
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REALTRACKER: SIMPLER AND BETTER POINT
TRACKING BY PSEUDO-LABELLING REAL VIDEOS

Anonymous authors
Paper under double-blind review

Figure 1: Scaling point trackers using unsupervised videos. Left: We compare our RealTracker,
LocoTrack, CoTracker, BootsTAPIR and TAPIR. Each model is pre-trained using synthetic data
(from Kubric) and then fine-tuned using real videos using our new, simple protocol for unsupervised
training. Our new model and training protocol outperform SoTA by a large margin using only 0.1%
of the training data. Right: The new model is particularly robust to occlusions.

ABSTRACT

Most state-of-the-art point trackers are trained on synthetic data due to the diffi-
culty of annotating real videos for this task. However, this can result in suboptimal
performance due to the statistical gap between synthetic and real videos. In or-
der to understand these issues better, we introduce RealTracker, comprising a new
tracking model and a new semi-supervised training recipe. This allows real videos
without annotations to be used during training by generating pseudo-labels using
off-the-shelf teachers. The new model eliminates or simplifies components from
previous trackers, resulting in a simpler and often smaller architecture. This train-
ing scheme is much simpler than prior work and achieves better results using 1,000
times less data. We further study the scaling behaviour to understand the impact
of using more real unsupervised data in point tracking. The model is available in
online and offline variants and reliably tracks visible and occluded points.

1 INTRODUCTION

Tracking points is a key step in the analysis of videos, particularly for tasks like 3D recon-
struction and video editing that require precise recovery of correspondences. Point trackers have
evolved significantly in recent years, with designs based on transformer neural networks inspired by
PIPs (Harley et al., 2022). Notable examples include TAP-Vid (Doersch et al., 2022), which intro-
duced a new benchmark for point tracking, and TAPIR (Doersch et al., 2023), which introduced an
improved tracker that extends PIPs’ design with a global matching stage. CoTracker (Karaev et al.,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2024b) proposed a transformer architecture that tracks multiple points jointly, with further gains in
tracking quality, particularly for points partially occluded in the video.

In this paper, we introduce a new point tracking model, RealTracker, that builds on the ideas of
recent trackers but is significantly simpler, more data efficient, and more flexible. Our architecture,
in particular, removes some components that recent trackers proposed as necessary for good perfor-
mance while still improving on the state-of-the-art. For the first time, we also investigate the data
scaling behaviour of a point tracker and show the advantages of different model architectures and
training protocols in terms of final tracking quality and data efficiency.

The excellent performance of recent trackers is due to the ability of high-capacity neural networks to
learn a robust prior from many training videos and use this prior for tackling complex and ambigu-
ous tracking cases, such as occlusions and fast motion. Therefore, the availability of high-quality
training data (Muller et al., 2018) is of crucial importance in obtaining solid tracking results.

While, in principle, there is no shortage of videos that could be used to train point trackers, it is
difficult to manually annotate them with point tracks (Doersch et al., 2022). Fortunately, synthetic
videos (Greff et al., 2022), which can be annotated automatically, have been found to be a good
substitute for real data for low-level tasks like point tracking (Harley et al., 2022). Still, a diverse
collection of synthetic videos is expensive at scale, and the sim-to-real gap is not entirely negligible.
Hence, using real videos to train point trackers remains an attractive option.

Recent works have thus explored utilizing large collections of real but unlabelled videos to train
point trackers. BootsTAPIR (Doersch et al., 2024), in particular, has recently achieved state-of-the-
art accuracy on the TAP-Vid benchmark by training a model on 15 million unlabelled videos. While
the benefits of using more training data have thus been demonstrated, the data scaling behaviour of
point trackers is not well understood. In particular, it is unclear if the millions of real training videos
used in BootsTAPIR are necessary to train a good tracker. The same can be said about the benefits
of their relatively complex semi-supervised training recipe.

Another largely unexplored aspect is the competing designs of different trackers. Transformer ar-
chitectures like PIPs (Harley et al., 2022), TAPIR (Doersch et al., 2023), and CoTracker (Karaev
et al., 2024b), as well as more recent contributions like LocoTrack (Cho et al., 2024), propose each
significant changes, extensions, new components, and different design decisions. While these are
shown to help in the respective papers, it is less clear if they are all essential or whether these designs
can be simplified and made more efficient.

RealTracker contributes to answering these questions. Our model is based on a simpler architec-
ture and training protocols than recent trackers such as BootsTAPIR and LocoTrack. It outperforms
BootsTAPIR by a significant margin on the TAP-Vid and Dynamic Replica (Karaev et al., 2023)
benchmarks while using three orders of magnitude fewer unlabelled videos and a simpler training
protocol than BootsTAPIR. We also study the data scaling behaviour of this model under increas-
ingly more real training videos. LocoTrack benefits in a similar manner to RealTracker from scaling
data but cannot track occluded points well.

RealTracker borrows elements from prior models, including iterative updates and convolutional fea-
tures from PIPs, cross-track attention for joint tracking, virtual tracks for efficiency, and unrolled
training for windowed operation from CoTracker, as well as the 4D correlation from LocoTrack. At
the same time, it significantly simplifies some of these components and removes others, such as the
global matching stage of BootsTAPIR and LocoTrack. This helps to identify which components are
really important for a good tracker. RealTracker’s architecture is also flexible as it can operate both
offline (i.e., single window) and online (i.e., sliding window) if trained in the same way.

2 RELATED WORK

Tracking-Any-Point. The task of tracking any point was introduced by PIPs (Harley et al., 2022),
who revisited the classic Particle Video (Sand & Teller, 2008) method and proposed to use deep
learning for point tracking. Inspired by RAFT (Teed & Deng, 2020), an optical flow algorithm, PIPs
extracts correlation maps between frames and feeds them into a network to refine the track estimates.
TAP-Vid (Doersch et al., 2022) improved the framing of the problem and proposed three different
benchmarks for point tracking. TAPIR (Doersch et al., 2023) combined TAP-Vid-like global match-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ing with PIPs, resulting in a much-improved performance. (Zheng et al., 2023) introduced another
synthetic benchmark, PointOdyssey, and PIPs++, an improved version of PIPs that can track points
over extended durations. CoTracker (Karaev et al., 2024b) noted that a strong correlation exists
between different tracks, which can be exploited to improve tracking, particularly behind occlusions
and out-of-frame. Le Moing et al. (2024) further improved CoTracker by densifying its output.
VGGSfM (Wang et al., 2024) proposed a coarse-to-fine tracker design where tracks are validated
through 3D reconstruction, but it only targets static scenes. Inspired by DETR (Carion et al., 2020),
Li et al. (2024) introduced TAPTR, an end-to-end transformer architecture for point tracking, rep-
resenting points as queries in the transformer decoder. LocoTrack (Cho et al., 2024) extended 2D
correlation features to 4D correlation volumes while also simplifying the point-tracking pipeline and
making it more efficient. Our work proposes a further simplified framework that runs 27% faster
than LocoTrack, maintaining the ability to track occluded points via joint tracking, like CoTracker.

