe RL methods into categories of modifying the optimality criterion and modifying the59

exploration process.60

Modification of the optimality criterion. Since optimizing the conventional reward signal does61

not ensure the avoidance of safety violations, leading to the exploration of modifying the optimality62

objective based on risk notions [22, 23], probabilities of visiting risky states [24], etc. Achiam63

et al. [20] proposed Constrained Policy Optimization (CPO) to update safe policies by optimizing64

the primal-dual problem in trust regions. Recently, reward shaping techniques [25, 26] have been65

integrated into safe RL. Tessler et al. [14] introduced Reward Constrained Policy Optimization66

(RCPO) by penalizing the normal training policy. Thomas et al. [16] reshaped reward functions67

using a model-based predictor, treating unsafe states as absorbing states to train the RL agent with68

penalized rewards. Xu et al. [27] developed Constrained Penalized Q-learning (CPQ) using a cost69

critic to learn constraint values during exploration and penalizing the Bellman operator in policy70

training to stop the updates for potentially unsafe states.71

Modification of the exploration process. Previous works have optimized safe RL policies by72

adjusting exploration processes during interaction with the environment. For instance, [28, 3,73

29] guided exploration based on prior environmental knowledge. Similarly, [30, 31] constrained74

exploration learning using demonstration data. More recent approaches like [18, 19] focused on75

utilizing backup policies from safe regions to prevent safety violations. If the agent undertakes a76

potentially risky action, the task policy is replaced with a guaranteed safe backup policy. Yu et al.77

[32] defined safe regions as feasible sets and used reachability analysis to expand these sets beyond78

traditional energy-based methods. Jayant and Bhatnagar [33] introduced a model-based deep RL79

agent that efficiently learns an ensemble of transition dynamics in an online environment and restricts80

exploration with a performance ratio.81

Safe RL is crucial in environments like human-related robotic settings where safety violations can82

lead to catastrophic failures [2]. Robotic simulation environments such as MuJoCo, developed by83

Todorov et al. [21], facilitate research in RL applications for robotics. Thomas et al. [16] extended84

the MuJoCo environment to define safety violations in robotic simulations, making it an ideal test85

bed for safe RL methods.86
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3 Preliminary87

Reinforcement learning (RL) has been broadly used to train robotic agents by maximizing the88

discounted cumulative rewards. The representation of a reinforcement learning problem can be89

formulated as a Markov Decision Process (MDP) M = (S,A, T ,R, γ) [7], where S is the state90

space for all observations, A is the action space for available actions, T : S ×A → S is the transition91

dynamics, R : S×A → [rmin, rmax] is the reward function, and γ ∈ (0, 1) is the discount factor. An92

agent can start from a random initial state s0 to take actions and interact with the MDP environment93

by receiving rewards for each action and moving to new states. Such interactions can produce a94

transition (st, at, rt, st+1) at each time-step t with st+1 = T (st, at) and rt = r(st, at), while a95

sequence of transitions comprise a trajectory τ = (s0, a0, r0, s1, a1, r1, · · · , s|τ |+1), where |τ |+ 196

denotes the length of trajectory τ—i.e., the number of transitions. The goal of RL is to learn an97

optimal policy π⋆ : S → A that can maximize the expected discounted cumulative reward (return):98

π⋆ = argmaxπ Jr(π) = Eτ∼Dπ
[
∑|τ |

t=0 γ
trt]99

3.1 Safe Exploration for Reinforcement Learning100

Safe exploration for Reinforcement Learning (safe RL) studies RL with critical safety considerations.101

For a safe RL environment, in addition to the reward function, a cost function can also exist to reflect102

the risky status of each exploration step. The process of safe RL can be formulated as a Constrained103

