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Abstract

Neural networks are known to exhibit simplic-
ity bias (SB) where they tend to prefer learning
‘simple’ features over more ‘complex’ ones, even
when the latter may be more informative. SB
can lead to the model making biased predictions
which have poor out-of-distribution (OOD) gen-
eralization and robustness. To address this, we
propose a framework that encourages the model to
use a more diverse set of features to make predic-
tions. We first train a simple model, and then reg-
ularize the conditional mutual information with
respect to it to obtain the final model. We demon-
strate the effectiveness of this framework in vari-
ous problem settings and real-world applications,
showing that it effectively addresses SB, and en-
hances OOD generalization, sub-group robustness
and fairness. We complement these results with
theoretical analyses of the effect of the regulariza-
tion and its OOD generalization properties.

1. Introduction
Recent studies [53; 17; 36] investigating generalization in
deep learning suggest that current techniques for training
neural networks (NNs) tend to favor learning simple func-
tions over complex ones. While this inductive bias has
benefits in terms of preventing overfitting, it has been found
that in the presence of multiple predictive features of vary-
ing complexity, NNs tend to be overly reliant on simpler
features while ignoring more complex features that may be
equally or more informative of the target [44; 35; 34]. This
phenomenon has been termed simplicity bias (SB) and has
several undesirable implications for robustness and out-of-
distribution (OOD) generalization.
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As an illustrative example, consider the Waterbirds dataset
[42]. The objective here is to predict a bird’s type (landbird
vs. waterbird) based on its image (see Fig. 1 for an example).
While features such as the background (land vs. water) are
easier to learn, and can have significant correlation with the
bird’s type (since most images of landbirds are on a land
background, and vice-versa), more complex features like
the bird’s shape are more predictive of its type. However,
SB can cause the model to be highly dependent on simpler
yet predictive features, such as the background in this case.
A model which puts high emphasis on the background for
solving this task is not desirable, since its performance may
not transfer across different environments. A similar story
arises in many tasks—Table 1 summarizes various datasets,
where the target or task-relevant features (also known as
invariant features), are more complex than surrogate features
that are superficially correlated with the label (also known
as spurious features). SB causes NNs to heavily rely on
these surrogate features for predictions.

Dataset Task-relevant/invariant feature Surrogate/spurious feature
Waterbirds [42] Bird type Background

CelebA [33] Hair colour Gender
MultiNLI [51] Reasoning Negation words

CivilComments-WILDS [6] Sentiment Demographic attributes
Colored-MNIST [1] Digit Color

Camelyon17-WILDS [7] Diagnoses Hospital
Adult-Confounded [10] Income Demographic attributes

Table 1. Summary of the datasets we consider. Spurious features
seem simpler than invariant features.

Several methods [1; 42; 31] have been proposed to address
this problem of OOD generalization (see Appendix for dis-
cussion on related work). However, most of them require
some knowledge about the spurious feature. This is because
some knowledge of the different environments of interest
or the underlying causal graph is in general necessary to
decide whether a feature is spurious or invariant. To sidestep
this, in this work we take the viewpoint that features that
are usually regarded as being spurious for the task are often
simple and quite predictive (as suggested by Table 1). If
this hypothesis is true, alleviating simplicity bias can lead
to better robustness and OOD generalization.

With improved robustness and OOD generalization as major
end goals in mind, we develop a new framework to mitigate
SB and encourage the model to utilize a more diverse set
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Figure 1. Summary of our approach. Models trained with ERM tend to use simple features (e.g., background) that do not generalize, while
encouraging conditional independence with respect to a simple model increases reliance on complex features (e.g., shape) that generalize.

of features for its predictions. Our high-level goal is to
ensure that the trained model M has minimal conditional
mutual information I(M ;S|Y ) with any simple, predictive
feature S, conditioned on the label Y . To achieve this, we
first train a simple model M∗

s on the task, with the idea that
this model captures the information in simple, predictive
features. Subsequently, to train the final model M , we
add its conditional mutual information I(M ;M∗

s |Y ) with
the model M∗

s conditioned on the label Y as a regularizer
to the usual empirical risk minimization (ERM) objective.
With this regularization term, we incentivize the model to
leverage additional, task-relevant features which may be
more complex. We refer to our approach as Conditional
Mutual Information Debiasing or CMID (see Fig. 1).

We demonstrate that our framework effectively mitigates
simplicity bias, and achieves improved OOD generalization,
sub-group robustness and fairness. Our approach leads to
models which use more diverse features on certain tasks
which have been previously used to measure SB. It achieves
improved sub-group robustness and OOD generalization on
several benchmark tasks, including in the presence of multi-
ple spurious features. It also improves fairness and leads to
predictions that are less dependent on protected attributes
such as race or gender. In addition, we prove theoretical
results which provide insight and certain guarantees for our
approach. We analyze a Gaussian mixture model setup to
understand the effect of our regularization and its ability
to reduce dependence on spurious features. We also de-
rive guarantees on OOD generalization in a causal learning
framework. We present the experimental results in Section
4 and defer the theoretical results to the Appendix.

2. Spurious Features are Simple and Predictive
In this section, we show that surrogate features are generally
‘simpler’ than invariant features. First, we define simple
models/features for a task as follows:

Definition 2.1 (Simple models and features). Consider a
task on which benchmark models which achieve high ac-

curacy have a certain complexity (in terms of number of
parameters, layers etc.). We consider models that have
significantly lower complexity than benchmark models as
simple models. Similarly, we consider features that can be
effectively learned using simple models as simple features.

Definition 2.1 proposes a metric of simplicity which is task-
dependent since it depends on the complexity of the models
which get high accuracy on the task. We choose to not define
quantitative measures in Definition 2.1 as those would be
problem-dependent. As an example, for Waterbirds, deep
networks such as ResNet-50 [23] achieve best results, so a
shallow CNN can be considered as a simple model.

Dataset
Predict invariant feature Predict surrogate feature

Train Test Train Test
CMNIST 86.2± 0.2 86.6± 0.3 100 100
Waterbirds 60.5± 2.5 60.4± 2.4 79.6± 0.6 78.4± 0.6

Table 2. Comparison of performance for predict-
ing invariant and surrogate features.

Importantly,
we observe
that simple
models
can still
achieve
good performance when the task is to distinguish between
surrogate features even though they are not as accurate in
predicting the invariant feature. Specifically, for CMNIST,
we compare the performance of a linear model on color
classification and digit classification on clean MNIST data.
Similarly, for Waterbirds, we compare the performance of a
shallow CNN on background classification (using images
from the Places dataset [54]) and bird type classification
(using segmented images of birds from the CUB dataset
[49]). The results in Table 2 indicate that surrogate features
for these datasets are simple features, since they can be
predicted much more accurately by simpler models than
invariant features.

Based on these observations, we define spurious features as
follows. Operationally, our definition has the advantage that
it does not require knowledge of some underlying causal
graph or environment labels to identify spurious features.

Definition 2.2 (Spurious features). Spurious features are
simple features that are still reasonably correlated with the
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target label.

In the presence of such features, SB causes the model to pre-
fer such features over invariant ones that are more complex.

Dataset Train Test
CMNIST 84.9± 0.2 10.7± 0.3
Waterbirds 93.3± 0.5 54.9± 1.1

Table 3. Train and test perfor-
mance of the simple model on the
target task.