Annotating data for point tracking is particularly challenging due to the required precision: the
annotation should have (at least) pixel-level accuracy. The prevailing paradigm in point tracking
is thus to train models using synthetic data, where such annotations can be obtained automatically
and without errors, and show that the resulting models generalize to real data. All the methods
mentioned above follow this paradigm, and most are trained solely on Kubric (Greff et al., 2022).

Semi-supervised correspondence. An alternative to synthetic data is unlabelled real data in com-
bination with unsupervised or semi-supervised learning. For example, one can use photometric
consistency as a proxy for correspondences. Such training is well suited for optical flow and dense
tracking but often leads to false matches due to occlusions, repeated textures, or lighting changes.
Therefore it usually requires multi-frame estimates (Janai et al., 2018), explicit reasoning about
occlusions (Wang et al., 2018), hand-crafted loss terms (Liu et al., 2019b; Meister et al., 2018),
or various data augmentation strategies (Liu et al., 2020). Alternatively, one can use an existing
tracker to train another in a process akin to distillation (Liu et al., 2019a). More robust unsuper-
vised learning signals for long-range tracking can be obtained via simple colorization of gray-scale
videos by copying colors from the reference frame (Vondrick et al., 2018) or utilizing richer visual
patterns (Lai et al., 2020).

Accounting for cycle consistency (Wang et al., 2019; Jabri et al., 2020) or temporal continu-
ity (Földiák, 1991; Wiskott & Sejnowski, 2002) in videos is another way to obtain a reliable
proxy signal to learn correspondences without full supervision, or even learn generic visual fea-
tures (Goroshin et al., 2015; Wang & Gupta, 2015). Shen et al. (2022) proposed an unsupervised
learning framework based on siamese networks for training trackers with cycle consistency. Re-
cently, (Sun et al., 2024) proposed refining PIPs and RAFT on a pre-generated dataset with pseudo-
labels using color constancy and cycle consistency signals. This pipeline improves tracking, but
performance quickly saturates. Wu et al. (2021) introduced an unsupervised learning framework
that does not require any annotated videos in visual tracking. Tumanyan et al. (2024) combined test-
time per-video optimization with DINOv2 (Oquab et al., 2023) features to improve point tracking.
Karaev et al. (2024a) introduced a more efficient architecture and a simple pseudo-labelling pipeline
to further improve its performance by training on real data.

Most relevant to our work, BootsTAPIR (Doersch et al., 2024) improved TAPIR trained on Kubric
by fine-tuning it on 15 million real videos using self-training while retaining a small synthetic dataset
with ground-truth supervision to avoid catastrophic forgetting. They proposed applying augmenta-
tions to student predictions and trained the model with an exponential moving average (EMA) while
computing three different loss masks for robustness. In contrast, our approach uses a simpler design
which does not require augmentations, masks, or EMA for training. We also do not need ground-
truth supervised data during finetuning on pseudo-labels. Instead, our idea is to train a student
model by utilizing existing trackers with complementary qualities as teachers. We also show that
this protocol only requires a small fraction of the real videos utilized in BootsTAPIR.

3 METHOD

In this section, we formally introduce the task of point tracking and then outline the proposed Real-
Tracker architecture and the pseudo-labelling training pipeline we use to train it.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Given a video (It)Tt=1, which is a sequence of T frames It ∈ R3×H×W , and a query point
Q = (tq,xq,yq) ∈ R3 where tq indicates the query frame index and (xq,yq) represents the initial
location of the query point, our goal is to predict the corresponding point track Pt = (xt,yt) ∈ R2,
t = 1, . . . , T , with (xtq ,ytq ) = (xq,yq). As is common in modern point tracking models (Doersch
et al., 2023; Karaev et al., 2024b), RealTracker also estimates visibility Vt ∈ [0, 1] and confidence
Ct ∈ [0, 1]. Visibility shows whether the tracked point is visible (Vt = 1) or occluded (Vt = 0)
in the current frame, while confidence measures whether the network is confident that the tracked
point is within a certain distance from the ground truth in the current frame (Ct = 1). The model
initializes all tracks with query coordinates Pt := (xtq ,ytq ), t = 1, . . . , T , confidence and visibility
with zeros Ct := 0,Vt := 0, then updates all of them iteratively.

3.1 TRAINING USING UNLABELLED VIDEOS

Recent trackers are trained primarily on synthetic data (Greff et al., 2022) due to the challenge of
annotating real data for this problem at scale. However, BootsTAPIR (Doersch et al., 2024) has
shown that it is possible to train better trackers by adding to the mix unlabelled real videos. In order
to do so, they propose a sophisticated self-training protocol that uses a large number of unlabelled
videos (15M), self-training, data augmentations, and transformation equivariance.

Here, we propose a much simpler protocol that allows us to surpass the performance of (Doersch
et al., 2024) with 1,000× less data: we use a variety of existing trackers to label a collection of real
videos, using them as teachers, and then use the pseudo-labels to train a new student model, which
we pre-train utilizing synthetic data.

Importantly, the teacher models are also trained using the same synthetic data only. One may thus
wonder why this protocol should result in a student being better than any of the teachers. There are
several reasons for this: (1) the student benefits from learning from a much larger (noisy) dataset than
the synthetic data alone; (2) learning from real videos mitigates the distribution shifts between syn-
thetic and real data; (3) there is an ensembling/voting effect which reduces the pseudo-annotations
noise; (4) the student model may inherit the strengths of the different teachers, which may excel in
different aspects of the task (e.g., offline trackers track occluded points better and online trackers
tend to stick to the query points more closely near the track’s origin).

Dataset. In order to enable such training, we collected a large-scale dataset of Internet-like videos
(around 100,000 videos of 30 seconds each) featuring diverse scenes and dynamic objects, primarily
humans and animals. We demonstrate that performance improves when training on increasingly
larger subsets of this data, starting from as few as 100 videos (see Figure 1).

Teacher models. To create a diverse set of supervisory signals, we employ multiple teacher mod-
els trained only on synthetic data from Kubric (Greff et al., 2022). Our set of teachers consists of
our proposed models RealTracker online and RealTracker offline, CoTracker (Karaev et al., 2024b),
and TAPIR (Doersch et al., 2023). During training, we randomly and uniformly sample a frozen
teacher model for every batch (meaning that it is likely that, over several epochs, the same video
will receive pseudo-labels from different teachers), which helps to prevent over-fitting and promotes
generalization. The teacher models are not updated during training.

