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Abstract

Large language models have demonstrated im-001
pressive performance on commonsense tasks;002
however, these tasks are often posed as003
multiple-choice questions, allowing models to004
exploit systematic biases (Li et al., 2022). Com-005
monsense is also inherently probabilistic with006
multiple correct answers. The purpose of “boil-007
ing water” could be making tea, cooking but008
also could be killing germs. Existing tasks do009
not capture the probabilistic nature of common010
sense. To this end, we present commonsense011
frame completion (CFC), a new generative task012
that evaluates common sense via multiple open-013
ended generations. We also propose a method014
of probabilistic evaluation that strongly corre-015
lates with human judgments. Humans drasti-016
cally outperform strong language model base-017
lines on our dataset, indicating this approach018
is both a challenging and useful evaluation of019
machine common sense.020

1 Introduction021

Most existing commonsense evaluations uti-022

lize multiple-choice question-answering (MCQA)023

tasks (Talmor et al., 2019; Sap et al., 2019a; Huang024

et al., 2019; Bhagavatula et al., 2020; Feng et al.,025

2022). This format offers a limited view of com-026

mon sense. MCQA tasks simplify the problem027

with unrealistically small answer sets, and making028

the options challenging is difficult (Zellers et al.,029

2018, 2019). More crucially, common sense is030

implicit – understanding assumptions that are un-031

spoken precisely because they are common knowl-032

edge. MCQA, by evaluating common sense ex-033

plicitly, fails to capture a model’s ability to utilize034

this knowledge in unprompted, generative contexts.035

MCQA is also fundamentally at-odds with the fact036

that common sense is inherently probabilistic, and037

should be evaluated as such.038

In this work we propose an evaluation which039

targets both of these points. We assess implicit040

Figure 1: Typical evaluations only compare human and
model performance for their top choices (top). We pro-
pose to evaluate multiple plausible answer choices by
clustering similar answers to form categorical distribu-
tions, and evaluating probabilistically (bottom). This
more accurately captures the probabilistic nature of com-
mon sense, and allows us to provide a more nuanced
analysis of model capabilities.

common sense by providing a context, and identi- 041

fying and querying about missing information. For 042

example, in the phrase "they boiled the water", we 043

can infer using our common sense that the most 044

likely reason for this action is cooking or making 045

tea. However, people in areas with limited clean 046

water access may view this as a way to remove 047

germs and ensure it’s safe to drink. This aspect 048

is, unfortunately, frequently overlooked during the 049

benchmark creation process. To ensure that the 050

model can serve diverse populations, it is impor- 051

tant to gather multiple responses. By focusing on 052

collecting implicit information from larger popu- 053

lation, this provides a more accurate evaluation of 054

common sense required in real-world settings. 055

In order to avoid the issues in MCQA, many 056

recent benchmarks have proposed generative com- 057

monsense evaluations. (Lin et al., 2020; Chen et al., 058

2023). In this setting, it is crucial to address the 059

commonsense questions with multiple correct an- 060
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swers. While some previous works have proposed a061