We also verify that when
simple models are trained
on the target tasks on
these datasets, they tend
to rely on these spurious
features to make accurate
predictions. Specifically,
we consider the digit classification task using CMNIST data,
where the correlation between the color and the label in the
test set is 10%, and birdtype classification using Waterbirds
data, where the test set consists of balanced groups. Table
3 shows that the test accuracy is close to the correlation be-
tween the spurious feature-based group label and the target
label. This indicates that simple models trained on the target
task utilize the spurious features to make predictions.

3. CMID: Learning in the Presence of
Spurious Features

In this section, we outline our proposed approach to mitigate
SB. It leverages the fact that simple models can capture
surrogate features much better than invariant features (as
demonstrated in Table 2).
Notation Let Z = (X,Y ) denote an input-label pair,
where X ∈ Rd, Y ∈ {0, 1}, sampled from some distri-
bution D, D denote a dataset with n samples, ED denote
the empirical mean over D, X denote the input space,
M(θ) : X → [0, 1] denote a model, parameterized by θ
(shorthand M ). The predictions of the model are given by
1[M(X) > 0.5]. Subscripts (·)s and (·)c denote simple and
complex, respectively. Let M denote the class of all models
M , ℓM (Z) : X × {0, 1} → R denote a loss function, and

σ(x, T ) =
1

1 + e−Tx
denote the sigmoid function, with

temperature parameter T .

With slight abuse of notation, et M and M denote the (bi-
nary) random variables associated with the predictions of
model M on datapoints Xi’s and the labels Yi’s, across all
i ∈ [n], respectively. Let H(·) denote the Shannon entropy
of a random variable. I(·; ·) measures Shannon mutual
information between two random variables, and the condi-
tional mutual information (CMI) between the outputs of two
models given the label is denoted by I(M1;M2|Y ).

The empirical risk minimizer (ERM) for class M is denoted
as M∗, and is given by:

M∗ := ERM(M) = argmin
M∈M

ED ℓM (Z).

We consider the class of simple models Ms ⊂ M and
describe our two-stage approach CMI Debiasing (CMID):

• First, learn a simple model Ms, which minimizes risk on
the training data:

M∗
s = ERM(Ms).

• Next, learn a complex model Mc by regularizing its CMI
with Ms:

Mc = argmin
M∈M

ED ℓM (Zi) + λÎn(M ;M∗
s |Y ),

where În(M ;M∗
s |Y ) denotes the estimated CMI over D,

and λ is the regularization parameter.

Note that we penalize the CMI instead of mutual informa-
tion. This is because both M∗

s and M are expected to have
information about Y (e.g., in the Waterbirds dataset, both
bird type and background type are correlated with the la-
bel). Hence, they will not be independent of each other, but
are closer to being independent when conditioned on the
label. We also note that we use conditional mutual infor-
mation to measure dependence, instead of other measures
such as enforcing orthogonality of the predictions. This is
for the simple reason that mutual information measures all—
potentially non-linear—dependencies between the random
variables.

To estimate CMI, first consider the conditional (joint) distri-
butions over n samples:

p(M=m|M=y) =
Σi∈[n]1[Yi=y] ζ(M(Xi),m)

Σi∈[n]1[Yi=y]
,

p(M=m,Ms=m′|M=y)

=
Σi∈[n]1[Yi=y] ζ(M(Xi),m) ζ(Ms(Xi),m

′)

Σi∈[n]1[Yi=y]
,

where m,m′, y ∈ {0, 1}, ζ(M(Xi), 1)=1[M(Xi)> 0.5],
and ζ(M(Xi), 0)=1−1[M(Xi)>0.5].

Note that the CMI computed using these would not differ-
entiable as these densities are computed by thresholding the
outputs of the model. Since we want to add a CMI penalty
as a regularizer to the ERM objective and optimize the pro-
posed objective using standard gradient-based methods, we
need a differentiable version of CMI. Thus, for practical
purposes, we use an approximation of the indicator function
1[x > 0.5], given by σ(x − 0.5, T ), where T determines
the degree of smoothness or sharpness in the approximation.

This can be easily generalized for multi-class classifica-
tion with C classes. In that case, m,m′, y ∈ {0, · · · , C −
1}, M(Xi) is a C-dimensional vector with the mth en-
try indicating the probability of predicting class m, and
ζ(M(Xi),m) = 1[argmax

j∈[C]

Mj(Xi) = m]. To make this

differentiable, we use the softmax function with temperature
parameter T to approximate the indicator function.
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Using these densities, the estimated CMI is:

În(M,Ms|M)

=
∑
y

p(M=yi)
∑
m,m′

p(M = m,Ms=m′|M=y)

log

[
p(M=m,Ms=m′|M=y)

p(M=m|M=y)p(Ms=m′|M=y)

]
. (1)

This estimate is differentiable, making it compatible with
gradient-based methods. Therefore, we utilize it as a regu-
larizer for the proposed approach.

4. Experiments
We show that CMID reduces SB, and yields improvements
across a number of OOD generalization, robustness and fair-
ness metrics. We note that past approaches usually specifi-
cally target one or two of these problem settings. Thus, we
consider the most task-relevant methods for comparison.

4.1. Mitigating Simplicity Bias

Figure 2. Results on slab data. Left: Lin-
ear model, Center: 1-hidden-layer NN-
ERM, Right: 1-hidden-layer NN-CMID.

Slab Data Slab
data was pro-
posed in [44] to
model simplicity
bias. Each feature
is composed of
k data blocks or
slabs, as shown in
Fig. 2. There is
a simple feature
along which the
data is linearly
separable, while features with more slabs are complex
and involve a piece-wise linear model. The linear model
is perfectly predictive, but the predictor using both types
of features attains a much better margin, and generalizes
better. Fig. 2 shows the decision boundary using ERM and
the proposed approach. We see that CMID encourages the
model to use both features and attain better margin.
Texture vs Shape Bias on ImageNet-9 [19] showed that
CNNs trained on ImageNet tend to make predictions based
on image texture rather than image shape. To quantify
this phenomenon, the authors designed the GST dataset,
which contains synthetic images with conflicting shape and
texture (e.g., image of a cat modified with elephant skin
texture as a conflicting cue). The shape bias of a model on
the GST dataset is defined as the number of datapoints for
which the model correctly identifies shape compared to the
total number of datapoints for which the model correctly
identifies either shape or texture. We train a ResNet50
model on ImageNet-9 data, a subset of ImageNet organized
into nine classes by [52] (more details in the Appendix) and

observe that CMID (shape bias 51.8) mitigates the texture
bias exhibited by ERM (shape bias 38.6) and encourages
the model to rely on shape for predictions.

4.2. Better OOD Generalization

Synthetic: CMNIST and Color+Patch MNIST We
present results on two variants of the MNIST dataset [12],
using a binary digit classification task (< 5 or not). In
the colored-MNIST data [1], color (red/green) is injected
as a spurious feature, with environment-dependent label
correlation 1 − pe. The train data has two environments
with pe = 0.1, 0.2 while the test data has pe = 0.9, to test
OOD performance. Further, it contains 25% label noise
to reduce the predictive power of the task-relevant feature:
digit shape. We also consider the color+patch MNIST data
proposed in [3], which contains an additional spurious fea-
ture in the form of a 3× 3 patch. The position of the patch
(top left/bottom right) is correlated with the label, with the
same pe, but independent of the color. Table 4 shows that
CMID gets competitive OOD performance with methods
that require group knowledge, and has the lowest gap δgap
between test performance on i.i.d and OOD samples, even
in the presence of multiple spurious features.

