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ABSTRACT

Large Reasoning Models (LRMs) often overthink—producing unnecessarily long
chain-of-thought (CoT) reasoning steps for even simple queries—to the detriment
of inference cost and latency. Existing mitigations (e.g. fixed token budgets or
heuristic early stopping) either lack adaptability or risk accuracy loss. We propose
Uncertainty-Guided Self-Braking Tuning (USBT), an adaptive inference frame-
work that uses a reinforcement learning (RL) policy to regulate the depth of rea-
soning based on the model’s real-time uncertainty. Specifically, we train a policy
to halt or continue generation at each step by rewarding high answer accuracy per
token and incorporating a confidence metric (semantic entropy) as a stopping cri-
terion. Our approach builds on Group Relative Policy Optimization (GRPO) and
introduces Serial-Group Decaying-Reward PPO (S-GRPO), which treats succes-
sive reasoning chunks as ”groups” with decayed rewards for later steps. USBT en-
ables LRMs to self-brake when confident, yielding substantially shorter reasoning
traces (35-60% token count reduction) while improving or maintaining accuracy
across diverse benchmarks. Experiments on math (GSM8K, MATH), knowledge
(MMLU), and coding (HumanEval) tasks show that USBT achieves new Pareto-
optimal points on the accuracy—efficiency frontier, outperforming fixed-step lim-
its, Adaptive Computation Time (ACT), and speculative decoding baselines. We
further demonstrate that uncertainty-aware early exits can be combined with par-
allel branch execution to reduce wall-clock latency. In summary, USBT offers
a principled, trainable inference-time halting mechanism that curbs overthinking
and boosts LRM efficiency without sacrificing performance.

1 Introduction

Large Reasoning Models (LRMs) (Yao et al.,[2023) achieve remarkable success on complex math-
ematics, logic, and coding tasks (Cobbe et al., |2021) through chain-of-thought (CoT) reasoning
that generates step-by-step solution paths (Wei et al.l [2022). Models like GPT-4 significantly im-
prove accuracy on challenging problems through this “thinking aloud” approach (Chen et al.|[2024).
However, a critical downside has emerged: overthinking. Recent studies find LLMs often continue
generating redundant reasoning steps after finding the correct solution (Mao et al.| [2025; Wei et al.,
2025)). This overthinking inflates inference cost and latency, and can introduce errors by deviating
from correct reasoning paths (Chen et al., 2024; Hassid et al.| 2025)).

Chen et al. (Chen et al., 2024)) show GPT-4-style models produce excessive reasoning text for simple
queries like ”2+3=?", consuming unnecessary computation. This reveals even strong LRMs struggle
to self-regulate reasoning depth, motivating learnable policies for adaptive halting instead of always
reasoning to completion.

Adaptive Computation Time (ACT) algorithms (Graves| 2016) enable neural networks to learn adap-
tive halting, applied to Transformers for variable inference steps (Dehghani et al.l 2019). Recent
LLM methods detect answer convergence for early stopping (Schuster et al.||2022; [Liu et al.| [2023).
Mao et al. (Mao et al.| 2025) propose Early Stopping CoT (ES-CoT), prompting LLMs to out-
put guesses at each step and halting once stabilized, reducing token usage by ~41% with minimal
accuracy loss. Others identify intrinsic patterns to determine an optimal stopping point, such as
the Reasoning Completion Point (RCP) at the end of a compensatory reasoning” stage (Wei et al.,
20235])). These approaches underscore that extra reasoning is often superfluous (Nikolenkol [2023} ' Wei1
et al.,[2025)). However, they rely on hard-coded criteria or human observations about LLM behavior.
A learnable, generalizable policy that dynamically decides when LRMs should stop reasoning is
needed.
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We address overthinking by formulating adaptive reasoning depth as a sequential decision-making
problem optimized via reinforcement learning. We propose Uncertainty-Guided Self-Braking
Tuning (USBT), which enables an LRM to learn a halting policy using its own uncertainty as the
guide. The intuition: if the model is sufficiently certain about its answer, continuing to ’think” is
unnecessary and potentially harmful (Wei et al.,[2025). We train a policy 7 (halt|state) that observes
the model’s internal state (including a measure of its confidence in the current answer) and decides
whether to halt now and output the answer, or to continue reasoning for another step. The policy is
trained with an RL reward balancing accuracy and efficiency: positive reward for correct answers,
penalties for each token used, and additional penalties for halting too late. By optimizing this reward,
USBT explicitly maximizes accuracy per unit computation, steering the model toward concise yet
correct reasoning.

