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ABSTRACT

Adaptive gradient methods have been shown to outperform SGD in many tasks of
training neural networks. However, the acceleration effect is yet to be explained
in the non-convex setting since the best convergence rate of adaptive gradient
methods is worse than that of SGD in literature. In this paper, we prove that
adaptive gradient methods exhibit an Õ(T�1/2)-convergence rate for finding first-
order stationary points under the strong growth condition, which improves previous
best convergence results of adaptive gradient methods and random shuffling SGD
by factors of O(T�1/4) and O(T�1/6), respectively. In particular, we study two
variants of AdaGrad with random shuffling for finite sum minimization. Our
analysis suggests that the combination of random shuffling and adaptive learning
rates gives rise to better convergence.

1 INTRODUCTION

We consider the finite sum minimization problem in stochastic optimization:

min
x2Rd

f(x) =
1

n

nX

i=1

fi(x), (1)

where f is the objective function and its component functions fi : Rd ! R are smooth and
possibly non-convex. This formulation has been used extensively in training neural networks today.
Stochastic gradient descend (SGD) and its variants have shown to be quite effective for solving this
problem, whereas recent works demonstrate another prominent line of gradient-based algorithms by
introducing adaptive step sizes to automatically adjust the learning rate (Duchi et al., 2011; Tieleman
& Hinton, 2012; Kingma & Ba, 2014).

Despite the superior performance of adaptive gradient methods in many tasks (Devlin et al., 2019;
Vaswani et al., 2017), their theoretical convergence remains the same or even worse for non-convex
objectives, compared to SGD. In general non-convex settings, it is often impractical to discuss optimal
solutions. Therefore, the attention of analysis turns to stationary points instead. Many works have
been proposed to study first-order (Chen et al., 2019; Zhou et al., 2018; Zaheer et al., 2018; Ward
et al., 2018; Zhou et al., 2018) and second-order (Allen-Zhu, 2018; Staib et al., 2019) stationary
points. Table 1 summarized some previous best-known results for finding first-order stationary points.
One might notice that the best dependence on the total iteration number T of adaptive gradient
methods matches that of vanilla SGD. In addition, with the introduction of incremental sampling
techniques, an even better convergence of SGD can be obtained (Haochen & Sra, 2019; Nguyen et al.,
2020).

This gap between theory and practice of adaptive gradient methods has been an open problem that we
aim to solve in this paper. Motivated by the analysis of sampling techniques, we rigorously prove that
adaptive gradient methods exhibit a faster non-asymptotic convergence rate that matches the best
result on SGD. In particular, we make the following contributions:

• Our main contribution (Theorem 1,2,3) is to prove that two variants of AdaGrad can find
Õ(T�1/2)-approximate first-order stationary points under the strong growth condition
assumption (Schmidt & Roux, 2013). This improves previous best convergence results
of adaptive gradient methods and shuffling SGD by factors of O(T�1/4) and O(T�1/6) ,
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Table 1: Convergence rate comparisons for the non-convex optimization problem. First two categories,
‘SGD’ and ‘Adaptive Gradient Methods’ are based on the expectation minimization problem, whereas
the last category is based on the finite sum minimization problem.

Algorithm Assumptions (L-smooth+) krf(x)k-convergence T

SG
D vanilla SGD • �

2 bounded gradient variance O

⇣
T

�1/4
⌘

Constant step-size SGD
(Vaswani et al., 2019) • strong growth condition O

⇣
T

�1/2
⌘
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AMSGrad, AdaFom
(Chen et al., 2019)

• bounded gradients
• initial gradient lower bound Õ

⇣
T

�1/4
⌘

AMSGrad, Padam
(Zhou et al., 2018)

• bounded gradients
• gradient sparsity O

⇣
T

�1/4
⌘

RMSProp, Yogi
(Zaheer et al., 2018)

