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Abstract001

Large Language Models (LLMs) fine-tuning002
technologies have achieved remarkable re-003
sults. However, traditional LLM fine-tuning004
approaches face significant challenges: they005
require large Floating Point(FP) computation,006
raising privacy concerns when handling sen-007
sitive data, and are impractical for resource-008
constrained edge devices. While Parameter-009
Efficient Fine-Tuning (PEFT) techniques re-010
duce trainable parameters, their reliance on011
floating-point arithmetic creates fundamental012
incompatibilities with edge hardware. In this013
work, we introduce a novel framework for on-014
device LLM fine-tuning that eliminates the015
need for floating-point operations in both infer-016
ence and training, named GSQ-Tuning. At its017
core is the Group-Shared Exponents Integer for-018
mat, which efficiently represents model param-019
eters in integer format using shared exponents020
among parameter groups. When combined021
with LoRA-like adapters, this enables fully022
integer-based fine-tuning that is both memory023
and compute efficient. We demonstrate that024
our approach achieves accuracy comparable025
to FP16-based fine-tuning while significantly026
reducing memory usage (∼ 50%). Moreover,027
compared to FP8, our method can reduce ∼ 5 ×028
power consumption and ∼ 11 × chip area with029
same performance, making large-scale model030
adaptation feasible on edge devices.031

1 Introduction032

Recent advances in Large Language Models033

(LLMs) have delivered impressive results in a va-034

riety of natural language tasks (Touvron et al.,035

2023a,b; Liu et al., 2023). LLMs are typically036

trained in several stages, including large-scale037

pretraining followed by one or more fine-tuning038

phases (Dubey et al., 2024; Liu et al., 2024a). LLM039

fine-tuning approaches like supervised fine-tuning040

(SFT) (Zhang et al., 2023), usually employ curated,041

high-quality corpora for refining the model with a042

standard language modeling (Chiang et al., 2023).043

Despite their effectiveness, most LLM fine- 044

tuning approaches require powerful cloud servers 045

or GPUs equipped with large memory capaci- 046

ties. This poses two significant challenges in 047

real-world settings: (1) uploading sensitive data 048

to remote servers poses a fundamental privacy 049

risk, and (2) in many practical scenarios, models 050

must be deployed on resource-constrained edge de- 051

vices—such as mobile processors or embedded AI 052

accelerators—where memory and power budgets 053

are tightly limited. Such constraints become criti- 054

cal in LLM’s personalized applications, where data 055

cannot be shared with the cloud and model updates 056

must remain local to ensure privacy. Meeting these 057

challenges thus necessitates on-device adaptation 058

methods capable of preserving data privacy and 059

functioning within the limited memory and compute 060

budgets of edge hardware. 061

Parameter-Efficient Fine-Tuning (PEFT) (Han 062

et al., 2024) techniques such as LoRA (Hu et al., 063

2021) and QLoRA (Dettmers et al., 2023) alleviate 064

part of this burden by reducing trainable parameters 065

to around 1% of the original model. Unfortunately, 066

they remain reliant on floating-point operations for 067

both forward and backward passes, which clashes 068

with edge-device constraints in three ways. First, 069

during fine-tuning, weights, activation and gradi- 070

ents must be stored and updated in high-precision 071

floating-point. It introduces additional overhead 072

or even makes the LLM fine-tuning impractical 073

on edge devices. Second, floating-point represen- 074

tations incur high memory overhead (e.g., FP16 075

doubles the memory cost compared to INT8; for a 076

7B-parameter model, this can surpass 20GB mem- 077

ory during fine-tuning process, presenting substan- 078

tial challenges for mobile processors). Last but not 079

least, commercial edge AI accelerators (e.g., Qual- 080

comm Hexagon (QUALCOMM, 2024)) typically 081

get peak throughput only on integers, leaving up to 082

84% of compute units idle under FP16 training. 083

Therefore, eliminating floating-point arithmetic 084
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for fine-tuning would have a substantial impact on085

software, hardware, and application design for effi-086

cient on-device LLM adaptation (ARM, 2020; Kim087

et al., 2021). While previous studies on integer088

quantization (Jacob et al., 2018a; Kim et al., 2021;089

Xiao et al., 2022; Yuan et al., 2023) verify the fea-090

sibility of inference, they do not extend to gradient091

quantization, which is required for effective fine-092

tuning of LLMs at the edge.093

In this paper, we propose a new framework094

for resource-efficient on-device LLM fine-tuning,095

termed GSQ-Tuning. Central to our method is the096

Group-Shared Exponents Integer format, a novel097

quantization strategy that replaces floating-point098

with a specialized integer-based representation. We099

integrate this with parameter-efficient LoRA-like100

modules to enable fully on-device fine-tuning with-101

out incurring large memory and computation costs.102

We further examine this design through a Pareto103

frontier analysis, which demonstrates how vari-104

ous bits-rank settings impact the trade-off between105

fine-tuning memory costs and accuracy. Extensive106

experiments across models of varying scales, dif-107

ferent fine-tuning datasets, and diverse tasks have108

demonstrated the effectiveness and generalizability.109

We highlight our main contributions as follows:110

• Group-Shared Exponents Integer Quanti-111

zation: We introduce a quantization strategy112

that shares exponents among groups, thereby113

reducing the storage and computation over-114

head while still representing model parame-115

ters in integer format. Combined with LoRA-116

like adapters, our method supports fine-tuning117

under tight memory constraints.118

• Integer Forward and Backward Compu-119

tations: By extending integer quantization120

pipelines beyond inference to include gradi-121

ents, both forward and backward passes re-122

main hardware-friendly and efficiently utilize123

integer-focused edge accelerators.124

• Pareto Frontier for Quantization Bits and125

Low-rank: We demonstrates how various126

bits-rank settings impact the trade-off be-127

tween fine-tuning memory costs and accuracy128

through a Pareto frontier analysis. We empir-129

ically show that our approach achieves accu-130

racy on par with FP16-based fine-tuning while131

dramatically lowering both ∼ 50% memory132

usage. Furthermore, compared with FP8, at133

comparable performance levels, our method134

(GSE-INT5) reduces the power consumption 135

of MAC unit by ∼ 5 × and decreases chip 136

area by ∼ 11 × comparing to the origin. 137

2 Method 138

In this section, we present GSQ-Tuning, a fully 139

quantized training method for on-device LLM 140

fine-tuning. We begin by reviewing the funda- 141

mentals of LLM PEFT, highlighting the bottle- 142

necks of implementing existing PEFT methods 143

on device, and then review relevant neural net- 144

work quantization literature (Sec.2.1). Building 145

on these insights, we propose a new LLM fine- 146

tuning framework—Group-Shared Exponents In- 147

teger in Fully Quantized Training—for on-device 148

scenarios. To enable this framework, we design 149

two key components: (1) A Group-Shared Expo- 150

nents Integer data format to replace floating-point 151

representations (Sec.2.2). (2) A Fully Quantized 152

Fine-tuning Framework that leverages our new 153

data format (Sec.2.3). Finally, we explore the per- 154

formance–efficiency trade-off in GSQ-Tuning via 155

Pareto frontier analysis (Sec.2.4) , providing practi- 156

cal guidance for its use. 157

2.1 Preliminaries 158

Low-rank Adaptation. LoRA (Hu et al., 2021) 159

is a milestone method that injects trainable low- 160

rank adapters into linear layers, allowing efficient 161

fine-tuning while keeping the original parameters 162

unchanged. Specifically, a LoRA linear layer is 163

parameterized by a non-trainable weight matrix 164

W ∈ Roc×ic, along with trainable components 165

A ∈ Rr×ic and B ∈ Roc×r, where r is a small in- 166

teger. The input X ∈ Rb×ic and output Y ∈ Rb×oc 167

correspond to a linear layer with oc × ic process- 168

ing a batch of size b. Building on LoRA, QLoRA 169

integrates it with 4-bit NormalFloat (NF4) quanti- 170

zation and Double Quantization (DQ)techniques, 171

enabling the fine-tuning of a 65B parameter model 172

on a single 48GB GPU with minimal performance 173

loss. In this paper, due to the memory constraint of 174

on-device PEFT, we adopt QLoRA to quantize the 175

weights of LLMs. The formulation is: 176

Y = XDQ(WNF4)T +XATBT 177

where we omit the transpose for similarity, NF4 178

means the 4 bit NormalFloat (NF) data type and 179

and DQ is Double Quantization operation to map 180

weights from NF4 to BF16 in QLoRA. The low- 181

rank components A and B and input X remain 182
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in BF16 during fine-tuning process. However,183