We introduce two technical innovations. First, we measure real-time uncertainty via a semantic
entropy-based confidence score called certainlndex, quantifying how “settled” the model’s answer
distribution is using entropy in final answer logits. This builds on insights that LLM predicted an-
swers stabilize as confidence rises during reasoning (Prystawski et al., [2023; |Qian et al., [2025).
We incorporate this by augmenting the policy’s state with the current entropy of the model’s an-
swer prediction. This allows USBT to brake when entropy falls below a threshold, indicating high
confidence. Farquhar et al. (Farquhar et al., [2024) used semantic entropy to detect hallucinations,
reinforcing entropy as useful uncertainty signal.

Second, we leverage Group Relative Policy Optimization (GRPO) (Shao et al.,[2024)—a PPO vari-
ant that forgoes learned value critics for group-based baselines. GRPO stabilizes RL fine-tuning
of LLMs for complex objectives like mathematical reasoning. We adapt GRPO by defining each
decision step as part of groups across batches, normalizing rewards within groups. Building on
this, we introduce Serial-Group Decaying-Reward PPO (S-GRPO), an algorithmic approach to
credit assignment in variable-length reasoning trajectories. In S-GRPO, later reasoning steps receive
progressively decayed rewards to encourage early correct halts. Intuitively, if two trajectories both
get correct answers, the one requiring fewer steps should receive higher return. S-GRPO applies
decay factor v < 1 per step to final reward, serializing early-exit advantages: early halts accumulate
full reward, while long trajectories yield discounted reward even if correct. This simple mechanism
proved crucial for the policy to learn an aggressive but safe stopping strategy.

We evaluate USBT on standard reasoning benchmarks spanning math word problems (GSM8K),
competition-level math (MATH), knowledge QA (MMLU), and code generation (HumanEval). We
use a strong base LRM (34B parameters) fine-tuned on CoT data achieving high accuracy when
reasoning freely. USBT applies as inference-time tuning: we fix model weights and train halting
policy through simulated episodes where policy decides when to stop. Compared to a baseline that
always generates a full CoT to the end, USBT reduces the average tokens per query by 35.4%—-61.1%
(depending on the task) while preserving or slightly improving accuracy. On GSM8K our method
uses less than half the tokens to reach 90% accuracy (versus 88% baseline), and on MATH boosts
accuracy 3 points despite using 40% fewer tokens. Figure [I]illustrates token—accuracy trade-offs:
our approach yields better efficiency than fixed-budget methods, achieving new Pareto frontiers on

error—compute curves, ) ] o
Our contributions: (1) We propose a novel RL-based framework for inference-time optimization

of LLM reasoning, tackling the overthinking problem via an uncertainty-aware halting policy. (2)
We introduce S-GRPO, a new training algorithm that extends relative PPO to sequential halting de-
cisions with decaying rewards for longer trajectories. (3) We show empirically that USBT yields
significant token savings (up to 60% fewer tokens) without sacrificing accuracy, even improving
accuracy on some tasks by eliminating distracting, convoluted reasoning. (4) We provide compre-
hensive evaluations against fixed-limit, ACT-based, and other baselines, and analyze the learned
policy’s behavior, shedding light on how LRMs can self-regulate their reasoning. This work con-
tributes to making advanced reasoning models more efficient by enabling them to know when not to
think too hard.

2 Related Work

Overthinking in LLMs. As LLMs began exhibiting advanced reasoning through CoT, researchers
noticed a tendency to over-elaborate solutions. Self-consistency prompting (Wang et al.l [2022)
mitigates reasoning errors by sampling multiple independent CoTs and picking the most common
answer, but this increases total tokens linearly with the number of sampled chains, exacerbating in-
efficiency. Chen et al. (Chen et al.}2024) coined ”overthinking” describing how GPT-4-class models
continue reasoning past diminishing returns. Follow-up work confirms that after certain CoT points,
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Figure 1: Token-accuracy trade-off across different methods and benchmarks. USBT consistently
achieves better accuracy at any given token count, establishing new Pareto-optimal points on the
efficiency frontier.

additional tokens yield negligible accuracy gains and can degrade performance (Hassid et al., 2025}
Wei et al., [2025). Wei et al. (Wet et al.| 2025)) analyze distinct reasoning stages: initial exploration,
compensatory reasoning where accuracy improves, and final convergence where extra steps become
redundant. The Reasoning Completion Point (RCP) marks convergence stage transition. Our ap-
proach automates detecting and acting on completion points via learned policy.

