

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM MACHINE TO HUMAN LEARNING: TOWARDS WARM-STARTING TEACHER ALGORITHMS WITH RE- INFORCEMENT LEARNING AGENTS

Anonymous authors

Paper under double-blind review

## ABSTRACT

We present an investigation into using Reinforcement Learning (RL) agents to address the well-established cold-start problem in AI teacher algorithms that require extensive human learning data. While the challenge of bootstrapping personalized learning systems is recognized across domains, collecting comprehensive human learning data remains resource-intensive and often impractical. Our work explores a novel methodological approach: warm-starting data-hungry teacher algorithms using RL agents to provide an initial foundation that can be refined and augmented with human learning data. We emphasize that this approach is not intended to replace human data, but rather to provide a practical starting point when such data is scarce. Through exploratory experiments in two game-based environments—a Super Mario-inspired platformer and an Overcooked-inspired medical training simulation—we conduct human subjects studies demonstrating that RL-initialized curricula can achieve comparable performance to expert-crafted sequences. Our preliminary analysis reveals that while human learning outcomes are positive, there remain notable gaps between RL agent behavior and human learning patterns, highlighting opportunities for improved alignment. This work establishes a promising potential for RL-initialized teaching systems, opening valuable research directions at the intersection of RL and human learning.

## 1 INTRODUCTION

Artificial Intelligence (AI) applications in education hold the promise of revolutionizing learning through scalable, personalized, and adaptive approaches (Doroudi et al., 2019; Alrakhawi et al., 2023). These AI-driven methods aim to address the limitations of traditional expert-designed curricula, which often struggle to efficiently meet the diverse needs of a vast and growing student population across an expanding knowledge base (Lin et al., 2023). In theory, AI tools could simultaneously provide tailored learning experiences to numerous students, dynamically adapting to individual needs and learning styles (Mousavinasab et al., 2021). However, recent studies have shown that learning-based teacher algorithms often underperform when compared to expert-initialized or even random algorithms (Green et al., 2011; Lindsey et al., 2014).

These systems require extensive data on student’s learning process in order to design effective curricula (van der Velde et al., 2024; Doroudi et al., 2019). However, gathering comprehensive human learning data is time-consuming and costly; in one study, it took approximately 900 man-hours for a Machine Learning-based teacher algorithm to converge (Bassen et al., 2020). While existing approaches supplement human data by incorporating demographic information (Zhao et al., 2020; Patel & Thakkar, 2022), this method introduces potential biases and privacy concerns (Suresh et al., 2022; Wang et al., 2018), limiting the development of robust teaching strategies. The challenge is especially significant in dynamic fields where learning patterns change rapidly, requiring constant data collection and algorithm updates (Hatzilygeroudis & Prentzas, 2004).

Our work focuses on teacher algorithms that adaptively sequence training tasks to optimize student learning outcomes. These algorithms interact with students by assigning targeted challenges, creating personalized curricula that evolve with student progress. Motivated by the capabilities of Reinforcement Learning (RL) agents in mastering complex environments (Silver et al., 2017;

054 2016), we propose leveraging these agents to bootstrap training data for teacher algorithms. This  
 055 novel methodological approach aims to augment early algorithm development, reducing initial data  
 056 requirements while providing a foundation that can be refined with human learning patterns. We  
 057 evaluate this approach through human subjects studies in two contrasting environments: a Super  
 058 Mario-style platformer for motor skills and a medical emergency response simulation with discrete  
 059 tasks. Our findings suggest this approach offers a promising direction for addressing the cold-start  
 060 problem in adaptive teaching systems. We invite the research community to explore advancing RL-  
 061 based initialization with human learning patterns, potentially enabling more accessible personalized  
 062 learning technologies.

063 Our key contributions are as follows:  
 064

- 065 1. We introduce a two-stage framework that leverages RL agents to generate training data for  
 066 teacher algorithms that optimize student learning through task recommendations.
- 067 2. We present two pedagogy-based teacher algorithms under this framework: a human-  
 068 friendly adaptation of PERM (Tio & Varakantham, 2023) for domains with potentially  
 069 infinite scenarios, represented by a finite set of parameters; and SimMAC, a novel Task  
 070 Sequencing algorithm for domains with a finite and discrete set of scenarios.
- 071 3. We demonstrate our approach’s effectiveness through two new environments, the Jumper  
 072 game and Emergency Response game, where human trials show our methods outperform  
 073 baselines approaches and match expert-handcrafted curricula.

## 075 2 RELATED WORK 076

077 While our work focuses on human learning, it draws inspiration from the substantial body of research  
 078 on curriculum learning in RL (Narvekar et al., 2020; Da Silva & Costa, 2019). These methods have  
 079 demonstrated significant success in training artificial agents by automatically generating learning  
 080 sequences that improve sample efficiency and convergence. However, existing curriculum learning  
 081 approaches in RL are fundamentally designed around the affordances of artificial agents and are  
 082 therefore unsuitable for human learners.

083 We identify three characteristics that current RL curriculum methods has that do not hold for human  
 084 learning contexts. First, they assume access to massive amounts of training data. RL agents can  
 085 collect millions of experiences through parallelized environments and accelerated simulation, while  
 086 human learners operate on much smaller data scales with natural time constraints. Second, many  
 087 approaches exploit artificial agent properties that have no human equivalent. For instance, direct ac-  
 088 cess to value functions enables curriculum methods to use the learner’s internal state for optimization  
 089 (Parker-Holder et al., 2022), which is impossible with human learners. Similarly, Sukhbaatar et al.  
 090 (2017) employs self-play to generate curricula, which would require training an artificial proxy (e.g.  
 091 through Imitation Learning (Torabi et al., 2018)) of the human learner (leading back to our original  
 092 cold-start problem). Third, these methods operate on timescales incompatible with human learning.  
 093 ACCEL (Parker-Holder et al., 2022) uses evolutionary search over thousands of generations to dis-  
 094 cover useful training environments, while Mattiisen et al. (2019) required 4500 training epochs to  
 095 learn effective task-selection rules. Both approaches far exceed practical human study durations and  
 096 would be too slow to provide useful adaptation during human learning sessions.

097 Recent research has explored using RL to optimize instructional activities in education (Doroudi  
 098 et al., 2019). However, across different domains, data-hungry RL teachers have shown mixed results,  
 099 often failing to outperform baselines (Green et al., 2011; Segal et al., 2018; Doroudi et al., 2017). A  
 100 key challenge is the complexity of modeling student states, requiring an “inordinate amount of data”  
 101 (Doroudi et al., 2019). Recent RL implementations in algebra education show promise but face  
 102 challenges, notably the cold-start problem. (Bassen et al., 2020) reported their RL teacher needed  
 103 nearly 600 learner course completions, or 900 man-hours, to converge on an effective strategy. This  
 104 highlights a critical challenge in applying learning-based methods to human learning: the need for  
 105 extensive initial data to achieve competency, raising practical and ethical concerns for real-world  
 106 educational implementation. To address these issues, our study proposes employing RL agents as  
 107 warm-start human learners for data collection. We aim to generate valuable training data for teacher  
 108 algorithms, potentially mitigating the cold-start problem and improving the overall effectiveness of  
 109 AI-assisted education.

108 We focus on two key principles to guide effective learning. First, both human (Van den Akker,  
 109 2007; Grant, 2018; Macalister & Nation, 2019) and artificial learners (Bengio et al., 2009; Graves  
 110 et al., 2017; Huang et al., 2020) benefit from progressively challenging curricula, where task dif-  
 111 ficulty gradually increases to match student abilities. This alignment with the Zone of Proximal  
 112 Development (Vygotsky & Cole, 1978) ensures optimal learning by maintaining an appropriate  
 113 challenge level. Second, learning continuity enhances knowledge acquisition by connecting new  
 114 content to prior experiences, creating smoother transitions through content overlap. This spiral  
 115 curriculum approach (Bruner, 2009) strategically leverages existing knowledge while increasing  
 116 difficulty, making learning more intuitive and effective than introducing entirely new content. Our  
 117 proposed teacher algorithms address these principles: both incorporate difficulty progression, while  
 118 SimMAC (Section 4.2) additionally considers task similarity by selecting subsequent tasks based on  
 119 the learner’s experience history.  
 120

### 3 TEACHER PROBLEM

123 We study interactive teaching where algorithms dynamically assign tasks based on student perfor-  
 124 mance feedback to maximize learning outcomes. Our focus encompasses two paradigms: UED and  
 125 Task Sequencing.

127 **Unsupervised Environment Design** UED (Dennis et al., 2020) generates diverse challenges to  
 128 optimize student learning. The core assumption is that exposing students to diverse environments  
 129 fosters generalized proficiency across the environment distribution, enhancing generalization.

130 Formally, UED is conceptualized as an Underspecified Partially Observable Markov Decision Pro-  
 131 cess (UPOMDP), defined as  $\mathcal{M} = \langle A, O, \Theta, S, T, I, R, \gamma \rangle$ , where  $A$  represents the action space,  
 132  $O$  the observation space,  $S$  the state space,  $T : S \times A \times \Theta \rightarrow \Delta(S)$  the transition function,  
 133  $I : S \times \Theta \rightarrow \Delta(O)$  the observation function,  $R : S \times A \times S \times \Theta \rightarrow \mathbb{R}$  the reward function,  
 134 and  $\gamma \in [0, 1)$  the discount factor. The UPOMDP extends the traditional POMDP by incorporating  
 135  $\Theta$ , a set of environment parameters where  $\theta \in \Theta$  represents specific configurations that define task  
 136 instances. At each timestep  $t$ , the teacher selects  $\theta_t \in \Theta$  to generate an environment instance  $\mathcal{T}^{\theta_t}$   
 137 with state  $s_t \in S$ , allowing dynamic adjustment of challenge complexity based on observed student  
 138 performance. For example, in a navigation task,  $\theta$  might parameterize obstacle frequency, enabling  
 139 progressive difficulty calibration to maximize learning outcomes across  $\Theta$ .  
 140

141 **Task Sequencing** Task Sequencing represents a constrained UPOMDP where  $\Theta$  defines a discrete  
 142 and finite task pool with varying difficulty levels and knowledge requirements, requiring agents to  
 143 apply different knowledge sets for successful completion. A successful teacher would determine op-  
 144 timal task ordering to maximize learning efficiency and post-training generalization across the task  
 145 distribution. Given its versatility and effectiveness, Task Sequencing finds widespread application  
 146 in various educational contexts (Bassen et al., 2020; Segal et al., 2018).  
 147

### 4 RL-SUPPORTED TEACHER ALGORITHMS

149 In this section, we detail our two-stage process for using RL to retrieve data for our teacher algo-  
 150 rithms, consisting of an *Exploration Stage* and an *Exploitation Stage*. We then present two algo-  
 151 rithms that benefit from this process: PERM-H, a human-adapted version of existing work, and  
 152 SimMAC, a novel approach specifically designed for Task Sequencing.  
 153

154 **The Exploration Stage** In the first stage, we use RL agents to simulate student-environment in-  
 155 teractions and collect data. These RL agents interact with a variety of levels generated using DR  
 156 (Tobin et al., 2017). We record the agents’ performance, the parameters of the levels they encounter,  
 157 and other relevant data specific to the teacher algorithms we’re developing. The key idea here is to  
 158 use RL agents as stand-ins for human students. This allows us to gather extensive data on learning  
 159 progress without requiring actual human participants. An important advantage of this approach is  
 160 that RL agents start from scratch and improve over time, much like real students. This enables us  
 161 to simulate a diverse group of learners with varying skill levels, providing a rich dataset for our  
 teacher algorithms to learn from. By using RL agents in this way, we can generate a large amount

162 of valuable training data for our teacher algorithms, helping to address the cold-start problem and  
 163 potentially improve the effectiveness of AI-assisted education from the outset.  
 164

165 **The Exploitation Stage** In the exploitation stage, we utilize the data collected during the ex-  
 166 ploration stage to train the teacher algorithms and apply compatible algorithms to human training.  
 167 Similar to RL training under UPOMDPs, we emulate the process with humans using a continuous  
 168 loop. We note here that as more human interaction data is collected, it can be used to supplement,  
 169 and eventually replace, RL data for stronger alignment to humans.