Markov Decision Process (CMDP) [34], M̂ = (S,A, T ,R, γ, c, d), which introduces an extra cost104

function c and a cost threshold d into MDP. An exploration trajectory under CMDP can be written105

as τ = (s0, a0, r0, c0, s1, · · · , s|τ |+1), where the transition at time-step t is (st, at, st+1, rt, ct), with106

a cost value ct induced from the cost function ct = c(st, at). CMDP monitors the safe exploration107

process by requiring the cumulative cost Jc(π) does not exceed the cost threshold d, where Jc(π)108

can be defined as the expected total cost of the exploration, Jc(π) = Eτ∼Dπ [
∑|τ |

t=0 ct] [12]. Safe109

RL hence aims to learn an optimal policy π⋆ that can maximize the expected discounted cumulative110

reward subjecting to a cost constraint, as follows:111

π⋆ = argmax
π

Jr(π) = Eτ∼Dπ

[∑|τ |

t=0
γtrt

]
(1)

s.t. Jc(π) = Eτ∼Dπ

[∑|τ |

t=0
ct

]
≤ d.

4 Method112

Robot operations typically have low tolerance for risky/unsafe states and actions, since a robot could113

be severely damaged in real-world environments when the safety constraint being violated. Similar to114

the work in [9], in this work we adopt a strict setting for the safety constraint such that any “unsafe"115

state can cause violation of the safety constraint and the RL agent will terminate an exploration116

trajectory when encountering an “unsafe" state. We have the following definition:117

Definition 1. For a state s and an action a, the value of the cost function c(s, a) can either be 0118

or 1. When c(s, a) = 0, the induced state T (s, a) is defined as a safe state; when c(s, a) = 1, the119

induced state T (s, a) is defined as an unsafe state, which triggers the violation of safety constraints120

and hence causes the termination of the trajectory.121

Based on this definition, the cost threshold d in Eq. (1) should be set strictly to 0. The agent is122

expected to learn a safe policy π that can operate with successful trajectories containing only safe123

states. Towards this goal, we propose a novel risk prediction method for safe RL. The proposed124

method deploys a contrastive classifier to predict the probability of a state-action pair leading to125

unsafe states, which can be trained during the exploration process of RL and generalized to previously126

unseen states.127

With risk prediction probabilities, a more informative cumulative cost Jc(π) can be formed to prevent128

unsafe trajectories and reshape the reward in each transition of a trajectory to induce safe RL policies.129

Previous safe RL methods in the literature can typically be categories into two classes: modification130

of the optimality criterion and modification of the exploration process [11]. With safety constraints131

and risk predictions, the proposed approach (to be elaborated below) has the capacity and is expected132

to incorporate the strengths of both categories of safe RL techniques.133
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4.1 Risk Prediction with Contrastive Classification134

Although an RL agent would inevitably encounter unsafe states during the initial stage of the135

exploration process in an unknown environment, we aim to quickly learn from the unsafe experience136

through statistical learning and generalize the recognition of unsafe trajectories to prevent risk for137

future exploration. Specifically, we aim to compute the probability of a state-action pair leading to138

unsafe states, i.e., p(y = 1|st, at), where y ∈ {0, 1} denotes a random variable that indicates whether139

(st, at) leads to an unsafe state su ∈ SU . The set of unsafe states, SU , can be either pre-given140

or collected during initial exploration. However, directly training a binary classifier to make such141

predictions is impractical as it is difficult to judge whether a state-action pair is safe—i.e., never142

leading to unsafe states.143

For this purpose, we propose to train a contrastive classifier Fθ(st, at) with model parameter θ to144

discriminate a positive state-action pair (st, at) in a trajectory that leads to unsafe states (unsafe145

trajectory) against random state-action pairs from the overall distribution of any trajectory. Such a146

contrastive form of learning can conveniently avoid the impractical identification problem of absolute147

negative (i.e., safe) state-action pairs.148

Specifically, inspired by the noise contrastive estimation based classifier design in the literature149

[35, 36], we propose to learn Fθ(st, at) as a binary classifier via weighted contrastive sampling by150

sampling unsafe state-action pairs as positive samples and sampling general state-action pairs as151

contrastive negative samples. Let p(st, at|y = 1) denote the presence probability of a state-action pair152

(st, at) in a trajectory that leads to unsafe states, and p(y = 1) denote the distribution probability of153

unsafe trajectory in the environment. The contrastive classifier Fθ(st, at) is then defined as follows:154