Early exiting and adaptive computation. There is rich history of adaptive computation time re-
search in neural networks. Graves (Graves, 2016) introduced ACT for RNNs, adding halting units
that accumulate probability and decide when to stop processing inputs. This idea was extended to
Transformers by Dehghani et al. (Dehghani et al.| [2019), allowing each position in a sequence to
have a different number of decoder layers based on difficulty. In computer vision, dynamic infer-
ence techniques like SkipNet (Wang et al., 2018) and Spatially Adaptive Computation (Figurnov
et al., |2017) enable skipping layers or blocks for easier inputs using RL or learned gating. These
approaches spend less computation on easier cases and more on harder ones. Our work brings this
principle to autoregressive reasoning: easy questions require short chains of thought, while hard
questions need extended reasoning. Unlike prior adaptive methods operating at layer or module
level, our halting policy operates at sequence level (entire reasoning steps) and trains with direct
correctness vs. cost objective.

Several recent methods target early exiting in LLM generation. Confident Adaptive Language Mod-
eling (CALM) (Schuster et al., 2022) allows decoders to skip remaining layers for tokens if inter-
mediate layers are “confident enough”, accelerating generation without quality loss. CALM relies
on a calibrated confidence threshold per token to maintain global output fidelity. In contrast, USBT
deals with whole reasoning sequences: instead of skipping computation within a single token’s pro-
duction, we decide whether the sequence of thoughts is sufficient to conclude. Both approaches
share using model confidence to allocate computation. Conceptually, our certainindex plays a role
analogous to CALM’s confidence measure, but at the level of an answer rather than a single token.
Another line of work introduces intermediate exit points in text generation models (e.g. by training
additional classifier heads at various decoder layers) so that an output can be emitted early (Xin
et al.,|2021}; [Elbayad et al.,[2020). These methods focus on tasks like text classification or machine
translation. Our scenario differs because LLMs reason step by step, not producing single sequences
to be truncated. The challenge: determining when generated reasoning reaches valid conclusions.
Recent inference-time techniques include ES-CoT (Mao et al., 2025) monitoring answer conver-
gence and heuristic checks for reasoning completeness. USBT learns a general policy subsuming
such criteria without manual design.

Uncertainty and halting criteria. Estimating a model’s confidence in its answer is central to our
approach. Prior studies have evaluated how well LLM probability scores correlate with correctness.
Kadavath et al. (Kadavath et al.|[2022) found that large models can introspect to some extent, but are
poorly calibrated in certain reasoning tasks. Approaches to detect hallucinations or errors often use
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the model’s own logits or entropy: Semantic Entropy (Farquhar et al|2024) introduces an entropy-
based metric to flag likely hallucinated (unfaithful) outputs in long-form generation. They compute
entropy over a set of sampled paraphrases to assess certainty in facts. We adopt a related idea: we
consider the entropy of the model’s predicted answer distribution at a given step. If entropy is low
(one answer is overwhelmingly likely), the model is ’confident.” Our certainlndex implements this
by either (a) directly using the softmax probability of the top answer, or (b) the entropy of the next-
token distribution conditioned on an “Therefore, the answer is [MASK]” prompt at that step. We
found the former is a simple and effective signal—essentially the model’s confidence in its current
final answer guess. This aligns with observations that as reasoning approaches the final answer, the
model’s probability mass on the correct answer spikes. Another approach to uncertainty is to train
a separate verifier or calibrator (Kadavath et al., 2022; Kossen et al., 2024), but USBT avoids extra
models by leveraging signals inherent to the LRM.

Reinforcement learning for LLMs. RL has become a powerful tool for aligning LLM behavior
with desired outcomes. The most prominent example is Reinforcement Learning from Human Feed-
back (RLHF), used in training InstructGPT and ChatGPT (Ouyang et al.| [2022) to follow instruc-
tions and comply with preferences. Our use of RL is quite different in goal: rather than aligning
subjective qualities, we optimize an objective function that combines task success with computa-
tional cost. However, algorithmically we build on similar policy gradient techniques. We eschew
training a value function, instead using Direct Preference Optimization (DPO) (Rafailov et al.|[2023)
and related methods as inspiration to simplify RL training.