Group
labels

Bias: Color Bias: Color & Patch
Method Test (i.i.d) Test (OOD) δgap Test (i.i.d) Test (OOD) δgap

pe = 0.1 pe = 0.9 pe = 0.1 pe = 0.9
ERM No 88.6± 0.3 16.4± 0.8 −72.2 93.7± 0.3 14.0± 0.5 −79.7
IRM [1] Yes 71.4± 0.9 66.9± 2.5 −4.5 93.5± 0.2 13.4± 0.3 −80.1
GDRO [42] Yes 89.2± 0.9 13.6± 3.8 −75.6 92.3± 0.3 14.1± 0.8 −78.2
PI [5] Yes 70.3± 0.3 70.2± 0.9 −0.1 85.4± 0.9 15.3± 2.7 −70.1
BLOOD [3] Yes 70.5± 1.1 70.7± 1.4 0.2 68.3± 2.3 62.3± 3.3 −6.0
EIIL [10] No 71.7± 1.6 62.8± 5.0 −8.9 65.3± 8.4 53.0± 5.6 −12.3
JTT [31] No 72.2± 1.1 64.6± 0.56 −7.6 64.0± 2.7 56.2± 2.7 −7.8
CMID No 69.2± 0.9 68.9± 0.9 −0.3 60.3± 2.7 59.4± 1.0 −0.9
Optimal - 75 75 0 75 75 0

Table 4. Comparison on Colored MNIST and Color+Patch MNIST.

Medical: Camelyon17-WILDS Camelyon17-WILDS is
a real-world medical image dataset of data collected from
five hospitals [7; 28]. Three hospitals comprise the training
set, one is the validation set and the third is the OOD test
set. Images from different hospitals vary visually. The
task is to predict whether or not the image contains tumor
tissue, and the dataset is a well-known OOD generalization
benchmark [3; 28]. Table 5 shows that CMID leads to higher
average accuracies than existing group-based methods when
evaluated on images from the test hospital.

Method ERM IRM [1] GDRO [42] PI [5] BLOOD [3] CMID
Train Acc 97.3± 0.1 97.1± 0.1 96.5± 1.4 93.2± 0.2 93.0± 1.8 92.9± 1.4

OOD Test acc 66.5± 4.2 59.4± 3.7 70.2± 7.3 71.7± 7.5 74.9± 5.0 76.1± 6.3

Table 5. Comparison on Camelyon17-WILDS.

Fairness: Adult-Confounded The Adult-Confounded
dataset [10] is a variant of the UCI Adult dataset [38; 30]. It
consists of four sensitive sub-groups based on binarized race
and sex labels, and has confounded data where sub-group
membership is predictive of the label on the training data
but the correlation is reversed at test time. Therefore, it tests
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whether the classifier makes biased predictions based on sub-
group membership. Table 6 shows that compared to other
methods CMID achieves superior OOD test performance
with the least gap between train and test performance, indi-
cating its low reliance on sensitive sub-group information.

Method ERM ARL [29] EIIL [10] CMID
Train Acc 92.7± 0.5 72.1± 3.6 69.7± 1.6 76.2± 2.2

OOD Test Acc 31.1± 4.4 61.3± 1.7 78.8± 1.4 78.8± 0.7
δgap −61.6 −10.8 9.1 2.6

Table 6. Comparison on Adult-Confounded dataset.

4.3. Sub-group Robustness

We evaluate our approach on four benchmark classification
tasks for robustness to spurious correlations, namely on Wa-
terbirds, CelebA, MultiNLI and CivilComments-WILDS
datasets (Table 1, details in the Appendix). Table 7 shows
the average and worst-group accuracies for CMID and com-
parison with other methods [15; 37; 31] which do not use
group information. GDRO [42], which uses group infor-
mation, acts as a benchmark. We see that on three of
these datasets, CMID competes with state-of-the-art algo-
rithms that improve sub-group robustness. Interestingly,
CMID seems paricularly effective on the two language-
based datasets. We also note that CMID is not effective
on CelebA images. We believe that this is because both
the spurious feature (gender) and the invariant feature (hair
color) for CelebA are of similar complexity. We explore
this further in the Appendix.

Method Waterbirds CelebA MultiNLI CivilComments
Avg Worst-grp Avg Worst-grp Avg Worst-grp Avg Worst-grp

ERM 97.3 72.6 95.6 47.2 82.4 67.9 92.6 57.4
CVaRDRO [15] 96.0 75.9 82.5 64.4 82.0 68.0 92.5 60.5

LfF [37] 91.2 78.0 85.1 77.2 80.8 70.2 92.5 58.8
JTT [31] 93.3 86.7 88.0 81.1 78.6 72.6 91.1 69.3
CMID 88.6 84.3 84.5 75.3 81.4 71.5 84.2 74.8

GDRO [42] 93.5 91.4 92.9 88.9 81.4 77.7 88.9 69.9

Table 7. Average and worst-group test accuracies on benchmark
datasets for sub-group robustness.

4.4. Fairness Application: Bias in Occupation Prediction

The Bios dataset [11; 9] is a large-scale dataset of more than
300k biographies scrapped from the internet. The goal is
to predict a person’s occupation based on their bio. [9] for-
malize a notion of social norm bias (SNoB) which measures
adherence to gender norms of the majority gender group for
the occupation. They quantify this bias using ρ(pc, rc), the
Spearman rank correlation coefficient between pc, the frac-
tion of bios under occupation c mentioning ‘she’, and rc, the
correlation between occupation and gender predictions (de-
tails in the Appendix). A larger value of ρ(pc, rc) indicates
larger social norm bias, meaning that in male-dominated
occupations the algorithm has a higher accuracy on bios that
align with inferred masculine norms, and vice-versa.

Table 8 shows results on Bios data. We compare with a gr-

Method Accuracy ρ(pc, rc)
ERM 0.95 0.66

Decoupled [16] 0.94 0.60
CMID 0.96 0.38

Table 8. Comparison on Bios data.

oup fairness approach,
Decoupled [16] that
trains separate models
for each gender, in
order to mitigate gender
bias. We see that CMID address SNoB bias better than
ERM and Decoupled, achieving a lower ρ(pc, rc) and
improved accuracy.