clustering-and-ranking evaluation (Boratko* et al.,062

2020), we demonstrate that such an approach can063

lack nuance. Instead, we embrace the probabilistic064

nature of common sense and evaluate the model’s065

ability to capture a probability distribution over an-066

swer clusters sampled from the population. This067

ensures that the model not only captures common068

sense, but does so in a calibrated way.069

In this work, we propose commonsense frame070

completion (CFC), a task focused on inferring miss-071

ing information in a context sentence. This empha-072

sizes the implicit nature of common sense in a given073

context and is tightly connected to downstream ap-074

plications, such as home assistants, where inferring075

such information about a user’s query is key. In076

CFC, the questions are generated by identifying077

missing information from a given context sentence078

about daily scenarios. For each context-question079

pair, we collected a large number of diverse an-080

swers from human annotators.081

In order to evaluate multiple responses effec-082

tively, we additionally propose a new evaluation083

method. Responses from different individuals often084

vary, and common sense is typically defined as the085

knowledge shared by nearly all people. To make086

every answer count, we consider the annotators’ an-087

swers from a probabilistic viewpoint and evaluate088

models using probabilistic measures (Moss, 2018;089

Pavese, 2020; Chater et al., 2006). Specifically,090

given raw string answers, we cluster them and con-091

sider the categorical distribution over these clusters092

based on the number of answers contained in each.093

We propose automated clustering and alignment094

mechanisms which allow models to be evaluated095

directly by comparing the KL divergence between096

distributions. The task format and evaluation met-097

ric are shown in Figure 1. We evaluate the proposed098

metric with two datasets, CFC and ProtoQA (Bo-099

ratko* et al., 2020), and show high correlations100

with human judgments for both datasets. Finally,101

we report multiple LLMs’ performance on CFC102

measured by the proposed probabilistic metrics.103

We identify a large performance gap between exist-104

ing large models and humans, indicating the limita-105

tions of current LLMs.106

2 Related Work107

Commonsense Evaluation Creating common-108

sense benchmarks to evaluate model performance109

is a long-standing research topic (Sakaguchi et al.,110

2020; Lin et al., 2020; Sap et al., 2019b; Zhou 111

et al., 2020). However, most benchmarks are cre- 112

ated using a multiple-choice selection paradigm, 113

which is simpler to evaluate but misaligned with 114

the real-world use-case of commonsense knowl- 115

edge, and most egregiously ignores the existence 116

of multiple correct answers. We are not the first 117

ones to gather multiple human answers to facilitate 118

robust evaluations, however. Aydin et al. (2014) 119

and Boratko* et al. (2020) also collected multiple 120

human responses for each question to get aggre- 121

gated human ground-truth answer sets. Our work 122

differs from these due to our emphasis on com- 123

monsense as implicit and probabilistic. We don’t 124

treat each answer equally; rather, we aim to match 125

the answer distribution given by human responses. 126

For this purpose, we propose a novel probabilistic 127

evaluation for open-ended generation tasks with 128

multiple correct answers. A similar probabilistic 129

evaluation was studied from a language model gen- 130

eration point of view (Pillutla et al., 2021). They 131

proposed a KL-based evaluation to measure lan- 132

guage model generations, while our focus is on the 133

implicit answer distribution. 134

Commonsense as Probabilistic Knowledge In 135

most knowledge evaluation benchmarks, common- 136

sense knowledge is defined as absolute facts (Bian 137

et al., 2023; Chen et al., 2023). We relax this ab- 138

solute intersection between human knowledge us- 139

ing a probabilistic approach. The probabilistic no- 140

tion of knowledge is well supported. Moss (2018) 141

stated human beliefs or credences, inherently prob- 142

abilistic, should be regarded as legitimate forms of 143

knowledge. The growing trend towards building 144

probabilistic models in cognitive studies reinforces 145

the idea of human cognition and memory function- 146

ing as probabilistic processors (Chater et al., 2006). 147

This collective body of work supports the view that 148

common sense serves as probabilistic assumption 149

instead of definite judgements in human mind. 150

3 CFC Task Description 151

In this section we motivate and describe the task 152

of "commonsense frame completion" (CFC). We 153

aim to create a task which evaluates implicit com- 154

mon sense with multiple correct answers. Given 155

a direction such as “put the water on the burner 156

to boil”, it is common sense which allows us to 157

understand that the water is likely in a kettle and 158

not simply dumped on the burner. Unlike factual 159

question answering tasks, there is no single correct 160
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Missing Slot Definition Examples

Arg0 Who/what does the event? Sentence: putting cheese on the pizza. Arg0?
Answers: person, cook

Purpose What is the goal for doing the event? Sentence: putting cheese on the pizza. Purpose?
Answers: get nutrition, stop being hungry

Instrument What kind of tools are used to accomplish the event? Sentence: putting cheese on the pizza. Instrument?
Answers: hands, spoon

Time What is a particular time (time of day, season, etc.)
for doing the event?

Sentence: putting cheese on the pizza. Time?
Answers: lunch time, dinner time

Location Where would the event usually happen? Sentence: putting cheese on the pizza. Location?
Answers: kitchen, restaurant