Fθ(st, at) =
p(st, at|y = 1)p(y = 1)

p(st, at|y = 1)p(y = 1) + p(st, at)
, (2)

where p(y = 1) is used as weight for the positive samples which are only from the unsafe trajectories,155

and weight 1 is given to the contrastively-negative samples which are from the overall distribution.156

This binary classifier identifies the state-action pairs in unsafe trajectories contrastively from general157

pairs in the overall distribution.158

From the definition of Fθ(st, at) in Eq.(2), one can derive the probability of interest, p(y = 1|st, at),159

using the Bayes’ theorem, as follows:160

p(y = 1|st, at) =
p(st, at|y = 1)p(y = 1)

p(st, at)
=

Fθ(st, at)

1− Fθ(st, at)
, (3)

where the derivation from the fraction in the top row to the term expressed in Fθ in the second row can161

be done easily by dividing both the numerator and denominator of the top row fraction with the same162

term [p(st, at|y = 1)p(y = 1) + p(st, at)]. As the normal output range, [0, 1], of the probabilistic163

classifier Fθ(st, at) could lead to unbounded values p(y = 1|st, at) ∈ [0,∞] through Eq.(3), we164

propose to first rescale the output of classifier Fθ(st, at) to the range of [0, 0.5] when calculating165

p(y = 1|st, at) via Eq.(3).166

Based on the contrastive sampling principle of Fθ, we optimize the contrastive classifier’s parameter167

θ using maximum likelihood estimation (MLE) with the following log-likelihood objective function:168

L(θ) = Ep(st,at|y=1)p(y=1)

[
logFθ(st, at)

]
+ Ep(st,at)

[
log(1− Fθ(st, at))

]
. (4)

By setting the derivative of L(θ) w.r.t. Fθ to zero, it is easy to verify that the definition of Fθ in Eq.(2)169

can achieve the maximum of this MLE objective w.r.t. Fθ.170

4.2 Risk Preventive Trajectory171

Based on Definition 1, a trajectory terminates when the RL agent encounters an unsafe state and172

triggers safety constraint violation. It is however desirable to minimize the number of such safety173

violations during the policy training process and learn a good policy in safe regions. The risk174

prediction classifier we proposed above provides a convenient tool for this purpose by predicting175

the probability of a state-action pair leading to unsafe states, p(y = 1|st, at). Based on this risk176

prediction, we have the following definition for unsafe regions:177

Definition 2. A state-action pair (st, at) falls into an unsafe region if the probability of (st, at)178

leading to unsafe states is greater than a threshold η: p(y = 1|st, at) > η, where η ∈ (0, 1).179
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With this definition, an RL agent can pursue risk preventive trajectories to avoid safety violations by180

staying away from unsafe regions. Specifically, we can terminate a trajectory before violating the181

safety constraint by judging the potential risk—i.e., the probability of p(y = 1|st, at).182

Without a doubt, the threshold η is a key for determining the length T = |τ̂ | of an early stopped risk183

preventive trajectory τ̂ . We make the following assumption for deriving a lemma:184

Assumption 1. For a trajectory τ = {s0, a0, r0, c0, s1, · · · , sH} that leads to an unsafe state185

sH ∈ SU , the risk prediction probability p(y = 1|st, at) increases linearly along transition steps186

within a base neighborhood of the unsafe region that can be defined through p(y = 1|st, at) ≥ ηb187

with a threshold ηb ∈ (0, η).188

Lemma 1. Assume Assumption 1 holds. Let H denote the length of an unsafe trajectory τ =189