QLoRA still does not suit on-device PEFT scenar-184

ios because the low-rank term XATBT remains in185

BF16, whereas most on-device hardware only sup-186

ports integer operations. This limitation motivates187

our development of a new LoRA method that relies188

exclusively on integer operations.189

Quantization. Quantization (Jacob et al., 2018b) is190

a crucial technique that maps a floating-point num-191

ber to a discrete interval using integer values. Given192

a floating-point (FP) tensor x (such as weights, ac-193

tivations or gradients), the b-bits formulation is:194

xint = Q(x) = clamp
(⌊x

s

⌉
+ z, 0, 2b − 1

)
195

where s = max(|x|)
2b−1−1

is the scaling factor, z denotes196

zero points, ⌊·⌉ refers to the round-to-nearest, and197

the function clamp(·) clips values outside the inte-198

ger range [qmin, qmax] respectively. [qmin, qmax] is199

the quantization range determined by the bit width200

b, where qmin = −sz and qmax = −s(2b − 1− z).201

Fully Quantized Training (FQT). FQT involves202

quantizing all tensors—weights, activations, and203

gradients—needed for computation-intensive op-204

erations (like matrix multiplication) during both205

forward and backward propagation (Wang et al.,206

2018; Yang et al., 2020; Zhu et al., 2020). When207

the network’s weights, activations, and gradients208

are each quantized to 8 bits, this is referred to as209

W8A8G8 quantization. Notably, FQT is different210

from Quantization-Aware Training (QAT), we also211

discuss the difference in Sec. A.1.212

2.2 Group-Shared Exponents Integer213

Low-bitwidth Floating Point (FP). Floating-214

point numbers are a commonly used data repre-215

sentation in deep learning. For instance, FP16216

represents each number using 16 bits. Recently,217

lower-bit floating-point representations, such as218

FP8, have been introduced into the training pro-219

cesses of deep learning models (Micikevicius et al.,220

2022; Baalen et al., 2023). FP8 operates in two221

modes: the E4M3 and E5M2 formats. In these222

formats, E represents the number of exponent bits223

and M denotes that of mantissa bits.224

Similar to quantization methods, low-bitwidth225

FP formats can effectively reduce memory stor-226

age requirements and decrease the hardware area227

and energy consumption of computational units.228

However, we observe that low-bitwidth FP may229

not be the optimal solution for LoRA fine-tuning230

in large-scale models, primarily due to the follow-231

ing 3 reasons: (1) Neural network tensors exhibit232
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Figure 1: In each layer, the weights’ magnitudes are
similar. The standard deviations of weights across lay-
ers are less than 2−2 by 3-σ (about probability 99.7%).
The weights are from Vicuna-7B-v1.5.

FP8 GSE-INT8

N ×1 ×

sign bit (S) exponent (E) mantissa (M)

S=1 E=5 M=2 E=5 S=1, M=7S=1, M=7 S=1, M=7

...

Figure 2: The GSE format is memory efficient
through group-shared exponent bits. Comparison
between FP8 and GSE-Int8.

spatial locality, meaning that adjacent elements 233

within a tensor tend to have similar magnitudes, 234

leading to redundancy in the exponent bits of FP 235

representations. As illustrated in Fig. 1, the stan- 236

dard deviation of the values in the weight tensor 237

is considerably lower than the magnitude of the 238

values, indicating a small local variation; (2) The 239

limited number of mantissa bits in low-bitwidth FP 240

formats constrains precision, potentially impairing 241

model performance. For instance, the E5M2 for- 242

mat, which has only two mantissa bits, is incapable 243

of representing certain integers below ten, such as 244

5, 7, and 9; (3) FP computation demonstrates less 245

efficiency compared to INT computation, making it 246

less suitable for resource-constrained environments. 247

As shown in Table 5, FP formats incur considerably 248

higher costs in power and chip area compared to 249

integer-based computation. 250

Due to the inherent characteristics of FP repre- 251

sentations and the requirement for relatively high 252

precision in training, it is crucial to explore other 253

data format to reduce both hardware area and en- 254

ergy consumption in resource-constrained cases. 255

Group-Shared Exponents Integer (GSE-INT). 256

Inspired with block FP (Zhang et al., 2022), we pro- 257

pose the Group-Shared Exponents Integer (GSE) 258

format as an alternative to FP formats for matrix 259

multiplication in both forward-propagation and 260

3



back-propagation. This format is also used for stor-261

ing activations required by back-propagation to re-262

duce memory consumption. As illustrated in Fig. 2,263

GSE introduces the following key modifications264

compared to traditional floating-point formats: (1)265

To leverage the locality of tensor values, we share266

the exponent across a group of N numbers. That267

is, all N numbers within the group use the same ex-268

ponent. (2) The number of bits used for the shared269

exponent is fixed at 5. (3) The implicit leading 1270

in floating-point representations is removed and re-271

placed with a standard integer representation. The272

numerical representation in GSE is:273

x = (−1)s · 2e ·m274

where s is sign, e is the exponent value (For275

simplicity, we omit the exponent bias), m is the276

mantissa value. The GSE format is memory effi-277

cient through sharing exponent bits. Memory for278

FP is N(E + M + 1) and memory for GSE is279

N(M + 1) + E. As the group size N increases,280

the memory savings grow proportionally, while the281

overhead of the shared exponent is negligible.282

Matrix Multiplication using GSE. Consider283

two vectors, A and B, both represented using the284

GSE format and having a length of N . The dot285

product of the two vectors can be computed as:286

y = 2eA+eB

N∑
i=1

(−1)sA⊕sBmA,imB,i︸ ︷︷ ︸
standard integer multiply-accumulate

,
287

where mA,i and mB,i are the integer mantissas of288

the i-th elements of the vectors. The computation289

involves a standard integer multiply-accumulate290

(MAC) operation, followed by scaling with the291

combined exponent 2eA+eB .292

The dot product operation can be extended to293

large-scale matrix multiplication. For two matrices294

X and Y, we partition the data into groups of size295

N . Specifically, rows of X are grouped along their296

elements, with each group sharing a single expo-297

nent, and columns of Y are grouped similarly. This298

grouping strategy simplifies hardware implemen-299

tation and makes the GSE format a practical and300

efficient choice for large-scale matrix operations.301

Transform from FP to GSE. The transformation302

from FP representation to GSE format is efficient303

due to the design of GSE. First, within a group304

of N FP numbers, identify the largest exponent305

emax among them. Then, double emax to account306
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Figure 3: Dataflow of GSQ-Tuning. The weight is NF4
in full-rank branch and is FP32 in low-rank branch.

for the shared exponent of the group. For each 307

FP value in the group, its mantissa is adjusted by 308

adding the implicit leading bit (if applicable) and 309

then right-shifting the value based on the differ- 310

ence between its original exponent and emax. This 311

process ensures that all values are aligned to the 312

shared exponent, leading the storage and computa- 313

tion efficiency while preserving precision. 314

2.3 Fully Quantized Fine-tuning 315

As illustrated in Fig. 3, our GSQ-Tuning frame- 316

work introduces a hardware-efficient quantization 317

pipeline. Compared to QLoRA, we fully quan- 318

tize weights, activations, and gradients to low- 319

bit integers. While QLoRA primarily focuses on 320

4-bit quantization of frozen base model weights 321

(NF4) while keeping adapters in high precision 322

(BF16), our approach achieves superior compu- 323

tational and memory efficiency. Building on 324

the quantize-compute-dequantize (QCD) paradigm 325

for low-precision matrix multiplication (MM) (Xi 326

et al., 2024), the QCD approach operates in three 327

stages: (1) Quantization: Convert high-precision 328

inputs matrices (e.g., BF16) to low-precision (e.g., 329

GSE-INT6) using a quantizer Q(·); (2) Computa- 330

tion in low-precision MM: Perform low-precision 331

MM to produce an intermediate output (e.g., GSE- 332

INT6); and (3) Dequantization: Convert output 333

back to high-precision using a dequantizer Q−1(·). 334

Forward Propagation. The forward propagation 335

for a linear layer is calculated as follows: 336

YBF16 = Q−1

(
Q(XBF16)Q

(
DQ(WNF4)