5. Conclusion and Discussion
We proposed a new framework (CMID) to mitigate simplic-
ity bias, and showed that it yields improvements over ERM
and many other previous approaches across a number of
OOD generalization, robustness and fairness benchmarks.
We note, however, that like any other regularization or in-
ductive bias, CMID may not be effective for every task. For
certain tasks, spurious features as defined by us in Section
2 may not actually be spurious, or the separation between
the feature complexity of spurious and invariant features
may not be as large. A natural direction of future work is
to further explore the capabilities and limitations of our ap-
proach, and to also further understand its theoretical proper-
ties. More broadly, our work suggests auditing large models
with respect to much simpler models can lead to improved
properties of the larger models along certain robustness and
fairness axes. It would be interesting to explore the power of
similar approaches for other desiderata, and to understand
its capabilities for fine-tuning large pre-trained models.
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A. Related Work
Simplicity Bias in NNs. Several works [19; 2; 48; 18; 44; 35; 34; 40] show that NNs trained with gradient-based methods
prefer learning solutions which are ‘simple’. [19] show that CNNs make predictions which depend more on image texture
than image shape. [44] create synthetic datasets (e.g. Slab data which we also consider) and show that in the presence of
simple and complex features, NNs rely heavily on simple features even when both have equal predictive power. [35] show
that the predictions of NNs trained by SGD can be approximated well by linear models during early stages of training. [34]
show that 1-hidden layer NNs are biased towards using low-dimensional projections of the data for predictions.

OOD Generalization. Towards developing models which perform better in the real world, OOD generalization requires
generalization to data from new environments. Environments are usually defined based on the correlation between some
spurious feature and the label. Various methods aim to recover a predictor that is invariant across a set of environments. [1]
develop the invariant risk minimization (IRM) framework where environments are known, while [10] propose environment
inference for invariant learning (EIIL), to recover the invariant predictor, when the environments are not known. Predict then
interpolate (PI) [5] and BLOOD [3] use environment-specific ERMs to infer groups based on the correctness of predictions.

Subgroup Robustness. In many applications, models should not only do well on average but also do well on subgroups
within the data. Several methods [42; 37; 27; 46] have been developed to improve the worst-group performance of a model.
One widely used approach is to optimize the worst case risk over a set of subgroups in the data [15; 42; 43], known as
distributionally robust optimization (DRO). CVaRDRO [15] optimizes over all subgroups in the data, which is somewhat
pessimistic, whereas GDRO [42] does this over a set of predefined groups. However, group knowledge may not always be
available, various methods try to identify or infer groups and reweight minority groups in some way, when group labels are
not available [37; 31; 45] or partially available [46]. Just train twice (JTT) [31] uses ERM to identify the groups based on
correctness of predictions. Learning from failure (LfF) [37] simultaneously trains two NNs, encouraging one model to make
biased predictions, and reweighting the samples it finds harder-to-learn (larger loss) to train the other model.

Fairness An essential aspect of trustworthy models is ensuring fairness in their predictions across subgroups based
on sensitive demographic information within the data. Fairness interventions used when group information is available
include: data reweighting to balance groups before training [26], learning separate models for different subgroups [16],
and post-processing of trained models, such as adjusting prediction thresholds based on fairness-based metrics [21]. Some
approaches focus on achieving fairness without group knowledge. Multicalibration [24] aims to learn a model whose
predictions are calibrated for all subpopulations that can be identified in a computationally efficient way. [22] proposes
a DRO-based approach to minimize the worst-case risk over distributions close to the empirical distribution to ensure
fairness. [29] proposes adversarial reweighted learning (ARL), where an auxiliary model identifies subgroups with inferior
performance and the model of interest is retrained by reweighting these subgroups to reduce bias.

De-biasing Methods Deep neural networks are known to exhibit unwanted biases. For instance, CNNs trained on image
data may exhibit texture bias [19], and language models trained on certain datasets may exhibit annotation bias [20]. Several
methods have been proposed to mitigate these biases. [4] introduce a framework to learn de-biased representations by
encouraging them to differ from a reference set of biased representations. [47] propose a confidence regularization approach
to encourage models to learn from all samples. Recent works also show that deep neural networks tend to amplify the
societal biases present in training data [50; 25] and they propose domain-specific strategies to mitigate such amplification.

B. Theoretical Results
In this section, we analyze the effect of CMI regularization and show it leads to reduced dependence on spurious features in a
Gaussian mixture model. We also show guarantees for OOD generalization for our approach in a causal learning framework.
We present the proofs in Section C.

B.1. Effect of CMI Regularization for Gaussian Features

We consider data generated from the following Gaussian mixture model (refer to the left-most panel in Fig. 3 for an example
of data generated from this distribution).

Assumption B.1. Let the label y ∼ R(0.5), where R(p) is a {±1} random variable which is 1 with probability p. Consider
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an invariant feature X1 and a spurious feature X2, with distributions:

X1 ∼ N (yµ1, σ
2
1) and X2 ∼ N (aµ2, σ

2
2).

where a ∼ yR(η) is a spurious attribute, with an unstable correlation with y, and µ1, µ2 > 0, η > 0.5. Assume X1 ⊥ X2|y
and let µ′

2 = (2η − 1)µ2 and σ′2
2 = σ2

2 + µ2
2 − µ′2

2 .

We consider linear models to predict y from the features X1 and X2. Let M = {(w1, w2) : w1, w2 ∈ R} be all possible
linear models and Ms = {(0, w) : w ∈ R} ∪ {(w, 0) : w ∈ R} be a simpler model class which only uses one of the two
features. We consider the mean squared error (MSE) loss, and the ERM solution is given by:

ERM(M) = argmin
w∈M

E (w1X1 + w2X2 − y)2.

Proposition B.2. ERM(M) satisfies w1

w2
= µ1

µ′
2

σ′2
2

σ2
1

. When µ1

µ′
2

σ′2
2

σ2
1
<1, ERM(Ms)=

[
0,

µ′
2

σ2
2

]
(upto scaling).

Figure 3. Results on synthetic Gaussian data generated as per Assumption B.1, with 2000 samples and µ1 = µ2 = 5, σ1 = 1.5, σ2 = 0.5.
Left to right: Ground truth (GT) predictor, ERM with M as the class of linear models, ERM with M as the class of threshold functions,
and ERM with CMI constraint, with c = 0.01.

We now consider the effect of CMI regularization. We assume that µ1

µ′
2

σ′2
2

σ2
1
< 1, so as per Proposition B.2, in the first step we

learn a simple model w∗
2X2 which uses only X2. We now consider the ERM problem but with a constraint on the CMI:

ERMC(M) = argmin
w∈M

E (w1X1 + w2X2 − y)2 s.t. I(w1X1 + w2X2;w
∗
2X2|y) ≤ ν. (2)

Figure 4. Effect of CMI regularization (wrt X2) for different values of
c (corresponding to regularization strength). Left: Lower values of c
indicate stronger CMI regularization, resulting in more upweighting of w1

wrt w2. Inset shows a zoomed-in region and markers compare the three
solutions when σ2

2/σ
2
1 = 1/6. Right: Decision boundaries for predictors

corresponding to the markers.

We show the following guarantee on the learned
model.

Theorem B.3. Let data be generated as per Assump-
tion B.1. For ν = 0.5 log(1 + c2) for some c:

1. When µ1

µ′
2

σ′2
2

σ1σ2
> 1

c , the solution to (2) is the same

as ERM(M), so w1

w2
= µ1

µ′
2

σ′2
2

σ2
1

.

2. Otherwise, w1 is upweighted and the solution to
(2) satisfies |w1|

|w2| =
1
c
σ2

σ1
.

Theorem B.3 suggests that for an appropriately small
c, regularizing CMI with the simple model leads to
a predictor which mainly uses the invariant feature.
This is supported by experimental results on data
drawn according to Assumption B.1, shown in Fig. 3.