170 The teacher algorithm first makes an inference based on the student’s recent performance  $r_t$  and  
 171 outputs the next task,  $\theta_{t+1}$ . The student then trains under the new level generated from  $\theta_{t+1}$  and  
 172 returns the corresponding reward or performance metric,  $r_{t+1}$ . This iterative process continues  
 173 throughout the training session until a predetermined termination criterion is reached.  
 174

#### 175 4.1 PERM-H

176 PERM (Tio & Varakantham, 2023) is an Item-Response Theory-based model for UED in RL that  
 177 infers agent ability  $a$  and environment difficulty  $\delta$  from observed parameters and performance to  
 178 determine subsequent training environments, motivated by the Zone of Proximal Development (Vy-  
 179 gotsky & Cole, 1978). We modified PERM’s original assumption that optimal learning occurs when  
 180  $\delta = a$  to  $\delta = \epsilon a$  ( $\epsilon \geq 1.0$ ), accommodating potentially faster human learning rates (Tsividis et al.,  
 181 2017). We call this adaptation PERM-H.  
 182

183 During the Exploration Stage, we collect  $\theta$  and  $r$  to train PERM-H. In the Exploitation stage, PERM-  
 184 H operates cyclically by estimating the student’s current ability, using this estimate to specify the  
 185 desired difficulty for the next level, and generating a level matching this difficulty, while adapting  
 186 to the student’s progress. While effective for difficulty-based progression, PERM-H, without major  
 187 modifications, cannot handle domains requiring distinct, non-comparable skills. For these cases, we  
 188 developed an alternative algorithm for more diverse task sequencing.  
 189

#### 190 4.2 SIMMAC

191 SimMAC creates effective learning curricula by balancing task difficulty and knowledge continuity.  
 192 Our approach is built on two fundamental principles: tasks requiring less training time are inherently  
 193 easier, and optimal learning occurs when new tasks build upon previously acquired knowledge.  
 194 Silva & Costa (2018) employs similar principles of task similarity by constructing a graph based  
 195 on objects present in the environments. We take a different approach by discovering similarities  
 196 without requiring explicit environmental feature declarations.  
 197

198 **Quantifying Task Difficulty** We measure task difficulty through convergence analysis: training  
 199 an RL agent uniformly across tasks and identifying the point at which performance stabilizes. We  
 200 consider task 1 easier than task 2 if and only if its convergence point  $c_\theta$  occurs earlier ( $c_{\theta_1} < c_{\theta_2}$ ).  
 201 We average results across multiple runs to ensure measurement reliability.  
 202

203 **Modeling Knowledge Transfer Between Tasks** The core innovation of SimMAC lies in its ability  
 204 to identify knowledge overlap between tasks. We approximate a task’s knowledge content through  
 205 trajectory analysis, operating on the principle that similar tasks elicit similar behavioral patterns  
 206 during solution.

207 A trajectory  $\tau$  represents the sequence of states and actions, i.e.,  $\tau = \{s_0, a_0, s_1, a_1, \dots, a_{T-1}, s_T\}$ .  
 208 The distribution of trajectories, the occupancy measure, provides a mathematical expression of the  
 209 knowledge required for task completion:

$$210 \rho_{\mathcal{T}^\theta}^\pi(s, a) = \sum_{t=0}^T \left[ \Pr(s_t = s, a_t = a | s_0 \sim p_0(\cdot), s_t \sim \right. \\ 211 \left. p(\cdot | s_{t-1}, a_{t-1}, \theta), a_t \sim \pi(\cdot | s_t) \right]$$

212 where  $T$  is the horizon limit,  $p_0(\cdot)$  is the initial state distribution.  
 213  
 214

216 Tasks with overlapping occupancy measures require similar actions in similar states, indicating  
 217 shared knowledge requirements. We quantify this similarity using Wasserstein distance  $\mathcal{W}$  between  
 218 trajectory distributions (Li et al., 2023b)  $\mathcal{W}(\rho_{\mathcal{T}^{\theta_i}}^\pi, \rho_{\mathcal{T}^{\theta_j}}^\pi) \approx \mathcal{W}(\tau_i, \tau_j)$  where  $\rho_{\mathcal{T}^{\theta_i}}^\pi$  and  $\rho_{\mathcal{T}^{\theta_j}}^\pi$   
 219 represent the occupancy measures induced by policy  $\pi$  on task  $\mathcal{T}^{\theta_i}$  and task  $\mathcal{T}^{\theta_j}$ , respectively, with  $\tau_i$   
 220 and  $\tau_j$  being the resulting trajectories.  
 221

222 Extending beyond Li et al. (2023b)'s pairwise comparisons, we measure similarity between a can-  
 223 didate task and the entire set of previously completed tasks:  $\mathcal{T}^{\theta_k}$  and a set of tasks,  $\mathcal{T}^{\theta_{i \sim j}} =$   
 224  $\{\mathcal{T}^{\theta_i}, \mathcal{T}^{\theta_{i+1}}, \dots, \mathcal{T}^{\theta_j}\}$ . We aggregate the trajectories collected in  $\mathcal{T}^{\theta_{i \sim j}}$  as  $\tau_{i \sim j}$  and compute the  
 225 distance  $d$  between  $\tau_k$  and  $\tau_{i \sim j}$ :

$$226 \quad d(\mathcal{T}^{\theta_k}, \mathcal{T}^{\theta_{i \sim j}}) \mathcal{W}(\rho_{\mathcal{T}^{\theta_k}}^\pi, \rho_{\mathcal{T}^{\theta_{i \sim j}}}^\pi) \approx \mathcal{W}(\tau_k, \tau_{i \sim j}) \quad (1)$$

228 In our paper, low distance between task denotes high similarity, which guides our task selection.  
 229

#### 230 4.2.1 IMPLEMENTATION OF EXPLORATION-EXPLOITATION PROCESS IN SIMMAC

231 During the Exploration Stage, we deploy multiple RL agents trained uniformly across the task space,  
 232 systematically collecting trajectory data and measuring convergence points to quantify both task dif-  
 233 ficulty ( $c_\theta$ ) and occupancy distributions ( $\rho_{\mathcal{T}^\theta}^\pi$ ). These measurements provide the empirical founda-  
 234 tion for our similarity metrics.  
 235

236 In the subsequent Exploitation Stage, we leverage these metrics to construct optimal learning se-  
 237 quences. Drawing inspiration from spiral curriculum (Bruner, 2009), we design a process that sys-  
 238 tematically builds upon existing knowledge while incrementally increasing difficulty. Beginning  
 239 with the task exhibiting the lowest convergence point ( $\min_\theta c_\theta$ ), we iteratively select subsequent  
 240 tasks that maximize similarity to the accumulated experience, formally selecting  $\mathcal{T}^{\theta_{j+1}}$  to minimize  
 241  $d(\mathcal{T}^{\theta_{j+1}}, \mathcal{T}^{\theta_{i \sim j}})$  while ensuring a gradual progression in difficulty. This implementation enables  
 242 the creation of personalized curricula that maintain coherent knowledge pathways while systemati-  
 243 cally introducing more challenging concepts, thereby optimizing both learning continuity and skill  
 244 development.  
 245

## 246 5 HUMAN SUBJECTS EXPERIMENT DESIGN

247 We evaluate our RL-supported teacher algorithms against common baselines (Doroudi et al., 2019)  
 248 in human learning domains, using human participants who undergo training in the Jumper and Emer-  
 249 gency Response games. All studies received local IRB approval. Further details of the environments  
 250 and the experiment procedure can be found in Appendix.  
 251

252 **Jumper Environment** The Jumper Environment is a 2D obstacle course game developed in Unity  
 253 (Juliani et al., 2020), inspired by classic platformers. Players navigate a character through spiked  
 254 pathways using keyboard controls, aiming to reach the level's end without collisions (Figure 14).  
 255 The environment has two adjustable parameters  $\theta$  for level generation: *spike density* and *ground*  
 256 *roughness*; these parameters directly influence the difficulty of the level, enabling systematic study  
 257 of learning progression and adaptive difficulty.  
 258

Participants were recruited through an online chat group connecting researchers and screened for  
 device compatibility. To control for prior gaming experience, participants rated their familiarity  
 with 2D side-scrolling games (e.g., Super Mario Bros) to balance experimental conditions.  
 261

First, participants received visual instructions on the Jumper gameplay and a trial to familiarize  
 themselves with the controls. After the trial, participants were randomly assigned to one of three  
 263 conditions:  
 264

1. No Training (Control): Participants received no training and proceeded directly to the test  
 stage after the trial. ( $n = 80$ )
2. Random: Participants played randomly generated training levels. ( $n = 78$ )
3. PERM-H: Participants received training levels generated by a Jumper-tuned model trained  
 on RL data. The model adapted level difficulty based on inferred player ability. ( $n = 72$ )

270 In the Random and PERM-H conditions, participants received 10 different levels with a maximum  
 271 of 15 attempts per level. Upon completing a level or exhausting attempts, participants progressed to  
 272 the next level. Finally, after the respective training intervention, they would receive a test level on  
 273 which we use to measure post-training performance. We initially recruited 240 participants for our  
 274 study, and filtered out low-effort participants. Finally, there were no significant differences in prior  
 275 gaming experience across groups (one-way ANOVA:  $F(2, 237) = 0.902, p > .05$ ).

276 To further investigate the effectiveness of our approach, we conducted a follow-up study comparing  
 277 PERM-H to a handcrafted curriculum. This handcrafted curriculum, designed by our research team,  
 278 featured a fixed sequence of training levels with increasing difficulty. We recruited 120 participants  
 279 via Prolific<sup>1</sup>, representing a different sample group from the initial study. After excluding outliers,  
 280 our final counts were 52 participants in the PERM-H group and 61 in the Handcrafted group. Re-  
 281 sults from this follow-up study are presented separately from the main study to distinguish between  
 282 participant pools.

283 **Emergency Response Environment** We present a 3D Emergency Response Environment<sup>2</sup> sim-  
 284 ulating time-critical medical care scenarios (Figure 15). Developed with paramedic services, this  
 285 environment requires players to select and apply appropriate treatments to patients with evolving  
 286 conditions during hospital transport. The simulation features stochastic patient state transitions,  
 287 real-time feedback, and contextual tool information, replicating the decision pressure faced by emer-  
 288 gency medical personnel while allowing limited attempts per intervention.