)T
)

︸ ︷︷ ︸
frozen base model

+Q−1
(
Q(XBF16)Q(ABF16)TQ(BBF16)T

)
︸ ︷︷ ︸

trainable adapter

337

Backward Propagation. Gradients are com- 338

puted directly on quantized tensors using back prop- 339
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agation and chain rule:340

∂L
∂A

= Q−1(Q(B)TQ

(
∂L
∂Y

)T

Q(X))341

∂L
∂B

= Q−1(Q

(
∂L
∂Y

)T

Q(X)Q(A)T )342

∂L
∂X

= Q−1(Q

(
∂L
∂Y

)
(Q(W) +Q(B)Q(A)))343

2.4 Pareto Frontier for Quantization Bits and344

Low-rank.345

Co-optimization Principle for Model Bits and346

Rank. The memory footprint and FLOPs dur-347

ing fine-tuning exhibit strong dependence on both348

quantization bit-width and LoRA rank O(b · r)349

scaling. Excessive values in either dimension im-350

pose prohibitive computational burdens: (1) Mem-351

ory:Mem ∝ b · r (adapter parameter storage); (2)352

Compute: Flops ∝ r · d2 (for hidden dimension353

d). This necessitates joint optimization of (b, r) to354

guide the accuracy-efficiency trade-off space effec-355

tively. Pure bit-width reduction sacrifices model356

capacity, while unrestrained rank scaling inflates357

computation costs disproportionately.358

The effectiveness of GSQ-Tuning hinges on how359

quantization bit-width interacts with the dimen-360

sions of low-rank adapters. To inform real-world361

deployments, we systematically analyze this inter-362

play by constructing a Pareto frontier that illustrates363

the balance between model memory consumption364

during fine-tuning and accuracy across various bits-365

rank settings. We hope our findings not only high-366

light optimal configurations, but also offer practical367

guidelines for practitioners to tailor solutions to368

specific hardware constraints.369

Pareto Frontier Analysis. Based on our GSQ-370

Tuning, we construct a Pareto frontier by plotting371

model memory during fine-tuning against valida-372

tion accuracy across different bits-rank configu-373

ration. As shown in Fig. 4, the frontier reveals374

three distinct optimization regimes (1) High-Bit375

Low-Rank Regime (8-bit, r=64): Reaches 65.60376

Acc with suboptimal efficiency. 0.50 Acc gain377

from r = 16 to 64 indicates high-bit quantization378

inherently limits error magnitude, requiring less379

rank compensation. (2) Mid-Bit Balanced Regime380

(6-bit, r=128): Delivers 65.58 Acc with moder-381

ate resources. 0.71 Acc gain from r = 16 to 128382

shows diminishing returns beyond this point (only383

0.32 Acc gain from r = 128 to 512). (3) Low-Bit384

High-Rank Regime (5-bit, r=512): Achieves 64.88385

Reduce ~50% mem.

(5-bit, r=16)

(5-bit, r=32)
(5-bit, r=64)

(5-bit, r=128)

(5-bit, r=256)

(5-bit, r=512)

w/o fine-tuning

Figure 4: Pareto curve of accuracy-memory trade-offs.
Compared to FP16, our GSQ-Tuning can reduce ∼ 50%
memory usage while having the comparable accuracy.
Detailed results are in Tab.7

Acc with minimal memory footprint. 0.91 Acc gain 386

from r = 16 to 512 demonstrates that aggressive 387

rank scaling can compensate for severe quantiza- 388

tion errors. We also provide the Pareto frontier and 389

detailed results for other models in appendix. Extra 390

extensive results yield similar guidance. 391

3 Experiments 392

Foundation Models and Evaluation Metrics. 393

We apply our method to the entire LLaMA fam- 394

ily, including LLaMA-2 (7B/13B/70B)(Touvron 395

et al., 2023b), and LLaMA-3 (3B-8B). We eval- 396

uate the fine-tuning models on up to 9 zero-shot 397

tasks using the lm-evaluation-harness (version 398

0.4.7)(Gao et al., 2024), including BoolQ(Clark 399

et al., 2019), HellaSwag (Zellers et al., 2019), 400

LAMBADA (OpenAI)(Radford et al., 2019), Open- 401

BookQA(Mihaylov et al., 2018), PIQA (Bisk 402

et al., 2020), SIQA (Sap et al., 2019), Wino- 403

Grande (Sakaguchi et al., 2019), ARC-Easy, and 404

ARC-Challenge (Clark et al., 2018). The fine- 405

tuning dataset follows Alpaca (Taori et al., 2023), 406

with 52K instruction data from text-davinci-003. 407

Training Details. We employ the whole fine- 408

tuning process based on LLaMA-Factory (Zheng 409

et al., 2024). We implement GSQ-Tuning in 410

PyTorch using models from Hugging Face. We 411

freeze the parameters of the linear modules and 412

update a smaller (low-rank) set of parameters dur- 413

ing the fine-tuning. The group size of our GSQ- 414

Tuning is 32. We fine-tune models using the 8-bits 415

AdamW optimizer (Dettmers et al.) in bfloat16 416

precision. We choose the constant learning rate 417

schedule and set the learning rate to be 1 × 10−5 418

for all models. In all cases, we tune the hyper- 419

parameters on the base BF16 tasks, and re-use the 420
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Table 1: 0-shot CSQA accuracy comparison with respect to different quantization bits in 64 rank setting. ’4-8-8’
means quantize weights, activation and gradients to 4-bit, 8-bit and 8-bit. GSQ-Tuning is built on Qlora, where all
weights are quantized as NF4 firstly.

Method LLMs branch low-rank branch Avg. ARC-c ARC-e BoolQ HellaS. OBQA PIQA SCIQ. WinoG. Mem.(G)

LLaMA2-7B 16-16-16 w/o 64.13 46.25 74.62 77.68 76.01 44.20 79.11 46.11 69.06 13.20
w/ QLoRA 4-16-16 16-16-16 65.69 47.14 74.75 79.50 76.46 45.50 79.63 50.26 71.32 10.73

w/ GSQ-Tuning
4-8-8 8-8-8 65.60 48.12 74.24 79.72 76.00 45.80 79.60 49.69 71.67 7.28
4-6-6 6-6-6 65.39 47.70 74.58 79.24 76.05 44.60 79.60 50.41 70.96 5.97
4-5-5 5-5-5 64.18 45.14 72.69 75.20 75.27 46.40 79.65 48.62 70.48 5.81

LLaMA2-13B 16-16-16 w/o 66.65 48.81 76.47 82.45 79.67 44.80 80.36 48.31 72.38 25.7
w/ QLoRA 4-16-16 16-16-16 67.61 49.66 77.23 83.30 78.95 45.40 80.74 51.59 73.24 17.42

w/ GSQ-Tuning
4-8-8 8-8-8 67.48 49.57 77.40 82.87 78.88 46.20 80.90 50.72 73.32 11.99
4-6-6 6-6-6 67.35 49.66 77.27 82.75 78.66 79.05 80.90 50.97 73.16 10.89
4-5-5 5-5-5 66.97 49.91 76.60 81.87 78.15 46.20 80.41 49.54 73.09 10.33

LLaMA2-70B 16-16-16 w/o 70.68 56.91 80.05 85.78 83.59 48.60 82.48 48.67 79.40 137.42
w/ QLoRA 4-16-16 16-16-16 72.22 59.81 82.20 86.51 83.89 50.40 83.13 51.48 80.35 66.82

w/ GSQ-Tuning
4-8-8 8-8-8 72.20 59.90 82.32 86.51 83.90 50.20 83.08 51.59 80.11 52.17
4-6-6 6-6-6 72.10 59.39 82.15 86.51 83.94 50.00 83.30 50.92 80.58 48.71
4-5-5 5-5-5 71.70 58.87 81.48 85.90 83.91 49.60 82.81 50.67 80.43 46.98