Table 1: Examples for different missing slot types in CFC

answer. In this example, the water could be placed161

in a “kettle”, “pot”, “cup”, or “glass”, although the162

former answers are more probable.163

It is necessary for any machine learning model164

which claims to capture common sense to correctly165

predict all the possible answers and have some166

sense of the distribution over the implicit informa-167

tion. To assess a model’s ability in this regard, we168

view the context sentence as a structured semantic169

frame, identify a missing slot, and ask the model170

to provide a distribution of potential slot fillers.171

4 Dataset Creation and Analysis172

We now describe the dataset creation process of173

CFC. We first need to collect reasonable context174

sentences which contain natural element of com-175

mon sense. CommonGen (Lin et al., 2020) is a176

commonsense dataset which contains many short177

sentences describing basic information about daily178

life, and so we choose this dataset as the source for179

potential context sentences.180

Given a short sentence, we then identify implicit181

information. To this end, we perform semantic182

parsing on the sentence, and identify missing slots.183

We use AMR (Banarescu et al., 2013) for seman-184

tic parsing based on its ability to provide a rich185

representation of the sentence with a pre-defined186

fixed schema for the predicate roles. If a predicate187

is found, AMR parsing will match it to a schema188

and fill in the values for any identified slots. Any189

slots marked with amr-unkown indicate potential190

items of missing information, enabling us to obtain191

human annotations for the missing slot values.192

We uniformly sampled 63,788 sentences from193

the CommonGen dev dataset, and parsed them us-194

ing the AMR parser from Cai and Lam (2020),195

generating 228,170 pairs of context questions with196

missing slots. From this, we randomly sampled 101197

(sentence, missing slot) pairs for crowd workers to 198

annotate, such that we had a balanced distribution 199

of missing slot types, as detailed in Section 2. We 200

present the context sentence and missing slot to 201

crowdworkers, who were also provided with train- 202

ing examples and descriptions of the meaning of 203

each slot type (see Table 1). The number of answers 204

is chosen such that the resulting answer distribu- 205

tion is stable (see Section 4.2). Each element of the 206

raw dataset therefore includes a context sentence, 207

missing slot value, and a collection of slot fillers. 208

4.1 Probability Distribution 209

In an open-ended task where multiple humans are 210

asked to provide answers as raw strings of text there 211

are a multitude of answers which may essentially 212

capture the same underlying idea. Ultimately we 213

are not interested in the different variations of the 214

surface form, but rather in capturing the essence of 215

the underlying concept. In the boiling water exam- 216

ple, we may want to treat "kettle" and "teapot" as 217

though they were representative of the same gen- 218

eral concept. As originally proposed in Boratko* 219

et al. (2020), we consider clustering the responses, 220

converting a set of answer strings into a categorical 221

distribution over answer clusters, where the proba- 222

bility of obtaining an answer from a given cluster 223

is proportional to the number of answer strings con- 224

tained within it. We explore both manual clustering 225

and automated clustering methods (see Section 5). 226

4.2 Analysis 227

Number of Answers The number of potential 228

slot fillers might be very large, and we want to 229

ensure we sample enough to approximate the true 230

distribution over answer concepts. An essential 231

question is how many samples are enough to ap- 232

proximate the true distribution with reasonable er- 233

ror rate? This is a classic problem in statistics, for 234
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Figure 2: (a) The relationship between the number of
examples (x-axis), and the approximation error rate (y-
axis). (b) Question type distribution in CFC.

which the Neyman-Pearson lemma proves that the235

uniformly most powerful test is to consider the KL236

divergence DKL(g∥f) =
∑

x g(x) log
g(x)
f(x) where237

g is the empirical distribution and f is the true238

distribution (Harremoës and Tusnády, 2012). The239

recent work from Mardia et al. (2020) showed that240

this can be bounded by the following equation241

P(DKL(gn,k∥f) ≥ ϵ) ≤ e−nϵ

[
3c1
c2

k−2∑
i=0

Ki−1(
e
√
n

2π
)i
]

242

where c1 and c2 are constant values, n is the243

number of samples, and k is the number of cate-244

gories in the categorical distribution.245

In our setting, we manually clustered 50 ques-246

tions, and found that the number of categories is247

not more than 8. To get a bound on the number248

of answers we should collect, we set ϵ = 0.2,249

k = 8, and solve e−nϵ
[
3c1
c2

∑k−2
i=0 Ki−1(

e
√
n

2π )i
]

250

for n. Figure 2 (a) shows the value of this bound on251

the y-axis for increasing numbers of samples n on252

the x-axis. As we can see from the graph, for 100253

samples, the error rate is less than 0.05, allowing254

us to approximate the true answer distribution with255

95% confidence if there are fewer than 8 categories256

in the categorical distribution.257

Question Types We collected 101 (context, miss-258

ing slot) pairs, and obtained 100 slot fillers for each259

from crowdworkers, resulting in 10,100 annota-260

tions overall. The data collection page we used261

on Amazon MTurk is shown in Fig 71. We create262

a dev set with 55 examples and a test set with 46263

examples. The distribution of missing slot types264

are shown in Figure 2 (b). Each question type is265

associated with a different type of commonsense266

reasoning, e.g time represents temporal common-267

sense reasoning. The dataset will be released.268

1The annotators are paid 0.15 per answer, and they are all
anonymous English speakers who are based in the US.