Query point sampling. Trackers require a query point to track in addition to a video. After ran-
domly choosing a teacher for the current batch, we sample a set of query points for each video. To
select such queries, we use the SIFT detector (Lowe, 1999) sampling, biasing the selection of points
to those which are “good to track” (Shi & Tomasi, 1994). Specifically, we randomly select T̂ frames
across a video and apply SIFT to generate points to start tracks on these keyframes. Our intuition
behind using a feature extractor is guided by its ability to detect descriptive image features when-
ever possible while failing to do so when meeting ambiguous cases. We hypothesise that this will
serve as a filter for hard-to-track points and will thus improve the stability of training. Following
this intuition, if SIFT fails to produce a sufficient number of points for any frame, we skip the video
completely during training to maintain the quality of our training data.

Supervision. We supervise tracks predicted by the student model with the same loss used to pre-
train the model on synthetic data, with only minor modifications for handling occlusion and tracking
confidence. These details are given later in Section 3.3.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Architecture. We compute convolutional features for every frame of the given video, and
then the correlations between the feature sampled around the query frame for the query point and
all the other frames. We then iteratively update tracks P(m) = P(m) +∆P(m+1), confidence C(m),
and visibility V(m) with a transformer that takes the previous estimates P(m), C(m), V(m) as input.

3.2 REALTRACKER MODEL

We provide two model versions of RealTracker: offline and online. The online version operates
in a sliding window manner, processing the input video sequentially and tracking points forward-
only. In contrast, the offline version processes the entire video as a single sliding window, enabling
point tracking in both forward and backward directions. The offline version tracks occluded points
better and also improves the long-term tracking of visible points. However, the maximum number
of tracked frames is memory-bound, while the online version can track in real-time indefinitely.

Feature maps. We start by computing dense d-dimensional feature maps with a convolutional
neural network for each video frame, i.e., Φt = Φ(It), t = 1, . . . , T . We downsample the input
video by a factor of k = 4 for efficiency so that Φt ∈ Rd×H

k ×W
k , and compute the feature maps at

S = 4 different scales, i.e., Φs
t ∈ Rd× H

k2s−1 × W

k2s−1 , s = 1, . . . , S.

4D correlation features. In order to allow the network to locate the query point Q = (tq,xq,yq)
in frames t = 1, . . . , T , we compute the correlation between the feature vectors extracted from the
map Φtq at the query frame tq around the query coordinates (xq,yq) and feature vectors extracted
from maps Φt, t = 1, . . . , T around current track estimates Pt = (xt,yt) at the other frames.

More specifically, every point Pt is described by extracting a square neighbourhood of feature vec-
tors at different scales. We denote this collection of feature vectors as:

ϕs
t =

[
Φs

t

( x

ks
+ δ,

y

ks
+ δ

)
: δ ∈ Z, ∥δ∥∞ ≤ ∆

]
∈ Rd×(2∆+1)2 , s = 1, . . . , S, (1)

where the feature map Φs
t is sampled using bilinear interpolation around the point (xt,yt). There-

fore, for each scale s, ϕs
t contains a grid of (2∆ + 1)2 pointwise d-dimensional features.

Next, we define the 4D correlation (Cho et al., 2024) ⟨ϕs
tq , ϕ

s
t ⟩ = stack((ϕs

tq )
⊤ϕs

t ) ∈ R(2∆+1)4 for
every scale s = 1, . . . , S. Intuitively, this operation compares each feature vector around the query
point (xq,yq) to each feature vector around the track point (xt,yt), which the network uses to
predict the track update. Before passing them to the transformer, we project these correlations with
a multi-layer perceptron (MLP) to reduce their dimensionality, defining the correlation features to
be: Corrt =

(
MLP(⟨ϕ1

tq , ϕ
1
t ⟩), . . . ,MLP(⟨ϕS

tq , ϕ
S
t ⟩)

)
∈ RpS , where p is the projection dimension.

This MLP architecture is much simpler than the ad-hoc module used by LocoTrack (Cho et al., 2024)
for computing their correlation features.

Iterative updates. We initialize the confidence Ct and visibility Vt with zeros, and the tracks Pt

for all the times t = 1, . . . , T with the initial coordinates from the query point Q. We then iteratively
update all these quantities with a transformer.

At every iteration, we embed the tracks using the Fourier Encoding of the per-frame displacements,
i.e., ηt→t+1 = η(Pt+1 − Pt)., Then, we concatenate the track embeddings (in both directions

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

ηt→t+1 and ηt−1→t), confidence Ct, visibility Vt, and the 4D correlations Corrt for every query
point i = 1, . . . , N : Gi

t =
(
ηit−1→t, η

i
t→t+1, Ci

t ,Vi
t ,Corr

i
t

)
. Gi

t forms a grid of input tokens for
the transformer that span time T and the number of query points N . The transformer Ψ takes this
grid as input, adds standard Fourier time embeddings, and applies factorized time attention with t =
1, . . . , T and group attention with i = 1, . . . , N . It also uses proxy tokens (Karaev et al., 2024b) for
efficiency. This transformer estimates the updates to tracks, confidence, and visibility incrementally
as (∆P,∆C,∆V) = Ψ(G). We update tracks P , confidence C and visibility V M times, where:
P(m+1) = P(m) +∆P(m+1); C(m+1) = C(m) +∆C(m+1);V(m+1) = V(m) +∆V(m+1). Note that
we resample the pointwise features ϕ around updated tracks P(m+1) and recompute the correlations
Corr after every update.

3.3 MODEL TRAINING

We supervise both visible and occluded tracks using the Huber loss with a threshold of 6 and expo-
nentially increasing weights. We assign a smaller weight to the loss term for occluded points:

Ltrack(P,P⋆) =
M∑

m=1

γM−m(1occ/5 + 1vis)Huber(P(m),P⋆), (2)

where γ = 0.8 is a discount factor. This prioritises tracking well the visible points.

Confidence and visibility are supervised with a Binary Cross Entropy (BCE) loss at every iterative
update. The ground truth for confidence is defined by an indicator function that checks whether the
predicted track is within 12 pixels of the ground truth track for the current update. We apply the
sigmoid function to the predicted confidence and visibility before computing the loss:

Lconf(C,P,P⋆) =

M∑
m=1

γM−m CE
(
σ(C(m)),1

[
∥P(m) − P⋆∥2 < 12

])
, (3)

Loccl(V,V⋆) =

M∑
m=1

γM−m CE(σ(V(m)),V⋆). (4)

Training using pseudo-labels. When using pseudo-labelled videos, we supervise RealTracker us-
ing the same loss (2) used for the synthetic data, but found it more stable not to supervise confidence
and visibility. To avoid forgetting the latter predictions, we use a separate linear layer to estimate
confidence and visibility and simply freeze it at this training stage.