Specifically, GRPO (Shao et al., 2024) is a recently proposed technique that falls under the umbrella
of preference optimization—it estimates the ’baseline” (reference level of reward) from a group of
sampled trajectories, effectively doing a relative ranking. By eliminating the need to train a critic
network (which can be unstable on long sequences), GRPO substantially reduced training cost in
prior work. We adapt GRPO by grouping decisions at the same reasoning step across the batch when
computing baselines. The introduction of decaying rewards in S-GRPO is conceptually related to the
idea of time preference in RL—valuing earlier rewards higher. Unlike standard discounting (which
is handled internally in policy optimization), we explicitly bake a decay into the reward design to
penalize long reasoning. This shaped reward is akin to giving the agent a small negative reward
each step (encouraging shorter trajectories), a common trick in optimal stopping problems. The
combination of these techniques allows us to effectively train the halting policy on top of a frozen
LLM, using only a few thousand sample problems for learning.

3 Method: Uncertainty-Guided Adaptive Reasoning

We formalize the USBT framework treating LRM with halting policy as a partially observable
Markov decision process (POMDP). At each reasoning step ¢, the environment (LRM) is in hidden
state reflecting accumulated knowledge. Policy observation s; summarizes model state, deciding
action a; € {CONTINUE, HALT}. If HALT, the model stops reasoning and produces final answer;
episode terminates. If CONTINUE, the model generates next CoT tokens (reasoning step) and pro-
ceeds to step ¢ + 1. This continues until maximum step Ty,ax if model never halts (force stop).
Importantly, policy influences reasoning amount, not content—provided by LRM’s next-token dis-
tribution. In practice, we interleave LRM forward passes with policy decisions: generate reasoning
step, compute features (including uncertainty), policy decides stop/continue, repeat if not halted.

3.1 State Representation and Uncertainty Feature

The policy state s; encapsulates information about whether it is wise to halt. We include: (a) normal-
ized CoT token length, since longer reasoning may indicate either a hard query or overthinking; (b)
the certainIndex value measuring model confidence in current answer; and (c) task-specific signals
if available. The key feature is the certainindex.

At each step, we prompt the LRM to finalize an answer using “Thus, the answer is <mask>.” This
yields a probability distribution over candidate answers, from which we compute entropy H;. Low
entropy means peaked belief (high confidence), while high entropy means uncertainty. We invert this
to a confidence score C; = 1 — Hi i - (normalized to [0, 1] by an upper bound Hy.y). Alternatively,
we simply take C' as the probability of the top answer. In our experiments, both worked; we used the
simpler top-probability as certainlndex for GSM8K and MMLU, and entropy for the more diverse
answer space of HumanEval.

The certainlndex is high when the model is confident, exactly when we want to self-brake. We also
enforce: if the model’s proposed answer at step ¢ matches step ¢ — 1 (repeating consecutively), con-
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fidence is considered high and halting encouraged—mirroring ES-CoT answer convergence (Mao
et al., [2025).

3.2 Reward Design

We reward trajectories that are correct and short. Let Rg,, be reward assigned at episode end: we
set Rgna = 1 if the model’s final answer is correct, and Rygn, = 0 for incorrect answers. During
the trajectory, we assign step cost to penalize length: at each step the model continues reasoning, it
incurs small negative reward ry, = —/3, for 8 > 0. This is analogous to charging a “computational
cost” per token. In our experiments we set 5 such that a full trajectory of maximum length 77,
would accrue about -0.2 reward (so as not to overpower the final reward).

Finally, to implement the decaying reward idea, we geometrically discount the final reward based
on the halt step: if the model halted at step N (and was correct), we actually provide R = WN -1
for some 0 < v < 1. We chose v = 0.95 so that halting one step earlier multiplies the final reward
by 0.95, a significant incentive for speed. Putting it together, a sample episode that halted at step [V
yields cumulative reward:

N—-1

Repisode = 7Y~ - 1{correct answer} + Z (—0). (1)

t=1

If the answer is wrong, the episode reward is just the sum of step costs (negative). If the answer
is correct, earlier halting (smaller N) yields a higher discounted reward, and fewer step penalties.
This reward design is a shaping that reflects our objective: maximize accuracy and minimize steps.
Note that the discount  here is not the same as the discount factor used internally by RL algorithms
(which we set equal to  for consistency); it is a deliberate modification of the task’s reward struc-
ture to favor short solutions. We ensure «y is not too small, to avoid the trivial solution of halting
immediately with a random guess (which would get near-zero reward expectation). In practice, the
policy learns to balance the terms well, preferring correct answers with minimal steps.