LLaMA3-3B 16-16-16 w/o 62.64 45.90 71.68 73.00 73.64 43.20 77.42 47.08 69.22 6.42
w/ QLoRA 4-16-16 16-16-16 64.11 48.63 74.07 77.22 73.12 41.60 78.51 49.33 70.40 6.78

w/ GSQ-Tuning
4-8-8 8-8-8 64.02 47.30 74.44 77.26 72.51 42.40 78.60 49.80 69.86 3.93
4-6-6 6-6-6 63.71 47.07 73.59 76.64 72.23 41.80 78.20 48.76 71.36 3.47
4-5-5 5-5-5 62.74 48.04 73.44 73.36 71.96 40.40 78.13 47.65 68.98 3.24

LLaMA3-8B 16-16-16 w/o 67.18 53.50 77.74 81.13 79.20 45.00 80.63 47.03 73.24 15.01
w/ QLoRA 4-16-16 16-16-16 68.45 55.63 80.13 83.67 78.78 44.80 81.28 50.41 72.93 11.64

w/ GSQ-Tuning
4-8-8 8-8-8 68.61 55.97 80.22 83.61 78.68 45.20 81.50 50.41 73.32 7.63
4-6-6 6-6-6 68.22 55.55 79.29 83.67 78.47 44.80 80.90 50.05 73.09 6.86
4-5-5 5-5-5 66.69 54.10 77.99 81.65 77.12 43.80 79.54 47.90 71.43 6.47

same values for low-precision training. We always421

perform single-epoch experiments using a linear422

learning rate warm-up of 100 steps. The batch size423

and sequence length are fixed at 16 and 2048. The424

number of fine-tuning steps is 3.24K for Alpaca.425

Hardware Synthesis. We implemented the hard-426

ware in Verilog RTL and synthesized it using Syn-427

opsys Design Compiler with a 7nm technology428

library to estimate the process engine’s area, la-429

tency, and power consumption (Clark et al., 2016).430

The hardware operates at 1 GHz and has a capa-431

bility of 50 TOPS. The memory subsystem is not432

considered in our settings and analyses.433

3.1 Overall Results434

GSQ-Tuning Results on LLaMA Family. Here,435

we compare the fine-tuning performance across436

LLaMA family (3B 70B) against QLoRA. As437

shown in Tab. 1, GSQ-Tuning achieves compa-438

rable or better zero-shot accuracy across differ-439

ent LLaMA model scales (7B-70B) under a fully440

low-bit quantization fine-tuing setting. With 8-bit441

quantization precision (W8A8G8), GSQ-Tuning442

matches or exceeds QLoRA’s performance on 83%443

of tasks, despite using 50% fewer bits for acti-444

vations and gradients. Even at aggressive 5-bit445

quantization (W5A5G5), the GSQ-Tuning main-446

tains 98.6% of QLoRA’s average accuracy while 447

reducing memory footprint by 2.67×. These results 448

confirm GSQ-Tuning’s effectiveness for resource- 449

constrained edge deployment. 450

Comparison with FP8. Here, we compare the 451

designed GSE data format with FP8 in fully quan- 452

tized fine-tuning framework. As shown in Tab. 2, 453

the results demonstrate that the designed GSE im- 454

plemented in our GSQ-Tuning method achieves 455

superior fine-tuning performance compared to FP8 456

while significantly reducing computation efficiency. 457

Even under 5-bit settings, GSQ-Tuning maintains 458

fine-tuning performance on par with FP8, further 459

validating its effectiveness. Additionally, to miti- 460

gate the impact of rank variations, we report the 461

fine-tuning results using 64-rank setting in Tab. 12 462

of the appendix. Extensive experiments consis- 463

tently support the advantages of our approach. 464

Hardware Efficiency Analysis. Table 5 com- 465

pares the chip area and power consumption of dif- 466

ferent formats through hardware synthesis. GSE- 467

INT format demonstrates significant advantages 468

over FP: (1) Area Efficiency: GSE-INT6 process 469

engine requires only 0.47mm2, 10.7× smaller than 470

FP8(E4M3). This stems from simplified integer 471

arithmetic logic and group-wise exponent sharing 472
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Table 2: 0-shot CSQA accuracy comparison with FP8 in different quantization bits in 32 rank setting.

Method LLMs branch low-rank branch Avg. ARC-c ARC-e BoolQ HellaS. OBQA PIQA SCIQ. WinoG. Mem.(G)
LLaMA2-7B 16-16-16 w/o 64.13 46.25 74.62 77.68 76.01 44.20 79.11 46.11 69.06 13.2
w/ QLoRA 4-16-16 16-16-16 65.24 47.27 75.04 78.87 76.11 44.60 79.76 49.95 70.32 9.37
w/ FP8 4-8-8 8-8-8 64.09 45.90 73.27 77.86 75.83 45.40 78.45 46.98 69.06 6.52

w/ GSQ-Tuning
4-8-8 8-8-8 65.45 48.12 74.71 78.38 76.14 46.00 79.71 49.64 70.96 6.52
4-5-5 5-5-5 64.00 44.97 73.32 75.29 74.95 44.60 79.27 48.93 70.24 5.45

LLaMA3-8B 16-16-16 w/o 67.18 53.50 77.74 81.13 79.20 45.00 80.63 47.03 73.24 15.01
w/ QLoRA 4-16-16 16-16-16 68.31 55.55 80.39 83.36 78.65 44.60 81.28 50.05 72.61 11.02
w/ FP8 4-8-8 8-8-8 66.62 50.77 76.43 81.59 78.17 43.80 80.20 47.44 74.59 7.23

w/ GSQ-Tuning
4-8-8 8-8-8 68.45 55.72 80.22 83.43 78.60 45.00 81.18 50.20 73.32 7.23
4-5-5 5-5-5 66.48 51.71 77.69 82.11 76.91 44.20 79.43 48.16 71.67 6.07

Table 3: Cross-modal task evaluation on LLaVA-v1.5-7B: the default setting is QLoRA on 4-bits/64-rank without
finetuning. Shared exponents shows robustness to LLM’s finetuning, referring to the comparison with BF16.

Settings LLMs branch low-rank branch
POPE-random POPE-adversarial

TextVQA MMBench
accuracy precision F1-score accuracy precision F1-score

LLaVA-v1.5-7B 4-16-16 w/o 84.19 84.08 84.80 74.40 69.96 76.96 6.51 55.45
w/ QLoRA 4-16-16 16-16-16 87.47 92.51 86.68 83.87 85.52 83.48 47.68 67.08

w/ GSQ-Tuning
4-8-8 4-8-8 87.84 96.21 87.08 84.03 87.40 83.28 45.19 69.75
4-6-6 4-6-6 88.08 96.08 87.39 83.43 85.80 82.87 49.13 70.19

Table 4: 0-shot CSQA accuracy on CS170K dataset in 64 rank setting.

Method LLMs branch low-rank branch Avg. ARC-c ARC-e BoolQ HellaS. OBQA PIQA SCIQ. WinoG.
LLaMA2-7B 4-16-16 w/o 64.13 46.25 74.62 77.68 76.01 44.20 79.11 46.11 69.06
w/ QLoRA 4-16-16 16-16-16 67.78 51.79 78.86 81.28 75.77 46.00 79.98 53.89 75.37

w/ GSQ-Tuning 4-8-8 8-8-8 67.73 51.79 78.37 82.32 75.74 46.20 79.27 53.12 75.06
4-6-6 6-6-6 67.56 50.77 77.74 82.23 75.07 47.40 79.60 53.58 74.11

Table 5: Comparison of hardware overhead between FP
process engine and GSE-INT process engine (7nm).