Online model. Both online and offline versions of RealTracker have the same architecture. The
main difference between them is the way of training. The online version processes videos in a
windowed manner: it takes T ′ frames as input, predicts tracks for them, then moves forward by
T ′/2 frames, and repeats this process. It uses the overlapped predictions for the tracks, confidence,
and visibility from the previous sliding window as initialization for the current window.

During training, we compute the same losses (2) to (4) for the online version separately for each
sliding window. Then, we take the mean across all the sliding windows. Since the online version
can track points only forward in time, we compute the losses only starting from the first window
with the query frame tq onwards. For the offline version, however, we compute the losses for every
frame because it tracks points in both directions. We train the online version on videos of the same
length, while the offline version needs to see videos of different lengths during training to avoid
overfitting to a specific length. With this intuition in mind, for the offline version, we randomly trim
a video between T/2 and T frames and linearly interpolate time embeddings during training.

3.4 DISCUSSION

Our model includes several simplifications and improvements compared to previous architectures
like PIPs, TAPIR and CoTracker. In particular: (1) The model uses the idea of 4D correlation from
LocoTrack but is further simplified by utilizing a simple MLP to process the correlation features
instead of their ad-hoc architecture; (2) It estimates confidence for every tracked point; (3) Com-
pared to CoTracker, the grid of tokens G is simplified, using only correlation features and Fourier

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Method Train
Kinetics RGB-S DAVIS Mean

AJ ↑ δvis
avg ↑ OA ↑ AJ ↑ δvis

avg ↑ OA ↑ AJ ↑ δvis
avg ↑ OA↑ δvis

avg ↑
PIPs++ (Zheng et al., 2023) PO — 63.5 — — 58.5 — — 73.7 — 65.2
TAPIR (Doersch et al., 2023) Kub 49.6 64.2 85.0 55.5 69.7 88.0 56.2 70.0 86.5 68.0
CoTracker (Karaev et al., 2024b) Kub 49.6 64.3 83.3 67.4 78.9 85.2 61.8 76.1 88.3 73.1
TAPTR (Li et al., 2024) Kub 49.0 64.4 85.2 60.8 76.2 87.0 63.0 76.1 91.1 72.2
LocoTrack (Cho et al., 2024) Kub 52.9 66.8 85.3 69.7 83.2 89.5 62.9 75.3 87.2 75.1
RealTracker (Ours, online) Kub 54.1 66.6 87.1 71.1 81.9 90.3 64.5 76.7 89.7 75.1
RealTracker (Ours, offline) Kub 53.5 66.5 86.4 74.0 84.9 90.5 63.3 76.2 88.0 75.9

BootsTAPIR (Doersch et al., 2024) Kub+15M 54.6 68.4 86.5 70.8 83.0 89.9 61.4 73.6 88.7 75.0
RealTracker (Ours, online) Kub+15k 55.8 68.5 88.3 71.7 83.6 91.1 63.8 76.3 90.2 76.1
RealTracker (Ours, offline) Kub+15k 54.7 67.8 87.4 74.3 85.2 92.4 64.4 76.9 91.2 76.6

Table 1: TAP-Vid benchmarks RealTracker trained on synthetic Kubric shows strong perfor-
mance compared to other models, while the online version fine-tuned on 15k additional real videos
(Kub+15k) outperforms all the other methods, even BootsTAPIR trained on 1,000× more real
videos. Training data: (Kub) Kubric (Greff et al., 2022), (PO) Point Odyssey (Zheng et al., 2023).

embeddings of displacements; (4) The visibility flags are updated at each iteration along with other
quantities instead of using a separate network. (5) Compared to TAPIR, BootsTAPIR and Loco-
Track, RealTracker does not use a global matching module as we found it redundant.

A benefit of these simplifications is that RealTracker is considerably leaner and faster than other
similar trackers. Specifically, RealTracker has 2× fewer parameters than CoTracker, while the ab-
sence of global matching and the use of an MLP to process correlations makes RealTracker 27%
faster than the fastest tracker (LocoTrack) despite cross-track attention.

4 EXPERIMENTS

In this section, we describe our evaluation protocol. Then, we compare our online and offline models
to state-of-the-art trackers (Section 4.1), analyse their performance for occluded points (Section 4.1),
show how different models scale with the proposed pseudo-labeling pipeline (Section 4.2), and
ablate the design choices of the architecture and the scaling pipeline (Section 4.3).

Evaluation protocol. We conduct our evaluation on TAP-Vid (Doersch et al., 2022) compris-
ing TAP-Vid-Kinetics, TAP-Vid-DAVIS and RGB-Stacking. TAP-Vid-Kinetics consists of 1,144
YouTube videos from the Kinetics-700–2020 validation set (Carreira & Zisserman, 2017), featuring
complex camera motion and cluttered backgrounds, with an average of 26 tracks per video. TAP-
Vid-DAVIS comprises 30 real-world videos from the DAVIS 2017 validation set (Perazzi et al.,
2016), with an average of 22 tracks per video. RGB-Stacking is a synthetically generated dataset of
robotic videos with many texture-less regions that are difficult to track.

We use the standard TAP-Vid metrics: Occlusion Accuracy (OA; accuracy of occlusion prediction as
binary classification), δvis

avg (fraction of visible points tracked within 1, 2, 4, 8 and 16 pixels, averaged
over thresholds) and Average Jaccard (AJ, measuring tracking and occlusion prediction accuracy
together). All videos are resized to 256×256 pixels before being processed by the model.

Similarly, we evaluate RealTracker on RoboTAP (Vecerik et al., 2023), which contains 265 real-
world videos of robotic manipulation tasks, with an average duration of 272 frames. Following (Do-
ersch et al., 2022), we evaluate TAP-Vid and RoboTAP in the “first query” mode: sampling query
points from the first frame where they become visible. Additionally, we also evaluate on Dynami-
cReplica (Karaev et al., 2023) following (Karaev et al., 2024b). Because this dataset is synthetic,
the tracker can be evaluated on occluded points. The evaluation subset of Dynamic Replica consists
of 20 long (300 frames) sequences of articulated 3D models. We evaluate these benchmarks at their
native resolution but resize the predictions to a resolution of 256×256 pixels and report the accuracy
of visible (δvis

avg) and occluded points (δocc
avg) using the same thresholds as in TAP-Vid.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Method Train Size↓ Time↓
Dynamic Replica RoboTAP Mean