{s0, a0, r0, c0, s1, · · · , sH} that terminates at an unsafe state sH ∈ SU . The numbers of transition190

steps, T and Tb, along this trajectory to the unsafe region determined by η in Definition 2 and its191

neighborhood determined by ηb, respectively, satisfy T ≈ ⌊η−ηb

1−ηb
H + 1−η

1−ηb
Tb⌋.192

This lemma demonstrates the influence of the risk control threshold η on the length of collected193

trajectories. Given ηb (and hence Tb), a larger η value will allow more effective explorations with194

longer trajectories to facilitate policy learning, but also tighten the unsafe region and increase the195

possibility of violating safety constraints.196

4.3 Risk Preventive Reward Shaping197

With Definition 1, the safe RL formulation in Eq. (1) can hardly induce a safe policy since there are198

no intermediate costs before encountering an unsafe state. With the risk prediction classifier proposed199

above, we can rectify this drawback by defining the cumulative cost function Jc(π) using the risk200

prediction probabilities, p(y = 1|st, at), over all encountered state-action pairs. Specifically, we201

adopt a reward-like discounted cumulative cost as follows:202

Jc(π) = Eτ∼Dπ

[∑|τ |

t=0
γtp(y = 1|st, at)

]
, (5)

which uses the predicted risk as the estimated cost. Moreover, instead of solving safe RL as a203

constrained discounted cumulative reward maximization problem, we propose to use Lagrangian204

relaxation [37] to convert the constrained maximization problem, CMDP, in Eq. (1) into an un-205

constrained optimization problem, which is equivalent to shaping the reward function R with risk206

penalties:207

min
λ≥0

max
π

[Jr(π)− λ(Jc(π)− d)] (6)

⇐⇒min
λ≥0

max
π

[Jr(π)− λJc(π)] (7)

⇐⇒min
λ≥0

max
π

Eτ∼Dπ

[∑|τ |

t=0
γt(rt − λp(y = 1|st, at))

]
(8)

where rt − λp(y = 1|st, at) can be treated as the risk penalty reshaped reward. The Lagrangian dual208

variable λ controls the degree of reward shaping with the predicted risk value.209

4.4 Risk Preventive Training Algorithm210

The overall risk preventive RL training procedure for the proposed safe RL method is presented in211

Algorithm 1, which trains a contrastive classifier Fθ (line 21) for risk prediction, and performs safe212

reinforcement learning by simultaneously enforcing risk preventive trajectory exploration (line 15-17)213

and risk preventive reward shaping (line 13).214

4.5 Data Augmentation for Contrastive Learning215

As the goal of safe RL is to minimize the encountering of unsafe states, it is desirable to produce216

an effective risk predictor with very limited risky state-action pairs. To this end, we propose to217

extend RPT by designing a simple data augmentation procedure, producing a data augmented218

method, RPT+DA, for comparison. The proposed data augmentation solely enhances the training219
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Algorithm 1 Risk Preventive Training
Input: Initial policy πϕ, classifier Fθ, trajectory set D = ∅,
set of unsafe state-action pairs SU , threshold η, ηb;
penalty factor λ, set of unsafe trajectory length H = ∅
Output: Trained policy πϕ

1: for k = 1, 2, ...,K do
2: Tb = 0
3: for t = 0, 1, ..., Tmax do
4: Sample transition (st, at, rt, ct, st+1) from the environment with policy πϕ.
5: if ct > 0 then
6: Add the risky state-action (st, at) into SU ; add length t to H.
7: Increase λ if necessary
8: Stop trajectory and break.
9: end if

10: Sample next action at+1 as at+1 = πϕ(·|st+1).
11: Compute pt and pt+1 via Eq. (3)
12: If pt ≥ ηb, then set Tb = t
13: Penalize reward rt with pt: r̂t = rt − λpt
14: Add transition to the trajectory set, such that: D = D ∪ (st, at, r̂t, st+1)
15: if pt+1 > η then
16: Stop trajectory and break.
17: end if
18: end for
19: Sample risky state-action pairs from SU

20: Sample transitions from D: (st, at, r̂t, st+1) ∼ D
21: Update classifier Fθ by maximizing L(θ) in Eq (4)
22: Update policy πϕ with shaped reward Jr̂(π) in Eq (8)
23: end for

of contrastive classifier for risk prediction, with no additional interaction with the environment or220

trajectory generation. Specifically, we perform data augmentation only for the data sampled from the221

set of risky states SU . For each sampled risky state-action pair (st, at), we propose to produce an222

augmented state ŝt by adding a random Gaussian noise sampled from the standard normal distribution223