• bounded gradients
• �

2 bounded gradient variance O

⇣
T

�1/2 + �

⌘

AdaGrad-NORM
(Ward et al., 2018)

• bounded gradients
• �

2 bounded gradient variance Õ

⇣
T

�1/4
⌘

GGT
(Agarwal et al., 2019) • �

2 bounded gradient variance O

⇣
T

�1/4
⌘

Sh
uf

fli
ng

Random Shuffling SGD
(Nguyen et al., 2020) • bounded gradients Õ

⇣
n
1/3 · T�1/3

⌘

Ours • bounded gradients
• strong growth condition Õ

⇣
n
1/2 · T�1/2

⌘

T denotes the number of iterations; n is the number of samples in the finite sum minimization problem.

respectively. As a result, this bridges the gap between analysis and practice of adaptive
gradient methods by proving that adaptive gradient methods can be faster than SGD with
random shuffling in theory.

• We study the strong growth condition under which our convergence rate is derived. This
condition has been previous used to study SGD in the expectation minimization setting
(Schmidt & Roux, 2013; Vaswani et al., 2019). We prove that this condition is satisfied by
two general types of models under some additional assumptions.

• We conduct preliminary experiments to demonstrate the combined acceleration effect of
random shuffling and adaptive learning rates.

Our analysis points out two key components that lead to better convergence results of adaptive gradient
methods: the epoch-wise analysis of random shuffling can incorporate the benefit of full gradients;
the adaptive learning rates along with the strong growth condition provide better improvement of
objective value in consecutive epochs.

Finite Sum Minimization vs. Expectation Minimization The comparison in Table 1 shows
the convergence rates in the non-convex setting with respect to first-order stationary points. The
results in the first two categories apply to the general expectation minimization problem with
f(x) = Ezf(x, z). Whereas the convergences for expectation minimization naturally transform to
finite sum minimization, the statements remain asymptotic, meaning Ekrf(x)k ⇠ O(T↵), where
the expectation is taken to compensate the stochastic gradients. Many efforts have been made to
reduce variance in finite sum minimization (Johnson & Zhang, 2013; Reddi et al., 2016; Haochen &
Sra, 2019). In particular, non-asymptotic results can be gained using random shuffling, under which
the dependency on sample size n seems to be unavoidable (Haochen & Sra, 2019).

2 PRELIMINARIES

A typical setting of machine learning using gradient methods is the finite sum minimization in
equation (1). In this problem, the number of samples n is usually very large, rendering the evaluation
of full gradients expensive. Therefore, a mini-batch gradient is introduced to approximate the full
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gradient. Mini-batch gradient descent is often carried out in epochs, where each epoch includes
several iterations of parameter updates. This epoch-wise implementation can easily incorporate
shuffling techniques, which have proven to be effective for SGD both in theory and practice.

We aim to analyze the convergence rate of adaptive gradient methods under this framework, where
the objective can be non-convex. Throughout this paper, we restrict the discussions of convergence to
achieving ✏-approximate first-order stationary point defined as x satisfying krf(x)k  ✏. We leave
for future work analysis related to saddle points and second-order stationary points. We want to show
that adaptive gradient methods can find x such that krf(x)k = Õ(T�1/2) in T epochs.

Notations. v
2 denotes the matrix vv

> and kvk is the l2-norm of vector v; diag(V ), kV k, �min(V )
and �max(V ) are the diagonal matrix, the spectral norm, the largest and smallest non-zero eigen-
values of the matirx V , respectively. For alphabets with subscripts, vi:j denotes the collection of
{vi,vi+1, ...,vj} and v: denotes the entire set of v·; similar notations are used for alphabets with
double subscripts. Let [n] = {1, ..., n}, O(·), Õ(·) be the standard asymptotic notations. Denote ei

as the unit vector with its i-th component being 1 and e the all-one vector whose dimension depend
on the context. As a clarification, we use T to denote the number of epochs (instead of the number of
iterations in Table 1) starting from this section.