δvis
avg ↑ δocc

avg ↑ AJ ↑ δvis
avg ↑ OA↑ δvis

avg ↑
PIPs++ (Zheng et al., 2023) PO 25M - 64.0 28.5 — 63.0 — 63.5
TAPIR (Doersch et al., 2023) Kub 31M 293 66.1 27.2 59.6 73.4 87.0 69.8
CoTracker (Karaev et al., 2024b) Kub 45M 472 68.9 37.6 58.6 70.6 87.0 69.8
TAPTR (Li et al., 2024) Kub - - 69.5 34.1 60.1 75.3 86.9 72.4
LocoTrack (Cho et al., 2024) Kub 12M 290 71.4 29.8 62.3 76.2 87.1 73.8
RealTracker (Ours, online) Kub 25M 405 72.9 41.0 60.8 73.7 87.1 73.3
RealTracker (Ours, offline) Kub 25M 209 69.8 41.8 59.9 73.4 87.1 71.6

BootsTAPIR (Doersch et al., 2024) Kub+15M 78M 303 69.0 28.0 64.9 80.1 86.3 74.6
RealTracker (Ours, online) Kub+15k 25M 405 73.3 40.1 66.4 78.8 90.8 76.1
RealTracker (Ours, offline) Kub+15k 25M 209 72.2 42.3 64.7 78.0 89.4 75.1

Table 2: Results on Dynamic Replica and RoboTAP. Our approach consistently shows better
results. Only δvis

avg on RoboTAP is better for BootsTAPIR, trained on 1,000× more data. Size in
number of params; speed expressed as µs per frame and per tracked point.

Figure 3: Ours. Predictions of online (first three columns) and offline (last three columns) models
on RoboTAP before (first row) and after (second row) scaling. We visualize the distance between
ground truth (crosses) and predictions (points). Scaling improves both online and offline models.

4.1 COMPARISON TO THE STATE-OF-THE-ART

For fairness with trackers blind to the correlation between different tracks, we evaluate RealTracker
on TAP-Vid on one query point at a time and sample additional support points to leverage joint
tracking (Karaev et al., 2024b). This ensures that no information about objects in the videos leaks
to the tracker through the selection of benchmark points (which generally correlate with objects in
benchmarks). We multiply predicted visibility by predicted confidence and apply a threshold to the
resulting quantity as in (Doersch et al., 2023), improving the AJ and OA metrics.

As shown in Table 1, RealTracker is highly competitive with other trackers across various bench-
marks even when only trained using synthetic data (Kub). Adding unlabelled videos utilizing the
approach of Section 4.2 (+15k) boosts the results well above the state-of-the-art for all metrics for
DAVIS, RGB-S, and Kinetics, and for two out of three metrics (AJ and OA) on RoboTAP (Ta-
ble 2). The +15k offline version is even better than the online one on DAVIS and RGB-S, but worse
on Kinetics and RoboTAP. As for data efficiency, despite being trained on just 15k additional real
videos, our models outperform BootsTAPIR, which was trained using 15M videos (i.e., 1,000 more).
Slightly better performance can be obtained by increasing the data further (Section 4.2). LocoTrack
also benefits similarly from our training scheme but struggles during occlusions, as shown next.

Tracking occluded points We compare RealTracker with other methods on Dynamic Replica in
Table 2 (δocc

avg and OA columns). On this benchmark, RealTracker online is better than all the other
methods even when trained solely on Kubric; in particular, it is much better than LocoTrack, which
justifies the additional parameters in the cross-track attention modules. Adding the 15k real videos
improves the tracking of visible points for the online and offline versions, but only the offline model
shows improvement in tracking occluded points. In addition to improving more, RealTracker offline
tracks occluded points better than the online version. This is because accessing all video frames at
once helps to interpolate trajectories behind occlusions.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Cross-track
attention

Dynamic Replica

δvis
avg ↑ δocc

avg ↑
✗ 71.3 35.9
✓ 72.9 41.0

Table 3: Impact of cross-track attention on oc-
cluded tracking. Cross-track attention improves the
tracking of occluded points substantially. It also im-
proves visible points, but the effect is smaller.

Self-training
Mean on TAP-Vid

AJ↑ δavg ↑ OA↑
✗ 62.2 74.5 88.2
✓ 63.5 75.7 89.5

Table 4: Self-training. Training Real-
Tracker online on its own predictions im-
proves the model. We use 10k real videos
and train to convergence.

RT onl. RT offl. TAPIR CoTr.
Mean on TAP-Vid

AJ↑ δavg ↑ OA↑
✗ ✗ ✗ ✗ 62.2 74.5 88.2
✓ ✗ ✗ ✗ 63.5 75.7 89.5
✓ ✓ ✗ ✗ 64.5 76.4 89.9
✓ ✗ ✓ ✗ 63.6 76.2 89.7
✓ ✗ ✗ ✓ 64.2 76.5 90.1
✓ ✓ ✓ ✗ 64.0 76.6 89.9
✓ ✗ ✓ ✓ 64.2 76.6 90.1
✓ ✓ ✗ ✓ 64.0 76.6 90.0
✓ ✓ ✓ ✓ 64.0 76.8 90.2

Table 5: Models used as teachers.
We use RealTracker online as a student
model and ablate different combinations
of teacher models. The first row corre-
sponds to the model trained only on syn-
thetic data. The second row corresponds
to self-training. Generally, the more di-
verse teachers we have, the better is the
tracking accuracy (δavg).

4.2 SCALING EXPERIMENTS

In Figure 1, we show how RealTracker, LocoTrack, and CoTracker (Karaev et al., 2024b) improve
with our pseudo-labeling pipeline as the training set size increases. Starting with models pre-trained
on a synthetic dataset (Greff et al., 2022) (0 at x-axis), we train them on progressively larger real
data sets: 0.1k, 1k, 5k, 10k, 30k, and 100k videos. Models are trained to convergence on their
respective subsets. All models improve with just 0.1k real-world videos and continue improving
with more. Improvements for RealTracker online, offline, and LocoTrack tend to plateau after 30k
videos, likely because the student surpasses the teachers. This may also explain why CoTracker,
initially much weaker than two of its teachers (RealTracker online and offline), keeps improving up
to and possibly beyond 100k videos, which is the maximum we can afford to explore. Our training
strategy is effective for all these models. We analyse the effect of using a scaled RealTracker as a
new teacher in the supplement. For comparison, BootsTAPIR (Doersch et al., 2024) uses 15 million
real videos and a complex protocol involving augmentations, loss masks, and more.

Interestingly, we found that training RealTracker with its own predictions as annotations without
other teachers (i.e., self-training) further improves the results on all the TAP-Vid benchmarks by
+1.2 points on average (see Table 4). Presumably, fine-tuning on real data, even with its own
annotations, helps the model reduce the domain gap between real and synthetic data.

4.3 ABLATIONS

Cross-track attention. Table 3 shows that cross-track attention improves results, particularly for
occluded points (+5.1 occluded vs. +1.6 visible on Dynamic Replica). This is because by using
cross-track attention, the model can guess the positions of the occluded points based on the positions
of the visible ones. This cannot be done if the points are tracked independently.