In Fig. 4 we visualize the relationship between w1

w2

and σ2
2

σ2
1

predicted in Theorem B.3 (assuming µ1=µ2 and η=0.95.) We see that a lower value of c promotes conditional
independence with X2 and upweighs w1 more strongly. When c → 0, w2 → 0.
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B.2. OOD Generalization in a Causal Learning Framework

Following the setting in [1; 32], we consider a dataset D = {De}e∈Etr , which is composed of data De ∼ Dne
e gathered

from different training environments e ∈ Etr, where e denotes an environment label, ne represents the number of samples in
e. Etr denotes the set of training environments.

The problem of finding a predictor with good OOD generalization performance, can be formalized as:

argmin
M∈M

max
e∈E

ED[ℓM (Z)|e],

i.e., optimizing over the worst-case risk on all environments in set E . Usually, E ⊃ Etr, and hence, the data and label
distribution can differ significantly for e ∈ Etr and e ∈ E \ Etr. This makes the OOD generalization problem hard to solve.

The invariant learning literature assumes the existence of invariant and variant features. In this section, we assume that the
model of interest, say M(X) is composed of a featurizer Φ and a classifier ω on top of it, i.e. M(X) = ω ◦Φ(X). For
simplicity, we omit the argument X and assume that learning a featurization includes learning the corresponding classifier,
so we can write M = Φ. Let E be a random variable sampled from a distribution on E .

Definition B.4 (Invariant and Variant Predictors). A feature map Φ is called invariant and is denoted by Φ if Y ⊥ E|Φ,
whereas it is called variant and is denoted by Ψ if Y ̸⊥ E|Ψ .

Several works [1; 32; 10] attempt to recover the invariant feature map by proposing different ways to find the maximally
invariant predictor [8], defined as:

Definition B.5 (Invariance Set and Maximal Invariant Predictor). The invariance set I with respect to environment set E
and hypothesis class M is defined as:

IE(M) = {Φ : Y ⊥ E|Φ} = {Φ : H[Y |Φ] = H[Y |Φ,E]}.

The corresponding maximal invariant predictor (MIP) of IE(M) is Φ∗ = argmax
Φ∈IE(M)

I(Y ;Φ).

The MIP is an invariant predictor that captures the most information about Y . Invariant predictors guarantee OOD
generalization, making MIP the optimal invariant predictor (Theorem 2.1 in [32]).

As discussed in Section 1, most current work assumes that the environment labels e for the datapoints are known. However,
environment labels typically are not provided in real-world scenarios. In this work, we don’t assume access to environment
labels and instead, we rely on another aspect of these features: are they simple or complex? We formalize this below:

Assumption B.6 (Simple and Complex Predictors). The invariant feature comprises of complex features, i.e. Φ∗ = [Φc],
where Φc ∈ Mc, i.e., M\Ms. The variant feature comprises of simple and complex features, i.e., Ψ∗ = [Ψc, Ψs], where
Ψc ∈ Mc, Ψs ∈ Ms and I(Y ;Ψs) > 0.

We consider the underlying causal model in [41] which makes the following assumption.

Assumption B.7 (Underlying Causal Model). Given the model in Fig. 5, I(Φ, Ψ |Y )=0 and I(Ψs, Ψc|Y )>I(Ψs, Ψc|Y,E).

Figure 5. Our causal model. Latent vari-
ables Zinv and Zvar correspond to invariant
and variant features Φ∗ and Ψ∗ respectively.

The following simple result shows that our method finds the maximal invariant
predictor, and thus generalizes OOD.

Theorem B.8. Let ERM(Ms) = M∗
s . Under Assumptions B.6 and B.7, the

solution to the problem:

argmin
M∈M

E ℓM (Z) s.t. I(M ;M∗
s |Y ) = 0 (3)

is M = Φ∗, the maximal invariant predictor.

C. Proofs for Section B
In this section, we present the proofs for the theoretical results in Section B.
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C.1. Proof of Proposition B.2

Proof. We have:

E (w1X1 + w2X2 − y)2 = w2
1(σ

2
1 + µ2

1) + w2
2(σ

2
2 + µ2

2) + 1− 2w1µ1 − 2w2µ
′
2 + 2w1w2µ1µ

′
2.

Since argmin
w∈M

E (w1X1 + w2X2 − y)2 is a convex problem, to find the minimizer we set gradients with respect to w1 and

w2 to be 0. Subsequently, we solve the resulting set of equations. By taking the gradient and setting it to 0, we obtain the
following set of equations:

2w1(σ
2
1 + µ2

1)− 2µ1 + 2w2µ1µ
′
2 = 0, (4)

2w2(σ
2
2 + µ2

2)− 2µ′
2 + 2w1µ1µ

′
2 = 0. (5)

From (5), w2 = µ′
2

1− w1µ1

σ2
2 + µ2

2

. Substituting this in (4) and solving for w1, we get:

w1 = µ1

σ2
1

 1
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1

σ2
1
+

µ′2
2

σ′2
2

+1

 ,

where σ′2
2 = σ2

2 + µ2
2 − µ′2

2 . Using this, we get the expression for w2:
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σ′2
2

+1

 .

Thus, for ERM(M), w1

w2
= µ1

µ′
2

σ′2
2

σ2
1

.

Next, consider ERM over Ms. If w2 = 0, we use (4) and get
[

µ1

σ2
1+µ2

1
, 0
]

as the solution, for which the loss value is σ2
1

σ2
1+µ2

1
.

If w1 = 0, we use (5) and get
[
0,

µ′
2

σ2
2+µ2

2

]
as the solution, for which the loss is σ′2

2

σ′2
2 +µ′2

2
. When µ2

1

µ′2
2

σ′2
2

σ2
1
< 1, the latter has a

smaller loss and thus, ERM(Ms) is

0, µ′
2

σ2
2

1

1+
µ2
2

σ2
2

.

C.2. Proof of Theorem B.3

Proof. Consider the constraint I(w1X1 + w2X2;w
∗
2X2|y) ≤ ν. As we are working with continuous random variables in

this setup, we employ differential entropy for our entropy computations. The entropy of a Gaussian random variable X with
variance σ2 is H(X) = 0.5(log(2πσ2) + 1). Using this and the definitions of CMI and conditional entropy, we have:

I(w1X1 + w2X2, w
∗
2X2|y) = H(w1X1 + w2X2|y)−H(w1X1 + w2X2|y, w∗

2X2)

= H(w1X1 + w2X2|y)−H(w1X1|y)

= 1
2 log

(
w2

1σ
2
1+w2

2σ
2
2

w2
1σ

2
1

)
.

Using ν = 0.5 log(1 + c2), the constraint becomes: w2
2σ

2
2

w2
1σ

2
1
≤ c2. Thus, (2) reduces to solving:

min
w1,w2

E (w1X1 + w2X2 − y)2 s.t. |w2|σ2

|w1|σ1
≤ c.

If µ′
2

µ1

σ1σ2

σ′2
2

< c, ERM(M) satisfies the constraint and serves as the solution to (2). Otherwise, since this is a convex
optimization problem with an affine constraint, the constraint must be tight. Therefore, we determine the solution by finding
ERM(M) subject to |w2|σ1

|w1|σ2
= c. The solution is given by:

w1 = µ1
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C.3. Proof of Theorem B.8

Proof. Using Assumption B.6, the class of simple models only contains variant predictors, so ERM(Ms) = Ψs. Conse-
quently, the constraint in (3) can be written as I(M ;Ψs|Y ) = 0.