289 We conducted an experiment with 121 participants, randomly assigned to one of the four groups:

- 290 1. Reading Only (control): Learned solely through reading materials, without engaging in  
 291 gameplay. ( $n = 31$ )
- 292 2. Random: Played tasks selected at random from the pool, without replacement. ( $n = 30$ )
- 293 3. Handcrafted: Followed a predefined task sequence designed by the research team. ( $n = 30$ )
- 294 4. SimMAC: Experienced an adaptively curated task order generated by SimMAC. ( $n = 30$ )

295 Except for the Reading group, all participants completed all 17 unique tasks within 45 minutes after  
 296 a 25-minute reading session on medical knowledge. After the respective treatments, participants  
 297 were given a multiple-choice questionnaire to assess their knowledge of appropriate measures to  
 298 take in a medical emergency. One-way ANOVA confirmed no significant differences in prior game  
 299 experience ( $F(3, 117) = 1.34, p = .27$ ) or emergency handling experience ( $F(3, 117) = 1.88, p =$   
 300  $.14$ ) across groups.

## 304 6 EVALUATION

305 In our evaluation, we investigate three key research questions: differences in post-training perfor-  
 306 mance across conditions, distinguishing characteristics between curricula, and fundamental differ-  
 307 ences between RL agents and human learners. For all statistical tests described, we used  $\alpha = 0.05$ .

### 310 6.1 POST-TRAINING EVALUATION

311 We analyzed the effectiveness of teacher-guided training in improving post-training performance on  
 312 the final test. In Jumper, competence was measured by fewer attempts to complete the test level. In  
 313 Emergency Response, we counted correct responses on the final multiple-choice test.

314 **Jumper Environment** A one-way ANOVA revealed significant differences in final test attempts  
 315 across groups,  $F(2, 237) = 16.461, p < .001$ , partial  $\eta^2 = .122$ , signifying a moderately large  
 316 effect. Tukey’s HSD post-hoc test showed significant differences between No Training and PERM-  
 317 H ( $\Delta\mu = -2.599, p < .001$ ) and between Random and PERM-H ( $\Delta\mu = -1.380, p < .001$ ).  
 318 No significant difference was found between the No Training Group and Random Group ( $\Delta\mu =$   
 319  $-1.219, p = .115$ ).

320 <sup>1</sup><https://www.prolific.com/>

321 <sup>2</sup>Medical content from West Virginia Department of Health and Human Resources  
 322 (<https://www.wvoems.org/>), verified by medical experts during IRB approval.

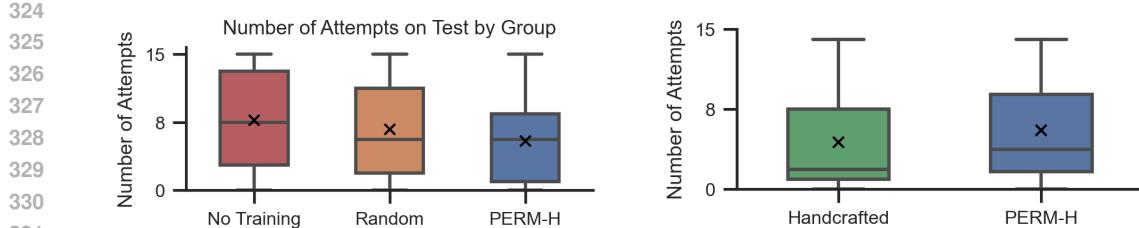


Figure 1: Number of attempts across different conditions for Jumper test. Lower numbers denote better performance. ‘X’ represents mean number of attempts.

**PERM-H vs. Handcrafted Training** An independent-samples t-test comparing PERM-H ( $\mu = 5.904$ ,  $\sigma = 5.558$ ) and Handcrafted ( $\mu = 4.705$ ,  $\sigma = 5.022$ ) conditions on the Jumper post-training test results showed no significant difference,  $t(112) = 1.193$ ,  $p = .235$ , with Cohen’s  $d = .23$ , suggesting a small effect size.

**Emergency Response Game** A one-way ANOVA showed significant differences in the test scores among groups,  $F(3, 117) = 12.46$ ,  $p < .001$ , partial  $\eta^2 = .24$ , signifying a large effect. Tukey’s HSD post-hoc comparisons revealed significant differences between SimMAC and both random ( $\Delta\mu = -3.21$ ,  $p < .001$ ) and reading-only conditions ( $\Delta\mu = -3.53$ ,  $p < .001$ ). The handcrafted condition also differed significantly from random ( $\Delta\mu = -1.81$ ,  $p = .03$ ) and reading conditions ( $\Delta\mu = -2.13$ ,  $p = .009$ ). No significant differences were found between SimMAC and handcrafted conditions ( $\Delta\mu = -1.40$ ,  $p = .155$ ) or between random and reading conditions ( $\Delta\mu = -0.326$ ,  $p = .960$ ).

In summary:

1. Students trained using our proposed teacher algorithms significantly outperformed those in the control and Random curricula groups in both environments.
2. Students trained under the handcrafted curriculum also outperformed those in the control and Random curricula groups.
3. No significant performance difference was observed between students trained with our algorithms and those trained with the Handcrafted curriculum. Similarly, no significant difference was found between the Random and control groups.

The results for Jumper and Emergency Response game are visualized in Figure 1 and 2 respectively.

**Discussion** These findings demonstrate that our RL-bootstrapped teacher algorithms (PERM-H and SimMAC) significantly outperformed both random and control curricula groups while achieving comparable results to expert-designed curricula—despite requiring no manual design effort. Overall, these results lend credibility to the efficacy of algorithms supported by RL agents in curriculum design. Surprisingly, the Random group showed no improvement over the No Training group despite greater domain exposure, highlighting that unstructured practice offers minimal benefit and reinforcing the value of intelligently sequenced learning experiences.

378

## 6.2 COMPARISONS TO EDUCATION BASELINES

379

380

Given the central focus on level difficulty (PERM-H) and task similarity (SimMAC) in the respective environments, we draw comparisons between our proposed teacher algorithms and baselines in the context of these metrics.

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

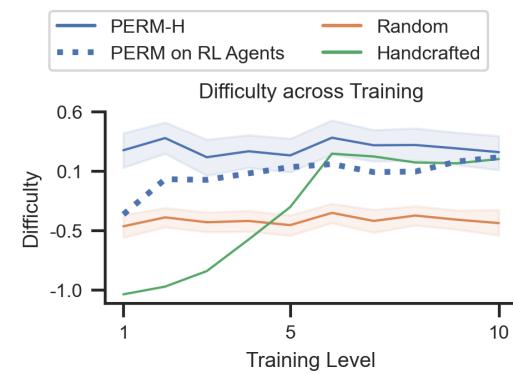


Figure 3: Difficulty progression across curricula for Jumper. PERM-H introduces challenges earlier than alternatives. RL agents reach difficulty levels comparable to humans, supporting their viability as warm-start learners.

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

level around the 5th training level. Compared to the adaptive curriculum provided by PERM-H, this suggests that initial levels provided minimal training value, and participants could have benefited from a shorter, more efficient training regimen beginning at a higher difficulty level.

423

424

**Emergency Response** Figure 4 illustrates the cumulative distance during training under SimMAC-generated and Handcrafted curricula, calculated by Equation 1. The SimMAC curriculum results in a lower cumulative distance throughout training compared to both Random and Handcrafted curricula. The Random curriculum’s cumulative distance is similar to the Handcrafted curriculum but less effective due to higher variation in task similarity and lack of easy-to-hard ordering. Students’ better performance under the SimMAC curriculum indicates that emphasizing learning continuity and smoother experiences leads to positive learning outcomes.

425

426

427

428

429

430

431

## 6.3 COMPARISONS TO RL AGENTS

424

This section attempts to investigate whether RL agents are suitable as warm-start human learners by comparing RL Agent and human training.

427

428

429

430

431

**Jumper** We trained a PPO (Schulman et al., 2017) student agent using PERM as the teacher algorithm for 24,000 episodes. Figure 3 compresses the 24,000 RL training episodes into 10 levels, matching the human training scale. As training progresses, the artificial student agent encounters increasingly challenging environments, ultimately reaching difficulty levels comparable to hand-crafted levels and, to some extent, humans trained under PERM-H.

**Jumper** Figure 3 shows PERM-H-generated levels consistently exhibited higher difficulty compared to random curricula. This rigorous training benefited students when encountering the complex final test level. Contrary to expectations of a logarithmic training curve with initial growth followed by plateauing, such as the one exhibited by the Handcrafted group, PERM-H participants faced challenging environments early, resulting in a performance ceiling effect. Many PERM-H group participants appeared to reach this upper bound during training due to the Jumper domain’s relative simplicity. PERM-H demonstrated the ability to quickly infer learner ability levels and present challenging levels early in training, contrasting with the random curriculum’s potentially wasted training opportunities.

The Handcrafted curriculum began with extremely easy levels, slowly increasing difficulty to reach a plateau comparable to PERM-H’s

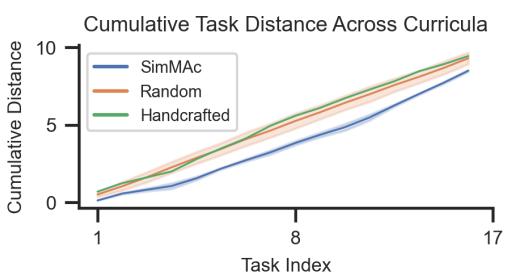


Figure 4: Cumulative distance comparisons across different curricula for Emergency Response. Higher distance means lower similarity.

432 **Emergency Response** For each task-pair  $i, j$ ,  
 433 we calculate the Wasserstein distance between  
 434 performance distributions for both RL agents  
 435 and human students, and plotted these paired  
 436 distances in Figure 5, right. A Pearson corre-  
 437 lation coefficient was computed to assess the re-  
 438 lationship between them, and we found a mod-  
 439 erate positive correlation between the two vari-  
 440 ables ( $r = .490, n = 287, p < .001$ ).

441

442 **Discussion** Our findings across two environ-  
 443 ments demonstrate both the potential and lim-  
 444 itations of using RL agents as warm-start hu-  
 445 man learners. In the Jumper environment, we  
 446 corroborate the results of Tsividis et al. (2017),  
 447 with humans demonstrated superior learning  
 448 efficiency, reaching high performance levels quickly while RL agents required millions of experi-  
 449 ences to achieve even minimal human performance levels. Despite this gap, RL agents and humans  
 450 showed consistent agreement on task difficulty rankings. The alignment suggests that in carefully  
 451 designed domains, RL can effectively provide valid initial training data in place of human learners.

452 In the Emergency Response domain, a moderately positive correlation emerged between inter-task  
 453 similarities derived from humans and agents, indicating some alignment between artificial and hu-  
 454 man learning patterns. Notably, when selecting tasks during human trials, we relied on the distance  
 455 between human task trajectories and task trajectories, without updating the similarity metrics with  
 456 human data. Despite this direct comparison of task similarity from artificial to human learners, the  
 457 approach yielded excellent learning outcomes, demonstrating RL agents’ effectiveness as warm-start  
 458 substitutes for human learning data.

459 While differences between human and RL agents persist across both domains, our findings highlight  
 460 both the current limitations of RL in matching human learning efficiency and its potential to inform  
 461 and enhance human learning processes. The ability to automatically collect training data without  
 462 expert intervention, combined with positive student outcomes, justifies our approach of using RL  
 463 agents to train teacher algorithms. This lays the groundwork for developing more sophisticated  
 464 adaptive learning systems.