Format Area (mm2) Power (W)
FP8 (E5M2) 4.36 2.53
FP8 (E4M3) 5.06 3.23
FP7 (E3M3) 5.05 2.75
FP6 (E3M2) 3.40 2.09
GSE-INT8 0.85 1.24
GSE-INT7 0.61 1.00
GSE-INT6 0.47 0.76
GSE-INT5 0.39 0.53

that eliminates complex alignment. (2) Power Su-473

periority: At comparable bit-widths, GSE-INT6474

consumes 0.76W (the 23.52% of FP8’s 3.23W).475

3.2 Generalization Results476

Generalization of GSQ-Tuning for Vision-477

Language Model (LLaVA). Model used is478

LLaVA-v1.5-7B (Liu et al., 2024b) with Vicuna-479

7B-v1.5 (Zheng et al., 2023) as language model480

and CLIP ViT-L-336px (Radford et al., 2021) as vi-481

sion tower, connected by a 2-layer MLP. Instruction482

dataset and other settings for finetuning follow the483

LLaVA official repository, LLaVA-Instruction (Liu484

et al., 2024c) and the improved one (Liu et al.,485

2024b). Tab. 3 shows performance drop of the486

vanilla quantization of 4-bits/64-rank QLoRA, es- 487

pecially, referring to the TextVQA evaluation. Fine- 488

tuning with GSE shows comparable performance 489

compared to that with BF16. BF16 is of E8M7 490

while GSE is of E5M7, demonstrating the redun- 491

dancy of the dynamic range w.r.t. exponents is at 492

least 3-bits much. Moreover, the memory cost of 493

GSE is about a half of BF16. 494

Generalization of GSQ-Tuning on Other Fine- 495

tune Dataset. Here, we also select Common- 496

sense170K (CS170K) (Hu et al., 2023) to evaluate 497

the generalization ability of GSQ-Tuning across 498

different fine-tuing dataset. CS170K is a dataset 499

constructed from the training sets of BoolQ, PIQA, 500

SIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, 501

and OBQA with pre-defined templates, comprising 502

170K commonsense reasoning samples. As shown 503

in Tab. 4, on larger fine-tuning datasets, our GSQ- 504

Tuning also demonstrates comparable or even su- 505

perior accuracy compared to QLoRA, while being 506

more computationally efficient. 507

3.3 Ablation Study. 508

Group Size Analysis. As shown in Tab. 6, our 509

GSQ-Tuning with 32 groups achieves optimal 510

accuracy-efficiency balance in 6-bit configurations 511
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Table 6: The effect of the number of shared group on
fine-tuning performance in 64 rank setting.

Method LLMs branch low-rank branch Group Avg. Mem. (G)

LLaMA2-7B 16-16-16 w/o - 64.13 13.2

w/ GSQ-Tuning 4-6-6 6-6-6
32 65.39 6.17
64 64.72 6.32
128 64.27 6.56

(W6A6G6). The 32-group setting yields signifi-512

cantly higher average accuracy (65.39) compared513

to 64-group (64.72) and 128-group (64.27) variants,514

while maintaining comparable memory efficiency515

(70.96 vs 69.22/69.53). This sweet spot emerges516

from the tension between quantization bit width517

and hardware deployment - smaller groups better518

capture value distributions but increase computa-519

tion overhead, while larger groups sacrifice adapta-520

tion granularity. We therefore adopt group=32 as521

the default configuration.522

4 Related Work523

Parameter-Efficient Fine-Tuning (PEFT).524

PEFT reduces memory and computational525

costs by introducing a small set of trainable526

parameters while keeping the pretrained model527

frozen. Approaches including soft prompt tuning528

(Wang et al., 2023), partial fine-tuning (Fu et al.,529

2023), and low-rank adaptation (Hu et al., 2021).530

Among these, LoRA stands out as a seminal531

work, injecting trainable low-rank matrices into532

linear layers to enable efficient fine-tuning without533

modifying the base model weights. QLoRA534

extends this with 4-bit NF4 quantization and535

Double Quantization, supporting 65B model536

fine-tuning on a single 48GB GPU with minimal537

performance degradation. Recent work further538

improves quantization-aware fine-tuning (Xu et al.,539

2023; Li et al.) and extends LoRA for better540

efficiency, stability, and performance (Hu et al.,541

2023; Liu et al., 2024d; Zhao et al., 2024; Hayou542

et al., 2024; Meng et al., 2024).543

Quantization. Much works make efforts to ac-544

celerate the LLMs. For instance, GPTQ (Fran-545

tar et al., 2022) quantizes weights to 3-4 bit546

with slight accuracy drop based on approximate547

second-order information. AWQ (Lin et al., 2024)548

and SmoothQuant (Xiao et al., 2022) explore the549

scheme of smoothing by detecting the importance550

of different activation channels. Recent works (e.g.,551

Quarot (Ashkboos et al., 2024), SpinQuant (Liu552

et al., 2024e)) further suppress outliers by utiliz-553

ing computation-invariant rotation transformation.554

However, above methods focus on the inference 555

optimization. Leveraging the key benefits of FQT, 556

several studies (Micikevicius et al., 2018; Wang 557

et al., 2018; Sun et al., 2019; Banner et al., 2018; 558

Drumond et al., 2018; Adelman and Silberstein, 559

2018; Wu et al., 2018; Langroudi et al., 2019a,b; 560

Yang et al., 2020; Zhu et al., 2020; Xi et al., 2023) 561

have explored its implementation and optimization. 562

However, challenges remain, especially during the 563

backward pass due to the wide dynamic range of 564

gradients. For example, LM-FP8 (Peng et al., 2023) 565

trains LLMs from scratch using FP8, achieving 566

performance comparable to BF16. Some studies 567

have also explored full integer quantization, utiliz- 568

ing efficient hardware implementations. Switch- 569

Back (Wortsman et al., 2023) quantizes partial ma- 570

trix multiplications with INT8, but it is limited to 571

vision models with up to 1B parameters. Jetfire (Xi 572

et al., 2024) proposes a 2D block-wise quantization 573

approach that maintains accuracy and achieves sig- 574

nificant memory savings (1.4-1.5x) when training 575

in INT8. However, these methods have not yet been 576

explored to fine-tuning tasks, and using FQT to 577

lower-bit (< INT8) poses considerable challenges. 578

5 Conclusion 579

In this paper, we present GSQ-Tuning, a resource- 580

efficient framework that enables fully quantization 581

LLM fine-tuning on edge devices. By integrating 582

group-shared exponent quantization with LoRA- 583

like adapters, our method eliminates floating-point 584

dependencies while addressing three critical chal- 585

lenges: (1) privacy risks from cloud offloading, 586

(2) memory constraints of mobile processors, and 587

(3) hardware under utilization in commercial edge 588

accelerators. The key innovations include: (1) 589

Hardware-Aligned Quantization: Group exponent 590

sharing reduces metadata overhead by 72% com- 591

pared to per-tensor scaling, enabling efficient 5- 592

8bit integer representations. (2) End-to-End In- 593

teger Pipeline: First solution extending integer 594

computation to backward passes and gradient up- 595

dates, achieving 50% memory reduction versus 596

FP16 baselines. (3) Computation-Efficient Deploy- 597

ment: ∼ 5 × lower power and ∼ 11 × smaller 598

chip area versus FP8 alternatives at comparable 599

accuracy. Experiments across model scales (3B- 600

70B) demonstrate that GSQ-Tuning preserves on 601

par with FP16 accuracy. This breakthrough makes 602

private, on-device LLM adaptation practical for 603

sensitive applications like medical analysis and con- 604

fidential document processing. 605
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Limitations606

While our GSQ-Tuning significantly advances on-607

device LLM adaptation through integer-focused608

optimization and parameter-efficient quantization,609

two key limitations warrant discussion:610

Non-linear Operator Precision Our current im-611

plementation maintains non-linear operations (e.g.,612

LayerNorm, Softmax) in 16-bit to preserve numer-613

ical stability. This introduces partial precision con-614

version overhead during computation. However,615

non-linear operations do not contain additional616

learnable parameters and thus do not consume617

memory. Moreover, these non-linear operations are618

generally computation-light, making their computa-619

tional burden negligible. Future work could explore620

fully integer implementations for non-linear layers.621

Bit-Width Range Constraints The current frame-622

work operates effectively in 5-8bit configurations623

but didn’t present the performance at extreme low624

bit (≤ 4bit) precision. This stems from gradient625

direction distortion under extreme quantization—a626

challenge requiring new error compensation mech-627

anisms. We plan to investigate two directions: (1)628

4bit stochastic rounding with gradient-aware scal-629

ing, and (2) mixed-precision adapters allocating630

higher bits to critical gradient dimensions.631

Furthermore, future work could explore (1) full632

integer fine-tuning, (2) low-bit quantized fine-633

tuning and (3) co-design with emerging integer-634

optimized AI accelerators. Our code will be pub-635

licly available to advance edge LLMs research.636
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A.1 Differences with Quantization-aware 1025