Teacher models. We assess the impact of using multiple teachers for generating pseudo-labels in
Table 5. We start by removing weaker models and always keep the student model itself as a teacher.
We demonstrate that removing a teacher always leads to worse results compared to the last row,
where we train with all four teacher models. This shows that every teacher is important and that the
student model can always extract complementary knowledge, even from weaker teachers.

Point sampling. In Table 6 we have explored alternative point sampling methods, including Light-
Glue (Lindenberger et al., 2023), SuperPoint (DeTone et al., 2018), and DISK (Tyszkiewicz et al.,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Qualitative comparison. Tracking a grid of 100×100 points from the first frame should
maintain grid patterns in future frames when the motion is simple. LocoTrack and RealTracker
are more consistent than BootsTAPIR, but neither LocoTrack nor BootsTAPIR can track through
occlusions and also lose more background (1st column) and object points (3rd and 4th columns).

Sampling Kinetics DAVIS RoboTAP RGB-S

Uniform 67.9 76.9 78.4 84.0
SuperPoint 68.1 76.7 78.9 81.9
DISK 68.0 76.7 78.6 82.7
SIFT 68.2 77.0 78.8 83.3

Table 6: Point sampling strategies on δavg on
TAP-Vid. SIFT is overall best, but the method
is robust w.r.t. this choice.

Frozen head Average on TAP-Vid

AJ ↑ δavg ↑ OA ↑
✗ 63.2 76.6 86.3
✓ 64.0 76.8 90.2

Table 7: Average AJ, δavg and OA on TAP-Vid,
where freezing the confidence and visibility heads
improves performance, avoiding forgetting.

2020). The choice of the sampling method does not significantly affect the performance. However,
SIFT sampling results are consistently high across all the TAP-Vid datasets.

Freezing the confidence and visibility head. In Table 7, we show that splitting the transformer
head into a separate head for tracks and a head for confidence and visibility helps to avoid forgetting
when supervising only tracks while training on real data. We freeze the head for confidence and
visibility at this stage. This improves AJ by +0.8 and OA by +3.9 on TAP-Vid on average.

5 CONCLUSION

We introduced RealTracker, a new point tracker that outperforms the state-of-the-art on TAP-Vid
and other benchmarks. RealTracker’s architecture combines several good ideas from recent trackers
but eliminates unnecessary components and significantly simplifies others. RealTracker also shows
the power of a simple pseudo-labelling training protocol, where real videos are annotated utilizing
several off-the-shelf trackers and then used to fine-tune a model that outperforms all teachers. With
this protocol, RealTracker can surpass trackers trained on ×1,000 more videos. By tracking points
jointly, RealTracker handles occlusions better than any other model, particularly when operated in
offline mode. Our model can be used as a building block for tasks requiring motion estimation, such
as 3D tracking, controlled video generation, or dynamic 3D reconstruction.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In Proc. ECCV. Springer,
2020.

João Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
doi: 10.1109/CVPR.2017.502.

Seokju Cho, Jiahui Huang, Jisu Nam, Honggyu An, Seungryong Kim, and Joon-Young Lee. Local
all-pair correspondence for point tracking. Proc. ECCV, 2024.

Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint: Self-supervised interest
point detection and description, 2018.

Carl Doersch, Ankush Gupta, Larisa Markeeva, Adrià Recasens, Lucas Smaira, Yusuf Aytar, João
Carreira, Andrew Zisserman, and Yi Yang. Tap-vid: A benchmark for tracking any point in a
video. arXiv, 2022.

Carl Doersch, Yi Yang, Mel Vecerik, Dilara Gokay, Ankush Gupta, Yusuf Aytar, Joao Carreira,
and Andrew Zisserman. TAPIR: Tracking any point with per-frame initialization and temporal
refinement. arXiv, 2306.08637, 2023.

Carl Doersch, Yi Yang, Dilara Gokay, Pauline Luc, Skanda Koppula, Ankush Gupta, Joseph Hey-
ward, Ross Goroshin, João Carreira, and Andrew Zisserman. Bootstap: Bootstrapped training for
tracking-any-point. arXiv preprint arXiv:2402.00847, 2024.

William Falcon and The PyTorch Lightning team. PyTorch Lightning, 2019. URL https://
github.com/Lightning-AI/lightning.

Peter Földiák. Learning invariance from transformation sequences. Neural computation, 3(2), 1991.

Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, and Yann LeCun. Unsupervised
learning of spatiotemporally coherent metrics. In Proc. ICCV, 2015.

Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J
Fleet, Dan Gnanapragasam, Florian Golemo, Charles Herrmann, et al. Kubric: A scalable dataset
generator. In Proc. CVPR, 2022.

Adam W Harley, Zhaoyuan Fang, and Katerina Fragkiadaki. Particle video revisited: Tracking
through occlusions using point trajectories. In Proc. ECCV, 2022.

Allan Jabri, Andrew Owens, and Alexei Efros. Space-time correspondence as a contrastive random
walk. Proc. NeurIPS, 33, 2020.

Joel Janai, Fatma Guney, Anurag Ranjan, Michael Black, and Andreas Geiger. Unsupervised learn-
ing of multi-frame optical flow with occlusions. In Proc. ECCV, 2018.

Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian
Rupprecht. Dynamicstereo: Consistent dynamic depth from stereo videos. In Proc. CVPR, 2023.

Nikita Karaev, Iurii Makarov, Jianyuan Wang, Natalia Neverova, Andrea Vedaldi, and Christian
Rupprecht. Cotracker3: Simpler and better point tracking by pseudo-labelling real videos. arXiv
preprint arXiv:2410.11831, 2024a.

Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian
Rupprecht. Cotracker: It is better to track together. Proc. ECCV, 2024b.

Zihang Lai, Erika Lu, and Weidi Xie. Mast: A memory-augmented self-supervised tracker. In Proc.
CVPR, 2020.

Guillaume Le Moing, Jean Ponce, and Cordelia Schmid. Dense optical tracking: Connecting the
dots. In CVPR, 2024.

11

https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hongyang Li, Hao Zhang, Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, and Lei Zhang. Taptr:
Tracking any point with transformers as detection. arXiv preprint arXiv:2403.13042, 2024.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed: Experiences
on accelerating data parallel training, 2020.

Philipp Lindenberger, Paul-Edouard Sarlin, and Marc Pollefeys. Lightglue: Local feature matching
at light speed, 2023.

Liang Liu, Jiangning Zhang, Ruifei He, Yong Liu, Yabiao Wang, Ying Tai, Donghao Luo, Chengjie
Wang, Jilin Li, and Feiyue Huang. Learning by analogy: Reliable supervision from transforma-
tions for unsupervised optical flow estimation. In Proc. CVPR, 2020.