465

## 466 7 CONCLUSION AND FUTURE WORK

467

468 We investigated using RL agents as warm-start proxies to address the cold-start problem in teacher  
 469 algorithms. Our approach trains PERM-H and SimMAC through structured Exploration and Ex-  
 470 ploitation stages. Human studies showed that our RL-bootstrapped curricula outperformed baseline  
 471 methods and matched expert-designed curricula without requiring extensive human data or domain  
 472 expertise.

473 While our findings suggest a viable pathway for reducing initial data dependencies in adaptive learn-  
 474 ing systems, our approach is not without limitations. First, our approach is currently constrained to  
 475 environments that can effectively model both RL and human learning patterns, and notable align-  
 476 ment gaps exist between these modalities. Second, our analysis revealed that RL agents has distinct  
 477 differences from human learners, suggesting the need for better alignment techniques.

478

479 Future work should investigate methods to better calibrate and evaluate the gap between RL agent  
 480 behavior and human learning patterns, perhaps through transfer learning approaches or hybrid mod-  
 481 els that incorporate limited human data earlier in the process. Additionally, researchers might ex-  
 482 plore how this bootstrapping methodology generalizes across more diverse learning domains, partic-  
 483 ularly those with abstract reasoning requirements or social components. We invite the community to  
 484 build upon our testbed environments to develop improved alignment metrics and evaluation frame-  
 485 works, potentially expanding this approach to broader educational contexts. As this nascent field  
 486 develops, integrating generative AI with RL-based curriculum design could open new avenues for  
 487 creating more accessible, effective, and personalized learning experiences.

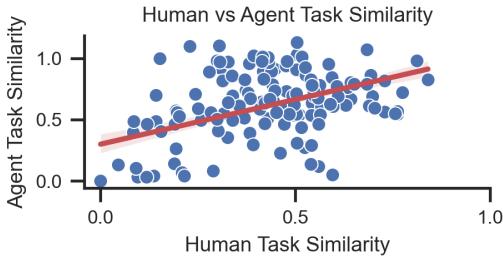


Figure 5: Inter-task similarity as derived from agents versus humans. Red line represents a re-  
 gression line of  $r = .490$

486 REFERENCES  
487

488 Hazem A Alrakhawi, Nurullizam Jamiat, and Samy Abu-Naser. Intelligent tutoring systems in  
489 education: a systematic review of usage, tools, effects and evaluation. *Journal of Theoretical and*  
490 *Applied Information Technology*, 101(4):1205–1226, 2023.

491 Jonathan Bassen, Bharathan Balaji, Michael Schaarschmidt, Candace Thille, Jay Painter, Dawn  
492 Zimmaro, Alex Games, Ethan Fast, and John C Mitchell. Reinforcement learning for the adaptive  
493 scheduling of educational activities. In *Proceedings of the 2020 CHI Conference on Human*  
494 *Factors in Computing Systems*, pp. 1–12, 2020.

495 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In  
496 *Proceedings of the 26th annual international conference on machine learning*, pp. 41–48, 2009.

497

498 Jerome S Bruner. *The process of education*. Harvard university press, 2009.

499

500 Felipe Leno Da Silva and Anna Helena Reali Costa. A survey on transfer learning for multiagent  
501 reinforcement learning systems. *Journal of Artificial Intelligence Research*, 64:645–703, 2019.

502 Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,  
503 and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment  
504 design. *Advances in neural information processing systems*, 33:13049–13061, 2020.

505

506 Shayan Doroudi, Vincent Aleven, and Emma Brunskill. Robust evaluation matrix: Towards a more  
507 principled offline exploration of instructional policies. In *Proceedings of the fourth (2017) ACM*  
508 *conference on learning@ scale*, pp. 3–12, 2017.

509 Shayan Doroudi, Vincent Aleven, and Emma Brunskill. Where’s the reward? a review of rein-  
510 forcement learning for instructional sequencing. *International Journal of Artificial Intelligence in*  
511 *Education*, 29:568–620, 2019.

512 Janet Grant. Principles of curriculum design. *Understanding medical education: Evidence, theory,*  
513 *and practice*, pp. 71–88, 2018.

514

515 Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated  
516 curriculum learning for neural networks. In *international conference on machine learning*, pp.  
517 1311–1320. Pmlr, 2017.

518 Derek Green, Thomas Walsh, Paul Cohen, and Yu-Han Chang. Learning a skill-teaching curricu-  
519 lum with dynamic bayes nets. In *Proceedings of the AAAI Conference on Artificial Intelligence*,  
520 volume 25, pp. 1648–1654, 2011.

521

522 Ioannis Hatzilygeroudis and Jim Prentzas. Using a hybrid rule-based approach in developing an  
523 intelligent tutoring system with knowledge acquisition and update capabilities. *Expert systems*  
524 *with applications*, 26(4):477–492, 2004.

525 Yuge Huang, Yuhang Wang, Ying Tai, Xiaoming Liu, Pengcheng Shen, Shaoxin Li, Jilin Li, and  
526 Feiyue Huang. Curricularface: adaptive curriculum learning loss for deep face recognition. In  
527 *proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 5901–  
528 5910, 2020.

529

530 Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In *International*  
531 *Conference on Machine Learning*, pp. 4940–4950. PMLR, 2021.

532

533 Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan Harper, Chris Elion,  
534 Chris Goy, Yuan Gao, Hunter Henry, Marwan Mattar, and Danny Lange. Unity: A gen-  
535 eral platform for intelligent agents. *arXiv preprint arXiv:1809.02627*, 2020. URL <https://arxiv.org/pdf/1809.02627.pdf>.

536

537 Dexun Li, Wenjun Li, and Pradeep Varakantham. Diversity induced environment design via self-  
538 play. *arXiv preprint arXiv:2302.02119*, 2023a.

539

540 Wenjun Li, Pradeep Varakantham, and Dexun Li. Effective diversity in unsupervised environment  
541 design. *arXiv preprint arXiv:2301.08025*, 2023b.

540 Chien-Chang Lin, Anna YQ Huang, and Owen HT Lu. Artificial intelligence in intelligent tutoring  
 541 systems toward sustainable education: a systematic review. *Smart Learning Environments*, 10(1):  
 542 41, 2023.

543 Robert V Lindsey, Jeffery D Shroyer, Harold Pashler, and Michael C Mozer. Improving students'  
 544 long-term knowledge retention through personalized review. *Psychological science*, 25(3):639–  
 545 647, 2014.

546 John Macalister and IS Paul Nation. *Language curriculum design*. Routledge, 2019.

547 Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher–student curriculum learn-  
 548 ing. *IEEE transactions on neural networks and learning systems*, 31(9):3732–3740, 2019.

549 Elham Mousavinasab, Nahid Zarfsanaiey, Sharareh R. Niakan Kalhori, Mahnaz Rakhshan, Leila  
 550 Keikha, and Marjan Ghazi Saeedi. Intelligent tutoring systems: a systematic review of character-  
 551 istics, applications, and evaluation methods. *Interactive Learning Environments*, 29(1):142–163,  
 552 2021.

553 Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone.  
 554 Curriculum learning for reinforcement learning domains: A framework and survey. *The Journal  
 555 of Machine Learning Research*, 21(1):7382–7431, 2020.

556 Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward  
 557 Grefenstette, and Tim Rocktäschel. Evolving curricula with regret-based environment design.  
 558 *arXiv preprint arXiv:2203.01302*, 2022.

559 R. Patel and P. Thakkar. Addressing item cold start problem in collaborative filtering-based recom-  
 560 mender systems using auxiliary information. In *IOT with Smart Systems: Proceedings of ICTIS  
 561 2022, Volume 2*, pp. 133–142, Singapore, 2022. Springer Nature Singapore.

562 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy  
 563 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

564 Avi Segal, Yossi Ben David, Joseph Jay Williams, Kobi Gal, and Yaar Shalom. Combining diffi-  
 565 culty ranking with multi-armed bandits to sequence educational content. In *Artificial Intelligence  
 566 in Education: 19th International Conference, AIED 2018, London, UK, June 27–30, 2018, Pro-  
 567 ceedings, Part II 19*, pp. 317–321. Springer, 2018.

568 Felipe Leno Da Silva and Anna Helena Reali Costa. Object-oriented curriculum generation for re-  
 569 inforcement learning. In *Proceedings of the 17th international conference on autonomous agents  
 570 and multiagent systems*, pp. 1026–1034, 2018.

571 David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,  
 572 Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering  
 573 the game of go with deep neural networks and tree search. *nature*, 529(7587):484–489, 2016.

574 David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,  
 575 Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi  
 576 by self-play with a general reinforcement learning algorithm. *arXiv preprint arXiv:1712.01815*,  
 577 2017.

578 Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob  
 579 Fergus. Intrinsic motivation and automatic curricula via asymmetric self-play. *arXiv preprint  
 580 arXiv:1703.05407*, 2017.

581 Sujanya Suresh, Savitha Ramasamy, Ponnuthurai N Suganthan, and Cheryl Sze Yin Wong. Incre-  
 582 mental knowledge tracing from multiple schools. *arXiv preprint arXiv:2201.06941*, 2022.

583 Sidney Tio and Pradeep Varakantham. Transferable curricula through difficulty conditioned gener-  
 584 ators, 2023.

585 Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-  
 586 main randomization for transferring deep neural networks from simulation to the real world. In  
 587 *2017 IEEE/RSJ international conference on intelligent robots and systems (IROS)*, pp. 23–30.  
 588 IEEE, 2017.

594 Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. *arXiv preprint*  
595 *arXiv:1805.01954*, 2018.

596

597 Pedro A Tsividis, Thomas Pouncy, Jacqueline L Xu, Joshua B Tenenbaum, and Samuel J Gershman.  
598 Human learning in atari. In *2017 AAAI spring symposium series*, 2017.

599

600 Jan Van den Akker. Curriculum design research. *An introduction to educational design research*,  
601 37:37–50, 2007.

602

603 Maarten van der Velde, Florian Sense, Jelmer P Borst, and Hedderik V Rijn. Large-scale evaluation  
604 of cold-start mitigation in adaptive fact learning: Knowing “what” matters more than knowing  
605 “who”. *User Modeling and User-Adapted Interaction*, pp. 1–25, 2024.

606

607 Lev Semenovich Vygotsky and Michael Cole. *Mind in society: Development of higher psychological*  
608 *processes*. Harvard university press, 1978.

609

610 Cong Wang, Yifeng Zheng, Jinghua Jiang, and Kui Ren. Toward privacy-preserving personalized  
611 recommendation services. *Engineering*, 4(1):21–28, 2018.

612

613 Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-ended trailblazer (poet):  
614 Endlessly generating increasingly complex and diverse learning environments and their solutions.  
615 *arXiv preprint arXiv:1901.01753*, 2019.