Considering the set of candidate predictors for M , namely {0, Φc, Ψs, Ψc}, we examine the CMI constraint for each. Using
the definition of mutual information, we have I(0, Ψs|Y ) = 0 and I(Ψs, Ψs|Y ) = H(Ψs|Y ). According to the definition of
variant predictor, H(Ψs|Y ) > H(Ψs|Y,E) ≥ 0.

From Assumption B.7, which states that the invariant and variant predictors are conditionally independent, we can deduce
that I(Φc, Ψs|Y ) = 0. From Assumption B.7, we also have I(Ψc, Ψs|Y ) > I(Ψc, Ψs|Y,E) ≥ 0.

Using these results, the feasible set is [0, Φc], which corresponds to the invariance set IE(M). Consequently, problem (3) is
equivalent to finding argmax

Φ∈IE(M)

I(Y ;Φ). The solution to this problem is Φc, which represents the MIP Φ∗.

D. Experimental Settings
We begin by describing some common details and notation that we use throughout this section. As in the main text, we
use λ to represent the regularization strength for CMI. To ensure effective regularization, we adopt an epoch-dependent
approach by scaling the regularization strength using the parameter S. Specifically, we set λ = λc (1 + t/S) at epoch t.
The temperature parameter T is set as 12.5 throughout the experiments. Additionally, we use LR to denote the learning rate,
BS to denote the batch size, and λ2 to denote the weight decay parameter, which represents the strength of ℓ2-regularization.
When using the Adam optimizer, we employ the default values for momentum.

The experiments on Slab data, CMNIST and CPMNIST data and Adult-Confounded data were implemented on Google
Colab. The ImageNet-9 experiments were run on an AWS G4dn instance with one NVIDIA T4 GPU. For experiments on
the subgroup robustness datasets and the Camelyon17-WILDS data, we used two NVIDIA V100 GPUs with 32 GB memory
each. We only used CPU cores for the Bios data experiments.

D.1. Mitigating Simplicity Bias Experiments

This section includes the details for the experiments showing that CMID mitigates simplicity bias where we use the slab
data and the ImageNet-9 data.

D.1.1. SLAB DATA

Dataset We consider two configurations of the slab data, namely 3-Slab and 5-Slab. In both the cases, the first feature is
linearly separable. The second feature has 3 slabs in the 3-Slab data and 5 slabs in the 5-Slab data. Both the features are
in the range [−1, 1]. The features are generated by defining the range of the slabs along each direction and then sampling
points in that range uniformly at random. The base code for data generation came from the official implementation of [44]
available at https://github.com/harshays/simplicitybiaspitfalls. We consider 105 training samples
and 5× 104 test samples. In both the cases, the linear margin is set as 0.05. The 3-Slab data is 10-dimensional, where the
remaining 8 coordinates are standard Gaussians, and are not predictive of the label. The slab margin is set as 0.075. The
5-Slab data is only 2-dimensional, and the slab margin is set as 0.14.

Training We consider a linear model for the simple model and following [44], a 1-hidden layer NN with 100 hidden units
as the final model (for both ERM and CMID). Throughout, we use SGD with BS = 500, λ2 = 5× 10−4 for training. The
linear model is trained with LR = 0.05, while the NN is trained with LR = 0.005.

For the 3-Slab data, the models are trained for 300 epochs. We consider λc ∈ {100, 150, 200} and choose λc = 150 for
the final result. For the 5-Slab data, the models are trained for 200 epochs and we use a 0.99 momentum in this case. We
consider λc ∈ {1000, 2000, 2500, 3000} and choose λc = 3000 for the final result. Note that we consider significantly high
values of λc for this dataset compared to the rest because the simple model is perfectly predictive of the label in this case.
This implies that its CMI with the final model is very small, and the regularization strength needs to be large in order for this
term to contribute to the loss.

https://github.com/harshays/simplicitybiaspitfalls
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D.1.2. TEXTURE VS SHAPE BIAS ON IMAGENET-9

Dataset ImageNet-9 [52] is a subset of ImageNet with nine condensed classes that each consist of images from multiple
ImageNet classes. These include dog, bird, wheeled vehicle, reptile, carnivore, insect, musical instrument, primate, and fish.

ImageNet-9 Class GST Dataset Classes
dog dog
bird bird

wheeled vehicle bicycle, car, truck
carnivore bear, cat

musical instrument keyboard

Table 9. ImageNet-9 classes mapped to corre-
sponding GST dataset classes.

Calculating shape bias The GST dataset [19] consists of 16 shape classes.
To interpret a prediction from a model trained on ImageNet-9 as a GST
dataset prediction, we consider a subset of classes from both and use the
mapping listed in Table 9. Specifically, to determine whether a model trained
on ImageNet-9 predicts correctly on a GST image, we first determine which
of the 5 ImageNet-9 classes from the Table has the highest probability based
on the model’s output, and then use the mapping to obtain the predicted GST
class label. Thus, following the procedure detailed in https://github.
com/rgeirhos/texture-vs-shape, the shape bias is calculated as:

shape bias =
number of correct shape predictions

number of correct shape predictions + number of correct texture predictions
.

Training We use ResNet50 pretrained on ImageNet data as the simple model, and train it on ImageNet-9 using Adam
with LR = 0.001,BS = 32, λ2 = 10−4 for 10 epochs. We do not consider a simpler architecture and training from scratch
since this pre-trained model already exhibits texture bias. For the final model, we consider the same model and parameters,
except we use SGD with 0.9 momentum as the optimizer and λ2 = 0.001 for both ERM and CMID and train for 10 epochs.
Values of CMID specific parameters were λc = 15, S = 10. For tuning, we consider LR ∈ {10−5, 10−4, 10−3} for both
the models and BS ∈ {16, 32}, λ2 ∈ {0.0001, 0.001, 0.01} and λc ∈ {0.5, 15, 25, 50}.

D.2. Better OOD Generalization Experiments

This section includes the details for the experiments showing that our approach leads to better OOD generalization. For this,
we used CMNIST and CPMNIST, Camelyon17-WILDS and Adult-Confounded datasets.

D.2.1. CMNIST AND CPMNIST

Dataset Following [3], we use 25, 000 MNIST images (from the official train split) for each of the training environments,
and the remaining 10, 000 images to construct a validation set. For both the test sets, we use the 10, 000 images from the
official test split.

Training The details about model architecture and parameters for training the simple model with ERM and the final model
with CMID, for both the datasets, are listed in Table 10. Following [3], the MLP has one hidden layer with 390 units and
ReLU activation function. In both the cases, the simple model is trained for 5 epochs, while the final model is trained for 20
epochs. We choose the model with the smallest accuracy gap between the training and validation sets. For tuning, we consider
the following values for each parameter: for the simple model, LR ∈ {0.005, 0.01, 0.05}, λ2 ∈ {0.001, 0.005, 0.01}, and
for the final model, LR ∈ {0.001, 0.005}, λc ∈ [3, 8] and S ∈ [3, 6], where lower values of S were tried for higher values
of λc and vice-versa.