Pengpeng Liu, Irwin King, Michael R Lyu, and Jia Xu. Ddflow: Learning optical flow with un-
labeled data distillation. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 33, 2019a.

Pengpeng Liu, Michael Lyu, Irwin King, and Jia Xu. Selflow: Self-supervised learning of optical
flow. In Proc. CVPR, 2019b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

David G Lowe. Object recognition from local scale-invariant features. In Proc. ICCV, 1999.

Simon Meister, Junhwa Hur, and Stefan Roth. Unflow: Unsupervised learning of optical flow with
a bidirectional census loss. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Matthias Muller, Adel Bibi, Silvio Giancola, Salman Alsubaihi, and Bernard Ghanem. Trackingnet:
A large-scale dataset and benchmark for object tracking in the wild. In Proceedings of the Euro-
pean conference on computer vision (ECCV), pp. 300–317, 2018.

Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell Howes, Po-Yao
Huang, Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran, Nico-
las Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal, Patrick Labatut, Armand
Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features without supervision.
arXiv, 2023.

F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and A. Sorkine-Hornung. A
benchmark dataset and evaluation methodology for video object segmentation. In Proc. CVPR,
2016.

Peter Sand and Seth Teller. Particle video: Long-range motion estimation using point trajectories.
IJCV, 80, 2008.

Qiuhong Shen, Lei Qiao, Jinyang Guo, Peixia Li, Xin Li, Bo Li, Weitao Feng, Weihao Gan, Wei
Wu, and Wanli Ouyang. Unsupervised learning of accurate siamese tracking. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 8101–8110, 2022.

Jianbo Shi and Carlo Tomasi. Good features to track. In Proc. CVPR, 1994.

Xinglong Sun, Adam W Harley, and Leonidas J Guibas. Refining pre-trained motion models. arXiv
preprint arXiv:2401.00850, 2024.

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In Proc.
ECCV, 2020.

Narek Tumanyan, Assaf Singer, Shai Bagon, and Tali Dekel. Dino-tracker: Taming dino for self-
supervised point tracking in a single video. In European Conference on Computer Vision, pp.
367–385. Springer, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Michał J. Tyszkiewicz, Pascal Fua, and Eduard Trulls. Disk: Learning local features with policy
gradient, 2020.

Mel Vecerik, Carl Doersch, Yi Yang, Todor Davchev, Yusuf Aytar, Guangyao Zhou, Raia Hadsell,
Lourdes Agapito, and Jon Scholz. Robotap: Tracking arbitrary points for few-shot visual imita-
tion, 2023.

Carl Vondrick, Abhinav Shrivastava, Alireza Fathi, Sergio Guadarrama, and Kevin Murphy. Track-
ing emerges by colorizing videos. In Proc. ECCV, 2018.

Jianyuan Wang, Nikita Karaev, Christian Rupprecht, and David Novotny. Vggsfm: Visual geometry
grounded deep structure from motion. In Proc. CVPR, 2024.

Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using videos.
In Proc. ICCV, 2015.

Xiaolong Wang, Allan Jabri, and Alexei A Efros. Learning correspondence from the cycle-
consistency of time. In Proc. CVPR, 2019.

Yang Wang, Yi Yang, Zhenheng Yang, Liang Zhao, Peng Wang, and Wei Xu. Occlusion aware
unsupervised learning of optical flow. In Proc. CVPR, 2018.

Laurenz Wiskott and Terrence J Sejnowski. Slow feature analysis: Unsupervised learning of invari-
ances. Neural computation, 14(4), 2002.

Qiangqiang Wu, Jia Wan, and Antoni B Chan. Progressive unsupervised learning for visual object
tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 2993–3002, 2021.

Yang Zheng, Adam W Harley, Bokui Shen, Gordon Wetzstein, and Leonidas J Guibas.
Pointodyssey: A large-scale synthetic dataset for long-term point tracking. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

Please refer to the index.html webpage in the supplement for a visual and animated comparison
between methods.

A IMPLEMENTATION DETAILS

We pre-train both online and offline model versions on synthetic TAP-Vid-Kubric (Doersch et al.,
2022; Greff et al., 2022) for 50,000 iterations on 32 NVIDIA A100 80GB GPUs with a batch size
of 1 video. We train RealTracker online on videos of length T = 64 with a window size of 16,
and sample 384 query points per video with a bias towards objects. Since the online version tracks
only forward in time, we sample points primarily at the beginning of the video. We train the offline
version on videos of length T ∈ {30, 31, . . . , 60} with time embeddings of size 60. We interpolate
time embeddings to the current sequence length both at training and evaluation. We sample 512
query points per video uniformly in time. Both models are trained in bfloat16 with gradient norm
clipping using PyTorch Lightning (Falcon & The PyTorch Lightning team, 2019) with PyTorch
distributed data parallel (Li et al., 2020). The optimizer is AdamW (Loshchilov & Hutter, 2017)
with β1 = 0.9, β2 = 0.999, learning rate 5 · 10−4, and weight decay 1 · 10−5. The optimizer adopts
a linear warm-up for 1000 steps followed by a cosine learning rate scheduler.

We scale RealTracker on a dataset of Internet-like videos primarily featuring humans and animals.
We visualize the scaling pipeline in Figure 5. To ensure the quality and relevance of our training
data, we use caption-based filtering with specific keywords to select videos containing real-world
content while excluding those with computer-generated imagery, animation, or natural phenomena
that are challenging to track, such as fire, lights, and water.

When training on real data, we use a similar setup while reducing the learning rate to 5e − 5 with
the same cosine scheduler without warm-up. We train both online and offline versions for 10,000
iterations with 384 tracks per video sampled with SIFT on eight randomly selected frames with
frame sampling biased towards the beginning of the video.

Following (Karaev et al., 2024b), when evaluating RealTracker online on TAP-Vid, we add 5×5
points sampled on a regular grid and 8×8 points sampled on a local grid around the query point to
provide context to the tracker. We do the same for the scaled offline version during inference. The
Kubric-trained offline version, however, relies on uniform point sampling during training. For this
model, during evaluation on TAP-Vid, we instead sample 1000 additional support points uniformly
over time.

Figure 5: Scaling pipeline. Given a video, we randomly choose 8 frames and sample 384 query
points across these frames using SIFT Lowe (1999). Then, we predict tracks for these query points
with the student and randomly selected teacher models. Finally, we compute the difference between
the predicted tracks and update the student model.

B PERFORMANCE

In Figure 6, we compare the speed of RealTracker with other point trackers. We measure the average
time it takes for the method to process one frame, with the number of tracked points varying between

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Teacher selection strategy Kinetics DAVIS RoboTAP RGB-S

Random 68.2 77.0 78.8 83.3
Averaging 67.4 76.5 77.9 82.4
Median 67.3 76.3 77.3 81.1

Table 8: Supervision. Random sampling of teachers consistently leads to better δavg on TAP-Vid
compared to supervision with either the mean or the median of all teachers’ predictions.