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

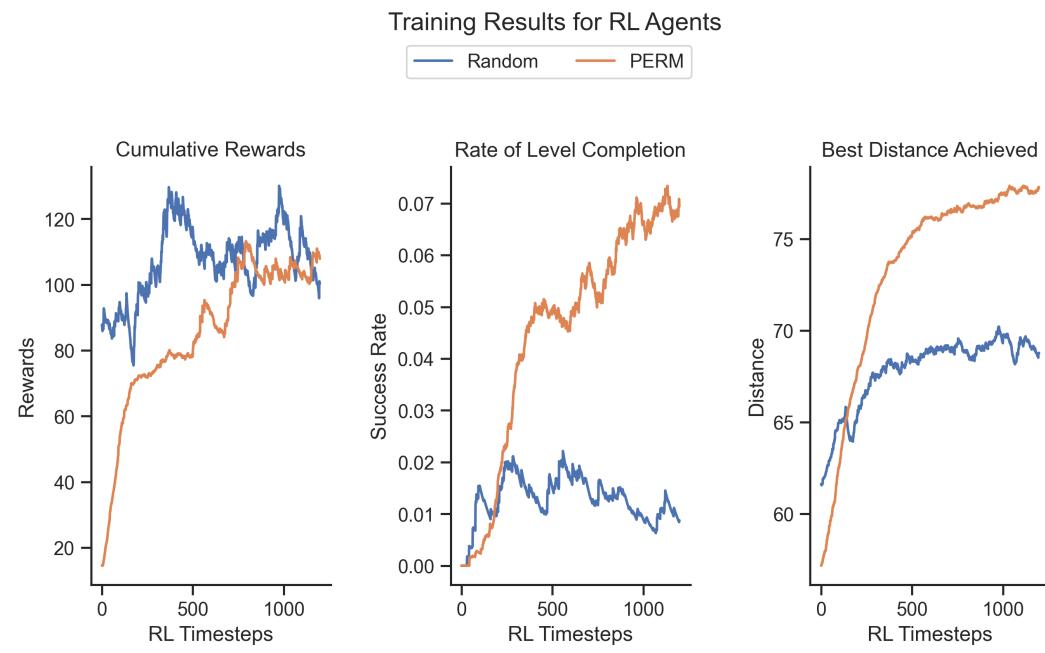
648 **A APPENDIX**  
649650 **A.1 FURTHER DETAILS ON TEACHER ALGORITHMS**  
651652 **A.1.1 PERM-H**  
653

Figure 6: Training results of RL Agents trained under PERM (orange) and a random curricula (blue). Left: Agents trained under PERM-H increased in ability over time, despite levels of increasing difficulty. Centre: PERM trainees are more likely to complete the level than those under random. Right: Agents trained under PERM travelled deeper into the level than the counterparts in the random condition.

**Pre-study** To determine if PERM applies well to our Jumper environment, we conducted a pre-study in which we use PERM to train a student RL agent.

We first train a Jumper-tuned version of PERM. For the Jumper environment, we collected a tuple of (*spike density, height variance, rewards*) for every episode of the RL training. In this development phase, we obtained a total of 14506 environment-student interaction data, over a course of 12 hours, with a single V100 GPU. Thereafter, we deploy the trained PERM-H as a teacher algorithm to a new PPO Schulman et al. (2017) RL student trained using Unity’s `ml-agents` package Juliani et al. (2020). We also provide the results of a RL student trained under a random curricula. The results are shown in Figure 6.

Based on the obtained results, it is evident that the adoption of an Item Response Theory-driven curriculum with the PERM teacher yields remarkable outcomes for RL agents, surpassing the performance achieved by the random curriculum. Notably, RL agents trained using the IRT-driven curriculum exhibit a higher level of proficiency in completing levels and, on average, traversed deeper into these levels compared to their counterparts trained using the random curriculum. These impressive outcomes are noteworthy considering that PERM continually challenges the student by evolving the levels in the same pace.

**Futher Analysis on Performance** We compared participant’s completion rate. We also compared participant’s self-reported familiarity with side-scrolling games against their completion rates. A successful completion meant that participants took lesser than 15 attempts on the final test. Lastly, we analyzed the duration it took per attempt for them to complete. We perform the above analysis based on the assumption that more competent participants would complete the test with lesser at-

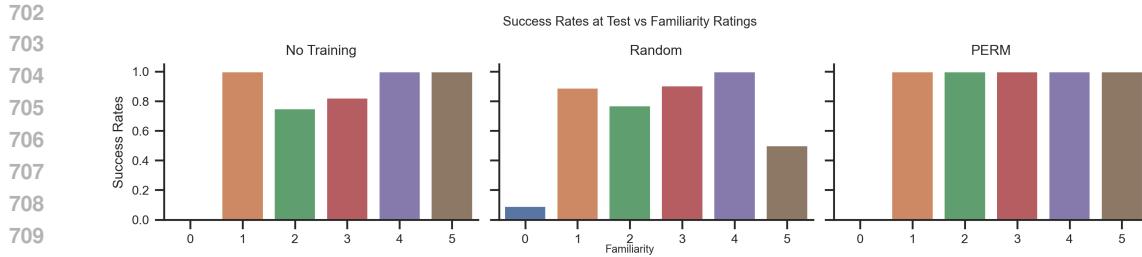


Figure 7: Participant’s self-report of their familiarity with 2D games, against their completion rates in the final test. A score of 0 represents “No Experience at all” while 5 represents “Highly Experienced”. All participants under PERM-H were successful in completing the test, with the exception of individuals who had “No experience at all” in 2D Games.

|                                                     |                                                                                                                     |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| <b>Name</b>                                         | Jumper                                                                                                              |
| <b>Environment Type</b>                             | UED                                                                                                                 |
| <b>Short Description</b>                            | A Super-Mario inspired 2D game, where players have to control a character to jump across obstacles to reach the end |
| <b>Student Objective</b>                            | Reach the end of the level, while avoiding obstacles                                                                |
| <b>Student Actions</b>                              | Keyboard controls to control main character’s movement and jumping                                                  |
| <b>Env Parameters to adjust <math>\theta</math></b> | Spike Density; Ground Roughness                                                                                     |
| <b>Skills Imparted</b>                              | Motor-skills, hand-eye coordination                                                                                 |

Table 1: Overview of Jumper Game Environment

tempts, with a shorter duration. We used Student’s t-test to compare the duration and the attempts made in the final test, and chi-squared test of goodness of fit to compare completion rates.

**Results** The completion rate of the tests are presented in Figure 7. Participants under the PERM-H were more likely to complete the test (i.e. reach the goal with less than 15 attempts), regardless of prior experience with games, than the other conditions. Figure 7 depicts the completion rate of each condition, compared to their self-reported prior experience. The effect of curriculum was found to be significant, i.e. the completion rates were not equally distributed amongst the 3 conditions ( $\chi^2(2, N = 230) = 9.24, p < 0.01$ ).

Lastly, the duration per attempt for groups under PERM-H ( $\mu = 61.02, \sigma = 66.41$ ) were significantly longer than that of the random curricula ( $\mu = 45.01, \sigma = 19.68, p < 0.01$ ) and control condition ( $\mu = 29.86, \sigma = 16.42, p < 0.01$ ). The average duration is plotted in Figure 8.

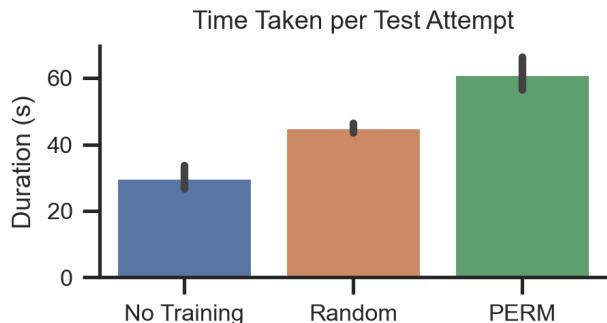


Figure 8: Participants under PERM-H took a longer time per attempt during the test ( $p < 0.01$ ).

**Discussion** Collectively, these findings suggest that students trained with PERM-H were not only more likely to succeed on the test but also required fewer attempts to do so. Crucially, this positive impact of PERM-H on students remains consistent across individuals with diverse levels of prior experience with similar games. This consistency underscores the effectiveness of the adaptive curriculum implemented by PERM-H, demonstrating its capacity to benefit participants regardless of their varied backgrounds.

|     |                                                     |                                                                                                                                          |
|-----|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 756 | <b>Name</b>                                         | Emergency Response                                                                                                                       |
| 757 | <b>Environment Type</b>                             | Task Sequencing                                                                                                                          |
| 758 | <b>Short Description</b>                            | A Overcooked-inspired game, where players take the role of a paramedic providing medical assistance to a patient enroute to the hospital |
| 759 | <b>Student Objective</b>                            | Provide the necessary medical assistance, in reaction to a description of patient's conditions                                           |
| 760 | <b>Student Actions</b>                              | Mouse to control paramedic's movement, and to guide and pick up the necessary medical devices                                            |
| 761 | <b>Env Parameters to adjust <math>\theta</math></b> | Task from a pre-determined pool                                                                                                          |
| 762 | <b>Skills Imparted</b>                              | Medical knowledge and decision making, working under time pressures                                                                      |

Table 2: Overview of Emergency Response Game Environment

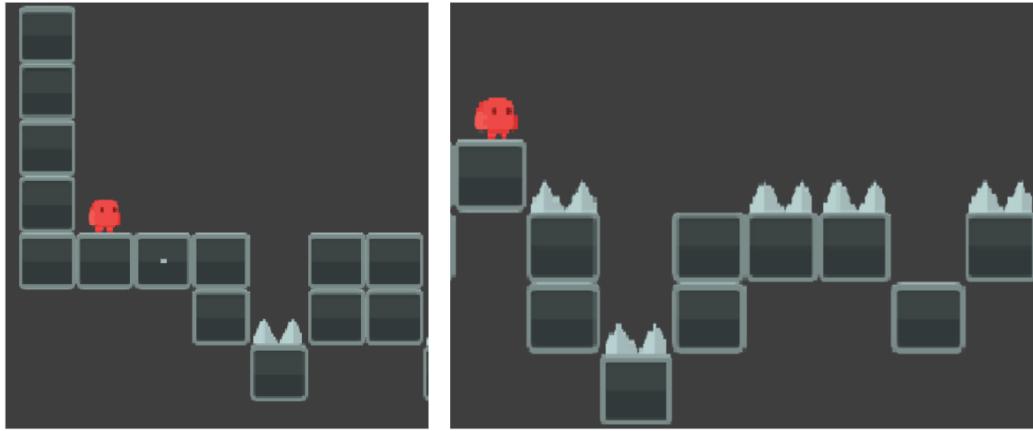


Figure 9: Possible segments of levels generated by PERM-H. The easy level (left) has lesser spikes and lesser variation in the terrain. In contrast, players have to navigate uneven terrains and jump across more spikes in the difficult level (right).

We were surprised that students under PERM-H had took significantly longer per attempt to complete the test. This observation hints at distinct behavioral differences among the learners, especially those exposed to higher difficulty levels. It's worth highlighting that participants were not explicitly informed that their performance was being evaluated based on the speed of level completion. This absence of explicit information could have influenced the more deliberate approach adopted by students exposed to the PERM-H framework.

### Enjoyment During Training

**Method** At the end of the training trial, we conducted a short survey that queried participants on how fun they found the training.

**Results** Participants assigned to the PERM-H condition rated the game as less fun ( $\mu = 3.18, \sigma = 1.06$ ) as compared to participants in the no training condition ( $\mu = 3.43, \sigma = 1.16, p = 0.027$ ) but not significantly different from the participants in the random curricula ( $\mu = 3.29, \sigma = 1.29, p = 0.044$ ).