Dataset Simple Model Optimizer LR BS λ2 Final Model Optimizer LR BS λc S
CMNIST Linear SGD 0.01 64 0.005 MLP SGD 0.001 64 4 4

CPMNIST Linear SGD 0.01 64 0.001 MLP SGD 0.005 64 5 3

Table 10. Training details for CMNIST and CPMNIST.

For the final results, we report the mean and standard deviation by averaging over 4 runs. For comparison, we consider
the results reported by [3] for all methods, except EIIL [10] and JTT [31]. Results for EIIL are obtained by using their
publicly available implementation for CMNIST data (available at https://github.com/ecreager/eiil), and
incorporating the CPMNIST data into their implementation. The hyperparameter values in their implementation are kept the
same. We implement JTT to obtain the results. We consider LR ∈ {0.001, 0.005, 0.01} and the reweighting parameter [31]
(for upweighting minority groups) λup ∈ {5, 10, 15, 20, 25} for tuning.

https://github.com/rgeirhos/texture-vs-shape
https://github.com/rgeirhos/texture-vs-shape
https://github.com/ecreager/eiil
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D.2.2. CAMELYON17-WILDS

Dataset Camelyon17-WILDS [28] contains 96× 96 image patches which may or may not display tumor tissue in the
central region. We use the same dataset as Bae et al. [3], which includes 302, 436 training patches, 34, 904 OOD validation
patches, and 85, 054 OOD test patches, where no two data-splits contain images from overlapping hospitals. We use the
WILDS package, available at https://github.com/p-lambda/wilds for dataloading.

Training For the simple model, we train a 2DConvNet1 model (see Section D.4.2 for details) for 10 epochs. We use the
Adam optimizer with LR = 10−4,BS = 32, λ2 = 10−4. For the final model, we train a DenseNet121 (randomly initialized,
no pretraining) for 5 epochs using SGD with 0.9 momentum with LR = 10−4,BS = 32, λ2 = 0.01 and λc = 0.5, S = 10.
We use the same BS and λ2 values as [3] for consistency. For tuning, we consider LR ∈ {10−5, 10−4, 10−3} for both the
models and λc ∈ {0.5, 2, 5, 15} for CMID. While [3] and [28] use learning rates 10−5 and 0.001, respectively, we found
a learning rate of 10−4 was most suited for our approach. We select the model with the highest average accuracy on the
validation set for the final results. We report the mean and standard deviation by averaging over 3 runs. For comparison, we
use the results reported by [3].

D.3. Adult-Confounded

Dataset The UCI Adult dataset [38; 30], comprises 48, 842 census records collected from the USA in 1994. It contains
attributes based on demographics and employment information and the target label a binarized income indicator (thresholded
at $50, 000). The task is commonly used as an algorithmic fairness benchmark. [29; 10] define four sensitive sub-groups
based on binarized sex (Male/Female) and race (Black/non-Black) labels: Non-Black Males (G1), Non-Black Females (G2),
Black Males (G3), and Black Females (G4). They observe that each sub-group has a different correlation strength with the
target label (p(y = 1|G)), and thus, in some cases, sub-group membership alone can be used to achieve low error rate in
prediction.

Based on this observation, [10] create a semi-synthetic variant of this data, known as Adult-Confounded, where they
exaggerate the spurious correlations in the original data. As G1 and G3 have higher values of p(y = 1|G) across both the
splits, compared to the other sub-groups (see [10] for exact values), these values are increased to 0.94, while they are set to
0.06 for the remaining two sub-groups, to generate the Adult-Confounded dataset. In the test set, these are reversed, so
that it serves as a worst-case audit to ensure that the model is not relying on sub-group membership alone in its predictions.
Following [10], we generate the samples for Adult-Confounded dataset by using importance sampling. We use the original
train/test splits from UCI Adult as well as the same sub-group sizes, but individual examples are under/over-sampled using
importance weights based on the correlation on the original data and the desired correlation.

Training We use a linear model (with a bias term) as the simple model, and following [10] use an Adagrad optimizer
throughout. We use BS = 50. The simple model is trained for 50 epochs, with LR = 0.05, λ2 = 0.001. Following [10; 29],
we use a two-hidden-layer MLP architecture for the final model, with 64 and 32 hidden units, respectively. It is trained with
LR = 0.04, λc = 4, S = 4 for 10 epochs. We also construct a small validation set from the train split by randomly selecting
a small fraction of samples (5− 50) from each sub-group (depending on its size) and then upsampling these samples to get
balanced sub-groups of size 50. We choose the model with lowest accuracy gap between the train and validation sets. For
tuning, we consider LR ∈ {0.01, 0.02, 0.03, 0.04, 0.05} and λc, S ∈ {3, 4, 5}. For the final results, we report the mean and
accuracy by averaging over 4 runs. For comparison, we reproduced the results for ERM from [10], and thus, consider the
values reported in [10] for the three methods.

D.4. Sub-group Robustness Experiments

This section includes the details for the experiments showing that CMID enhances sub-group robustness, where we use four
benchmark datasets: Waterbirds, CelebA, MultiNLI and CivilComments-WILDS.

D.4.1. DATASETS

We consider the following datasets for this task. We follow the setup in [42] for the first three and [28] for CivilComments.

Waterbirds Waterbirds is a synthetic dataset created by Sagawa et al. [42] consisting of bird images over backgrounds.
The task is to classify whether a bird is a landbird or a waterbird. The background of the image land background or water

https://github.com/p-lambda/wilds
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background, acts a spurious correlation.

CelebA CelebA is a synthetic dataset created by Liu et al. [33] containing images of celebrity faces. We classify the hair
color as blonde or not blonde, which is spuriously correlated with the gender of the celebrity male or female, as done in
Sagawa et al. [42; 31].

MultiNLI MultiNLI [51] is a dataset of sentence pairs consisting of three classes: entailment, neutral, contradiction. Pairs
are labeled based on whether the second sentence entails, is neutral with, or contradicts the first sentence, which is correlated
with the presence of negation words in the second sentence [42; 31].

CivilComments-WILDS CivilComments-WILDS is a dataset of online comments proposed by Borkan et al. [6]. The
goal is to classify whether a comment is toxic or non-toxic, which is spuriously correlated with the mention of one or more of
the following demographic attributes: male, female, White, Black, LGBTQ, Muslim, Christian, and other religion [39; 14].
Similar to previous work [28; 31], we evaluate over 16 overlapping groups, one for each potential label-demographic pair.

D.4.2. MODEL ARCHITECTURES

In this section, we discuss the architectures we consider for the simple models for this task. For the two image datasets, a
shallow 2D CNN is a natural choice for the simple model as 2D CNNs can capture local patterns and spatial dependencies
in grid-like data. On the other hand, for the two text datasets with tokenized representations, we consider a shallow FCN
or 1D CNN for the simple model. FCNs can capture high-level relationships between tokens by treating each token as a
separate feature, while 1D CNNs can capture local patterns and dependencies in sequential data.

Figure 6. Left: 2DConvNet1 and Right: 2DConvNet2 architectures.

Figure 7. Left: 2FCN and Right: 1DConvNet architectures.