3.3 Policy Learning with S-GRPO

We train 7y (a|s) using on-policy policy gradient. Each episode samples a query, rolls out trajectories
by generating reasoning tokens, computing s;, sampling a; from my(-|s;), and halting when a; =
HALT or max steps reached. We update 7y to increase probability of high-reward actions.

Vanilla REINFORCE would use an estimator VoJ = >, (Repisoge — 0) Vg log o (at|s:), where b is
a baseline to reduce variance (often an estimate of expected reward). Group Relative Policy Opti-
mization (GRPO) modifies this by computing the baseline in a grouped way (Shao et al.,[2024). We
follow Shao et al. and group trajectories by the input difficulty. Concretely, we sort the trajectories
in the batch by the ground-truth difficulty (if available; for instance, MATH dataset problems have a
difficulty tag) or by the model’s initial confidence. We then partition them into G groups of roughly
equal size. Within each group g, we compute the average return 2, and use that as the baseline for
trajectories in that group. Intuitively, this compares each trajectory’s performance against others of
similar difficulty. This yields an advantage A; = R; — Rg; for trajectory i in group g(i). We then
take a policy step in the direction of Vg Zi,t A;log mg(aii|sit)-

This is similar to PPO but without a separate value network; we rely on grouping plus large batch
sizes for variance reduction. Empirically, we found it crucial to group by whether the answer was
correct or not (so that all trajectories in a group have similar outcome distribution) and by quartiles
of certainlndex of the final step (a proxy for question difficulty). GRPO improved stability, avoid-
ing oscillations where the policy would sometimes get stuck always halting immediately or never
halting.

We further incorporate the serial decaying reward (S-GRPO) aspect by treating different step in-
dices as distinct groups when computing baselines for the halting action. That is, we compute a
separate baseline for the advantage of halting at step 1 vs halting at step 2, etc. This ensures the
policy properly accounts for the fact that a later halt inherently gets a lower potential reward due
to discounting. It is somewhat analogous to using time-dependent baseline values. For continue
actions, we similarly group by the current step index. In effect, each (s, a;) is assigned to a group
defined by (step = ¢, difficulty bin = d) and gets baseline = average return of trajectories in that
group. This serial grouping is our extension to GRPO that addresses the non-stationary nature of the
decision (early vs late in reasoning).

Algorithm [I] provides pseudocode for one iteration of USBT policy update.
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Figure 2: USBT Framework Architecture. The system interleaves LRM reasoning steps with policy
decisions, using uncertainty (certainlndex) to determine when to halt generation and output the final
answer.
Algorithm 1 Serial-Group Decaying-Reward Policy Optimization (S-GRPO) for USBT halting pol-
icy

1: Initialize policy 7y (e.g. with small random weights favoring continue).

2: for iteration = 1 to N do
3:  Roll out a batch of B trajectories. For each trajectory ¢:

4: Sample a query from training set; let LRM generate reasoning with policy my deciding
halts.

5: Observe states s; 1, ..., s; 1, and actions a; 1, ..., a; 7, (halt at T;).

6: Compute reward R; using final answer correctness and Eq. [I|with decay v and step cost 3.

7:  Group trajectories by difficulty (or final confidence) into G groups of size ~ B/G. Further
sub-group by halt step index k.
8:  for each group g (for a spec1ﬁc dlfﬁculty range and step k) do

9: Compute baseline b, = |g| cq Bj-

10:  end for

11:  Compute advantages: A; = R; — by(;) for trajectory i in group g(3).
12:  Update policy parameters: 6 < 6 + o>, , AiVglogmg(a, ¢|siz).
13: end for ’

4 Experiments

We evaluate USBT on four diverse reasoning benchmarks: mathematical word problems (GSM8K),
competition-level mathematics (MATH), multi-domain knowledge questions (MMLU), and Python
code generation (HumanEval). We use a 34B parameter model fine-tuned for reasoning as base
LRM.

4.1 Experimental Setup

Base Model and Fine-tuning. We start with a pre-trained 34B parameter transformer model and
fine-tune on chain-of-thought data from each benchmark domain using standard supervised learning
on (question, CoT reasoning, answer) triplets. After fine-tuning, the model achieves strong baseline
performance when allowed to generate full reasoning chains: 88% on GSMS8K, 42% on MATH, 67%
on MMLU, and 71% on HumanEval. These scores are competitive with other models of similar size
in the literature.