5 Probabilistic Evaluation 269

In this section, we detail the method of evaluating 270

multiple correct answers. As we relaxed common- 271

sense to be probabilistic knowledge, a rigorous 272

probabilistic evaluation is required; however the 273

task is presented (both to humans and models) as 274

a generative question answering task. Therefore, 275

we need a way to compare two large sets of answer 276

strings. We will start by how human evaluators 277

may compare the similarity of there sets of answers 278

and then describe the various ways by which this 279

process can be automated. 280

5.1 General Framework 281

Figure 3: Given a question, the ground truth answer set
G from human, and the model predicted answers set H .
The first step is to form clusters of G with concept-level
meaningful clusters. The clusters could form categorical
distribution of G. We then would match each answer
in H into created clusters of G. After matching, we
would form a categorical distribution of H . Finally, we
calculate the KL score between these two distributions.

Given a question, the ground truth answer set 282

G and the model generated answers H, the goal 283

is to evaluate the similarity between these two an- 284

swer sets. This is a difficult task even for a human, 285

especially if the answer sets are large and diverse, 286

however, we cares more about concepts being cap- 287

tured rather than unique surface forms. So we start 288

with clustering the answer strings in G to form 289

meaningful concept level clusters.2 We could then 290

2When clustering, a new category "wrong" is added to the
answer set to account for the wrong answers for a question.
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match the answers in H to the proposed ground-291

truth clusters in G. Upon having the clusters, we292

could define categorical probability distributions293

over the clusters, Pg and Ph, where the probability294

assigned to a given cluster is proportional to the295

number of answer strings assigned to it.3 Finally,296

the similarity between G and H can be inferred297

by calculating the KL divergence of the two dis-298

tributions, DKL(P̂g||P̂h). The overall evaluation299

framework is depicted in Figure 3.300

5.2 Automatic Evaluation301

Based on the general framework, we propose an302

automatic metric, PROBEVAL. The key steps are:303

1. Embed ground-truth answers from G into vector304

space. 2. Automatically cluster the embeddings305

to obtain ground-truth clusters of G. 3. Match306

elements of H to clusters of G by assignment func-307

tion score. Each step presents a number of options,308

which we detail in the following sections.309

Embedding We first embed the discrete word310

tokens in G and H as word vectors. We experi-311

mented with various word embedding models, both312

without context(Word2Vec (Mikolov et al., 2013),313

GloVe (Pennington et al., 2014) and FastText (Bo-314

janowski et al., 2017)) and with context (BERT (De-315

vlin et al., 2019), and RoBERTa (Liu et al., 2019))316

We found FastText to perform best, and use it for all317

future embedding components. For answers with318

multiple tokens, we use the average of the FastText319

embeddings to represent those answer.320

Clustering Given the vector representation of321

the word answers, we experimented with various322

clustering algorithms including X-means (Pelleg323

et al., 2000), G-means (Zhao et al., 2008) and hier-324

archical agglomerative clustering (HAC) (Murtagh325

and Legendre, 2014). We used the implementation326

from pyclustering (Novikov, 2019). The parame-327

ters used by these clustering algorithms are treated328

as hyper-parameters and are tuned based on the329

correlation score as we discuss in section 5.3.330

Matching Given the predicted answers, we aim331

to match the answers to one or multiple ground332

truth answer clusters. This was also a requirement333

for ProtoQA (Boratko* et al., 2020), so we lever-334

age the best-performing WordNet matching func-335

tion from there. We also have embeddings for our336

These will then be discarded prior to model evaluation.
3To eliminate zero probabilities, we use Laplace smoothing

on all categories before calculating the probabilities, — adding
one dummy answer to all categories.