1 and 10,000. We average this across 20 videos of varying lengths from DAVIS. Even though Co-
Tracker and RealTracker apply group attention between tracked points, the time complexity remains
linear thanks to the proxy tokens introduced by (Karaev et al., 2024b). While all the trackers exhibit
linear time complexity depending on the number of tracks, RealTracker is approximately 30% faster
than LocoTrack (Cho et al., 2024), the fastest point tracker to date.

0 2000 4000 6000 8000 10000
Number of tracked points

0.0

0.1

0.2

0.3

0.4

0.5

T
im

e 
pe

r 
fr

am
e,

 [s
]

LocoTrack
BootsTAPIR
CoTracker
Ours offline
Ours online

Figure 6: Efficiency. We evaluate the speed of different trackers on DAVIS depending on the
number of tracks and report the average time each tracker takes to process a frame. Our offline
architecture is the fastest among all these models, with LocoTrack being the fastest tracker to date.

C ADDITIONAL EXPERIMENTS

Training with the average of teachers’ predictions. Interestingly, we found that aggregating the
predictions of multiple teachers instead of using a random teacher does not improve performance,
as shown in Table 8, whereas incorporating additional teachers into training consistently enhances
the quality of our student model, demonstrated in Table 5.

Repeated scaling. We study the effect of iterative scaling to investigate the limits of our multi-
teacher scaling pipeline. Specifically, we scale RealTracker offline using our pipeline, where one of
the teachers is the model itself. We then take this trained student model and attempt to improve it
further by re-applying the same scaling pipeline but with the original student model replaced by the
newly trained student model as one of the teachers.

We find that this second round of scaling leads to slight improvements in performance metrics. This
suggests that the student model has already distilled most of the knowledge from the other teachers
during the initial training phase. We report the results in Table 9.

Convergence behavior during scaling. We examine the convergence behavior of our scaling
pipeline by fixing the dataset and all the hyper-parameters, varying only the number of iterations
over the dataset. We show in Table 10 that increasing the number of iterations leads to improved
performance on TAP-Vid, but with diminishing returns. Specifically, we observe a saturation point

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Model Average on TAP-Vid

AJ ↑ δavg ↑ OA ↑
Kub+15k 64.0 76.8 90.2

Kub+15k+15k 64.2 76.9 89.7

Table 9: Repeated scaling. We scale Real-
Tracker offline, then start from a scaled model,
and scale it again with the scaled model as one
of the teachers. Repeated scaling slightly im-
proves tracking accuracy.

Num. of iterations Average on TAP-Vid

AJ ↑ δavg ↑ OA ↑
1k 63.3 75.6 87.5

10k 64.0 76.8 90.2
30k 64.4 76.8 89.7
60k 64.4 77.0 89.5

Table 10: Longer training on 10k videos. We
train RealTracker offline for longer to determine
the optimal number of iterations for a given
number of videos. As a trade-off between train-
ing costs and the results obtained, we use the
same number of iterations as the number of
videos.

Figure 7: Occlusions. We occlude all tracked points with black circles of different sizes for several
consecutive frames. We experiment with different scenarios, discussed in the text. For each, we also
visualize the predicted positions of the tracked points.

beyond which further increases in the number of training iterations do not yield significant improve-
ments in model quality. We thus use the same number of iterations as the number of training videos
with a batch size of 32, iterating over each video 32 times.

Occlusions. We investigate the effect of occlusions of different sizes and lengths on the tracking
accuracy on TAP-Vid DAVIS. Specifically, we occlude all the tracked points with black circles of
different sizes for several consecutive frames (see Figure 7). We then measure how this affects the
tracking accuracy using offline tracking in various scenarios, discussed next.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Radius (% of img. width) δavg ↑
0 76.9
4 48.8
8 42.2

12 39.8
20 36.4
40 30.2
80 23.3
100 19.9

Table 11: Varying size of occlusions. We re-
port tracking accuracy on DAVIS depending on
the radius of artificially added occluding circles,
which cover all tracked points for half of the
video (30 frames on average, see Figure 7).

Duration (% of vid. len.) δavg ↑
0 76.9
20 61.3
40 48.2
60 37.5
80 29.9

100 21.1

Table 12: Varying duration of occlusions. We
report tracking accuracy on DAVIS depending
on the duration of artificially added occluding
circles with radius of 8% of the image width.
Occluders cover all the tracked points, see Fig-
ure 7.

Figure 8: Failure cases. Featureless surfaces is a common mode of failure: the model cannot track
points sampled in the sky or on the surface of water.

First, we show that RealTracker can successfully utilize the temporal context to track points through
occlusions. In order to do so, we occlude all tracked points in each video for half of the video length,
starting right after the query frame, but let the points be visible in the second half. The occluding
circle is centered in the ground truth track. We vary the radius of the occluding circle and increase it
from 0% to 100% of the video width. As Table 11 shows, the tracking accuracy is still 19.9% even
with a radius of 100%; this is because the model sees the second half of the video and can track
points there. If we occlude all rather than half the frames with a radius of 100%, the accuracy drops
to 2%.

Second, we show that RealTracker can also successfully utilize the spatial context given by other
tracked points. In order to do so, we fix the radius of the occlusion to 8% of the image width and
vary the duration of the occlusion from 0 to 100% of the video length, with average video length
being 60 frames. In Table 12, short occlusions of 20% of video length (12 frames on average) affect
performance, but not significantly: accuracy drops from 76.9% to 61.3%. When occluding points
for the whole duration of the video (100%), the model can still approximate the location of these
points due to the presence of unoccluded support points (21.1% accuracy vs 2% when all points are
occluded).

D FAILURE CASES

In Figure 8, we show examples of failure cases. We track a grid of 40*40 points from the first frame
and demonstrate that the model can not reliably track points sampled in the sky or on the surface of
water, partly because the task is ambiguous in these cases: it is unclear whether the tracked point in

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

the sky should remain static or move with the camera. Other common sources of failure are tracking
shadows of objects and tracking through long occlusions.

E LIMITATIONS

A key limitation of our pseudo-labeling pipeline is its reliance on the quality and diversity of teacher
models. The observed saturation in performance on TAP-Vid during scaling suggests that the stu-
dent model absorbs knowledge from all the teachers and, after a certain point, struggles to improve
further. Thus, we need stronger or more diverse teacher models to achieve additional gains for the
student model.

18


	Introduction
	Related work
	Method
	Training using unlabelled videos
	RealTracker model
	Model training
	Discussion

	Experiments
	Comparison to the state-of-the-art
	Scaling experiments
	Ablations

	Conclusion
	Implementation details
	Performance
	Additional experiments
	Failure cases
	Limitations