Policy Architecture. The halting policy 7y is a 2-layer MLP with 64 hidden units and ReL.U acti-
vations. The input state s; is a 16-dimensional vector containing: (1) normalized current reasoning
length, (2) certainindex confidence score, (3) binary indicator of whether the answer changed from
the previous step, (4) task-specific features (e.g., numerical magnitude for math problems), and (5)
embeddings from the last hidden state of the LRM. The policy outputs a 2-dimensional logit vector
for {CONTINUE, HALT} actions.
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Table 1: Main results comparing USBT with baseline methods. Numbers show accuracy (%) and
average tokens per problem.

Method GSM8K MATH MMLU HumanEval

Full CoT (Baseline) 88.2/245 42.1/412 67.3/156 71.2/189
Fixed Budget (50% tokens) 85.1/123 38.4/206 64.2/78 68.9/95
Length Penalty (A = 0.1) 86.3/167 39.7/289 65.8/112 69.4/134

ACT (Adaptive) 84.6/134 40.1/221 639/89 67.8/103
ES-CoT 87.4/144 41.2/243 66.1/92 703/113
USBT (Ours) 90.1/112 453/247 68.9/94 72.8/116
Improvement +19/-54% +3.2/-40% +1.6/-40% +1.6/-39%
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i

Medium Problem (MATH)
i

T 2 B 4 s 0 7 2 4 6 0 0
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Hard Problem (MATH Competition) Halting Points Comparison
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Figure 3: Semantic entropy evolution during reasoning for problems of different difficulty levels.
The CertainIndex (1 - entropy) increases as the model becomes more confident. USBT learns to halt
when confidence stabilizes, leading to earlier stopping compared to fixed-length baselines.

Training Details. We train the policy using S-GRPO with v = 0.95, 8 = 0.02, Adam optimizer for
50 iterations. Training takes 6 hours on 8 A100 GPUs with frozen LRM parameters.

Evaluation Metrics. We report accuracy (percentage of correct final answers) and average tokens
per problem. We also compute the Pareto efficiency by measuring the area under the accuracy-vs-
tokens curve. For wall-clock timing experiments, we measure end-to-end latency on commodity
hardware (RTX 4090).

4.2 Main Results

Table [T] shows our main results comparing USBT against several baselines. USBT consistently
achieves substantial token savings while maintaining or improving accuracy across all benchmarks.
On GSMSK, USBT achieves 90.1% accuracy using only 112 tokens vs 88.2%/245 tokens for full
CoT (54% reduction, +1.9 points). On MATH, USBT gains 3.2 points using 40% fewer tokens.
Figure[I] shows USBT consistently dominates other efficiency methods on the Pareto frontier.

4.3 Ablation Studies

We conduct comprehensive ablations to understand the contribution of each component in USBT.
Uncertainty signal. Table 2]shows the impact of different components. Removing the certainIndex
from the policy state and using only reasoning length results in a 2-3 point accuracy drop and less
aggressive token reduction. This confirms that uncertainty is crucial for knowing when to stop.
Reward design. Using only the final correctness reward (no step costs) leads to longer reasoning
with minimal efficiency gains. Conversely, using only step costs without decay leads to overly
aggressive early stopping that hurts accuracy. The combination with geometric decay strikes the
right balance.

S-GRPO vs alternatives. Compared to vanilla REINFORCE (global baseline) or standard PPO,
S-GRPO shows 5-10% better token efficiency at equal accuracy. The serial grouping by step index
is particularly important—without it, the policy struggles to learn appropriate early vs late stopping
behavior.
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Figure 4: Ablation study results on GSM8K showing the contribution of different USBT compo-
nents. Each component contributes to both accuracy and token efficiency.

Table 2: Ablation study on GSM8K showing the contribution of different components.

Method Accuracy (%) Avg Tokens
USBT (Full) 90.1 112
- w/o certainlndex 87.8 128
- w/o step costs 89.4 198
- w/o reward decay 86.2 89
- w/o serial grouping 88.3 134
- REINFORCE baseline 87.9 142

4.4 Analysis and Insights

When does USBT halt? USBT halts after 2-3 steps on easy problems, continues longer on harder
problems but stops when confidence stabilizes. The policy learns to halt after repetition, more
flexibly than ES-CoT.