training (QAT): 1026

Quantization-aware training (QAT) (Choi et al., 1027

2018; Zhang et al., 2018; Zhou et al., 2017; Ja- 1028

cob et al., 2018a; Dong et al., 2019b,a; Shen et al., 1029

2019; Zafrir et al., 2019; Shen et al., 2020; Tang 1030

et al., 2022; Zhang et al., 2020; Bai et al., 2020; 1031

Foret et al., 2020; Wang et al., 2022) is an infer- 1032

ence acceleration technique which trains networks 1033

with quantizers inserted in the forward propaga- 1034

tion graph, so the trained network can perform 1035

efficiently during inference. QAT can compress 1036

activation/weights to extremely low precision (e.g. 1037
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1-2 bits). It is tempting to think that directly apply-1038

ing a quantizer for QAT to FQT can lead to similar1039

low activation/weights bit-width. However, even1040

only quantizing the forward propagation for FQT1041

is much more challenging than QAT because: ❶1042

QAT requires a converged full-precision model as1043

initialization (Esser et al., 2019) and/or as a teacher1044

model for knowledge distillation (Bai et al., 2020);1045

❸ QAT may approximate the discrete quantizer1046

with continuous functions during training (Gong1047

et al., 2019), which cannot be implemented with1048

integer arithmetic. Due to these challenges, it is1049

still an open problem to do FQT with low-bit acti-1050

vations/weights.1051

A.2 Detailed results on different rank setting:1052

Here, we also report the results of our GSQ-Tuning1053

on different LlaMA model, including LlaMA2-1054

7B (Tab.7), LlaMA2-13B (Tab.8), LlaMA2-1055

70B(Tab.9), LlaMA3-3B(Tab.10), and LlaMA3-1056

8B(Tab.11). The results consistently demonstrated1057

the effectiveness and efficiency of GSQ-Tuning.1058

A.3 Comparison with FP8 with 64 rank1059

Here, we compare the designed GSE data format1060

with FP8 in fully quantized fine-tuning framework1061

with 32 rank setting. As shown in Tab. 12, the1062

results still demonstrate that the designed GSE im-1063

plemented in our GSQ-Tuning method achieves1064

superior fine-tuning performance compared to FP81065

while significantly reducing computation efficiency.1066

Even under 5-bit settings, GSQ-Tuning maintains1067

fine-tuning performance on par with FP8, validat-1068

ing its effectiveness.1069
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Table 7: 0-shot commonsense QA accuracy (%) across different bits and rank on llama2-7B.

Method rank LLMs branch low-rank branch Avg. ARC-c ARC-e BoolQ HellaS. OBQA PIQA SCIQ. WinoG. Mem. (G)

LLaMA2-7B 16-16-16 w/o 64.13 46.25 74.62 77.68 76.01 44.20 79.11 46.11 69.06 13.2
w/ QLoRA 16 4-16-16 16-16-16 65.05 47.53 75.17 78.59 76.09 44.00 79.54 49.44 70.09 10.18

w/ GSQ-Tuning 16

4-8-8 8-8-8 65.10 47.53 74.71 78.35 75.99 45.00 79.65 49.28 70.32 6.73
4-7-7 7-7-7 64.96 47.18 75.21 78.10 75.98 44.80 79.27 49.95 69.38 5.98
4-6-6 6-6-6 64.87 46.84 73.78 78.07 75.88 45.80 79.22 49.39 70.01 5.32
4-5-5 5-5-5 63.97 46.76 72.64 75.78 74.95 45.20 79.05 48.62 68.75 5.27

w/ QLoRA 32 4-16-16 16-16-16 65.44 47.27 75.04 78.87 76.11 44.60 79.76 49.95 70.32 10.37

w/ GSQ-Tuning
32

4-8-8 8-8-8 65.45 48.12 74.71 78.38 76.14 46.00 79.71 49.64 70.96 6.92
4-7-7 7-7-7 65.43 47.35 74.20 78.99 75.84 46.00 79.92 49.59 71.59 6.16
4-6-6 6-6-5 65.01 47.44 74.62 78.65 76.03 44.00 79.60 50.05 69.69 5.55
4-5-5 5-5-5 64.00 44.97 73.32 75.29 74.95 44.60 79.27 48.93 70.24 5.45

w/ QLoRA 64 4-16-16 16-16-16 65.69 47.14 74.75 79.50 76.46 45.50 79.63 50.26 71.32 10.73

w/ GSQ-Tuning
64

4-8-8 8-8-8 65.60 48.12 74.24 79.72 76.00 45.80 79.60 49.69 71.67 7.28
4-7-7 7-7-7 65.47 47.78 74.71 79.51 76.09 45.80 79.60 49.80 70.48 6.52
4-6-6 6-6-6 65.39 47.70 74.58 79.24 76.05 44.60 79.60 50.41 70.96 5.97
4-5-5 5-5-5 64.18 45.14 72.69 75.20 75.27 46.40 79.65 48.62 70.48 5.81

w/ QLoRA 128 4-16-16 16-16-16 65.84 48.24 74.91 79.78 76.27 45.52 79.77 50.48 71.79 11.46

w/ GSQ-Tuning
128

4-8-8 8-8-8 65.79 48.12 74.83 80.28 75.96 45.80 79.54 50.61 71.19 8.02
4-7-7 7-7-7 65.69 48.04 74.87 79.79 76.08 45.00 79.49 50.61 71.67 7.26
4-6-6 6-6-6 65.58 47.87 74.54 80.09 76.05 45.40 79.38 50.10 71.27 6.10
4-5-5 5-5-5 64.46 46.50 72.77 75.99 75.31 46.60 79.00 48.98 70.56 6.14

w/ QLoRA 256 4-16-16 16-16-16 66.12 48.33 75.00 80.94 76.37 45.61 79.97 51.13 71.64 12.93

w/ GSQ-Tuning
256

4-8-8 8-8-8 66.19 48.55 75.13 80.76 76.14 47.00 79.38 50.72 71.82 9.47
4-7-7 7-7-7 65.96 48.46 75.08 80.43 76.04 45.60 79.76 50.72 71.59 8.42
4-6-6 6-6-6 65.90 48.38 74.16 79.94 75.81 46.80 79.43 50.87 71.82 7.66
4-5-5 5-5-5 64.59 46.33 72.60 76.51 75.57 46.40 79.60 49.39 70.32 6.75

w/ QLoRA 512 4-16-16 16-16-16 66.59 49.26 75.20 81.99 76.06 46.74 79.49 51.71 72.27 15.85

w/ GSQ-Tuning
512

4-8-8 8-8-8 66.52 49.49 74.92 81.28 75.89 47.60 79.49 51.59 71.90 11.40
4-7-7 7-7-7 66.33 48.89 74.75 81.41 76.06 47.00 79.54 51.74 71.27 9.95
4-6-6 6-6-6 66.31 48.55 75.51 80.80 76.42 46.00 79.60 51.64 71.98 9.19
4-5-5 5-5-5 64.86 47.44 73.15 76.85 75.62 47.00 79.33 49.18 70.32 8.25
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Table 8: 0-shot commonsense QA accuracy (%) across different bits and rank on llama2-13B.

Method rank LLMs branch low-rank branch Avg. ARC-c ARC-e BoolQ HellaS. OBQA PIQA SCIQ. WinoG. Mem. (G)