AdaGrad-type methods. As opposed to SGD, adaptive gradient methods assign a coordinate-wise
adaptive learning rate to the stochastic gradient. We formulate the generic AdaGrad-type optimizers,
including their full and diagonal versions, as follows. At the i-th iteration of epoch t, the parameter is
updated by:

xt,i+1 = xt,i � ⌘tV
�1/2
t,i

gt,i, (full version)

xt,i+1 = xt,i � ⌘tdiag(Vt,i)
�1/2

gt,i, (diagonal version)

where gt,i is the mini-batch gradient of the objective at xt,i, the matrix Vt,i contains second-moment
calculated using all the past stochastic gradients and ⌘t is the step size of epoch t. The initial
parameter of epoch t + 1 is taken to be the parameter updated by epoch t, i.e. xt+1,1 = xt,m+1,
where we have m iterations in each epoch. The full version is impractical for high-dimensional x.
Thus the diagonal version is often preferred in literature. As an example, the second-moment matrix
in AdaGrad is taken to be Vt,i = (

P
t�1
s=1

P
m

j=1 g
2
s,j

+
P

i

j=1 g
2
t,j
)/t. SGD can also be written into

this general form where we set Vt,i to be the identity matrix.

Sampling Strategy. Random shuffling, also known as sampling without replacement, is an often-
used technique to accelerate the convergence of SGD. The idea is to sample a random permutation of
function indices [n] for each epoch and slide through this permutation to get the mini-batch gradients
for the iterations in this epoch. Some implementations shuffle the set [n] uniformly independently for
each epoch while others shuffle the set once during initialization and use the same permutation for all
epochs. Generally speaking, suppose we have a permutation � = (�1, ...,�n) at epoch t, we define
the set Bt,i = {�j : (i� 1) n

m
< j  i n

m
} where m is the number of iterations in one epoch. Then

the mini-batch gradient is taken to be gt,i = m/n ·
P

j2Bt,i
rfj(xt,i).

This sampling method of mini-batches benefits the theoretical analysis of SGD by providing a
bounded error between the full gradient and the aggregation of mini-batch gradients in one epoch
(Haochen & Sra, 2019; Nguyen et al., 2020). A naive observation that backups this point can be made
by assuming xt,1 = ... = xt,m, since [m

i=1Bt,i = [n], we would have
P

m

i=1 gt,i = rf(xt,1). Then
full gradient can be used to obtain convergence better than plain SGD.

Random shuffling for AdaGrad. Unlike SGD, in adaptive methods, it is hard to approximate the
full gradient with the aggregation of mini-batch gradient updates in one epoch due to the presence of
the second moments. As we will show in experiments, the simple shuffling variant that only changes
the sampling method of mini batches in AdaGrad does not lead to better convergence. The major
difficulty hampering the analysis of this variant is that the second-moment matrix uses all the gradient
information in history without distinguishment. Thus to be able to leverage the benefit of the full
gradient, we propose to study a slight modification of AdaGrad. Formally, we shuffle the set [n] once
at initialization and obtain the mini-batch gradients in a random shuffling manner. We update the
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parameters by the same rules of AdaGrad-type methods described above where the second-moment
matrix is taken to be:

Vt,i =
mX

j=i+1

g
2
t�1,j +

iX

j=1

g
2
t,j
. (AdaGrad-window)

The difference between AdaGrad-window and AdaGrad is that the former only use the latest m
mini-batch gradients instead of an epoch-wise average of all the mini-batch gradients in history. The
step size is ⌘t = ⌘/

p
t where ⌘ is a constant for both methods. The updates of AdaGrad-window is

also very similar to the GGT method (Agarwal et al., 2019) without momentum. However, GGT uses
the full matrix inversion, where our analysis applies to both full and diagonal versions.