answers, we consider embedding-based similarity 337

matching functions. We train a Gaussian regression 338

model for each cluster in the ground-truth answers. 339

The regression takes one answer representation as 340

input, and output is the label of whether the answer 341

belongs to one particular cluster. We also experi- 342

mented with cosine similarity as a alternative for 343

Gaussin regression model. If an answer matches 344

with multiple clusters we divide the weight evenly 345

among all matching clusters. 346

5.3 Validation of the CFC Evaluator 347

In order to validate PROBEVAL’s performance, we 348

compared it with the human evaluation results on 349

two generative datasets, ProtoQA (Boratko* et al., 350

2020) and CFC. A robust automatic evaluation 351

method should align well with human judgment 352

when given different model predicted answers. 353

We started by taking a linear combination of the 354

ground-truth distribution and a uniform distribu- 355

tion to create diverse distributions that interpolates 356

between the ideal ground truth answers to random 357

noise, details in Appendix A.1.1. However, ar- 358

guably, the most important area to assess the qual- 359

ity of the evaluator is around answers which are 360

likely to be returned from a model. We achieve 361

this by taking a linear combination of the answer 362

distributions of a given baseline model, the ground- 363

truth distribution, and a uniform distribution, with 364

most of the weight assigned to the answers from 365

a baseline model. This method predominantly fea- 366

tures model-generated answers and is defined by 367

the equation: p = zP̂h + w′
1P̂g + w′

2, where w′
1 368

and w′
2 are coefficients obtained from uniform dis- 369

tributions, emphasizing the blend of model insights 370

with controlled randomness. 371

5.3.1 Dataset 372

We experimented with two datasets, the first one 373

being ProtoQA (Boratko* et al., 2020). Both Pro- 374

toQA and CFC dev sets have 100 ground-truth an- 375

swers and 30 additional human responses that were 376

collected to measure human performance. For each 377

question, in addition to the 130 human responses, 378

we also use the 300 generated answers from the 379

fine-tuned GPT2 model. All of these answers are 380

annotated by expert annotators with cluster match- 381

ing to the ground-truth clusters (details in Section 382

5.3.2). We use the GPT2 answers as the predic- 383

tion set, H. We sample 50 answer sets for each 384

question from H and G according to the sampling 385

procedure mentioned above. ProtoQA dev has 102 386
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Clustering ProtoQA CFC

ProtoQA
Evaluator

Human 0.193 0.257

Gmeans 0.167 0.239
Xmeans 0.190 0.252

HAC 0.193 0.252

PROBEVAL

Human 0.752 0.788

Gmeans 0.681 0.721
Xmeans 0.669 0.728

HAC 0.698 0.728

Table 2: Average Spearman correlation of ProtoQA eval-
uator and PROBEVAL compared with gold scores for
ProtoQA and CFC dev questions. All entries use Word-
Net as matching function. PROBEVAL achieved much
higher correlation compared to baseline evaluators.

questions and CFC dev has 55 questions.387

5.3.2 Gold Evaluator Annotation388

An essential component in validation is to get hu-389

man annotations for both clustering and match-390

ing. We requested two expert annotators to cluster391

100 crowd-worker answers into 8 to 10 clusters392

independently as ground truth clusters. The inner-393

annotator agreement reached 0.76 when measured394

by BLANC (Recasens and Hovy, 2011). For model395

prediction matching in CFC, we take one of the396

baseline model predictions and employ GPT4 as397

silver annotation for matching. Two human annota-398

tors then verified the GPT4 matching, and reached399

0.94 BLANC agreement. For ProtoQA, we used400

the human-annotated cluster and matching results401

in the paper (Boratko* et al., 2020)402

We use automatic clustering and matching to get403

DKL(P̂g||P̂h). We can also evaluate the KL for404

manual clustering and matching, as all answers in405

ProtoQA have been annotated by human experts406

with clusters and assignments. After getting the hu-407

man and automatic KL values for various sampled408

answer sets, we use the Spearman correlation coef-409

ficients across questions to measure the alignment410

between automatic and human evaluation.411

5.3.3 Experiment Setup412

For each question in the two datasets, we sample 50413

answer sets according to the sampling strategy. We414

use automatic clustering and matching to get the415

automatic DKL(P̂g||P̂h). We can also evaluate the416

KL for gold clustering and matching, as all answers417

in ProtoQA have been annotated by human experts418

Clustering Matching ProtoQA CFC

Human Cosine 0.715 0.552
Human GR 0.708 0.565

Gmeans Cosine 0.528 0.561
Gmeans GR 0.525 0.541
Xmeans Cosine 0.525 0.503
Xmeans GR 0.512 0.505
HAC Cosine 0.585 0.558
HAC GR 0.593 0.564

Table 3: Average Spearman correlation for PROBEVAL
when compared with gold scores. GR stands for Gaus-
sian Regression. Correlation is generally higher when
human is involved in the evaluation process (top two
rows), but fully automatic evaluator PROBEVAL still
achieves decent correlation.