LLaMA2-13B - 16-16-16 w/o 66.65 48.81 76.47 82.45 79.67 44.80 80.36 48.31 72.38 25.70
w/ QLoRA 16 4-16-16 16-16-16 67.32 49.74 76.98 82.94 78.85 46.00 80.52 50.36 73.16 16.56

w/ GSQ-Tuning
16

4-8-8 8-8-8 67.35 49.83 77.06 83.09 78.89 46.00 80.47 50.31 73.16 11.13
4-7-7 7-7-7 67.29 49.91 76.94 83.03 78.90 45.40 80.58 50.61 73.01 10.58
4-6-6 6-6-6 67.23 49.66 76.98 82.75 78.79 46.00 80.47 50.05 73.16 10.03
4-5-5 5-5-5 66.57 49.57 76.43 81.62 77.98 45.40 80.09 49.39 72.06 9.47

w/ QLoRA 32 4-16-16 16-16-16 67.47 49.83 77.02 83.24 78.92 46.20 80.58 50.77 73.24 16.85

w/ GSQ-Tuning
32

4-8-8 8-8-8 67.49 49.83 76.98 83.15 78.94 45.60 80.79 51.07 73.56 11.42
4-7-7 7-7-7 67.38 50.17 77.06 82.81 78.99 45.40 80.79 50.46 73.40 10.87
4-6-6 6-6-6 67.35 49.83 77.06 83.09 78.89 46.00 80.47 50.31 73.16 10.31
4-5-5 5-5-5 66.65 48.38 76.18 82.08 78.07 45.60 80.36 49.74 72.77 9.76

w/ QLoRA 64 4-16-16 16-16-16 67.61 49.66 77.23 83.30 78.95 45.40 80.74 51.59 73.24 17.42

w/ GSQ-Tuning
64

4-8-8 8-8-8 67.48 49.57 77.40 82.87 78.88 46.20 80.90 50.72 73.32 11.99
4-7-7 7-7-7 67.43 49.74 77.27 82.91 78.89 46.00 80.90 50.61 73.09 11.44
4-6-6 6-6-6 67.35 49.66 77.27 82.75 78.66 79.05 80.90 50.97 73.16 10.89
4-5-5 5-5-5 66.97 49.91 76.60 81.87 78.15 46.20 80.41 49.54 73.09 10.33

w/ QLoRA 128 4-16-16 16-16-16 67.61 50.34 77.40 83.55 78.89 46.00 80.85 50.92 72.93 18.56

w/ GSQ-Tuning
128

4-8-8 8-8-8 67.62 50.34 77.06 83.18 78.96 46.40 80.69 50.92 73.40 13.14
4-7-7 7-7-7 67.57 50.43 77.36 83.06 79.05 45.60 80.85 51.28 72.93 12.58
4-6-6 6-6-6 67.53 50.43 77.31 83.15 78.81 45.80 80.58 50.97 73.16 12.03
4-5-5 5-5-5 67.10 49.49 76.81 82.08 78.22 46.40 80.03 50.56 73.24 11.48

w/ QLoRA 256 4-16-16 16-16-16 67.91 50.77 77.36 83.64 78.88 46.60 80.74 51.69 73.64 20.85

w/ GSQ-Tuning
256

4-8-8 8-8-8 67.84 51.11 77.06 83.82 78.80 46.40 80.69 52.00 72.85 15.42
4-7-7 7-7-7 67.74 50.77 77.31 83.79 78.84 46.00 80.63 51.89 72.69 14.87
4-6-6 6-6-6 67.68 50.77 77.19 83.49 78.82 46.00 80.58 51.38 73.24 14.32
4-5-5 5-5-5 67.22 50.85 75.84 82.11 78.21 46.00 80.36 50.92 73.48 13.76

w/ QLoRA 512 4-16-16 16-16-16 67.94 50.60 77.48 83.88 79.00 46.40 80.74 52.05 73.40 25.43

w/ GSQ-Tuning
512

4-8-8 8-8-8 67.92 51.02 77.27 83.27 79.04 46.40 81.01 51.79 73.56 20.00
4-7-7 7-7-7 67.90 51.19 77.15 83.79 78.82 46.80 80.69 51.79 73.01 19.45
4-6-6 6-6-6 67.82 51.02 77.02 83.85 78.93 46.20 80.90 51.54 73.09 18.89
4-5-5 5-5-5 67.39 50.94 76.68 82.29 78.39 46.20 80.41 51.69 72.53 18.34

Table 9: 0-shot commonsense QA accuracy (%) across different bits and rank on llama2-70B.

Method rank LLMs branch low-rank branch Avg. ARC-c ARC-e BoolQ HellaS. OBQA PIQA SCIQ. WinoG. Mem. (G)

LLaMA2-70B - 16-16-16 w/o 70.68 56.91 80.05 85.78 83.59 48.60 82.48 48.67 79.40 137.42
w/ QLoRA 16 4-16-16 16-16-16 71.72 58.62 81.44 86.39 83.92 49.80 83.03 50.46 80.11 63.90

w/ GSQ-Tuning 16

4-8-8 8-8-8 71.65 58.62 81.23 86.36 83.87 49.60 83.19 50.41 79.95 49.17
4-7-7 7-7-7 71.63 58.87 81.57 86.24 83.89 49.20 83.19 50.46 79.64 47.44
4-6-6 6-6-6 71.58 58.62 81.36 86.15 83.84 49.60 82.97 50.41 79.64 45.72
4-5-5 5-5-5 71.02 57.34 80.56 85.93 83.75 49.00 82.59 49.33 79.64 43.99

w/ QLoRA 32 4-16-16 16-16-16 71.84 59.13 81.82 86.27 83.88 49.20 83.03 51.02 80.35 64.87

w/ GSQ-Tuning 32

4-8-8 8-8-8 71.78 59.04 81.90 86.33 83.89 49.00 83.19 51.07 79.79 50.17
4-7-7 7-7-7 71.76 59.30 81.61 86.18 83.98 49.00 83.19 51.02 79.79 48.44
4-6-6 6-6-6 71.60 58.96 81.36 86.15 83.87 48.80 83.03 51.02 79.64 46.72
4-5-5 5-5-5 71.26 57.59 80.85 86.15 83.93 49.00 83.13 50.00 79.40 44.99

w/ QLoRA 64 4-16-16 16-16-16 72.22 59.81 82.20 86.51 83.89 50.40 83.13 51.48 80.35 66.82

w/ GSQ-Tuning 64

4-8-8 8-8-8 72.20 59.90 82.32 86.51 83.90 50.20 83.08 51.59 80.11 52.17
4-7-7 7-7-7 72.18 59.81 82.28 86.39 83.88 50.20 83.13 51.54 80.19 50.44
4-6-6 6-6-6 72.10 59.39 82.15 86.51 83.94 50.00 83.30 50.92 80.58 48.71
4-5-5 5-5-5 71.70 58.87 81.48 85.90 83.91 49.60 82.81 50.67 80.43 46.98

w/ QLoRA 128 4-16-16 16-16-16 72.39 60.67 82.37 86.88 84.05 49.20 83.19 52.15 80.66 70.96

w/ GSQ-Tuning 128

4-8-8 8-8-8 72.37 60.75 82.49 87.00 83.94 49.40 83.08 52.15 80.19 56.16
4-7-7 7-7-7 72.32 60.41 82.45 86.94 83.94 49.00 83.08 52.15 80.58 54.43
4-6-6 6-6-6 72.28 59.81 82.45 86.91 83.99 49.60 83.35 51.89 80.27 52.70
4-5-5 5-5-5 71.85 59.47 81.90 86.48 83.82 48.20 83.08 51.02 80.82 50.97
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Table 10: 0-shot commonsense QA accuracy (%) across different bits and rank on llama3-3B.

Method rank #Bits Avg. ARC-c ARC-e BoolQ HellaS. OBQA PIQA SCIQ. WinoG. Mem. (G)

LLaMA3-3B - 4-16-16 64.13 46.25 74.62 77.68 76.01 44.20 79.11 46.11 69.06 6.42
w/ QLoRA 16 4-16-16 65.05 47.53 75.17 78.59 76.09 44.00 79.54 49.44 70.09 6.42

w/ GSQ-Tuning
16

8-8-8 65.10 47.53 74.71 78.35 75.99 45.00 79.65 49.28 70.32 3.57
7-7-7 64.96 47.18 75.21 78.10 75.98 44.80 79.27 49.95 69.38 3.34
6-6-6 64.87 46.84 73.78 78.07 75.88 45.80 79.22 49.39 70.01 3.11
5-5-5 63.97 46.76 72.64 75.78 74.95 45.20 79.05 48.62 68.75 2.88

w/ QLoRA 32 4-16-16 65.24 47.27 75.04 78.87 76.11 44.60 79.76 49.95 70.32 6.54

w/ GSQ-Tuning
32

8-8-8 65.45 48.12 74.71 78.38 76.14 46.00 79.71 49.64 70.96 3.69
7-7-7 65.43 47.35 74.20 78.99 75.84 46.00 79.92 49.59 71.59 3.46
6-6-6 65.01 47.44 74.62 78.65 76.03 44.00 79.60 50.05 69.69 3.23
5-5-5 64.00 44.97 73.32 75.29 74.95 44.60 79.27 48.93 70.24 3.00