3 MAIN RESULTS

We will show that AdaGrad-window has the convergence rate of Õ(T�1/2) for non-convex problems
under some mild assumptions. This is a significant improvement compared with previous best
convergence results of adaptive gradient methods and random shuffling SGD, which are of order
O(T�1/4) and Õ(T�1/3) respectively. The key towards our convergence rate improvement is two-
fold: the epoch-wise analysis of random shuffling enables us to leverage the benefit of full gradients;
the adaptive learning rates and the strong growth condition endow a better improvement of objective
value in consecutive epochs.

In order to achieve this better convergence, we first state the assumptions and important concepts
used in the proof. Apart from the general assumptions (A1) and (A2) used in previous analysis (Fang
et al., 2018; Zaheer et al., 2018; Ward et al., 2018), we pose another assumption described below in
(A3) to characterize the consistency between individual gradients and the full gradient.

Assumptions. We assume the following for AdaGrad-window:

(A1) The objective function is lower bounded and component-wise L-smooth, i.e. 9f⇤ 2 R s.t.
f(x) � f⇤ > �1, 8x and krfi(x)�rfi(y)k  L kx� yk , 8x,y, i.

(A2) The mini-batch gradients in the algorithm are uniformly upper bounded, i.e. 9G 2 R s.t.
kgt,ik  G, 8t, i.

(A3) The objective function satisfies the strong growth condition with constant r2, i.e. 8x,
1
n

P
n

i=1 krfi(x)k2  r2krf(x)k2.

The strong growth condition assumption is essentially enforcing the norms of individual gradients to
be at the same scale as the norm of the full gradient. This condition was originally used to derive
a faster convergence for SGD in the context of convex finite sum minimization (Schmidt & Roux,
2013). It was further explored to analyze SGD-type methods after showing its closed relationship
with interpolation (Ma et al., 2018; Vaswani et al., 2019; Gower et al., 2019). Built upon these
previous analysis, we will give a more in-depth discussion for this assumption in section 6.

Under these assumptions, the following theorems show our convergence result for the full and
diagonal versions of AdaGrad-window.

Theorem 1 (The convergence rate of full AdaGrad-window). For any T > 4, set ⌘ = m�5/4, denote
C1 = m5/4

p
11/3 + 8 · r2 (f(x1,1)� f⇤ +G) /

p
2 and C2 = 5m5/4

p
11/3 + 8 · r2L/

p
2 as

constants independent of T . We have:

min
1tT

krf(xt,1)k  1p
T
(C1 + C2 lnT ). (2)

Theorem 2 (The convergence rate of diagonal AdaGrad-window). For any T > 4, set
⌘ = m�5/4, denote C 0

1 = m5/4
p
11/3 + 8 · r2

⇣
f(x1,1)� f⇤ +G

p
d
⌘
/
p
2 and C 0

2 =

5m5/4
p
11/3 + 8 · r2d3/2L/

p
2 as constants independent of T . We have:

min
1tT

krf(xt,1)k  1p
T
(C 0

1 + C 0
2 lnT ). (3)
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The interpretation of these two theorems is that we are able to find an approximate first-order
stationary point such that krf(x)k = Õ(T�1/2) within T epochs using both versions. We notice
that the convergence rate of AdaGrad-window matches that of GD when m = 1, which denotes that
our results are relatively tight with respect to T . The complete proof is included in the appendix.
We will give the intuition and key lemmas explaining how to utilize random shuffling and second
moments to obtain these results in the next section.