with clusters and assignments. After getting the hu- 419

man and automatic KL values for various sampled 420

answer sets, we use the Spearman correlation coef- 421

ficients across questions to measure the alignment 422

between automatic and human metrics. 423

Baseline To compare PROBEVAL with other met- 424

rics, we assess the correlation between ProtoQA 425

evaluator and human annotation. ProtoQA Evalu- 426

ator evaluate multiple answer output as well, and 427

it evaluate model predictions via ranked list of an- 428

swers. The higher the score it, the better model 429

prediction is. To accommodate ProtoQA score, 430

The correlation is measured between 1 - ProtoQA 431

scores (MaxAnswer@10) and KL divergence with 432

gold clustering/matching annotations. 433

5.3.4 Results 434

Our findings, detailed in Table 2 and 3 4, indi- 435

cate strong correlations between human evaluation 436

and PROBEVAL. Table 2 illustrates the correlation 437

when using WordNet as the matching function with 438

various automatic clustering algorithms. PROBE- 439

VAL demonstrates a stronger correlation with hu- 440

man scores when compared to the baseline, Pro- 441

toQA evaluator. Table 3 presents the results by 442

using other matching functions that are not imple- 443

mented in the ProtoQA evaluator in combination 444

with different clustering algorithms. The result 445

showed that whenever humans are involved in the 446

evaluation process, whether in clustering or match- 447

ing, the correlation is consistently higher. However, 448

4Scores are averaged cross 10 runs for setting with human
clustering.
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it is worth noting that a fully automatic evaluator449

with HAC as the clustering algorithm and Word-450

Net as the matching function achieves around 0.7451

correlation score that is nearly as good as humans.452

5.4 Qualitative Analysis453

5.4.1 Visualization454

(a) ProtoQA Score on CFC (b) PROBEVAL on CFC

(c) ProtoQA Score on ProtoQA (d) PROBEVAL on ProtoQA

Figure 4: Scatter plots of ProtoQA evaluator and
PROBEVAL for two datasets. The X-axis is gold KL
score with human annotations, and the y-axis is auto-
matic score with human cluster and WordNet match-
ing. (a) and (b) show for 1-ProtoQA Max-10 score and
PROBEVAL on CFC dev. (c) and (d) are the same score
methods on ProtoQA dev. Different questions are an-
notated with different colors. In both datasets, we see
positive correlated trend with PROBEVAL, while Pro-
toQA evaluator barely correlates with gold scores.

In order to qualitatively understand the corre-455

lation score gap between protoQA evaluator and456

PROBEVAL shown in table 2, we plotted KL values457

when using human clustering and wordnet match-458

ing function, shown in figure 4. It is evident from459

figures (b) and (d) that PROBEVAL exhibits a clear460

positive correlation with the gold KL score. In con-461

trast, the ProtoQA score tends to be a horizontal462

line, showing minimal correlation with the gold463

scores. We hypothesize that ProtoQA is less sen-464

sitive to subtle changes in the answer distribution,465

and we will verify in the next section.466

5.4.2 Prediction Error Types467

We designed three sampling techniques to mimic468

common errors in model predictions when the469

model is tasked to predict multiple correct answers470

with accurate probability calibration. These sam-471

Clustering MA WR WS

ProtoQA
Evaluator

Human 0.733 0.320 -.025

Gmeans 0.744 0.465 0.033
Xmeans 0.721 0.409 0.035

HAC 0.678 0.4 -.018

PROBEVAL

Human 0.875 0.791 0.245

Gmeans 0.745 0.706 0.187
Xmeans 0.782 0.68 0.231

HAC 0.711 0.642 0.188

Table 4: Average Spearman correlation between human
evaluation and automatic evaluation when model predic-
tion includes different error types, MA - missing answer,
WR - wrong ranking, and WS - wrong score for CFC
dev questions. The matching function for all the entries
in this table is WordNet (see Table 8 for the correlation
using other matching functions).

pling methods aim to reveal the performance differ- 472

ence between evaluators when given varying error 473

types ranging from easy to hard to identify. Exam- 474

ple samplings can be seen in Figure 5. 475

Missing Answers The first type of error is one 476

of the most common and easily made errors when 477

predicting multiple correct answers, i.e missing 478

one or more correct answers in prediction. In the 479

implementation, we intentionally delete a random 480

number of categorical probabilities of the ground 481

truth distribution, PG, from PH . 482

Wrong Ranking If the model did not miss any 483

correct answers, we ask the next question of 484

whether it gives the correct ranking. For wrong 485

ranking sampling, the probabilities of categories 486

of the ground truth distribution, PG, are randomly 487

switched so that the categorical ranking is wrong. 488

Wrong Score The last error type assumes the 489

model predicts all correct answers with the correct 490

ranking, however, the scores are not well calibrated. 491

This could be the hardest task but can also be ex- 492

tremely important for high steak domains where 493

the model needs to be well calibrated. For this 494

sampling, the categorical ranking is kept the same 495

but the categorical probabilities of the ground truth 496

distribution, PG, are varied to a random degree. 497

The results are shown in Table 4. For missing an- 498

swers, both evaluators achieved correlation scores 499

over 0.7, indicating a consistent alignment with 500

human scores. However, PROBEVAL significantly 501

outperforms the ProtoQA evaluator when the pre- 502
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Set Dev Test