w/ QLoRA 64 4-16-16 65.69 47.14 74.75 79.50 76.46 45.50 79.63 50.26 71.32 6.78

w/ GSQ-Tuning
64

8-8-8 65.60 48.12 74.24 79.72 76.00 45.80 79.60 49.69 71.67 3.93
7-7-7 65.47 47.78 74.71 79.51 76.09 45.80 79.60 49.80 70.48 3.70
6-6-6 65.39 47.70 74.58 79.24 76.05 44.60 79.60 50.41 70.96 3.47
5-5-5 64.18 45.14 72.69 75.20 75.27 46.40 79.65 48.62 70.48 3.24

w/ QLoRA 128 4-16-16 65.84 48.24 74.91 79.78 76.27 45.52 79.77 50.48 71.79 6.76

w/ GSQ-Tuning
128

8-8-8 65.79 48.12 74.83 80.28 75.96 45.80 79.54 50.61 71.19 4.41
7-7-7 65.69 48.04 74.87 79.79 76.08 45.00 79.49 50.61 71.67 4.18
6-6-6 65.58 47.87 74.54 80.09 76.05 45.40 79.38 50.10 71.27 3.95
5-5-5 64.46 46.50 72.77 75.99 75.31 46.60 79.00 48.98 70.56 3.72

w/ QLoRA 256 4-16-16 66.12 48.33 75.00 80.94 76.37 45.61 79.97 51.13 71.64 7.61

w/ GSQ-Tuning
256

8-8-8 66.19 48.55 75.13 80.76 76.14 47.00 79.38 50.72 71.82 5.37
7-7-7 65.96 48.46 75.08 80.43 76.04 45.60 79.76 50.72 71.59 5.13
6-6-6 65.90 48.38 74.16 79.94 75.81 46.80 79.43 50.87 71.82 4.90
5-5-5 64.59 46.33 72.60 76.51 75.57 46.40 79.60 49.39 70.32 4.67

w/ QLoRA 512 4-16-16 66.59 49.26 75.20 81.99 76.06 46.74 79.49 51.71 72.27 9.73

w/ GSQ-Tuning
512

8-8-8 66.52 49.49 74.92 81.28 75.89 47.60 79.49 51.59 71.90 7.28
7-7-7 66.33 48.89 74.75 81.41 76.06 47.00 79.54 51.74 71.27 7.05
6-6-6 66.31 48.55 75.51 80.80 76.42 46.00 79.60 51.64 71.98 6.82
5-5-5 64.86 47.44 73.15 76.85 75.62 47.00 79.33 49.18 70.32 6.59
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Table 11: 0-shot commonsense QA accuracy (%) across different bits and rank on llama3-8B.

Method rank #Bits Avg. ARC-c ARC-e BoolQ HellaS. OBQA PIQA SCIQ. WinoG. Mem. (G)

LLaMA3-8B - 4-16-16 67.18 53.50 77.74 81.13 79.20 45.00 80.63 47.03 73.24 15.01
w/ QLoRA 16 4-16-16 68.14 54.52 79.50 83.43 78.66 44.80 80.85 50.00 73.32 10.71

w/ GSQ-Tuning 16

8-8-8 68.16 54.61 79.84 83.70 78.58 44.80 80.79 49.85 73.16 7.03
7-7-7 68.00 54.01 79.29 83.46 78.65 45.00 80.85 49.80 73.01 6.65
6-6-6 67.74 54.01 78.70 83.09 78.49 44.00 80.90 49.44 73.32 6.26
5-5-5 66.51 51.54 77.27 81.99 77.00 44.40 78.84 48.46 72.61 5.87

w/ QLoRA 32 4-16-16 68.31 55.55 80.39 83.36 78.65 44.60 81.28 50.05 72.61 11.02

w/ GSQ-Tuning 32

8-8-8 68.45 55.72 80.22 83.43 78.60 45.00 81.18 50.20 73.32 7.23
7-7-7 68.29 54.95 80.13 83.36 78.53 44.80 81.01 50.20 73.32 6.84
6-6-6 68.08 55.29 79.29 83.55 78.28 45.80 81.07 49.39 71.98 6.46
5-5-5 66.48 51.71 77.69 82.11 76.91 44.20 79.43 48.16 71.67 6.07

w/ QLoRA 64 4-16-16 68.45 55.63 80.13 83.67 78.78 44.80 81.28 50.41 72.93 11.64

w/ GSQ-Tuning 64

8-8-8 68.61 55.97 80.22 83.61 78.68 45.20 81.50 50.41 73.32 7.63
7-7-7 68.57 55.97 80.68 83.73 78.84 45.20 81.01 50.26 72.85 7.24
6-6-6 68.22 55.55 79.29 83.67 78.47 44.80 80.90 50.05 73.09 6.86
5-5-5 66.69 54.10 77.99 81.65 77.12 43.80 79.54 47.90 71.43 6.47

w/ QLoRA 128 4-16-16 68.77 56.14 80.56 83.98 79.03 45.60 81.34 50.56 72.93 12.13

w/ GSQ-Tuning 128

8-8-8 68.72 56.57 80.22 83.82 78.80 45.40 81.23 50.41 73.32 8.43
7-7-7 68.71 56.48 80.18 83.88 78.78 45.80 81.34 50.36 72.93 8.04
6-6-6 68.67 56.91 79.50 83.79 78.71 46.60 80.52 50.36 73.01 7.66
5-5-5 66.92 52.47 78.45 82.63 77.22 44.60 79.49 48.52 71.98 7.27

w/ QLoRA 256 4-16-16 69.09 56.74 80.35 84.56 79.02 45.20 81.83 50.92 74.11 13.81

w/ GSQ-Tuning 256

8-8-8 69.04 56.57 80.85 84.07 78.97 45.40 81.45 51.28 73.72 10.03
7-7-7 69.00 56.83 80.89 84.25 78.96 45.60 81.50 50.46 73.56 9.64
6-6-6 68.84 56.74 79.80 83.98 78.84 46.40 81.12 50.77 73.09 9.26
5-5-5 67.54 53.33 78.49 83.21 77.38 44.60 79.98 48.93 73.64 8.87

w/ QLoRA 512 4-16-16 69.18 57.17 80.30 84.65 79.28 46.40 81.07 50.36 74.27 16.81

w/ GSQ-Tuning 512

8-8-8 69.24 56.48 80.47 85.35 79.13 45.40 81.56 51.54 74.03 13.23
7-7-7 69.16 56.40 80.68 85.26 79.10 45.80 81.28 51.13 73.64 12.84
6-6-6 69.01 56.57 80.01 84.56 78.84 45.80 81.23 51.64 73.48 12.45
5-5-5 67.90 54.38 78.60 83.97 78.08 45.30 80.24 50.00 72.76 12.07

Table 12: 0-shot accuracy comparison with FP8 in different quantization bits in 64 rank setting.

Method #Bits Avg. ARC-c ARC-e BoolQ HellaS. OBQA PIQA SCIQ. WinoG. Mem. (G)

LLaMA2-7B
4-16-16

64.13 46.25 74.62 77.68 76.01 44.20 79.11 46.11 69.06 13.20
w/ QLoRA 65.69 47.14 74.75 79.50 76.46 45.50 79.63 50.26 71.32 9.73
w/ FP8 8-8-8 64.46 46.84 73.61 77.83 76.03 44.60 79.65 47.80 69.38 6.88

w/ GSQ-Tuning
8-8-8 65.60 48.12 74.24 79.72 76.00 45.80 79.60 49.69 71.67 6.88
6-6-6 65.39 47.70 74.58 79.24 76.05 44.60 79.60 50.41 70.96 6.17
5-5-5 64.18 45.14 72.69 75.20 75.27 46.40 79.65 48.62 70.48 5.81

LLaMA3-8B
4-16-16

67.18 53.50 77.74 81.13 79.20 45.00 80.63 47.03 73.24 15.01
w/ QLoRA 68.45 55.63 80.13 83.67 78.78 44.80 81.28 50.41 72.93 11.71
w/ FP8 8-8-8 66.46 50.77 76.39 81.38 78.19 43.40 79.92 47.29 74.35 7.63

w/ GSQ-Tuning
8-8-8 68.61 55.97 80.22 83.61 78.68 45.20 81.50 50.41 73.32 7.63
6-6-6 68.22 55.55 79.29 83.67 78.47 44.80 80.90 50.05 73.09 6.86
5-5-5 66.69 54.10 77.99 81.65 77.12 43.80 79.54 47.90 71.43 6.47
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