Next, we describe the details for the model architectures. Let F denote the filter size and C denote the number of output
channels (for convolutional layers) or the output dimension (for linear/FC layers). Throughout, we use F = 2 for the average
pooling layers. Fig. 6 shows the 2DConvNet1 and the 2DConvNet2 architecture, which were used as simple models for
Waterbirds and CelebA, respectively. These were the only two architectures we considered for the 2DCNN on these datasets.
In 2DConvNet1, the 2D convolutional layers use F = 7, C = 10 and F = 4, C = 20, respectively, while C = 2000
for the FC layer. In the 2DConvNet2 architecture, F = 5, C = 10 for the 2D convolutional layer and C = 500 for the
FC layer. Fig. 7 shows the 2FCN and the 1DConvNet architecture, which were used as simple models for MultiNLI and
CivilComments-WILDS, respectively. For tuning, we considered these models as well as a 1DCNN with one less 1D
convolutional layer than 1DConvNet for both the datasets. In 2FCN, the FC layers use C = 100 and C = 25, respectively.
In the 1DConvNet architecture, the 1D convolutional layers use F = 7, C = 10, F = 5, C = 32 and F = 5, C = 64,
respectively, while C = 500 for the FC layer.

D.4.3. TRAINING DETAILS

We utilize the official implementation of [42] available at https://github.com/kohpangwei/group_DRO as
baseline code and integrate our approach into it. Most hyperparameter values are kept unchanged, and we list the the
important parameters along with model architectures for all the datasets in Table 11. For the simple models, we consider
shallow 2D CNNs for the image datasets, and FCN and 1D CNN for the text data, as discussed in the previous section. In all
cases, the simple model is trained for 20 epochs. For the final model, following [42], we use the Pytorch torchvision

https://github.com/kohpangwei/group_DRO
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implementation of ResNet50 [23] with pretrained weights on ImageNet data for the image datasets, and the Hugging Face
pytorch-transformers implementation of the BERT bert-base-uncased model, with pretrained weights [13]
for the language-based datasets.

Dataset Simple Model Optimizer LR BS λ2 Final Model Optimizer LR BS λ2 λc S # epochs
Waterbirds 2DConvNet1 Adam 10−5 32 10−4 ResNet50 SGD 5×10−4 128 10−4 20 4 100

CelebA 2DConvNet2 Adam 10−5 32 5×10−4 ResNet50 SGD 3×10−4 128 0.001 10 5 50
MultiNLI 2FCN Adam 0.005 16 10−4 BERT AdamW 5×10−5 32 0 75 10 5

CivilComments 1DConvNet Adam 10−4 16 10−4 BERT AdamW 10−5 32 0.001 25 10 10

Table 11. Training details for sub-group robustness datasets.

Dataset LR λc S

Waterbirds, CelebA [1, 5]× 10−4 {10, 15, 20, 25, 50, 75} {4, 5, 6, 8, 10}
MultiNLI, CivilComments {1, 2, 5} × 10−5 {10, 25, 50, 75} {10}

Table 12. Values considered for tuning the parameters for the final model for
sub-group robustness datasets.

Table 12 shows the values of LR, λc and S
we consider for tuning for the final model.
Following [42], we keep λ2 = 0 for
MultiNLI. For the rest, we consider λ2 ∈
{0.0001, 0.0005, 0.001}. For results, we
choose the model with the best worst-group
accuracy on the validation set. For comparison, we consider the values reported in [31].

D.5. Bias in Occupation Prediction Experiment

Social Norm Bias [9] considers the task of predicting a person’s occupation based on their textual bio from the Bios
dataset [11]. Based on this task, [9] formalizes a notion of social norm bias (SNoB). SNoB captures the extent to which
predictions align with gender norms associated with specific occupations. In addition to gender-specific pronouns, these
norms encompass other characteristics mentioned in the bios. They represent implicit expectations of how specific groups
are expected to behave. [9] characterizes SNoB as a form of algorithmic unfairness arising from the associations between
an algorithm’s predictions and individuals’ adherence to inferred social norms. They also show that that adherence to or
deviations from social norms can result in harm in many contexts and that SNoB can persist even after the application of
some fairness interventions.

To quantify SNoB, the authors utilize the Spearman rank correlation coefficient ρ(pc, rc), where pc represents the fraction
of bios associated with occupation c that mention the pronoun ‘she’, and rc measures the correlation between occupation
predictions and gender predictions. The authors employ separate one-vs-all classifiers for each occupation and obtain the
occupation prediction for a given bio using these classifiers. For gender predictions, they train occupation-specific models
to determine the gender-based group membership (female or not) based on a person’s bio, and use the predictions from
these models. A higher value of ρ(pc, rc) represents a larger social norm bias, which indicates that in male-dominated
occupations, the algorithm achieves higher accuracy on bios that align with inferred masculine norms, and vice versa.

Training We use a version of the Bios data shared by the authors of [11]. We used the official implementation of [9],
available at https://github.com/pinkvelvet9/snobpaper, to obtain results and for comparison purposes. In
this implementation, they consider 25 occupations and train separate one-vs-all linear classifiers for each occupation based
on word embeddings to make predictions. We directly used their implementation to obtain results for ERM and Decoupled
[16] on the data. For our approach, we employed linear models for both the simple model and the final model. We directly
regularized the CMI with respect to the ERM from their implementation. The final model was trained for 5 epochs using
SGD with LR = 0.1,BS = 128, λc = 5, S = 5. We only tuned the LR for this case, considering values of 0.05 and 0.1.

E. CelebA: Invariant and Spurious Features have Similar Complexity
In our subgroup robustness experiment for CelebA (Table 7 in Section 4.3), we found that our method did not yield a
significant improvement in worst-group accuracy. We investigate this further in this section. We show that for the CelebA
dataset, the complexity of the invariant and surrogate features are actually quite similar. The experiment is similar to the
experiments we did for CMNIST and Waterbirds in Section 2. We create a subset of the CelebA dataset by sampling
an equal number of samples from all four subgroups. Table 13 presents a comparison of the results when predicting the
invariant feature (hair color) and the surrogate feature (gender) using the simple model (1DConvNet). We observe that the
performance for both tasks is comparable, suggesting that the features exhibit similar complexity.

https://github.com/pinkvelvet9/snobpaper
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Predict invariant feature Predict surrogate feature
Train Test Train Test
89.1± 1.5 84.3± 0.6 92.4± 2.4 88.3± 1.6

Table 13. Comparison between performance for pre-
dicting the simple feature and the complex feature on
CelebA dataset.

We contrast these results with those for CMNIST and Waterbirds
in Table 2. For CMNIST and Waterbirds, there was a significant
difference in the accuracy to which the simple model could predict the
invariant and surrogate feature. For CelebA, the difference is much
smaller which suggests that spurious features are not simpler than
invariant features for this dataset—explaining why our method is not
as effective for it.

F. Broader Impacts
Our proposed CMID approach effectively mitigates simplicity bias, improves OOD generalization, and enhances sub-group
robustness and fairness across various datasets. As a result, it can enhance the trustworthiness of machine learning models
by promoting robust and fair predictions. However, robustness and fairness desiderata can be complex and vary significantly
from application to application. Though our method does not require much prior knowledge of the biases in the data or the
training procedures (e.g. which features are spurious), we do not believe that this should be regarded as a reason to not
properly investigate what biases could potentially be present. Suitable problem-dependent metrics still need be defined
based on the requirements of the application, and models need to be rigorously evaluated on these metrics before being
deployed in consequential scenarios.