Shot ZS FS ZS FS

GPT2-L 1.67 1.07 1.49 1.12
GPT2-XL 1.32 1.03 1.14 0.85

ProtoQA FT 0.80 0.79 0.61 0.70
GPT2-L FT 0.76 0.70 0.68 0.71

GPT 3.5 turbo 0.66 0.64 0.67 0.61
GPT 4 0.67 0.59 0.66 0.68

LLAMA2 0.85 0.87 0.82 0.85
Human 0.18 0.06

Table 5: Model performance on CFC (lower is better).
ZS means zero-shot, and FS means one-shot prediction.
GPT2-L and GPT2-XL is the GPT2 large and XL model
respectively, ProtoQA FT is the ProtoQA fine-tuned,
while GPT2-L FT is our own fined-tuned model.

diction includes incorrectly ranked responses. This503

demonstrates that the primary discrepancy between504

the ProtoQA and CFC evaluators arises from the505

ProtoQA evaluator’s inaccurate judgment when the506

prediction includes wrong rankings. A particularly507

notable finding emerges from the wrong score er-508

rors, given this error type is extremely hard to iden-509

tify, even for humans, PROBEVAL achieves positive510

correlation scores, while the ProtoQA evaluator ex-511

hibits nearly zero correlation. This performance512

gap can be attributed to the ProtoQA max-10’s513

limitation of considering only the first 10 correct514

answers. In contrast, PROBEVAL considers all an-515

swers and is able to capture these finer changes,516

resulting in its ability to evaluate more nuanced517

differences between model predictions.518

6 CFC Results519

Given the high correlation of PROBEVAL with hu-520

man gold KL scores, we employ PROBEVAL in521

evaluating CFC model performance. All the evalu-522

ator parameter are tuned on CFC dev data, then fix523

the parameters to report results on CFC test data.524

Baseline Models In order to generate different525

answers for the same prompt, we use Nucleus Sam-526

pling (Holtzman et al., 2019). We generate 200527

sampled answers from the GPT2Large model and528

100 answers for the GPT2XL model for each ques-529

tion and treat them as the model prediction. We530

experimented with temperatures from 0.1 to 1.0,531

and chose the model parameters with the best dev532

performance, then reported the test performance.533

We conducted experiments using various large534

language models, employing Hugging Face’s Py-535

Torch GPT2 Large and XL models (Wolf et al., 536

2019; Radford et al., 2019) and OpenAI’s API for 537

versions 3.5-turbo and 4 (Bian et al., 2023; OpenAI, 538

2023). Our tests spanned zero-shot, one-shot, and 539

fine-tuning scenarios using the ProtoQA dataset. 540

In one-shot experiments, we reformatted CFC 541

questions as "[Q]: context, question, [A]" and in- 542

cluded a sample Q&A pair from the CFC dev set 543

to familiarize the model with the format. For fine- 544

tuning, we used the ProtoQA pre-trained model and 545

also trained GPT2 Large with a similar task format 546

for 3 epochs on an Nvidia M40 GPU, denoted as 547

GPT2-L FT in our results. 548

Human Performance In order to get a human 549

performance on this task, we collected 30 addi- 550

tional human responses and evaluated them the 551

same was as a model prediction. 552

Discussion As shown in Table 5, the best per- 553

forming model are large models, i.e GPT3.5/GPT4, 554

or fine-tuned GPT2 model. Large models showed 555

significant performance improvement compared to 556

other models, even without fine-tuning data. How- 557

ever, all the model performances still have a large 558

gap compared to human. This indicates the pro- 559

posed benchmark combined with the probabilistic 560

measurement PROBEVAL is able to identify the 561

performance gap between LLMs and humans, and 562

leaves us ample space to improve the model. 563

7 Conclusion 564

In this paper, we assert that commonsense is an 565

implicit probability distribution over missing infor- 566

mation, and propose a dataset that aims to evaluate 567

commonsense in this setting via a generative ques- 568

tion answering task; moreover, we embrace the 569

probabilistic nature of commonsense knowledge 570

in both the dataset creation and the metric design. 571

We propose a probabilistic automatic evaluation 572

PROBEVAL for evaluating answer distributions that 573

is highly correlated to human judgment. Using this 574

metric, we observe that model performance on our 575

new dataset is significantly worse than human per- 576

formance, indicating that the task is sufficiently 577

challenging. In the future, we aim to further extend 578