**Discussion** We noticed that participants who did not undergo any form of training tended to rate the game as more enjoyable than those who received training. This disparity in enjoyment levels might be linked to the potential fatigue induced by the training process. A closer analysis showed that, on average, both participants with average ( $\mu = 4.08, \sigma = 2.98$ ) performance under the PERM-H framework required more attempts to complete their training compared to their peers in the ran-

dom curricula ( $\mu = 3.43, \sigma = 2.28, p < 0.01$ ). It's important to note that this increased number of training attempts was a desired outcome of PERM-H, as it consistently provided levels within the grasp of the participant's ability.

## A.2 SIMMAC

In this section, we provide more details of the SimMAC algorithm and related backgrounds of SimMAC.

**Background: Wasserstein Distance** Wasserstein distance was employed to estimate the distance between two tasks in DIPLR Li et al. (2023a). DIPLR focuses on the pair-wise distance and calculates the distance between two tasks  $d(\mathcal{T}^{\theta_1}, \mathcal{T}^{\theta_2})$  as:

$$\mathcal{W}(\rho_{\mathcal{T}^{\theta_1}}^\pi, \rho_{\mathcal{T}^{\theta_2}}^\pi) = \left( \inf_{\psi \in \Pi(\rho_{\mathcal{T}^{\theta_1}}^\pi, \rho_{\mathcal{T}^{\theta_2}}^\pi)} \mathbb{E}_{(\phi_1, \phi_2) \sim \psi} [d(\phi_1, \phi_2)^p] \right)^{1/p} \quad (2)$$

where  $\phi \in (S, A)$  is a sample from the occupancy distribution. By Equation (2), DIPLR collects state-action samples in trajectories to compute the empirical Wasserstein distance between two tasks. I.e.,  $d(\mathcal{T}^{\theta_i}, \mathcal{T}^{\theta_j}) \mathcal{W}(\rho_{\mathcal{T}^{\theta_i}}^\pi, \rho_{\mathcal{T}^{\theta_j}}^\pi) \approx \mathcal{W}(\tau_i, \tau_j)$  is our empirical estimation of the Wasserstein distance between two tasks.

We extend the methodology in DIPLR and employ Wasserstein distance to calculate the distance between one task and a set of tasks,  $d(\mathcal{T}^{\theta_k}, \mathcal{T}^{\theta_{i \sim j}})$ :

$$\mathcal{W}(\rho_{\mathcal{T}^{\theta_k}}^\pi, \rho_{\mathcal{T}^{\theta_{i \sim j}}}^\pi) = \left( \inf_{\psi \in \Pi(\rho_{\mathcal{T}^{\theta_k}}^\pi, \rho_{\mathcal{T}^{\theta_{i \sim j}}}^\pi)} \mathbb{E}_{(\phi_1, \phi_2) \sim \psi} [d(\phi_1, \phi_2)^p] \right)^{1/p} \quad (3)$$

**Exploration Stage** During the Exploration Stage of SimMAC, we initialize a diverse set of RL agents and train them uniformly on all tasks. We collect the trajectories at different stages during training such that the agent trajectories have a wide coverage over each task and we can use them to obtain a good occupancy measure for each task. Assume we have  $k$  tasks and we denote the trajectories associated with each task by  $\Gamma^1, \Gamma^2, \dots, \Gamma^k$ . The complete procedures of the SimMAC algorithm are summarized in Algorithm A.2.

[th] SimMAC for Emergency Response Game  $k$  training tasks:  $\mathcal{T}^{\theta_1}, \mathcal{T}^{\theta_2}, \dots, \mathcal{T}^{\theta_k}$ , training curriculum length  $N$  ( $N \leq k$ ), empty trajectory buffer  $\Gamma$

Measure the difficulty of each task

Select task with the lowest difficulty, denoted by  $\mathcal{T}^{\theta_1}$

Train human learner in  $\mathcal{T}^{\theta_1}$  and collect the trajectories,  $\tau_1 \sim \mathcal{T}^{\theta_1}$

Insert  $\tau_1$  into  $\Gamma$

$t = 2, 3, \dots, N$   $i = 1, 2, \dots, N$  Calculate task similarity between  $\mathcal{T}^{\theta_i}$  and the rest of the tasks by  $d = \mathcal{W}(\Gamma, \Gamma^i)$

Select the task with the lowest distance, denoted by  $\mathcal{T}^{\theta_t}$

Train the human learner in  $\mathcal{T}^{\theta_t}$  and collect the trajectories,  $\tau_t \sim \mathcal{T}^{\theta_t}$

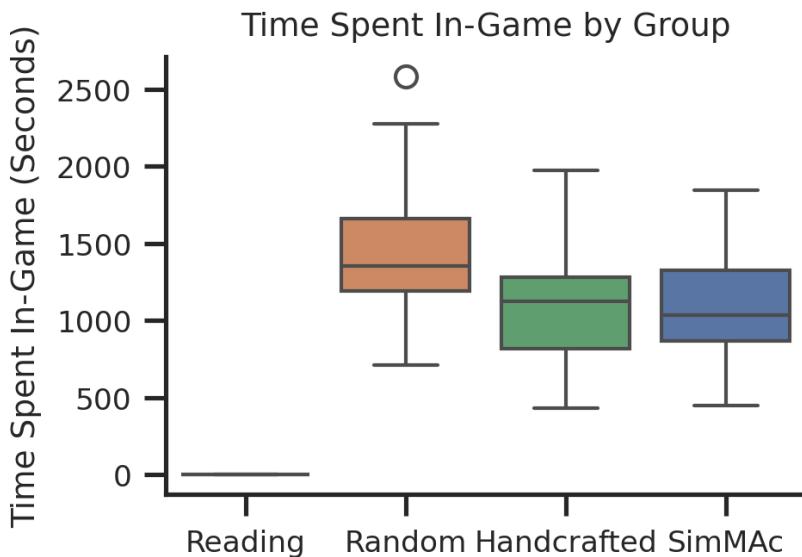
Insert  $\tau_t$  into  $\Gamma$

**Qualitative Feedback from Participants** At the end of the experiment, we conducted a short survey to gather participants' feedback on how enjoyable they found the game, the coherence of their learning experiences, and whether they felt fatigued afterward. Our primary focus was on their feedback regarding the consistency and coherence of the curriculum.

864 Participants in the Random group frequently complained about the lack of coherence in their learning  
 865 experience, as tasks were randomly shuffled, leading to a disjointed progression for some. In  
 866 contrast, participants in the SimMAC group reported a more coherent and continuous learning ex-  
 867 perience.

868 In addition to smooth knowledge accumulation, human learners showed a strong preference for pro-  
 869 gressing from easy to more difficult tasks. This preference is interesting because it contrasts with  
 870 what is typically effective for training reinforcement learning (RL) agents. In RL, numerous studies  
 871 Wang et al. (2019); Dennis et al. (2020); Jiang et al. (2021); Parker-Holder et al. (2022) highlight the  
 872 benefits of training in novel and challenging environments. This difference in learning preferences  
 873 can be attributed to the distinct objectives and constraints in RL training versus human training. In  
 874 RL, the goal is to develop agents with general capabilities that can transfer to unseen challenges,  
 875 often involving billions of training timesteps. On the other hand, human training emphasizes maxi-  
 876 mizing learning efficiency within a limited timeframe, as extended curricula can lead to fatigue.

877 **A.2.1 EXTENDED EXPERIMENT RESULTS**



899 Figure 10: Game time by various groups.  
 900

901 All participants were compensated for their participation in our study, at a rate that  
 902 is above or the same as Prolific’s recommended payment principles ([https://researcher-  
 903 help.prolific.com/en/article/2273bd](https://researcher-help.prolific.com/en/article/2273bd)).  
 904

905 **Game Time** Figure 10 compares the game time across three different experimental groups: Hand-  
 906 crafted, SimMAC, and Random. The Reading group is the control group, which did not participate  
 907 in the game but instead focused on reading materials related to emergency response knowledge. Key  
 908 observations include:

- 910 1. The SimMAC group, which used the proposed SimMAC teacher for curriculum training,  
 911 has a median game time of about 18 minutes, with a relatively tight interquartile range  
 912 (IQR) from around 15 to 22 minutes. This suggests that participants in this group were  
 913 able to complete the game efficiently.
- 914 2. The Handcrafted group shows a similar median game time, also around 18 minutes, but  
 915 with a slightly wider IQR compared to the SimMAC group. This indicates a bit more  
 916 variability in performance.
- 917 3. The Random group has the highest median game time, approximately 22 minutes, with the  
 918 broadest IQR, suggesting greater variability in how long participants took to complete the

918 game. There is also an outlier, indicating that at least one participant took significantly  
 919 longer than others.  
 920

921 In summary, the results highlight the effectiveness of the SimMAC teacher in providing a training  
 922 curriculum that allows human learners to complete the task more efficiently, as evidenced by the  
 923 lower game times. Moreover, participants in the SimMAC group achieved the highest post-test  
 924 scores, demonstrating that the efficiency gained in game time did not come at the cost of learning  
 925 quality.

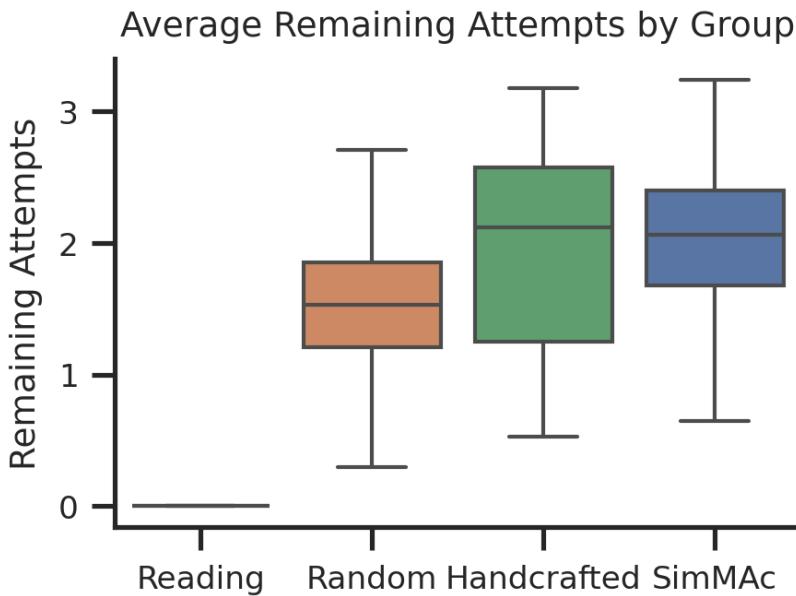


Figure 11: Averaged remaining attempts in each task during the game.

950 **Remaining Attempts in the Game** Figure 11 provides the average remaining attempts in each  
 951 task during the game. In general, participants in Random group required more attempts to complete  
 952 the scenario. SimMAC and Handcrafted, on the other hand required lesser attempts. This can be  
 953 attributed to the easy-hard progression that is a feature of SimMAC and Handcrafted curriculum, so  
 954 that participants do not face a difficult task even before they have learned about it.