In addition, we also prove for another variant of AdaGrad, namely, AdaGrad-truncation with second-
moment matrix defined as V1,i = m · I and Vt,i = mk

P
m

j=1 gt�1,jk2 · I when t > 1 . This
second-moment matrix is very similar to the norm version of AdaGrad (Ward et al., 2018) whereas
we use the aggregation of mini-batch gradients in the previous epoch as the coefficient. AdaGrad-
truncation is beneficial since the formulation leads to a fast and simple implementation without
needing to discuss the full and diagonal versions. Due to the space limitation, we list the result below
and defer the discussions to the appendix.
Theorem 3 (The convergence rate of AdaGrad-truncation). For any T > 4, set ⌘ =p
3/(10m1/2Lr) ·

p
f(x1,1 � f⇤ +G2)/

p
L+ 2, denote C = 80m(Lr+2)

p
f(x1,1)� f⇤ +G2

as constants independent of T . We have:

min
1tT

krf(xt,1)k  Cp
T
. (4)

4 OVERVIEW OF ANALYSIS

The goal of this section is to give the key intuition for proving Theorem 1 and Theorem 2. In the
following, we use the full version as an example where similar results can be obtained for the diagonal
version by adding a dependency on dimension d. Proof details of both versions are included in the
appendix. The key towards proving Theorem 1 is to establish the following lemma.
Lemma 1. For any t > 1, in the full version of AdaGrad-window, denote c1 =
⌘/

p
11/3 + 8 · r2, c2 = 5⌘2m2L/2 + 5⌘2m5/2L/⇡ as constants independent of t. We have ei-

ther:
1p
t
· c1krf(xt,1)k  f(xt,1)� f(xt,m+1) +

1

t
· c2, (5)

or krf(xt,1)k  1p
t
· (⌘mL). In addition, there is always 0  f(xt,1)� f(xt,m+1) +

1
t
· c2.

The deduction of convergence rate is straightforward based on this lemma. Either there is
krf(xt,1)k  (⌘mL/

p
2)/

p
T for some T/2  t  T , leading directly to Theorem 1, or

we can sum up equation (5) for T/2  t  T : the coefficients are approximately
p
T on the

left and lnT on the right thus leading to Theorem 1. Therefore, we turn to the proof of this
lemma instead. Under the L-smooth assumption, we have the standard descent result for one epoch
rf(xt,1)>(xt,1 � xt,m+1)  f(xt,1)� f(xt,m+1) + L/2 · kxt,m+1 � xt,1k2 (we refer the proof
of to (Nesterov, 2018)). Rewrite the equation by replacing xt,m+1 � xt,1 on the left with the
AdaGrad-window updates:

⌘p
t
·rf>(xt,1)V

�1/2
t,m

(
mX

i=1

gt,i)

| {z }
S1

f(xt,1)� f(xt,m+1) +
L

2
kxt,m+1 � xt,1k2

+
⌘p
t
·rf(xt,1)

>

"
V

�1/2
t,m

mX

i=1

gt,i �
mX

i=1

V
�1/2
t,i

gt,i

#

| {z }
S2

.

The idea behind this decomposition is to split out the term S1 that behaves similarly to the full
gradient and control the remaining terms. Similar to other analysis of adaptive methods, the term
kxt,m+1 � xt,1k2 on the right can be upper bound by a constant times 1/t (we refer scalars that do
not depend on t to constants). This can be done by simply plugging in the update rules, the details of
which are showed in the appendix. Next, we show how to bound term S1 and S2 in order to prove
Lemma 1.
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4.1 LOWER BOUND OF S1

To obtain the lower bound of S1, we need two steps. The first step stems from the idea in random
shuffling SGD (Haochen & Sra, 2019), which is to bound the difference between the full gradient
and the aggregation of mini-batch gradients. Formally, we have the following lemma.
Lemma 2. For any t > 0, in the full version of AdaGrad-window, denote constant c3 = ⌘(m�1)L/2,
we have:

krf(xt,1)�
1

m

mX

i=1

gt,ik  1p
t
· c3. (6)

Building on top of this lemma, term S1 can be written into a constant combination of 1/
p
t and

(
P

m

i=1 gt,i)
>
V

�1/2
t,m

(
P

m

i=1 gt,i), which leads to our second step. In the second step, we utilize the
strong growth assumption to obtain a lower bound formulated as below.
Lemma 3. For any t > 0, in the full version of AdaGrad-window, we have either:

(
mX

i=1

gt,i)
>
V

�1/2
t,m

(
mX

i=1

gt,i) �
1p

11/3 + 8 · r2
k

mX

i=1

gt,ik, (7)

or krf(xt,1)k  1p
t
· (⌘mL). In addition, there is always (

P
m

i=1 gt,i)
>
V

�1/2
t,m

(
P

m

i=1 gt,i) � 0.