the size of the dataset, both in number of instances 579

as well as answer length. 580

8 Limitation 581

We acknowledge that our collected answers are 582

not nearly as perfect for populations around the 583

8



world, but we argue this framework is one step in584

the right direction, and we leave the collection for585

broader cultures for future work. The size of the586

proposed dataset is also limited; however, consid-587

ering the number of annotations we collected for588

each question, the size is decent. We also proposed589

a probabilistic measurement PROBEVAL, which is590

needed in the era of LLMs to identify model lim-591

itations. Due to the commonsense nature of the592

task, the collected datasets are likely to be biased593

towards populations from certain regions, in this594

case, English speakers in the US. In the future, we595

aim to expand the data collection process to multi-596

ple cultures with multiple languages.597
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A Appendix 771

A.1 Validation of the CFC Evaluator 772

A.1.1 Diverse Sampling 773

We employed a sampling stragegy called diverse 774

sampling to emulate the a noisy scenario where 775

the prediction set is a linear combination of the 776

ground-truth distribution and a uniform distribu- 777

tion. We first did all the experiment in section 5.3 778

on diverse sampling before moving on the centered 779

sampling. The comparison result between CFC 780

evaluator and protoQA evaluator using diverse sam- 781

pling are shown in Table 6 and comparison of CFC 782

evaluator under different automatic clustering and 783

matching are in Table 7. 784

Diverse Sampling: A blend of the ground truth 785

and a uniform distribution, formulated as: p = 786

αP̂g + (1− α). 787
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Figure 5: Example sampling step for missing answer sampling (left), wrong ranking sampling (middle), and wrong
score sampling (right).

Figure 6: Comparison of correlation between ProtoQA evaluator and CFC evaluator for Wrong Score sampled
questions in ProtoQA with ground-truth clusters. The X-axis is the evaluaotr score with human assignment, and the
y-axis is the KL value with WordNet assignment. The figure on the left is the correlation for ProtoQA Max-10 with
human clustering and WordNet matching. The figure on the right is the correlation for CFC evaluator with human
clustering and WordNet matching. These corresponds to the ProtoQA Evaluator / Human / WordNet row and the
CFC Evaluator / Human / WordNet row with column being WS in Table 4. Different questions are annotated with
different colors.

ProtoQA
Dataset

CFC
Dataset

ProtoQA
Evaluator

Human 0.111 -0.082
Gmeans 0.471 0.391
Xmeans 0.375 0.3

HAC 0.309 0.27

CFC
Evaluator

Human 0.829 0.855
Gmeans 0.881 0.773
Xmeans 0.718 0.765

HAC 0.748 0.785

Table 6: Average Spearman correlation between human
evaluation and automatic evaluation under diverse sam-
pling strategy for CFC dev questions with matching
function being WordNet (see Table 7 for the evaluation
score using other matching function).

ProtoQA
Dataset

CFC
Dataset

Clustering Matching Diverse Diverse

Human Cosine 0.886 0.754
Human GR 0.891 0.752

Gmeans Cosine 0.616 0.661
Gmeans GR 0.607 0.682
Xmeans Cosine 0.674 0.646
Xmeans GR 0.665 0.646
HAC Cosine 0.696 0.701
HAC GR 0.699 0.673

Table 7: Average Spearman correlation for CFC evalua-
tor between human evaluation and automatic evaluation
under diverse sampling strategy for ProtoQA dev and
CFC dev questions with matching functions being hu-
man annotation, Cosine similarity function, or Gaussian
Regression.
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Figure 7: The screen shot for the the dataset collection page in Amazon MTurk.

Clustering Matching MA WR WS

Human Cosine 0.740 0.501 0.141
Human GR 0.765 0.499 0.125

Gmeans Cosine 0.763 0.599 0.086
Gmeans GR 0.787 0.556 0.051
Xmeans Cosine 0.773 0.519 0.090
Xmeans GR 0.759 0.504 0.096

HAC Cosine 0.694 0.593 0.143
HAC GR 0.698 0.580 0.162

Table 8: Average Spearman correlation between human
evaluation and automatic evaluation under MA - miss-
ing answer, WR - wrong ranking, and WS - wrong score
sampling strategies for CFC dev questions with match-
ing functions being human annotation, Cosine similarity
function, or Gaussian Regression.
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