N (0, 1) to each entry of the observed data st. We can repeat this process to generate multiple (e.g.,224

n) augmented states for each st. In our experiments, we used n = 3. Together with at, each ŝt can225

be used to form an additional risky state-action pair (ŝt, at) for training the contrastive classifier. The226

hypothesis is that without any prior information about the environment, the training of the proposed227

contrastive classifier highly depends on the data collected during the agent’s interactions with the228

environment, especially on the limited number of observed unsafe states. By using the proposed data229

augmentation technique above, we expect to improve the unsafe states’ sample efficiency and the230

generalizability of the approach on discriminating unsafe states and hence reduce the possible safety231

violations during the exploration process.232

5 Experiment233

5.1 Experimental Settings234

Experimental Environments Following the experimental setting in [16], we adopted four robotics235

simulation environments, Ant, Cheetah, Hopper, and Humanoid, based on the MuJoCo simulator236

[21]. For Ant and Hopper, a robot violates the safety constraint when it falls over. For Cheetah, a237

robot violates the safety constraint when its head flips on the ground, which is modified from the238

HalfCheetah environment with extra safety constraint [16]. For Humanoid, the human-like robot239

violates the safety constraint when the head of the robot falls to the ground. The RL agent cumulates240

returns by operating in the environment. As shown in Algorithm 1, the RL trajectory terminates when241

either the RL agent encounters safety violation, the maximum length is reached, or the preventive242

trajectory break takes place.243
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Figure 1: For each method, each plot presents the undiscounted return vs. the total number of
violations. The curve shows the mean of the return over five runs, while the shadow shows the
standard deviation.

Comparison Methods We compare the proposed Risk Preventive Training (RPT) approach with244

three state-of-the-art safe RL methods: SMBPO [16], RCPO [14], and LR [12].245

5.2 Experimental Results246

We compared all the five methods (LR, RCPO, SMBPO, RPT, and RPT+DA) by running each method247

five times with random seeds in each of the four MuJoCo environments. The performance of each248

method is evaluated by presenting the corresponding return vs. the total number of violations obtained249

in the training process. The results for all the methods are presented on the left side of Figure 1,250

one plot for each robotic simulation environment. The curve for each method shows the learning251

ability of the RL agent with limited safety violations. From the plots, we can see RPT, RPT+DA and252

SMBPO achieve large returns with a small number of violations on all the four robotic tasks, and253

largely outperform the other two methods, RCPO and LR, which have much smaller returns even254

with large numbers of safety violations. The proposed model-free RPT produces slightly inferior255

performance than the model-based SMBPO on Ant and Cheetah, where RPT requires more examples256

of unsafe states to yield good performance at the initial training stage. Nevertheless, RPT outperforms257

SMBPO on both Hopper and Humanoid with smaller number of safety violations. As a model-free258

safe RL method, RPT produces an overall comparable performance with the model-based method259

SMBPO. With data augmentation, RPT+DA further improves the performance of RPT on all the four260

environments, which demonstrates the efficacy of our simple unsafe-state augmentation strategy.261

6 Conclusion262

Inspired by the increasing demands for safe exploration of Reinforcement Learning, we proposed a263

novel mode-free risk preventive training method, RPT, to perform safe RL by learning a contrastive-264

sampling based binary classifier to predict the probability of a state-action pair leading to unsafe265

states. Based on risk prediction, we produce a systematic scheme to collect risk preventive trajectories266

that terminate early without triggering safety constraint violations. Moreover, the predicted risk267

probabilities are also used as penalties to perform reward shaping for learning safe RL policies. A268

simple data augmentation strategy has also been deployed to improve the efficiency of the observed269

unsafe-states for RPT. We compared the proposed approach with a few state-of-the-art safe RL meth-270

ods using four robotic simulation environments. The proposed approach demonstrates comparable271

performance with the state-of-the-art model-based method and outperforms the model-free safe RL272

methods.273
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