955 **Participant’s Assessment of Fun and Usefulness** After the experiment ended, participants were  
 956 tasked to complete a survey on their training experience. The results pertaining to the fun factor  
 957 (“How do you rate the fun factor of the game?”) and usefulness of their curricula (“Did you feel the  
 958 order in which these scenarios were presented to you to play, helped you to learn these scenarios  
 959 better?”) are presented in Figure 12 and Figure 13 respectively. Overall, all participants found the  
 960 Emergency Response Game fun with average scores well above 3 points ( $\mu = 3.78$ ). Notably,  
 961 participants were more likely to find the curriculum generated by SimMAC to be helpful.  
 962

### 963 A.3 ENVIRONMENT DETAILS

#### 964 A.3.1 EMERGENCY RESPONSE ENVIRONMENT

965 Our research team designed the emergency response game for paramedic training for non-expert hu-  
 966 man learners. The participants engaged in our experiment will learn emergency response knowledge  
 967 through interactive video games.  
 968

969 A clear illustration of the game interface is presented in Figure 15. In the game, the human player  
 970 navigates the ambulance, selecting appropriate medical items to treat patients with various con-  
 971 ditions. The patient’s condition transitions stochastically, meaning it can change to different states

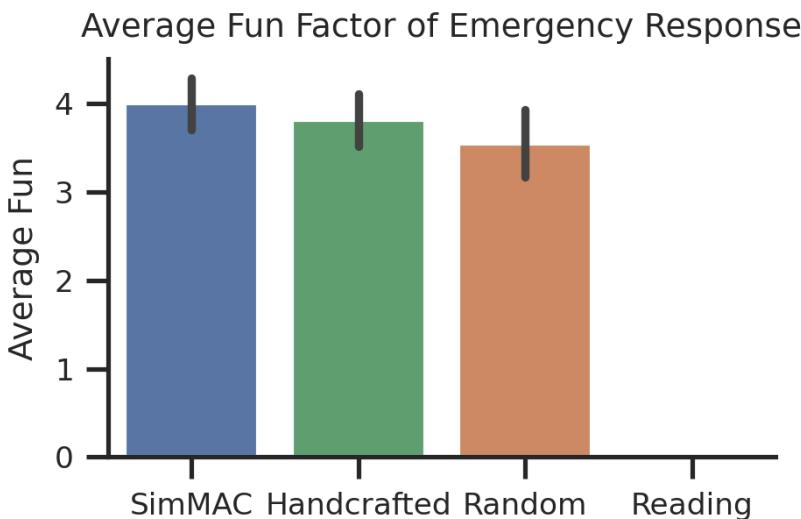


Figure 12: Averaged remaining attempts in each task during the game.

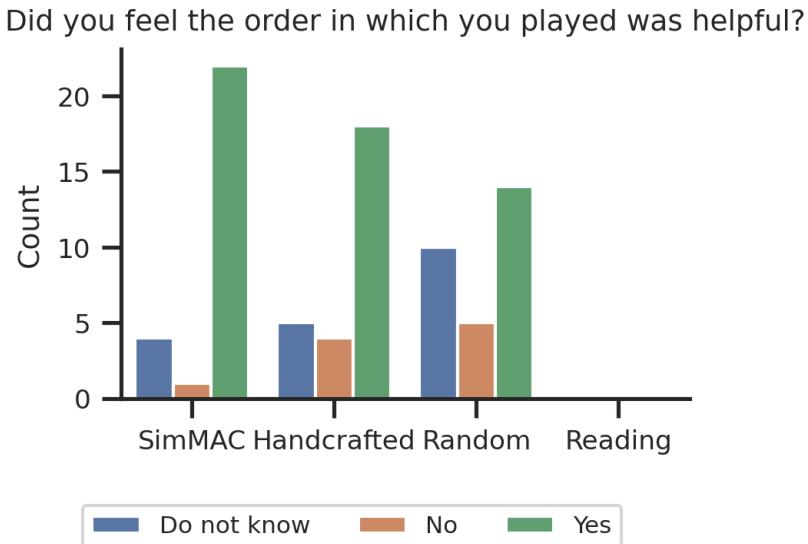


Figure 13: Averaged remaining attempts in each task during the game.

after the application of a particular medical item. The current condition of the patient is displayed in the top right corner, and this description updates dynamically as the condition evolves. When the mouse hovers over a specific medical item, a description of the item and its functions appears in the bottom right corner.

Players must complete a series of treatments to stabilize the patient before the ambulance reaches the hospital. Our research team designed 10 different medical conditions, including *Allergy*, *Seizure*, *BreathingDifficulty*, *HeatStroke*, *ExternalBleeding*, *ColdExposure*, *AbdominalTrauma*, *MusculoskeletalTrauma*, *AcuteCoronarySyndrome*, *Bronchospasm*. Two of these conditions (*Seizure* and *ColdExposure*) were used to create a demo video to instruct participants on gameplay. The remaining conditions form the task pool for training. Depending on the natural complexity of each condition, we developed easy, medium, and hard versions for some diseases. However, conditions

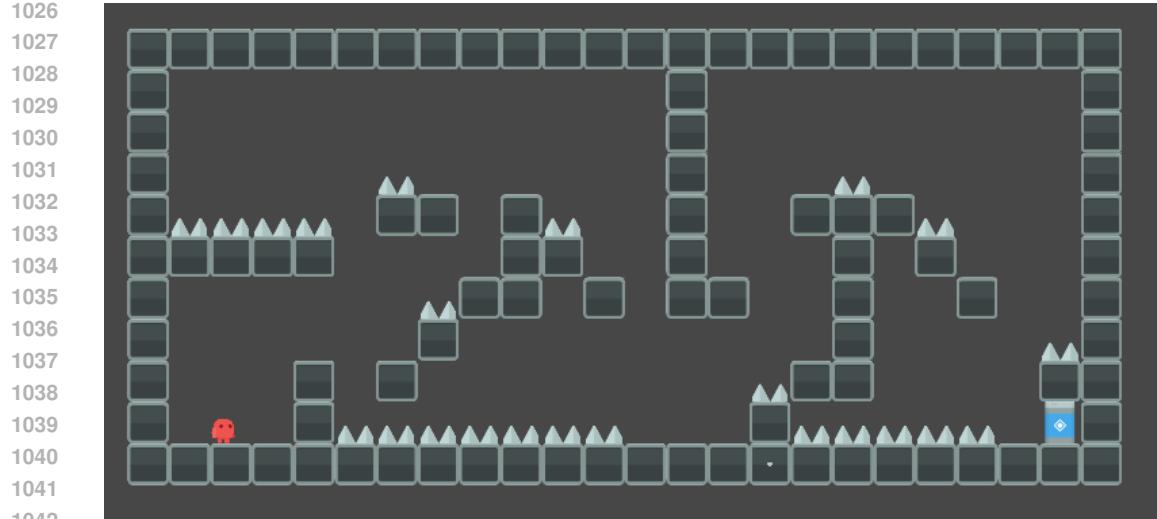


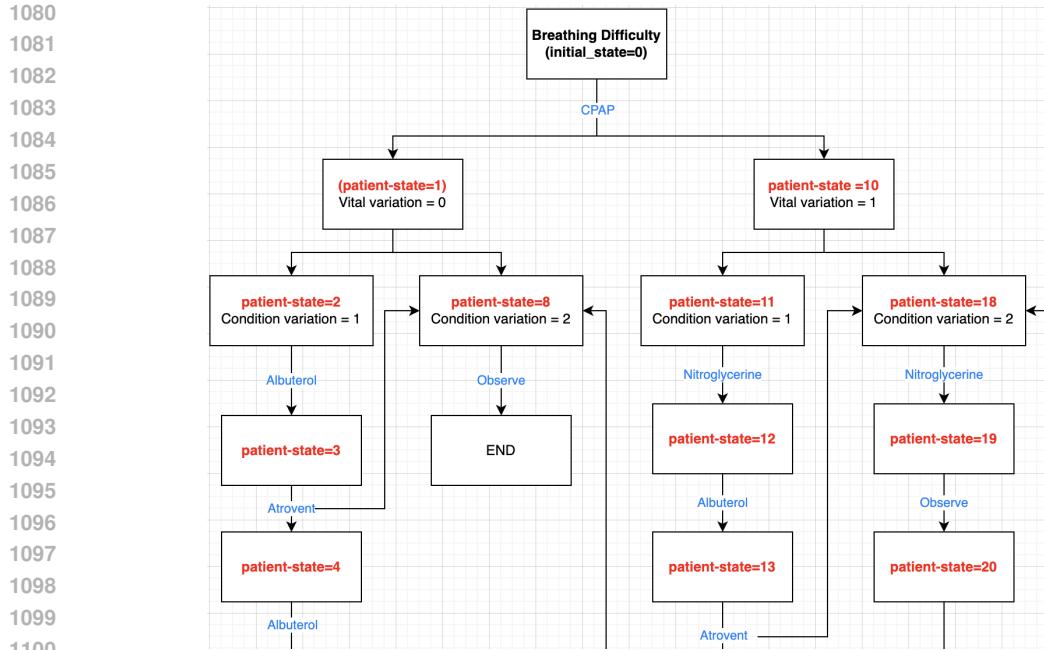
Figure 14: Jumper Game’s test level. Players control the red figure to navigate the spiked maze, with the objective of reaching the final goal in blue.



Figure 15: Blown-up version of the Emergency Response Game, providing a bird-eye view of the interior of an ambulance enroute to the hospital. Participants have to control the medical officer (in blue) to retrieve appropriate medical equipment to address patient’s condition. The Information Panel on the left describes the patient’s condition, and a short description of the item when participant’s mouse hovers over an item.

like *ExternalBleeding* and *HeatStroke* may have only easy or medium versions due to a lack of diverse condition variations. In total, 17 tasks were constructed to form the training curriculum.

Figure 16 presents a segment of the flowchart for the *BreathingDifficulty* condition. For instance, in the stochastic transition, the patient’s state can evolve to either *patient-state=1* or *patient-state=10* after the player applies CPAP. The player navigates the flowchart by selecting different actions (i.e., medical items) and eventually reaches various termination states. Condition variations refer to differ-

Figure 16: Flowchart of the *BreathingDifficulty* disease.

ent severities of the same disease, such as mild *HeatStroke* versus severe *HeatStroke*. Vital variations involve changes in vital signs, like blood pressure and body temperature, which influence the treatment approach. Additionally, vital variations trigger dynamic updates in the game, displaying the relevant vital value and range (indicated by the green bar). Through this interactive game, players progressively accumulate knowledge and skills for handling various emergency response situations.