This lemma shows that (
P

m

i=1 gt,i)
>
V

�1/2
t,m

(
P

m

i=1 gt,i) can be lower bound by k
P

m

i=1 gt,ik times
a constant. Therefore, we are able to derive a constant combination of k

P
m

i=1 gt,ik and 1/
p
t as the

lower bound for S1, which is desired for Lemma 1.

We emphasize that the essential element of the convergence rate improvement lies in Lemma 3. For
SGD, the matrix Vt,m is the identity matrix leading to a lower bound of k

P
m

i=1 gt,ik2 instead of
k
P

m

i=1 gt,ik. This lower order leads to a greater decrease of objective value between consecutive
epochs as shown in Lemma 1. The reason that we are able to lower the order on k

P
m

i=1 gt,ik is due
to the presence of the second moments canceling out the order.

4.2 UPPER BOUND OF S2

To obtain the upper bound of S2, we can write V
�1/2
t,m

P
m

i=1 gt,i into
P

m

i=1 V
�1/2
t,m

gt,i. Therefore,
we only need to take care of the second-moment matrices Vt,m and Vt,i. As a matter of fact, we have
the following lemma.
Lemma 4. For any t > 1 and 1  i  m, in the full version of AdaGrad-window, denote
c4 = 6⌘(m � i � 1)(m � i)L/⇡ + 4⌘(m � i)(m + i + 1)L/⇡ as constants independent of t, we
have:

kV 1/2
t,m

� V
1/2
t,i

k  1p
t
· c4. (8)

Based on this lemma, we can obtain an upper bound of S2 using the result below.
Lemma 5. For any t > 1, in the full version of AdaGrad-window, denote c5 = 5⌘m5/2/⇡L+ ⌘m2L
as constants independent of t, we have:

rf(xt,1)
>

"
mV

�1/2
t,m

rf(xt,1)�
mX

i=1

V
�1/2
t,i

gt,i

#
 1p

t
· c5. (9)

With this upper bound derived, we are able to prove Lemma 1, which is the key intermediate result
towards the convergence result in the Theorem 1.

5 COMPLEXITY ANALYSIS

Based on Theorem 1 and 2, we discuss the computational complexity for two versions of AdaGrad-
window. We compare the total complexity between AdaGrad-window and random shuffling SGD to
demonstrate that this adaptive gradient method can be faster than SGD after finite epochs in theory.
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Corollary 1 (The computational complexity of full-version AdaGrad-window). Let {xt,1}Tt=1
be the sequence generated by AdaGrad-window. For given tolerance ✏, to guarantee that
min1tT krf(xt,1)k  ✏, the total number of epochs is nearly (ignoring logarithm) O(m5/2✏�2).
Therefore, the total number of gradient evaluations is nearly (ignoring logarithm) O

�
m5/2n✏�2

�
.

Compared with the full version, their diagonal version is more practical in modern neural network
training. Fortunately, a similar result can be derived for the diagonal version.
Corollary 2 (The computational complexity of diagonal-version AdaGrad-window). Let {xt,1}Tt=1
be the sequence generated by AdaGrad-window. For given tolerance ✏, to guarantee
min1tT krf(xt,1)k  ✏, the total number of epochs is nearly (ignoring logarithm)
O(m5/2d3✏�2). Therefore, the total number of gradient evaluations is nearly (ignoring logarithm)
O
�
m5/2nd3✏�2

�
.