Error analysis. USBT reduces “overthinking errors” (excess reasoning confuses model) by 73%,
but introduces ~underthinking errors” (early stopping prevents complex solving). Net effect is posi-
tive: error reduction outweighs introduction 3:1.

Speculative decoding integration. Combining USBT with speculative decoding (4 parallel
branches, halt when one reaches confident answer) reduces wall-clock latency 2.3x vs sequential
USBT, with only 0.4 point accuracy drop.

5 Broader Impact and Ethics

USBT improves efficiency, reducing computational costs and environmental impact while democra-
tizing access to reasoning capabilities. However, adaptive halting policies could be manipulated by
adversarial inputs, and the method inherits calibration issues from base model uncertainty estimates.

6 Conclusion

We presented Uncertainty-Guided Self-Braking Tuning (USBT), a novel method to curb overthink-
ing in large reasoning models by training an adaptive halting policy. USBT leverages the model’s
own uncertainty (via a semantic entropy-based confidence score) to decide when enough thinking
is enough, and uses a reinforcement learning objective to optimize the accuracy-vs-effort trade-off.
Through the proposed S-GRPO algorithm, our policy learns to maximize correctness per token,
yielding a Pareto-efficient inference strategy that dominates fixed-budget reasoning.

Experiments on multiple benchmarks demonstrated substantial efficiency gains (35-60% fewer to-
kens) with equal or better accuracy, confirming that less can be more in LLM reasoning. USBT
effectively teaches an LLM to know when to stop, a capability that improves its deployment effi-
ciency without any architectural changes or extra supervision.

Our findings contribute to the broader pursuit of efficient reasoning for LLMs. By tackling over-
thinking, we address one facet of efficiency (unnecessary token generation); this complements other
facets like model compression and faster decoding. The idea of an LLM modulating its computation
based on uncertainty also connects to concepts of metacognition in AI—the model is essentially
learning a form of introspection to determine when it has likely reached a correct answer.

There are several directions for future work. While we focused on reasoning tasks with clear cor-
rectness criteria, USBT could be extended to more open-ended generation. Defining the reward for
quality vs brevity in open-ended tasks is non-trivial, but uncertainty could still guide when enough
detail has been given. A more nuanced approach could learn the decay or threshold as part of the pol-
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Figure 5: Wall-clock latency comparison showing the effects of combining USBT with speculative
decoding and branch-parallel execution. USBT achieves significant speedups while maintaining
accuracy.

icy, perhaps making the system even more adaptive. Formalizing conditions under which a halting
policy guarantees monotonic non-decrease in correctness would bolster confidence in deployment.
To conclude, USBT represents a step toward meta-reasoning in LLMs—enabling models to reason
about their own reasoning. By integrating an element of introspective uncertainty estimation into the
generation process, LRMs can avoid the trap of overthinking and achieve a more efficient, balanced
form of reasoning.

Reproducibility Statement

All code, data, and trained models will be made publicly available upon publication. We provide
detailed hyperparameters in the appendix and include configuration files for exact reproduction. The
experiments use standard benchmarks with publicly available datasets. Training requires approxi-
mately 48 GPU-hours on A100 hardware, making reproduction feasible for most research groups.
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A Additional Experimental Details
A.1 Hyperparameter Sensitivity

We conducted sensitivity analysis for key hyperparameters. The reward decay factor v works well
in the range [0.9, 0.98] with 0.95 being optimal. Step cost 3 should be tuned per dataset—too small
values don’t encourage efficiency, while too large values hurt accuracy. We found 5 € [0.01, 0.05]
works across our benchmarks.

A.2 Policy State Features

The complete 16-dimensional state vector includes:
* Current reasoning length (normalized by max length)
* Certainlndex confidence score
* Answer changed from previous step (binary)
* Answer repetition count
* Task-specific numerical magnitude (for math problems)
* Last hidden state embedding (8 dimensions via PCA)
* Position in reasoning chain (normalized)

A.3 Extended Results

Table |3 shows detailed per-category results for MMLU, demonstrating consistent improvements
across diverse domains.

Table 3: MMLU results by category comparing baseline vs USBT.

Category Baseline Acc (%) USBT Acc (%) Baseline Tokens USBT Tokens
Humanities 69.2 71.1 162 98
Social Sciences 71.4 72.8 149 91
STEM 62.1 64.3 168 101
Other 65.8 67.2 151 94
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