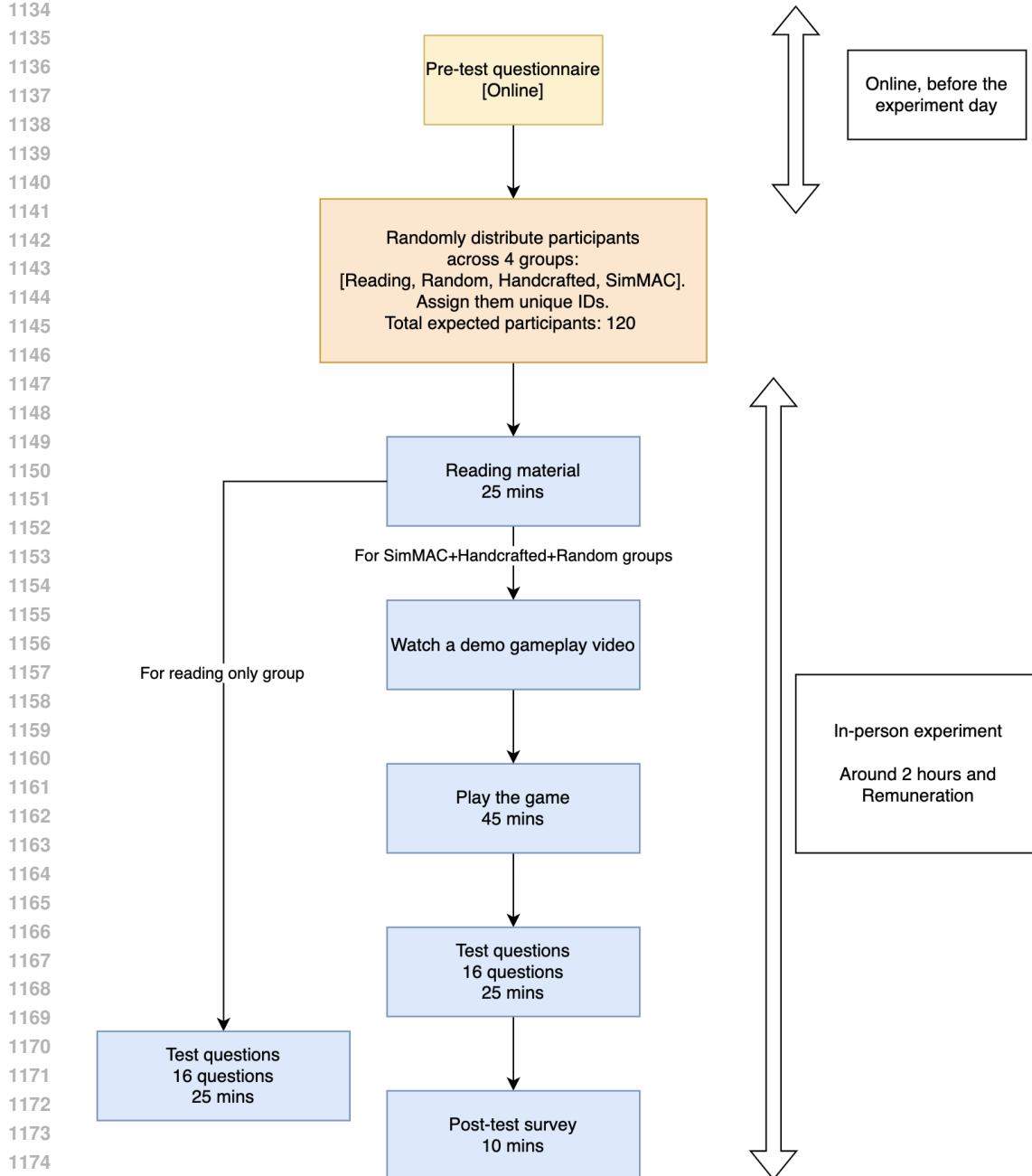


Figure 17: Public Experiment Flow.

### A.3.2 ADDITIONAL PROCEDURES FOR HUMAN SUBJECTS TRAINING

Based on feedback from 8 volunteer testers, we adjusted our experimental setup. We reduced the number of diseases from 10 to 8 and decreased total tasks from 21 to 17 to mitigate participant fatigue. We also added 2 simpler tasks for a demo video and warm-up to familiarize participants with the game. Figure 17 illustrates the detailed experiment flow.

Pilot test feedback revealed participants prefer completing one topic before moving to another, even if tasks in new topics have higher similarity to past experiences. Consequently, we adjusted SimMAC to complete all tasks within a current condition before introducing a new one.

1188 The participants' initial reading materials were adapted from West Virginia Department of Health  
 1189 and Human Resources<sup>3</sup>. Prior to the commencement of the study, the research team had consulted  
 1190 a medical expert and they had confirmed that the medical information provided above are not mis-  
 1191 represented, even in the local context, and poses no harm to the participants. As an added measure,  
 1192 participants were debriefed after the experiment and explicitly advised to disregard the session as  
 1193 indicative of local medical emergency protocols. They were directed to context-specific online re-  
 1194 sources for more localized information.

1195 **A.4 PARTICIPANT BACKGROUND ANALYSIS**

1196 **A.4.1 EMERGENCY RESPONSE GAME**

1197 We conducted a comprehensive ablation analysis to ensure that the performance of the SimMAC  
 1198 curriculum is not influenced by participants' backgrounds. Most participants in our experiment  
 1199 were university students with similar demographics, including age, learning abilities, reading skills  
 1200 and etc. We focused on three key factors: whether participants held a job related to healthcare, their  
 1201 experience with 3D games, and their initial proficiency in emergency procedures.

1202 **Healthcare Job** Participants with healthcare-related jobs might perform better during the game  
 1203 and in post-test questionnaires. Therefore, we collected this background information in the pre-test  
 1204 questionnaire and summarized the job backgrounds of all participants in Figure 18.

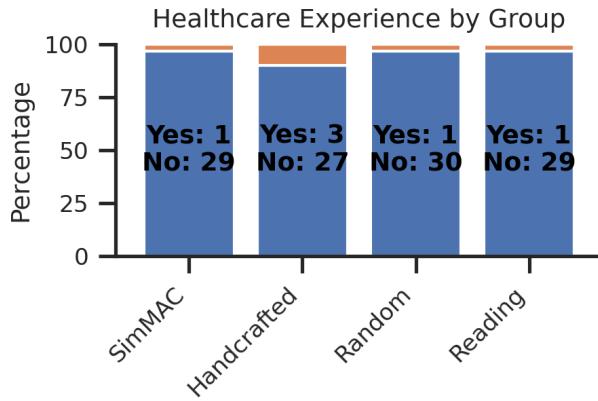
1205 **3D Game Experience** Experience with 3D games could also influence  
 1206 performance. The distribution of 3D  
 1207 game experience by group is shown  
 1208 in Figure 19.

1209 A two-way ANCOVA was con-  
 1210 ducted to examine the effects of  
 1211 Group assignment and Game Ex-  
 1212 perience on the final test scores,  
 1213 with Game Experience serving as  
 1214 a covariate. The analysis revealed  
 1215 a significant main effect of Group  
 1216 ( $F(3, 113) = 10.32, p < .001$ ).  
 1217 However, the covariate, Game Ex-  
 1218 perience, did not show a significant ef-  
 1219 fect ( $F(1, 113) = 1.79, p = .183$ ).  
 1220 The interaction between Group and  
 1221 Game Experience was also not sta-  
 1222 tistically significant ( $F(3, 113) =$   
 1223  $0.07, p = .974$ ).

1224 In summary, our experiment design was successful in mitigating for prior experience in games as a  
 1225 potential confounding factor for our final test scores, and thus was not discussed in the main text.

1226 **Proficiency in Emergency Procedures** Finally, we analyzed participants' proficiency in emer-  
 1227 gency procedures, i.e., prior knowledge of handling emergency situations, as shown in Figure 20.  
 1228 A two-way ANCOVA was conducted to examine the effects of Group assignment and Emergency  
 1229 Proficiency on test scores, while controlling for Emergency Proficiency as a covariate. The results  
 1230 revealed a significant main effect of Group ( $F(3, 113) = 10.34, p < .001$ ). There was also a  
 1231 significant effect of the covariate, Emergency Proficiency ( $F(1, 113) = 8.92, p = .003$ ). How-  
 1232 ever, the interaction between Group and Emergency Proficiency was not statistically significant  
 1233 ( $F(3, 113) = 1.49, p = .221$ ).

1234 Taken together, it would suggest that while Emergency Proficiency and Group independently influ-  
 1235 enced the final test scores, Emergency Proficiency was not a confound of group assignment. Our



1236 Figure 18: Participants' background of healthcare job.

1237 <sup>3</sup><https://www.wvoems.org/>

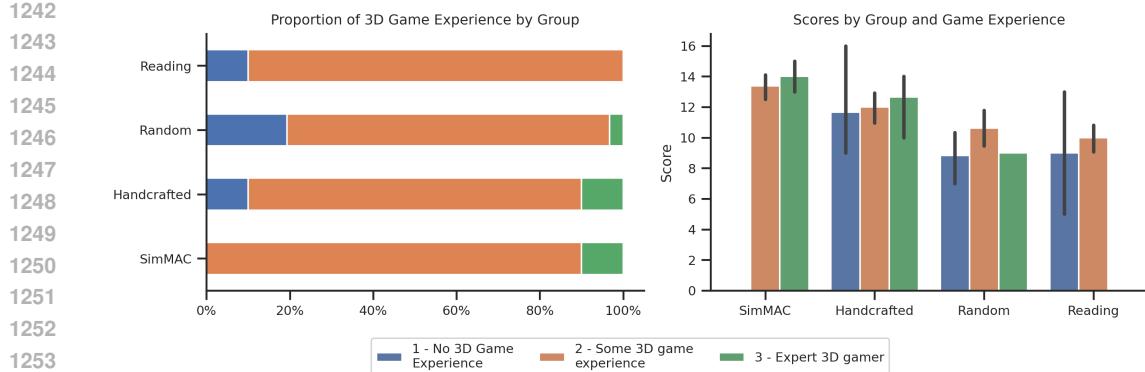


Figure 19: Left: Proportion of self-reported experience with games by Group. Right: Scores by Group and prior Game Experience

experimental procedure had sufficiently controlled for prior experience in Emergency situations and thus was not discussed in the main text.

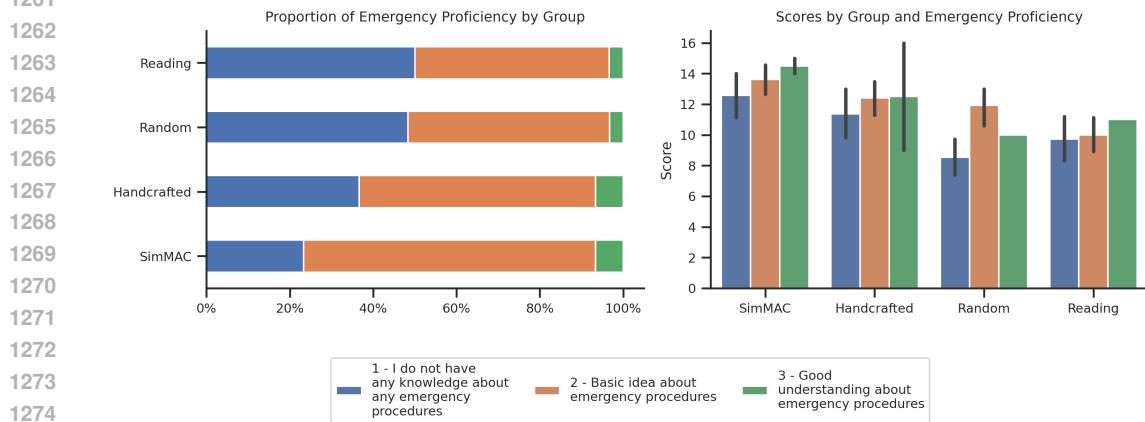


Figure 20: Left: Proportion of self-reported experience with emergencies and medical procedures by Group. Right: Scores by Group and prior experience with medical emergencies.