For achieving the ✏-approximate first-order stationary point, the total number of gradient evaluation
required by random shuffling SGD is O(nd✏�3) (Haochen & Sra, 2019; Nguyen et al., 2020). In
a rough comparison, AdaGrad-window has advantages over random shuffling SGD when ✏ ⇡
O(m�5/2). Therefore, in theory, AdaGrad-window is more efficient when the number of iterations in
one epoch m is small. Recent works in deep neural net training (You et al., 2017; 2020) have shown
that in large batch scenarios, adaptive methods tend to converge faster in training. Since m is the
number of iterations in one epoch, meaning that small m gives a large batch size, our theory supports
these previous findings. However, it seems that choosing m = 1, which amounts to full gradient
calculation every step, attains the fastest result theoretically. We point out here that our bound on the
m might not be strict and encourage future work to improve upon that in order to get a sense of how
to choose mini-batch sizes in practice.

6 THE STRONG GROWTH CONDITION ASSUMPTION

This section aims to provide answers regarding the strong growth condition assumption (A3). In
particular, when is this assumption satisfied? Can it be used to improve the convergence rate of other
methods? As answers to the first question, we first summarize previous results based on its closed
relation with interpolation and the weak growth condition (Vaswani et al., 2019), then we extend to
show that two general types of objective functions satisfy the strong growth condition in some cases.
We discuss the convergence rate of other gradient-based methods under the strong growth condition
for the second question.

6.1 FUNCTIONS SATISFYING THE STRONG GROWTH CONDITION ASSUMPTION

The strong growth condition in (A3) requires krfi(x)k = 0 for all the individual functions at local
stationary point x with krf(x)k = 0. In the sense of fitting model to data, where each fi represents
a data point, this translates to x, as the parameter, interpolating all the data points. The interpolation
property has been utilize to study the convergence and mini-batch size of SGD for convex loss
functions (Ma et al., 2018). Formally, function f is said to satisfy the interpolation property, if for
any x:

rf(x) = 0 ) rfi(x) = 0, 8i. (10)

This property has been observed to hold for expressive models such as over-parameterized neural
networks (Zhang et al., 2017).

Another concept closely related to the strong growth condition is the weak growth condition. Defined
by Vaswani et al. (2019), function f is said to satisfy the weak growth condition with constant ⇢, if
for any x:

1

n

nX

i=1

krfi(x)k2  2⇢L[f(x)� f(x⇤)], (11)

where L is the smoothness constant and x
⇤ is a minima of f , assuming existence. The weak

growth condition is a relaxed version of the strong growth condition in that the latter implies the
former. Vaswani et al. (2019) also showed that functions satisfying both the weak growth condition
and Polyak-Lojasiewicz (PL) inequality (Polyak, 1963) must satisfy the strong growth condition.
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Furthermore, they proved that convex functions with interpolation property must satisfy the weak
growth condition. The following diagram summarized the above results.

Figure 1: Previous results on the strong growth condition

Since the PL inequality holds for strongly convex functions, strongly convex functions with interpola-
tion property must satisfy the strong growth condition. Results in (Milne, 2019) demonstrate that
the quadratic loss function with l2-penalty for a feed-forward neural network with ReLU activation
is piecewise strongly convex, with domains of convexity determined by the network architecture,
penalty factor, and data. Based on this fact, we may have the following lemma for the strong growth
condition.
Lemma 6. Let fi(x) be the l2-penalized quadratic loss function at data point (ai, oi) for a feed-
forward neural network with ReLU activation and scalar outputs, i.e.

fi(x) = lx(ai, oi) +
�

2
kxk2,

where x is the parameter of the neural network and � is the penalty factor. Define a nonempty open
set containing 0 to be:

U = {x : f(x)1/2kxkH�1  �

2
p
2H(H + 1)c

},

where H is the number of hidden layers and c � kaik, 8i. If fi has a uniform minimizer x
⇤ for

i = 1, ..., n and f is L-smooth with constant L, then almost all points in U satisfy the strong growth
condition with constant 2L

�
, i.e. 9U 0 ⇢ U such that U\U 0 has no inner point and:

1

n

nX

i=1

krfi(x)k2  2L

�
krf(x)k2, 8x 2 U 0.

Therefore, for feed-forward neural networks with ReLU activation, e.g., VGG networks (Simonyan
& Zisserman, 2015), we are able to show that the strong growth condition holds for x in the
neighborhood of 0, if there exists a uniform minimizer for all fi. As a result, we might have the
strong growth condition for all xt,i generated by the algorithm if the initialization and step sizes are
appropriately chosen.

For linear models, we are able to derive much stronger results such that the strong growth condition
holds for all x without any constraint on the global minimizer. In particular, Vaswani et al. (2019)
showed that the squared-hinge loss, for linearly separable data with a margin ⌧ and finite support c,
satisfies the strong growth condition with constant c

2

⌧2 . We extend this result to cross-entropy loss and
obtain the same result.
Lemma 7. For linear separable data with margin ⌧ and finite support of size c, the cross-entropy
loss satisfies the strong growth condition with constant c

2

⌧2 .

6.2 CONVERGENCE RATE UNDER THE STRONG GROWTH CONDITION ASSUMPTION

Under the strong growth condition assumption, previous results have shown that SGD can achieve
a better convergence rate in many settings. In the context of expectation minimization and global
optimality, SGD has linear convergence for strongly convex problems and sublinear O(T�1) con-
vergence for convex problems (Schmidt & Roux, 2013). For non-convex problems, Vaswani et al.
(2019) proved that constant step-size SGD can obtain first-order stationary points in an O(T�1/2)
rate asymptotically. However, to the best of our knowledge, non-asymptotic results under the strong
growth condition have yet to be explored. Our main theorem shows that adaptive gradient methods
can achieve a non-asymptotic convergence rate of Ô(T�1/2).
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7 EXPERIMENTS

To investigate the effect of adaptive step size and random shuffling, we compare the empirical
performances of four different methods on MNIST and CIFAR-10 to show the acceleration effect.
We include SGD and AdaGrad to confirm the existing phenomenon that adaptive step size accelerates
the convergence of training. We also show results of the modified counterparts, SGD-shuffle and
AdaGrad-window, to demonstrate the additional benefits of shuffling in training. Both adaptive
methods are taken to be the more practical diagonal version.

For our first experiment, we compare the results of four methods for logistic regression on MNIST. To
further examine the performance on non-convex problems, we train ResNet-18 (He et al., 2015) for
the classification problem on CIFAR-10. To back up our theoretical results in the last section where
the convergence on the minimum of gradients across epochs is established, we report the best train
loss and best test accuracy up-to-current-epoch in figure 2. We can see that adaptive methods perform
better than SGD methods at the end in both training and testing. For the first few epochs of ResNet-18
training, we argue that the comparison seems contrary to the theory because of the constant effect in
the convergence rate where this effect dies out when the epoch number increases. We can also see
that SGD-shuffle and AdaGrad-window exhibit better convergence than their counterparts in training.
The details for the experiments are in the appendix.

Figure 2: Left: best train loss and test accuracy up-to-current-epoch of logistic regression on MNIST.
Right: best train loss and test accuracy up-to-current-epoch of ResNet-18 on CIFAR-10.

8 CONCLUSION

In this paper, we provide a novel analysis to demonstrate that adaptive gradient methods can be
faster than SGD after finite epochs in non-convex and random shuffling settings. We prove that
AdaGrad-window and AdaGrad-truncation obtain a convergence rate of Õ(T�1/2) for first-order
stationary points, a significant improvement compared with existing works. One key element is the
strong growth condition, which is common in over-parameterized models. We also investigate the
computational complexity and show that our theory supports recent findings on training with large
batch sizes. We believe that this paper is a good start that could lead to analysis and practice in more
general settings.
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